Anticipating Human Activities Using Object Affordances for Reactive Robotic Response

An important aspect of human perception is anticipation, which we use extensively in our day-to-day activities when interacting with other humans as well as with our surroundings. Anticipating which activities will a human do next (and how) can enable an assistive robot to plan ahead for reactive re...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 1; pp. 14 - 29
Main Authors Koppula, Hema S., Saxena, Ashutosh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2015.2430335

Cover

Abstract An important aspect of human perception is anticipation, which we use extensively in our day-to-day activities when interacting with other humans as well as with our surroundings. Anticipating which activities will a human do next (and how) can enable an assistive robot to plan ahead for reactive responses. Furthermore, anticipation can even improve the detection accuracy of past activities. The challenge, however, is two-fold: We need to capture the rich context for modeling the activities and object affordances, and we need to anticipate the distribution over a large space of future human activities. In this work, we represent each possible future using an anticipatory temporal conditional random field (ATCRF) that models the rich spatial-temporal relations through object affordances. We then consider each ATCRF as a particle and represent the distribution over the potential futures using a set of particles. In extensive evaluation on CAD-120 human activity RGB-D dataset, we first show that anticipation improves the state-of-the-art detection results. We then show that for new subjects (not seen in the training set), we obtain an activity anticipation accuracy (defined as whether one of top three predictions actually happened) of 84.1, 74.4 and 62.2 percent for an anticipation time of 1, 3 and 10 seconds respectively. Finally, we also show a robot using our algorithm for performing a few reactive responses.
AbstractList An important aspect of human perception is anticipation, which we use extensively in our day-to-day activities when interacting with other humans as well as with our surroundings. Anticipating which activities will a human do next (and how) can enable an assistive robot to plan ahead for reactive responses. Furthermore, anticipation can even improve the detection accuracy of past activities. The challenge, however, is two-fold: We need to capture the rich context for modeling the activities and object affordances, and we need to anticipate the distribution over a large space of future human activities. In this work, we represent each possible future using an anticipatory temporal conditional random field (ATCRF) that models the rich spatial-temporal relations through object affordances. We then consider each ATCRF as a particle and represent the distribution over the potential futures using a set of particles. In extensive evaluation on CAD-120 human activity RGB-D dataset, we first show that anticipation improves the state-of-the-art detection results. We then show that for new subjects (not seen in the training set), we obtain an activity anticipation accuracy (defined as whether one of top three predictions actually happened) of 84.1, 74.4 and 62.2 percent for an anticipation time of 1, 3 and 10 seconds respectively. Finally, we also show a robot using our algorithm for performing a few reactive responses.
An important aspect of human perception is anticipation, which we use extensively in our day-to-day activities when interacting with other humans as well as with our surroundings. Anticipating which activities will a human do next (and how) can enable an assistive robot to plan ahead for reactive responses. Furthermore, anticipation can even improve the detection accuracy of past activities. The challenge, however, is two-fold: We need to capture the rich context for modeling the activities and object affordances, and we need to anticipate the distribution over a large space of future human activities. In this work, we represent each possible future using an anticipatory temporal conditional random field (ATCRF) that models the rich spatial-temporal relations through object affordances. We then consider each ATCRF as a particle and represent the distribution over the potential futures using a set of particles. In extensive evaluation on CAD-120 human activity RGB-D dataset, we first show that anticipation improves the state-of-the-art detection results. We then show that for new subjects (not seen in the training set), we obtain an activity anticipation accuracy (defined as whether one of top three predictions actually happened) of 84.1, 74.4 and 62.2 percent for an anticipation time of 1, 3 and 10 seconds respectively. Finally, we also show a robot using our algorithm for performing a few reactive responses.An important aspect of human perception is anticipation, which we use extensively in our day-to-day activities when interacting with other humans as well as with our surroundings. Anticipating which activities will a human do next (and how) can enable an assistive robot to plan ahead for reactive responses. Furthermore, anticipation can even improve the detection accuracy of past activities. The challenge, however, is two-fold: We need to capture the rich context for modeling the activities and object affordances, and we need to anticipate the distribution over a large space of future human activities. In this work, we represent each possible future using an anticipatory temporal conditional random field (ATCRF) that models the rich spatial-temporal relations through object affordances. We then consider each ATCRF as a particle and represent the distribution over the potential futures using a set of particles. In extensive evaluation on CAD-120 human activity RGB-D dataset, we first show that anticipation improves the state-of-the-art detection results. We then show that for new subjects (not seen in the training set), we obtain an activity anticipation accuracy (defined as whether one of top three predictions actually happened) of 84.1, 74.4 and 62.2 percent for an anticipation time of 1, 3 and 10 seconds respectively. Finally, we also show a robot using our algorithm for performing a few reactive responses.
Author Koppula, Hema S.
Saxena, Ashutosh
Author_xml – sequence: 1
  givenname: Hema S.
  surname: Koppula
  fullname: Koppula, Hema S.
  email: hema@cs.cornell.edu
  organization: Comput. Sci. Dept., Cornell Univ., New York, NY, USA
– sequence: 2
  givenname: Ashutosh
  surname: Saxena
  fullname: Saxena, Ashutosh
  email: asaxena@cs.cornell.edu
  organization: Comput. Sci. Dept., Cornell Univ., New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26656575$$D View this record in MEDLINE/PubMed
BookMark eNp9kMFKAzEQhoNUtK2-gILs0cvWTLLJZo9LUSsoitRzyKazEmmTukkF396trR48eJph5vv_wzciAx88EnIGdAJAq6v5U_1wN2EUxIQVnHIuDsiQgaR5xSo2IEMKkuVKMXVMRjG-UQqFoPyIHDMphRSlGJJ57ZOzbm2S86_ZbLMyPqttch8uOYzZS9yeH5s3tCmr2zZ0C-Nt_-i37BnNlsTsOTShb-kPcR18xBNy2JplxNP9HJOXm-v5dJbfP97eTev73HJVpdw0FTKpCiysRaYkbRSDomwNGGNbBEuRKxCCSw6s4a1RireVFYXhC9Mww8fkcte77sL7BmPSKxctLpfGY9hEDWVRSVAA0KMXe3TTrHCh151bme5T_5joAbUDbBdi7LDV1qXeSvCpM26pgeqtdP0tXW-l6730Psr-RH_a_w2d70IOEX8DJVBWCuBfMyCNOg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s13748_019_00177_z
crossref_primary_10_1016_j_neucom_2021_01_018
crossref_primary_10_1016_j_neucom_2022_08_008
crossref_primary_10_1109_TCE_2023_3321324
crossref_primary_10_1016_j_ergon_2021_103241
crossref_primary_10_1016_j_robot_2018_10_005
crossref_primary_10_1109_TNNLS_2023_3325633
crossref_primary_10_1109_TMM_2023_3271811
crossref_primary_10_1515_pjbr_2018_0021
crossref_primary_10_1007_s10846_021_01312_6
crossref_primary_10_3389_frobt_2020_00047
crossref_primary_10_1109_ACCESS_2019_2958608
crossref_primary_10_3390_robotics9020040
crossref_primary_10_1016_j_patrec_2017_01_003
crossref_primary_10_26599_TST_2021_9010068
crossref_primary_10_1007_s41315_022_00240_4
crossref_primary_10_1109_LRA_2017_2719763
crossref_primary_10_1109_LRA_2017_2719762
crossref_primary_10_1108_IJCHM_10_2021_1284
crossref_primary_10_1109_ACCESS_2021_3074419
crossref_primary_10_1145_3570731
crossref_primary_10_1109_TCSVT_2020_2965574
crossref_primary_10_1007_s12369_023_01020_1
crossref_primary_10_1016_j_patcog_2020_107807
crossref_primary_10_1109_TPAMI_2020_2976971
crossref_primary_10_1016_j_rcim_2024_102886
crossref_primary_10_1007_s11831_023_10033_y
crossref_primary_10_1109_LRA_2022_3211493
crossref_primary_10_1109_TPAMI_2018_2871688
crossref_primary_10_7717_peerj_cs_1396
crossref_primary_10_1109_TIP_2021_3113114
crossref_primary_10_1109_TPAMI_2022_3204808
crossref_primary_10_1016_j_engappai_2024_108937
crossref_primary_10_1007_s11263_023_01850_6
crossref_primary_10_1515_auto_2022_0006
crossref_primary_10_1016_j_rcim_2021_102231
crossref_primary_10_4018_IJAPUC_2019100104
crossref_primary_10_1007_s10514_018_9706_9
crossref_primary_10_1109_TCSVT_2023_3259430
crossref_primary_10_3233_ICA_190599
crossref_primary_10_1109_ACCESS_2021_3090471
crossref_primary_10_1007_s10462_021_10116_x
crossref_primary_10_1016_j_jvcir_2022_103640
crossref_primary_10_1109_ACCESS_2024_3457912
crossref_primary_10_1007_s10514_021_10023_8
crossref_primary_10_1016_j_ins_2022_10_024
crossref_primary_10_1109_TIE_2023_3288182
crossref_primary_10_1016_j_imavis_2022_104452
crossref_primary_10_3390_electronics10182198
crossref_primary_10_1109_TIP_2020_3040521
crossref_primary_10_1007_s41693_024_00132_y
crossref_primary_10_1007_s00521_019_04412_5
crossref_primary_10_3390_electronics11091471
crossref_primary_10_1016_j_neunet_2023_01_019
crossref_primary_10_1109_TPAMI_2020_2992889
crossref_primary_10_1109_TRO_2020_2992987
crossref_primary_10_1109_TIP_2016_2613686
crossref_primary_10_1007_s11370_020_00332_9
crossref_primary_10_1109_LRA_2018_2865034
crossref_primary_10_1109_TSMC_2017_2787482
crossref_primary_10_1007_s11042_020_08875_w
crossref_primary_10_1016_j_rcim_2021_102304
crossref_primary_10_1109_TAI_2022_3194869
crossref_primary_10_1016_j_asoc_2023_110575
crossref_primary_10_1080_01691864_2017_1394912
crossref_primary_10_1587_transinf_2023PCP0001
crossref_primary_10_1109_TPAMI_2021_3139918
crossref_primary_10_1109_TIP_2020_2974061
crossref_primary_10_1109_TCDS_2016_2552579
crossref_primary_10_3156_jsoft_30_5_675
crossref_primary_10_7210_jrsj_36_327
crossref_primary_10_1016_j_sigpro_2022_108714
crossref_primary_10_1109_TPAMI_2017_2759736
crossref_primary_10_1109_TPAMI_2021_3059923
crossref_primary_10_1109_ACCESS_2019_2956538
crossref_primary_10_1007_s11263_019_01234_9
crossref_primary_10_1109_ACCESS_2021_3096032
crossref_primary_10_1145_3460199
crossref_primary_10_3390_app9091869
crossref_primary_10_1007_s00530_024_01282_3
crossref_primary_10_1109_TMM_2022_3142413
crossref_primary_10_35193_bseufbd_592099
crossref_primary_10_1017_S0033291720000835
crossref_primary_10_1109_TCDS_2016_2614992
crossref_primary_10_1109_TASE_2023_3300821
crossref_primary_10_1109_ACCESS_2020_3045994
crossref_primary_10_1109_LRA_2020_3043167
crossref_primary_10_1109_ACCESS_2021_3050991
crossref_primary_10_1145_3476412
crossref_primary_10_1109_TMM_2019_2963621
crossref_primary_10_3390_jimaging6060046
crossref_primary_10_1007_s10489_021_02418_y
crossref_primary_10_17341_gazimmfd_541677
crossref_primary_10_1109_ACCESS_2018_2886133
crossref_primary_10_1016_j_robot_2022_104294
crossref_primary_10_3390_app142311315
crossref_primary_10_1142_S1793351X22490010
crossref_primary_10_1016_j_autcon_2023_105184
crossref_primary_10_1016_j_knosys_2023_110855
crossref_primary_10_3390_s23125653
crossref_primary_10_1177_0278364918812981
crossref_primary_10_1007_s00530_024_01604_5
crossref_primary_10_1007_s11263_024_02095_7
crossref_primary_10_1007_s12369_021_00842_1
crossref_primary_10_1145_3446370
crossref_primary_10_1145_3655025
crossref_primary_10_1016_j_cviu_2021_103252
crossref_primary_10_4018_IJACI_2019040103
crossref_primary_10_1109_TPAMI_2024_3393730
crossref_primary_10_1007_s11263_019_01245_6
crossref_primary_10_1016_j_patcog_2019_05_020
crossref_primary_10_1016_j_procir_2018_09_069
crossref_primary_10_1007_s11370_021_00403_5
crossref_primary_10_1109_TCSVT_2019_2912988
crossref_primary_10_1016_j_robot_2019_03_005
crossref_primary_10_1109_LRA_2018_2861569
crossref_primary_10_1016_j_neucom_2022_09_130
crossref_primary_10_1007_s11263_022_01594_9
crossref_primary_10_1109_TPAMI_2022_3218596
crossref_primary_10_1016_j_cviu_2023_103763
crossref_primary_10_1145_3579359
crossref_primary_10_1109_TCSVT_2022_3163782
crossref_primary_10_1007_s10846_018_0815_7
crossref_primary_10_1016_j_imavis_2024_104926
crossref_primary_10_1016_j_procir_2019_03_162
crossref_primary_10_1109_TMM_2020_3003783
crossref_primary_10_1016_j_asoc_2024_112126
crossref_primary_10_1109_TPAMI_2018_2873794
crossref_primary_10_1109_COMST_2023_3246993
crossref_primary_10_1109_TASE_2017_2707129
crossref_primary_10_1007_s11263_018_1103_5
crossref_primary_10_1016_j_procir_2018_01_033
crossref_primary_10_1016_j_rcim_2021_102310
crossref_primary_10_1109_LRA_2019_2949221
crossref_primary_10_3389_frobt_2018_00027
crossref_primary_10_1109_TCSVT_2023_3307655
crossref_primary_10_1016_j_oceaneng_2021_109154
crossref_primary_10_1109_LRA_2017_2662064
crossref_primary_10_3390_electronics12153305
crossref_primary_10_3390_s23094258
crossref_primary_10_1109_TPAMI_2018_2863279
crossref_primary_10_1016_j_jvcir_2017_10_004
crossref_primary_10_26599_AIR_2024_9150032
crossref_primary_10_3390_signals2030037
crossref_primary_10_1109_ACCESS_2023_3331687
crossref_primary_10_1145_3687474
crossref_primary_10_1049_iet_cvi_2017_0487
crossref_primary_10_1145_3450410
crossref_primary_10_1109_LRA_2018_2808367
crossref_primary_10_3390_s23218989
crossref_primary_10_1109_LRA_2024_3421848
crossref_primary_10_1109_TCSVT_2020_2987141
crossref_primary_10_1109_TPAMI_2020_3045007
crossref_primary_10_1016_j_patrec_2025_02_014
crossref_primary_10_1007_s10514_017_9655_8
crossref_primary_10_1109_TITS_2022_3155613
crossref_primary_10_1016_j_neucom_2022_02_045
crossref_primary_10_1016_j_cag_2023_09_013
crossref_primary_10_3389_frobt_2017_00024
crossref_primary_10_1016_j_eswa_2024_125297
crossref_primary_10_1007_s00371_019_01692_9
crossref_primary_10_1007_s00170_024_13735_0
crossref_primary_10_1109_ACCESS_2020_2963933
crossref_primary_10_1109_TCSVT_2024_3425598
crossref_primary_10_1109_TMM_2021_3137745
crossref_primary_10_1038_s41598_020_60923_5
crossref_primary_10_1109_TMM_2023_3326289
crossref_primary_10_1016_j_image_2018_06_013
crossref_primary_10_3389_frobt_2020_00038
crossref_primary_10_1007_s11263_021_01531_2
crossref_primary_10_1109_TIP_2020_3021497
crossref_primary_10_1109_TIP_2023_3279991
crossref_primary_10_1016_j_jvcir_2018_08_001
crossref_primary_10_1109_LRA_2022_3188892
crossref_primary_10_1109_TIP_2024_3414935
crossref_primary_10_1111_exsy_12552
crossref_primary_10_1007_s11042_017_5593_x
crossref_primary_10_1007_s11263_017_0992_z
crossref_primary_10_1109_MTS_2018_2795095
crossref_primary_10_4018_IJIRR_2019040102
crossref_primary_10_1002_cav_1958
crossref_primary_10_1007_s12369_020_00650_z
crossref_primary_10_1016_j_ssci_2020_105130
crossref_primary_10_1109_ACCESS_2020_3046763
crossref_primary_10_1016_j_neucom_2024_127285
crossref_primary_10_3390_ai5030048
crossref_primary_10_3389_fncom_2022_1051222
Cites_doi 10.1016/j.cviu.2010.08.002
10.1109/CVPR.2011.5995631
10.1109/CVPR.2012.6247808
10.1109/CVPR.2012.6247801
10.1109/ICCV.2005.59
10.1109/CVPR.2011.5995470
10.1109/CVPR.2010.5539998
10.1109/ICCV.2007.4409011
10.1109/CVPR.2010.5540235
10.15607/RSS.2012.VIII.055
10.1109/CVPR.2013.8
10.1109/WMVC.2007.12
10.1023/B:VISI.0000022288.19776.77
10.1007/s10994-009-5108-8
10.1109/TPAMI.2005.223
10.1109/CVPR.2013.322
10.1109/CVPR.2009.5206801
10.1111/j.1467-9876.2007.00592.x
10.1177/0278364909356602
10.1109/ICCV.2011.6126349
10.1109/ICCV.2009.5459279
10.1109/MSPEC.2012.6309254
10.1109/CVPR.2011.5995353
10.1109/CVPR.2010.5539879
10.1109/ICCVW.2011.6130379
10.1109/ROBOT.2000.846409
10.15607/RSS.2012.VIII.010
10.1109/CVPR.2013.221
10.1145/2330163.2330297
10.1109/CVPR.2011.5995646
10.1109/TPAMI.2009.83
10.1109/ICCV.2009.5459426
10.1109/ICSMC.2011.6083808
10.1109/CVPR.2009.5206821
10.1109/CVPR.2011.5995448
10.1109/CVPR.2007.383074
10.1109/CVPR.2012.6248010
10.1177/0278364913478446
10.1109/CVPR.2013.385
10.1007/s11263-010-0384-0
10.15607/RSS.2012.VIII.025
10.1145/1273496.1273629
10.1137/1.9781611972788.59
10.1109/ROBOT.2002.1013439
10.1109/CVPR.2011.5995327
10.1109/IROS.2011.6094489
10.1109/78.978396
10.1109/TPAMI.2007.1124
10.1145/1922649.1922653
10.1109/CVPR.2012.6247806
10.1109/CVPR.2008.4587756
10.1109/IROS.2009.5354147
10.1109/HRI.2013.6483499
10.1109/TPAMI.2012.241
10.1007/s11263-007-0062-z
10.1109/CVPR.2007.383203
10.1109/CVPR.2012.6248012
10.1007/BF02612354
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TPAMI.2015.2430335
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 29
ExternalDocumentID 26656575
10_1109_TPAMI_2015_2430335
7102751
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: US National Science Foundation (NSF)
  funderid: 10.13039/100000001
– fundername: ARO
  grantid: W911NF-12-1-0267
  funderid: 10.13039/100000183
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
CGR
CUY
CVF
ECM
EIF
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7X8
ID FETCH-LOGICAL-c389t-ab9e2684e4cce2860b82147fa1aacfe1c0e3815536312b3fa883f9c54a3dab2a3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 02:57:08 EDT 2025
Mon Jul 21 05:57:09 EDT 2025
Tue Jul 01 03:18:22 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Aug 26 16:42:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords human activity anticipation
robotics perception
RGBD Data
machine learning
3D activity understanding
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-ab9e2684e4cce2860b82147fa1aacfe1c0e3815536312b3fa883f9c54a3dab2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26656575
PQID 1749618111
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1749618111
ieee_primary_7102751
pubmed_primary_26656575
crossref_citationtrail_10_1109_TPAMI_2015_2430335
crossref_primary_10_1109_TPAMI_2015_2430335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.-1
2016-1-1
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
(ref68) 0
ref59
ref15
ref52
ref11
diankov (ref83) 2010
delaitre (ref75) 0
ref54
ref17
ref16
ref19
doucet (ref65) 0
ref18
fu (ref21) 0
fox (ref43) 0
montemerlo (ref67) 0
hongeng (ref53) 0
fox (ref62) 2001
ref51
ref50
ref46
ref48
ref47
sarawagi (ref58) 0
ref42
ref44
ref8
ref7
harchaoui (ref41) 0
ref9
ref4
ref3
ref5
koppula (ref30) 0
ref82
ref81
ref40
hermans (ref72) 2011
ref80
ref79
ref35
ref34
ref37
tran (ref29) 0
ref31
ref74
ref77
ref33
ref76
ref32
satkin (ref36) 0
ref2
ref1
ref39
ref38
kitani (ref49) 0
gibson (ref10) 1979
ref71
ref70
hoai (ref45) 0
ref73
schulz (ref64) 0
ref24
ref23
ref26
sung (ref6) 0
ref69
ref25
ref63
ref66
rohrbach (ref20) 0
ref22
ref27
jiang (ref28) 0
koppula (ref78) 0
ref60
ref61
niebles (ref14) 0
gong (ref55) 0
References_xml – ident: ref70
  doi: 10.1016/j.cviu.2010.08.002
– ident: ref11
  doi: 10.1109/CVPR.2011.5995631
– year: 2011
  ident: ref72
  article-title: Affordance prediction via learned object attributes
– ident: ref1
  doi: 10.1109/CVPR.2012.6247808
– ident: ref2
  doi: 10.1109/CVPR.2012.6247801
– start-page: 520
  year: 0
  ident: ref45
  article-title: Maximum margin temporal clustering
  publication-title: Proc Int Conf Artif Intell Statist
– start-page: 1185
  year: 0
  ident: ref58
  article-title: Semi-Markov conditional random fields for information extraction
  publication-title: Proc Neural Inform Process Syst
– ident: ref57
  doi: 10.1109/ICCV.2005.59
– ident: ref44
  doi: 10.1109/CVPR.2011.5995470
– ident: ref39
  doi: 10.1109/CVPR.2010.5539998
– year: 1979
  ident: ref10
  publication-title: The Ecological Approach to Visual Perception
– start-page: 201
  year: 0
  ident: ref49
  article-title: Activity forecasting
  publication-title: Proc Eur Conf Comput Vis
– ident: ref37
  doi: 10.1109/ICCV.2007.4409011
– start-page: 536
  year: 0
  ident: ref36
  article-title: Modeling the temporal extent of actions
  publication-title: Proc Eur Conf Comput Vis
– ident: ref27
  doi: 10.1109/CVPR.2010.5540235
– ident: ref51
  doi: 10.15607/RSS.2012.VIII.055
– ident: ref31
  doi: 10.1109/CVPR.2013.8
– ident: ref54
  doi: 10.1109/WMVC.2007.12
– ident: ref81
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref82
  doi: 10.1007/s10994-009-5108-8
– ident: ref60
  doi: 10.1109/TPAMI.2005.223
– start-page: 176
  year: 0
  ident: ref65
  article-title: Rao-blackwellised particle filtering for dynamic Bayesian networks
  publication-title: Proc 16th Conf Uncertainty Artif Intell
– start-page: 530
  year: 0
  ident: ref21
  article-title: Attribute learning for understanding unstructured social activity
  publication-title: Proc Eur Conf Comput Vis
– ident: ref46
  doi: 10.1109/CVPR.2013.322
– start-page: 457
  year: 0
  ident: ref43
  article-title: Nonparametric Bayesian learning of switching linear dynamical systems
  publication-title: Proc Neural Info Process Syst
– start-page: 284
  year: 0
  ident: ref75
  article-title: Scene semantics from long-term observation of people
  publication-title: Proc Eur Conf Comput Vis
– ident: ref61
  doi: 10.1109/CVPR.2009.5206801
– ident: ref77
  doi: 10.1111/j.1467-9876.2007.00592.x
– start-page: 1455
  year: 0
  ident: ref53
  article-title: Large-scale event detection using semi-hidden Markov models
  publication-title: Proc Int Conf Comput Vis
– year: 2001
  ident: ref62
  article-title: Kld-sampling: Adaptive particle filters
– ident: ref71
  doi: 10.1177/0278364909356602
– start-page: 609
  year: 0
  ident: ref41
  article-title: Kernel change-point analysis
  publication-title: Proc Neural Inform Process Syst
– ident: ref22
  doi: 10.1109/ICCV.2011.6126349
– ident: ref35
  doi: 10.1109/ICCV.2009.5459279
– start-page: 593
  year: 0
  ident: ref67
  article-title: Fastslam: A factored solution to the simultaneous localization and mapping problem
  publication-title: Proc AAAI Nat Conf Artif Intell
– start-page: 610
  year: 0
  ident: ref29
  article-title: Event modeling and recognition using Markov logic networks
  publication-title: Proc 10th Eur Conf Comput Vis
– start-page: 392
  year: 0
  ident: ref14
  article-title: Modeling temporal structure of decomposable motion segments for activity classification
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1543
  year: 0
  ident: ref28
  article-title: Learning object arrangements in 3d scenes using human context
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref8
  doi: 10.1109/MSPEC.2012.6309254
– ident: ref18
  doi: 10.1109/CVPR.2011.5995353
– ident: ref25
  doi: 10.1109/CVPR.2010.5539879
– ident: ref7
  doi: 10.1109/ICCVW.2011.6130379
– ident: ref63
  doi: 10.1109/ROBOT.2000.846409
– start-page: 244
  year: 0
  ident: ref78
  article-title: Semantic labeling of 3d point clouds for indoor scenes
  publication-title: Proc Neural Inform Process Syst
– ident: ref52
  doi: 10.15607/RSS.2012.VIII.010
– ident: ref47
  doi: 10.1109/CVPR.2013.221
– ident: ref33
  doi: 10.1145/2330163.2330297
– ident: ref15
  doi: 10.1109/CVPR.2011.5995646
– ident: ref26
  doi: 10.1109/TPAMI.2009.83
– year: 2010
  ident: ref83
  article-title: Automated construction of robotic manipulation programs
– ident: ref38
  doi: 10.1109/ICCV.2009.5459426
– ident: ref4
  doi: 10.1109/ICSMC.2011.6083808
– ident: ref17
  doi: 10.1109/CVPR.2009.5206821
– ident: ref74
  doi: 10.1109/CVPR.2011.5995448
– start-page: 244
  year: 0
  ident: ref30
  article-title: Semantic labeling of 3d point clouds for indoor scenes
  publication-title: Proc Neural Info Process Syst
– ident: ref16
  doi: 10.1109/CVPR.2007.383074
– ident: ref3
  doi: 10.1109/CVPR.2012.6248010
– ident: ref5
  doi: 10.1177/0278364913478446
– ident: ref76
  doi: 10.1109/CVPR.2013.385
– ident: ref59
  doi: 10.1007/s11263-010-0384-0
– ident: ref50
  doi: 10.15607/RSS.2012.VIII.025
– start-page: 742
  year: 0
  ident: ref55
  article-title: Recognition of group activities using dynamic probabilistic networks
  publication-title: Proc Int Conf Comput Vis
– ident: ref40
  doi: 10.1145/1273496.1273629
– ident: ref12
  doi: 10.1137/1.9781611972788.59
– start-page: 842
  year: 0
  ident: ref6
  article-title: Unstructured human activity detection from RGBD images
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref69
  doi: 10.1109/ROBOT.2002.1013439
– ident: ref73
  doi: 10.1109/CVPR.2011.5995327
– ident: ref34
  doi: 10.1109/IROS.2011.6094489
– ident: ref66
  doi: 10.1109/78.978396
– ident: ref56
  doi: 10.1109/TPAMI.2007.1124
– ident: ref24
  doi: 10.1145/1922649.1922653
– ident: ref19
  doi: 10.1109/CVPR.2012.6247806
– ident: ref13
  doi: 10.1109/CVPR.2008.4587756
– start-page: 921
  year: 0
  ident: ref64
  article-title: People tracking with anonymous and ID-sensors using Rao-Blackwellised particle filters
  publication-title: Proc Int Joint Conf Artif Intell
– year: 0
  ident: ref68
– ident: ref48
  doi: 10.1109/IROS.2009.5354147
– ident: ref9
  doi: 10.1109/HRI.2013.6483499
– ident: ref32
  doi: 10.1109/TPAMI.2012.241
– ident: ref42
  doi: 10.1007/s11263-007-0062-z
– ident: ref79
  doi: 10.1109/CVPR.2007.383203
– start-page: 144
  year: 0
  ident: ref20
  article-title: Script data for attribute-based recognition of composite activities
  publication-title: Proc Eur Conf Comput Vis
– ident: ref23
  doi: 10.1109/CVPR.2012.6248012
– ident: ref80
  doi: 10.1007/BF02612354
SSID ssj0014503
Score 2.6568267
Snippet An important aspect of human perception is anticipation, which we use extensively in our day-to-day activities when interacting with other humans as well as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms 3D Activity Understanding
Algorithms
Anticipation, Psychological
Context
Context modeling
Heating
Hidden Markov models
Human Activities
Human Activity Anticipation
Humans
Imaging, Three-Dimensional
Machine Learning
Models, Statistical
Movement
Perception
RGBD Data
Robotics
Robotics Perception
Robots
Trajectory
Videos
Title Anticipating Human Activities Using Object Affordances for Reactive Robotic Response
URI https://ieeexplore.ieee.org/document/7102751
https://www.ncbi.nlm.nih.gov/pubmed/26656575
https://www.proquest.com/docview/1749618111
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT3rwsb7WFxG8ade-0sexiKLCqsgK3kqSnXpQWtHdi7_emfSBioq3EJq0ZSaZ93wAh4mKY0y1dNTERSeMJTraeNqJYiTh7UWRts2qR9fRxX149SAfenDc1cIgok0-wyEPbSx_UpkZu8pOWBrGXC89R2xW12p1EYNQWhRk0mDohJMZ0RbIuOnJ-DYbXXIWlxz6IV3ZAcPVkGDiiJ_8Io8swMrvuqaVOefLMGq_tk41eRrOpnpo3r81cvzv76zAUqN8iqzmllXoYdmH5RbYQTTnvA-Ln7oUrsE4K9vU6_JRWK-_yIxFnSAzW9ikA3Gj2aEjsoKT5ZmT3gSNxB0qe6GKu0pXtAtN2JxcXIf787Px6YXTgDE4hnSaqaN0itwZBkNj0E8iVycMcVQoTylToGdcJOEvZRAFnq-DQiVJUKRGhiqYKO2rYAPmy6rELRAy8WkqjkhZ9Ll9mipUQFpUTKoGSjLHBuC1JMlN06mcATOec2uxuGluKZozRfOGogM46ta81H06_nx6jcnRPdlQYgAHLeVzOmUcOlElVrO3nOw2hsYhwTCAzZolusUtJ23_vOkOLNCrG7fNLsxPX2e4R4rMVO9bDv4AK9_rFA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSywxEC7Ed1AP7su8RSN4057pLb0cG3kyLqMiI3hrkky1B6VbdObir39V6QWfqHhrQhLSVCW11wdwkKg4xlRLR01cdMJYoqONp50oRhLeXhRp26x6dBkNb8OzO3k3B0ddLQwi2uQz7POnjeVPKjNjV9mApWHM9dI_JFkVSV2t1cUMQmlxkEmHoTtOhkRbIuOmg_F1NjrlPC7Z90N6tAMGrCHRxDE_-Z9EshArn2ubVuqcrMCoPW-dbPLQn01137y-a-X43R9aheVG_RRZzS9rMIflOqy00A6iuenrsPSmT-EGjLOyTb4u74X1-4vMWNwJMrSFTTsQV5pdOiIrOF2eeelF0Je4QWWfVHFT6Yp2oQGblYubcHvyd3w8dBo4BseQVjN1lE6Re8NgaAz6SeTqhEGOCuUpZQr0jIsk_qUMosDzdVCoJAmK1MhQBROlfRVswXxZlbgDQiY-DcURqYs-N1BThQpIj4pJ2UBJBlkPvJYkuWl6lTNkxmNubRY3zS1Fc6Zo3lC0B4fdmqe6U8eXszeYHN3MhhI92G8pn9M94-CJKrGaveRkuTE4DomGHmzXLNEtbjnp58eb7sHCcDy6yC9OL89_wSIdo3Hi_Ib56fMM_5BaM9W7lpv_AbVO7mc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anticipating+Human+Activities+Using+Object+Affordances+for+Reactive+Robotic+Response&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Koppula%2C+Hema+S.&rft.au=Saxena%2C+Ashutosh&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=38&rft.issue=1&rft.spage=14&rft.epage=29&rft_id=info:doi/10.1109%2FTPAMI.2015.2430335&rft_id=info%3Apmid%2F26656575&rft.externalDocID=7102751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon