Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach

The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convecti...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 135; no. 1; pp. 801 - 811
Main Authors Mohseni-Gharyehsafa, Behnam, Ebrahimi-Moghadam, Amir, Okati, V., Farzaneh-Gord, Mahmood, Ahmadi, Mohammad Hossein, Lorenzini, Giulio
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1388-6150
1588-2926
DOI10.1007/s10973-018-7276-x

Cover

Abstract The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al 2 O 3 , CuO) and one nonmetallic oxide nanoparticle (SiO 2 ), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al 2 O 3 .
AbstractList The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al2O3, CuO) and one nonmetallic oxide nanoparticle (SiO2), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al2O3.
The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al.sub.2O.sub.3, CuO) and one nonmetallic oxide nanoparticle (SiO.sub.2), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al.sub.2O.sub.3.
The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al 2 O 3 , CuO) and one nonmetallic oxide nanoparticle (SiO 2 ), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al 2 O 3 .
Audience Academic
Author Okati, V.
Farzaneh-Gord, Mahmood
Ebrahimi-Moghadam, Amir
Lorenzini, Giulio
Mohseni-Gharyehsafa, Behnam
Ahmadi, Mohammad Hossein
Author_xml – sequence: 1
  givenname: Behnam
  surname: Mohseni-Gharyehsafa
  fullname: Mohseni-Gharyehsafa, Behnam
  organization: Faculty of Mechanical Engineering, Shahrood University of Technology
– sequence: 2
  givenname: Amir
  surname: Ebrahimi-Moghadam
  fullname: Ebrahimi-Moghadam, Amir
  email: amir_ebrahimi_051@mshdiau.ac.ir
  organization: Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University
– sequence: 3
  givenname: V.
  surname: Okati
  fullname: Okati, V.
  organization: Faculty of Mechanical Engineering, Shahrood University of Technology, Faculty of Marine Engineering, Chabahar Maritime University
– sequence: 4
  givenname: Mahmood
  surname: Farzaneh-Gord
  fullname: Farzaneh-Gord, Mahmood
  organization: Faculty of Mechanical Engineering, Shahrood University of Technology
– sequence: 5
  givenname: Mohammad Hossein
  surname: Ahmadi
  fullname: Ahmadi, Mohammad Hossein
  email: mohammadhosein.ahmadi@gmail.com, mhosein.ahmadi@shahroodut.ac.ir
  organization: Faculty of Mechanical Engineering, Shahrood University of Technology
– sequence: 6
  givenname: Giulio
  surname: Lorenzini
  fullname: Lorenzini, Giulio
  organization: Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma
BookMark eNp9kU9rHSEUxaWk0CTtB-hO6KqLSdWZUWcZQv8EAoE2e3H0OjHM06k69L1u-tXr6xRCCikuvMr53aP3nKGTEAMg9JaSC0qI-JApGUTbECobwQRv9i_QKe2lbNjA-Emt21pz2pNX6CznB0LIMBB6in7dLsXv_E8fJuzm-AMvKS6QioeMo8PlHrD1zkGCUHDQIbp59TZjH7K3gDU2Ppl11gmXdQQ8HvCaj72qvDY64AkCJF18DHjnw9FpO-ilGmlz_xq9dHrO8Obvfo7uPn28u_rS3Nx-vr66vGlMK4fSDE73suOkHxlYTkYOUjrDR9e5jg2tlZzZWggqdDeCNX3PBTWESUvZIGl7jt5tbavr9xVyUQ9xTaE6KkZlK5iUvKuqi0016RmUDy6WpE1dFnbe1IE7X-8ve9HJoSetrMD7J0DVFNiXSa85q-tvX59q6aY1KeacwKkl-Z1OB0WJOmaotgxVzVAdM1T7yoh_GOPLnwHWh_n5vyTbyFxdwgTp8cPPQ78BmQ60-A
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2019_114518
crossref_primary_10_1016_j_icheatmasstransfer_2021_105564
crossref_primary_10_1007_s00231_023_03363_x
crossref_primary_10_1007_s10973_018_7842_2
crossref_primary_10_1016_j_energy_2019_06_090
crossref_primary_10_2514_1_T6367
crossref_primary_10_1007_s40430_020_02320_7
crossref_primary_10_1088_1755_1315_945_1_012058
crossref_primary_10_1007_s10973_021_10828_w
crossref_primary_10_1140_epjp_i2019_12949_6
crossref_primary_10_1007_s10973_021_10865_5
crossref_primary_10_1007_s10973_025_14129_4
crossref_primary_10_1002_htj_23149
crossref_primary_10_1007_s10973_018_7558_3
crossref_primary_10_3390_en15093073
crossref_primary_10_1016_j_desal_2019_06_011
crossref_primary_10_1080_23080477_2020_1842673
crossref_primary_10_1016_j_rineng_2024_103002
crossref_primary_10_1016_j_ijthermalsci_2024_109673
crossref_primary_10_1002_ese3_306
crossref_primary_10_1007_s10973_020_09398_0
crossref_primary_10_1002_er_5697
crossref_primary_10_1007_s10973_019_08169_w
crossref_primary_10_1007_s10973_020_09445_w
crossref_primary_10_1016_j_diamond_2024_111067
crossref_primary_10_1007_s10973_020_09652_5
crossref_primary_10_1007_s10973_019_08742_3
Cites_doi 10.1016/j.ijheatmasstransfer.2017.04.041
10.1016/j.molliq.2016.06.091
10.1016/j.ijheatmasstransfer.2017.02.036
10.1016/j.ijheatmasstransfer.2012.04.005
10.1016/j.ijheatmasstransfer.2015.05.099
10.1007/s10973-018-7035-z
10.1016/j.applthermaleng.2016.08.028
10.1016/j.applthermaleng.2017.07.100
10.1016/j.ijheatmasstransfer.2017.03.006
10.1007/s13204-015-0481-z
10.1007/s10973-016-5522-7
10.1007/s11051-004-3170-5
10.1016/j.apenergy.2017.02.064
10.1016/j.ijheatmasstransfer.2010.06.032
10.1016/0360-5442(80)90039-0
10.1016/j.desal.2016.06.010
10.1016/j.energy.2015.01.096
10.1016/j.solener.2017.01.020
10.1016/j.apenergy.2015.07.035
10.1016/j.ijheatmasstransfer.2017.06.069
10.1016/j.solener.2011.09.002
10.1016/j.enconman.2011.10.021
10.1016/j.energy.2014.09.025
10.1016/j.ijheatmasstransfer.2012.06.086
10.1016/j.ijheatmasstransfer.2009.06.027
10.1016/j.applthermaleng.2016.05.064
10.1016/j.ijheatmasstransfer.2014.06.051
10.1016/j.ijheatmasstransfer.2010.06.016
10.1016/j.solener.2017.08.067
10.1016/j.energy.2012.11.036
10.1016/j.applthermaleng.2016.02.093
10.1007/s10973-015-5166-z
10.1007/s10973-017-6900-5
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2018
COPYRIGHT 2019 Springer
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2018
– notice: COPYRIGHT 2019 Springer
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10973-018-7276-x
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 811
ExternalDocumentID A574895038
10_1007_s10973_018_7276_x
GroupedDBID -4Y
-58
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZMTXR
~02
~8M
-Y2
2.D
2P1
2VQ
5QI
AAIKT
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABMNI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADPHR
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
H13
MET
MKB
N2Q
NDZJH
O9-
OVD
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VH1
W4F
ZE2
ID FETCH-LOGICAL-c389t-9fa584605b2ed60b6e88fc6bf4f4293d862d429717a4bedc55671c028d129813
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Wed Sep 17 13:51:15 EDT 2025
Mon Oct 20 16:33:39 EDT 2025
Thu Oct 16 14:18:40 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Wed Oct 01 01:07:16 EDT 2025
Fri Feb 21 02:33:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanofluid
Optimization
EGM method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-9fa584605b2ed60b6e88fc6bf4f4293d862d429717a4bedc55671c028d129813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2183728864
PQPubID 2043843
PageCount 11
ParticipantIDs proquest_journals_2183728864
gale_infotracacademiconefile_A574895038
gale_incontextgauss_ISR_A574895038
crossref_primary_10_1007_s10973_018_7276_x
crossref_citationtrail_10_1007_s10973_018_7276_x
springer_journals_10_1007_s10973_018_7276_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2019
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Ahmadi, Ahmadi, Nazari, Mahian, Ghasempour (CR6) 2018; 123456789
Meibodi, Kianifar, Mahian, Wongwises (CR15) 2016; 126
Koo, Kleinstreuer (CR39) 2004; 6
Paoletti, Rispoli, Sciubba (CR31) 1989; 10
MohammadZadeh, Sokhansefat, Kasaeian, Kowsary, Akbarzadeh (CR17) 2015; 82
Ibáñez, López, Pantoja, Moreira, Reyes (CR8) 2013; 50
Jamal-abadi, Zamzamian (CR3) 2013; 9
Singh, Anoop, Sundararajan, Das (CR26) 2010; 53
Hosseinnezhad, Akbari, Hassanzadeh Afrouzi, Biglarian, Koveiti, Toghraie (CR11) 2017
Bellos, Tzivanidis, Tsimpoukis (CR36) 2017; 157
Menbari, Alemrajabi, Rezaei (CR42) 2016; 104
CR38
CR14
Vajjha, Das (CR37) 2009; 52
Ellahi, Hassan, Zeeshan, Khan (CR22) 2015; 6
CR34
CR33
CR10
Esfahani, Akbarzadeh, Rashidi, Rosen, Ellahi (CR12) 2017; 109
Gong, Wang, Wang, Tan, Lai, Han (CR16) 2017; 144
Okati, Behzadmehr, Farsad (CR2) 2016; 397
Bahiraei, Berahmand, Shahsavar (CR13) 2017; 125
Bianco, Manca, Nardini (CR25) 2014; 77
Arabpour, Karimipour, Toghraie, Akbari (CR9) 2017
Mwesigye, Huan (CR28) 2015; 89
Mahian, Kianifar, Sahin, Wongwises (CR18) 2014; 78
Minea, Lorenzini (CR4) 2017; 114
Vajjha, Das, Kulkarni (CR40) 2010; 53
Oullette, Bejan (CR30) 1980; 5
Gutiérrez, Méndez (CR21) 2012; 55
Shalchi-Tabrizi, Seyf (CR24) 2012; 55
Mwesigye, Meyer (CR41) 2017; 193
Torabi, Torabi, Ghiaasiaan, Peterson (CR27) 2017; 111
Siavashi, Jamali (CR23) 2016; 100
Pascale, Gregory, Ambaum, Tailleux (CR32) 2010; 10
Al-Ansary, Zeitoun (CR35) 2011; 85
Maganti, Dhar (CR7) 2017; 109
Ghasemi, Ranjbar (CR29) 2016; 222
Minea (CR5) 2016; 124
Liu, Li (CR19) 2012; 55
Farzaneh-Gord, Ameri, Arabkoohsar (CR20) 2016; 108
Mwesigye, Huan, Meyer (CR1) 2015; 156
A Mwesigye (7276_CR1) 2015; 156
A Arabpour (7276_CR9) 2017
A Shalchi-Tabrizi (7276_CR24) 2012; 55
AA Minea (7276_CR5) 2016; 124
X Gong (7276_CR16) 2017; 144
WR Oullette (7276_CR30) 1980; 5
MH Ahmadi (7276_CR6) 2018; 123456789
E Bellos (7276_CR36) 2017; 157
R Hosseinnezhad (7276_CR11) 2017
M Bahiraei (7276_CR13) 2017; 125
H Al-Ansary (7276_CR35) 2011; 85
O Mahian (7276_CR18) 2014; 78
M Farzaneh-Gord (7276_CR20) 2016; 108
7276_CR34
G Ibáñez (7276_CR8) 2013; 50
7276_CR33
7276_CR14
V Bianco (7276_CR25) 2014; 77
LS Maganti (7276_CR7) 2017; 109
7276_CR10
SS Meibodi (7276_CR15) 2016; 126
P MohammadZadeh (7276_CR17) 2015; 82
M Torabi (7276_CR27) 2017; 111
S Pascale (7276_CR32) 2010; 10
A Mwesigye (7276_CR41) 2017; 193
7276_CR38
RS Vajjha (7276_CR40) 2010; 53
AA Minea (7276_CR4) 2017; 114
JA Esfahani (7276_CR12) 2017; 109
R Ellahi (7276_CR22) 2015; 6
J Koo (7276_CR39) 2004; 6
V Okati (7276_CR2) 2016; 397
ZH Liu (7276_CR19) 2012; 55
S Paoletti (7276_CR31) 1989; 10
A Menbari (7276_CR42) 2016; 104
M Siavashi (7276_CR23) 2016; 100
SE Ghasemi (7276_CR29) 2016; 222
F Gutiérrez (7276_CR21) 2012; 55
RS Vajjha (7276_CR37) 2009; 52
PK Singh (7276_CR26) 2010; 53
A Mwesigye (7276_CR28) 2015; 89
MT Jamal-abadi (7276_CR3) 2013; 9
References_xml – volume: 111
  start-page: 804
  year: 2017
  end-page: 816
  ident: CR27
  article-title: The effect of Al O -water nanofluid on the heat transfer and entropy generation of laminar forced convection through isotropic porous media
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.04.041
– volume: 222
  start-page: 159
  year: 2016
  end-page: 166
  ident: CR29
  article-title: Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.06.091
– volume: 109
  start-page: 555
  year: 2017
  end-page: 563
  ident: CR7
  article-title: Consequences of flow configuration and nanofluid transport on entropy generation in parallel microchannel cooling systems
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.02.036
– volume: 55
  start-page: 4366
  year: 2012
  end-page: 4375
  ident: CR24
  article-title: Analysis of entropy generation and convective heat transfer of Al O nanofluid flow in a tangential micro heat sink
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.04.005
– start-page: 1
  year: 2017
  end-page: 17
  ident: CR9
  publication-title: Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel
– ident: CR14
– volume: 10
  start-page: 125
  year: 2010
  end-page: 139
  ident: CR32
  article-title: Climate entropy budget of the HadCM3 atmosphere–ocean general circulation model and of FAMOUS, its low-resolution
  publication-title: Clim Dyn
– volume: 89
  start-page: 694
  year: 2015
  end-page: 706
  ident: CR28
  article-title: Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water-Al O nanofluid
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.05.099
– ident: CR10
– ident: CR33
– volume: 123456789
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR6
  article-title: A proposed model to predict thermal conductivity ratio of Al O /EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7035-z
– volume: 108
  start-page: 1279
  year: 2016
  end-page: 1287
  ident: CR20
  article-title: Tube-in-tube helical heat exchangers performance optimization by entropy generation minimization approach
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.08.028
– volume: 10
  start-page: 21
  year: 1989
  end-page: 29
  ident: CR31
  article-title: Calculation of exergetic losses in compact heat exchanger passages
  publication-title: ASME AES
– volume: 125
  start-page: 1083
  year: 2017
  end-page: 1093
  ident: CR13
  article-title: Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe O nanoparticles in a minichannel heat exchanger
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.07.100
– volume: 109
  start-page: 1162
  year: 2017
  end-page: 1171
  ident: CR12
  article-title: Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.03.006
– volume: 6
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR22
  article-title: The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-015-0481-z
– volume: 126
  start-page: 617
  year: 2016
  end-page: 625
  ident: CR15
  article-title: Second law analysis of a nanofluid-based solar collector using experimental data
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-016-5522-7
– volume: 6
  start-page: 577
  year: 2004
  end-page: 588
  ident: CR39
  article-title: A new thermal conductivity model for nanofluids
  publication-title: J Nanoparticle Res.
  doi: 10.1007/s11051-004-3170-5
– volume: 193
  start-page: 393
  year: 2017
  end-page: 413
  ident: CR41
  article-title: Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.02.064
– volume: 53
  start-page: 4607
  year: 2010
  end-page: 4618
  ident: CR40
  article-title: Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.06.032
– volume: 5
  start-page: 587
  year: 1980
  end-page: 596
  ident: CR30
  article-title: Conservation of available work (exergy) by using promoters of swirl flow in forced convection heat transfer
  publication-title: Energy
  doi: 10.1016/0360-5442(80)90039-0
– volume: 397
  start-page: 9
  year: 2016
  end-page: 21
  ident: CR2
  article-title: Analysis of a solar desalinator (humidification–dehumidification cycle) including a compound system consisting of a solar humidifier and subsurface condenser using DoE
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.06.010
– volume: 82
  start-page: 857
  year: 2015
  end-page: 864
  ident: CR17
  article-title: Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.096
– volume: 144
  start-page: 185
  year: 2017
  end-page: 202
  ident: CR16
  article-title: Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.01.020
– volume: 156
  start-page: 398
  year: 2015
  end-page: 412
  ident: CR1
  article-title: Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil-Al O nanofluid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.07.035
– ident: CR38
– volume: 114
  start-page: 286
  year: 2017
  end-page: 296
  ident: CR4
  article-title: A numerical study on ZnO based nanofluids behavior on natural convection
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.06.069
– volume: 9
  start-page: 177
  year: 2013
  end-page: 184
  ident: CR3
  article-title: Optimization of thermal conductivity of Al O nanofluid by using ANN and GRG methods
  publication-title: Int J Nanosci Nanotechnol
– volume: 85
  start-page: 3036
  year: 2011
  end-page: 3045
  ident: CR35
  article-title: Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.09.002
– volume: 55
  start-page: 1
  year: 2012
  end-page: 13
  ident: CR21
  article-title: Entropy generation minimization for the thermal decomposition of methane gas in hydrogen using genetic algorithms
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2011.10.021
– volume: 77
  start-page: 403
  year: 2014
  end-page: 413
  ident: CR25
  article-title: Performance analysis of turbulent convection heat transfer of Al O water-nanofluid in circular tubes at constant wall temperature
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.025
– volume: 55
  start-page: 6786
  year: 2012
  end-page: 6797
  ident: CR19
  article-title: A new frontier of nanofluid research—application of nanofluids in heat pipes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.06.086
– volume: 52
  start-page: 4675
  year: 2009
  end-page: 4682
  ident: CR37
  article-title: Experimental determination of thermal conductivity of three nanofluids and development of new correlations
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2009.06.027
– volume: 104
  start-page: 176
  year: 2016
  end-page: 183
  ident: CR42
  article-title: Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.05.064
– volume: 78
  start-page: 64
  year: 2014
  end-page: 75
  ident: CR18
  article-title: Entropy generation during Al O /water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.051
– ident: CR34
– volume: 53
  start-page: 4757
  year: 2010
  end-page: 4767
  ident: CR26
  article-title: Entropy generation due to flow and heat transfer in nanofluids
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.06.016
– volume: 157
  start-page: 514
  year: 2017
  end-page: 531
  ident: CR36
  article-title: Thermal enhancement of parabolic trough collector with internally finned absorbers
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.08.067
– volume: 50
  start-page: 143
  year: 2013
  end-page: 149
  ident: CR8
  article-title: Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.036
– volume: 100
  start-page: 1149
  year: 2016
  end-page: 1160
  ident: CR23
  article-title: Heat transfer and entropy generation analysis of turbulent flow of TiO -water nanofluid inside annuli with different radius ratios using two-phase mixture model
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.02.093
– volume: 124
  start-page: 407
  year: 2016
  end-page: 416
  ident: CR5
  article-title: Comparative study of turbulent heat transfer of nanofluids: effect of thermophysical properties on figure-of-merit ratio
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-015-5166-z
– year: 2017
  ident: CR11
  article-title: Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-017-6900-5
– volume: 6
  start-page: 1
  year: 2015
  ident: 7276_CR22
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-015-0481-z
– volume: 100
  start-page: 1149
  year: 2016
  ident: 7276_CR23
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.02.093
– volume: 109
  start-page: 555
  year: 2017
  ident: 7276_CR7
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.02.036
– volume: 397
  start-page: 9
  year: 2016
  ident: 7276_CR2
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.06.010
– volume: 114
  start-page: 286
  year: 2017
  ident: 7276_CR4
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.06.069
– volume: 125
  start-page: 1083
  year: 2017
  ident: 7276_CR13
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.07.100
– ident: 7276_CR14
– volume: 156
  start-page: 398
  year: 2015
  ident: 7276_CR1
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.07.035
– volume: 78
  start-page: 64
  year: 2014
  ident: 7276_CR18
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.051
– volume: 126
  start-page: 617
  year: 2016
  ident: 7276_CR15
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-016-5522-7
– volume: 124
  start-page: 407
  year: 2016
  ident: 7276_CR5
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-015-5166-z
– volume: 5
  start-page: 587
  year: 1980
  ident: 7276_CR30
  publication-title: Energy
  doi: 10.1016/0360-5442(80)90039-0
– volume: 82
  start-page: 857
  year: 2015
  ident: 7276_CR17
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.096
– volume: 104
  start-page: 176
  year: 2016
  ident: 7276_CR42
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.05.064
– volume: 53
  start-page: 4757
  year: 2010
  ident: 7276_CR26
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.06.016
– volume: 89
  start-page: 694
  year: 2015
  ident: 7276_CR28
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.05.099
– ident: 7276_CR34
– volume: 111
  start-page: 804
  year: 2017
  ident: 7276_CR27
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.04.041
– volume: 10
  start-page: 21
  year: 1989
  ident: 7276_CR31
  publication-title: ASME AES
– volume: 53
  start-page: 4607
  year: 2010
  ident: 7276_CR40
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.06.032
– volume: 193
  start-page: 393
  year: 2017
  ident: 7276_CR41
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.02.064
– volume: 55
  start-page: 6786
  year: 2012
  ident: 7276_CR19
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.06.086
– volume: 222
  start-page: 159
  year: 2016
  ident: 7276_CR29
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.06.091
– year: 2017
  ident: 7276_CR11
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-017-6900-5
– volume: 157
  start-page: 514
  year: 2017
  ident: 7276_CR36
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.08.067
– start-page: 1
  volume-title: Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel
  year: 2017
  ident: 7276_CR9
– volume: 109
  start-page: 1162
  year: 2017
  ident: 7276_CR12
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.03.006
– volume: 55
  start-page: 1
  year: 2012
  ident: 7276_CR21
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2011.10.021
– ident: 7276_CR38
– volume: 9
  start-page: 177
  year: 2013
  ident: 7276_CR3
  publication-title: Int J Nanosci Nanotechnol
– volume: 77
  start-page: 403
  year: 2014
  ident: 7276_CR25
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.025
– volume: 6
  start-page: 577
  year: 2004
  ident: 7276_CR39
  publication-title: J Nanoparticle Res.
  doi: 10.1007/s11051-004-3170-5
– volume: 85
  start-page: 3036
  year: 2011
  ident: 7276_CR35
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.09.002
– volume: 50
  start-page: 143
  year: 2013
  ident: 7276_CR8
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.036
– volume: 10
  start-page: 125
  year: 2010
  ident: 7276_CR32
  publication-title: Clim Dyn
– ident: 7276_CR33
– ident: 7276_CR10
– volume: 144
  start-page: 185
  year: 2017
  ident: 7276_CR16
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.01.020
– volume: 52
  start-page: 4675
  year: 2009
  ident: 7276_CR37
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2009.06.027
– volume: 123456789
  start-page: 1
  year: 2018
  ident: 7276_CR6
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7035-z
– volume: 55
  start-page: 4366
  year: 2012
  ident: 7276_CR24
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.04.005
– volume: 108
  start-page: 1279
  year: 2016
  ident: 7276_CR20
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.08.028
SSID ssj0009901
Score 2.385656
Snippet The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 801
SubjectTerms Aluminum oxide
Analysis
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Circular tubes
Copper oxide
Copper oxides
Cuprite
Entropy
Ethylene
Ethylene glycol
Fluid dynamics
Fluid flow
Forced convection
Inorganic Chemistry
Laws, regulations and rules
Measurement Science and Instrumentation
Nanofluids
Nanoparticles
Optimization
Physical Chemistry
Polymer Sciences
Reynolds number
Silicon dioxide
Thermodynamics
Turbulent flow
Working fluids
Title Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach
URI https://link.springer.com/article/10.1007/s10973-018-7276-x
https://www.proquest.com/docview/2183728864
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1588-2926
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1588-2926
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1588-2926
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: AFBBN
  dateStart: 19690301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1588-2926
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1588-2926
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcmeBgvaGNDFBg6oUmThiKlbeI4jwVRYJOYxIfEnizbsatKbVI1qQa88K9zl8YUGCDxlEg5Ox93zv1s3_2Ose9oJ0YLQXE61gQRd-1AGREGuh2qjkYEErk6yveUH19Gv67iqyaPu_TR7n5Lsv5TP0p2SxPqUwToc3mAwHE5JjYvNOLLTm_BtJuG81kWmgCxnfutzJe6eOKMnv-S_9sbrV1O_xNbbbAi9ObK_cw-2HyNfTzwJdq-sLs_OODHw1tsDW5U_IMJLa1PiSMVCgeI7cAXQKkgV3nhRrNhVsKwLtIJCsxwWsehQjXTFvQNUBj8AGjFt5jcwKDmpCbVAVGQjJucTfBE5F_ZRf_w4uA4aCoqBAaBSRWkThHgCGPdsRkPNbdCOMO1ixz6pW6G05sMT3CKpyJtMxPHPGkbhCAZwgLR7q6zpbzI7QaDVMcW0YIWISIyy1NlwsS4KDNdBIhRmrRY6L-sNA3bOBW9GMkFTzIpQ6IyJClDXrfYz4cmkznVxlvCu6QuSRQWOcXIDNSsLOXJ-ZnsxcSoQzQ3LfajEXIF3tyoJuUAX4FYr55Ibnu1y2YQl5LQY9IRgkcttudNYXH51WfbfJf0FltBEJbOl3W22VI1ndlvCHQqvcOWe_39_VM6Hv39fbhTG_o9jhL5kA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZQ9zBegA0QhTEshIQEypS2juM8VtNGx8aQoEjjybIdu6rokqpJBNsL_zp3iU238UPaW6RcHNu5nL-z774j5BXoidFCYJyONRHjbhApI-JID2I11IBAmGujfE_55At7f5ac-TzuKkS7hyPJ1lJfSXbLUmxTRLDm8giA4wYD_2TYIxvjd1-PD9Zcu1nc-VmgBMh3Hg4z_9bIteXoplH-43S0XXQO75Np6G4Xa_Jtr6n1nrm8weR4y_E8IPc8CKXjTmu2yB1bbJPN_VD77SH5-REsyfn8EtqjblF-p0vcs18h-SotHQXQSENllZoWqijdopnnFZ231T-poma-agNcad1oS_UFxfj6GcWt5HJ5QWct2TXqBEVuk3OfDEoDw_kjMj08mO5PIl-qITKAeOoocwqRTJzooc15rLkVwhmuHXOw4I1y8JtyuADfUTFtc5MkPB0YwDY54A0xGD0mvaIs7BNCM51YgCFaxAD1LM-UiVPjWG5GgDxZlvZJHD6YNJ7GHKtpLOSagBknVsLESpxY-aNP3vx-ZNlxePxP-CVqgURujAKDb2aqqSp59PmTHCdI1YP8OX3y2gu5El5ulM9lgCEgndY1yZ2gTdJbh0oiLE2HQnDWJ2-Dcqxv_7NvT28l_YJsTqYfTuTJ0enxM3IXkF7W7R3tkF69auxzQFO13vV_zy8y8haN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQkIAXBBuIjv04oUlIoGhp6zjOY7VRbTBtCDZpb5bt2FWlLqmaVDBe-Nd3l8R0g4HEW6ScncR3zn22775jbA_txBopKU7H2YgL34-0lXFk-rEeGEQg3DdRvqfi6IJ_vEwuuzqnVYh2D0eSbU4DsTQV9f489_u3Et-ylPqXEfpfESGIfMiJJwEN-mIwWrHuZnG74kJzIObzcKx5Xxd3HNPvv-c_zkkb9zN-xp52uBFGraKfsweuWGePD0K5tg328wwn_9X0B7YGPyu_wZy22RfElwqlB8R5EIqh1FDoovSz5TSvYNoU7AQNdrpoYlKhXhoH5hooJH4CtPtbzq9h0vBTkxqB6EiuuvxNCKTkL9j5-MP5wVHUVVeILIKUOsq8JvARJ2bgchEb4aT0VhjPPfqoYY5LnRwvcLmnuXG5TRKR9i3CkRwhguwPX7K1oizcKwaZSRyOvZExojMnMm3j1Hqe2yGCRZ6lPRaHkVW2Yx6nAhgzteJMJmUoVIYiZajvPfbuV5N5S7vxL-E3pC5FdBYFxctM9LKq1PHXL2qUELsOUd702NtOyJf4cKu79AP8BGLAuiO5FdSuugldKUKS6UBKwXvsfTCF1e2_vtvmf0nvskefD8fq5Pj002v2BLFZ1u72bLG1erF024h_arPT2PgN6EP9qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+flow+properties+of+the+different+nanofluids+inside+a+circular+tube+by+using+entropy+generation+minimization+approach&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Mohseni-Gharyehsafa%2C+Behnam&rft.au=Ebrahimi-Moghadam%2C+Amir&rft.au=Okati%2C+V.&rft.au=Farzaneh-Gord%2C+Mahmood&rft.date=2019-01-01&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=135&rft.issue=1&rft.spage=801&rft.epage=811&rft_id=info:doi/10.1007%2Fs10973-018-7276-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10973_018_7276_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon