Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach
The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convecti...
        Saved in:
      
    
          | Published in | Journal of thermal analysis and calorimetry Vol. 135; no. 1; pp. 801 - 811 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.01.2019
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1388-6150 1588-2926  | 
| DOI | 10.1007/s10973-018-7276-x | 
Cover
| Abstract | The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al
2
O
3
, CuO) and one nonmetallic oxide nanoparticle (SiO
2
), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al
2
O
3
. | 
    
|---|---|
| AbstractList | The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al2O3, CuO) and one nonmetallic oxide nanoparticle (SiO2), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al2O3. The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al.sub.2O.sub.3, CuO) and one nonmetallic oxide nanoparticle (SiO.sub.2), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al.sub.2O.sub.3. The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in nanofluid utilization is finding the optimal conditions. In this study, the efforts have been made to find optimal condition of forced convection nanofluid flow inside a circular tube. The flow is assumed turbulent, and optimization process is carried out for two metallic oxide nanoparticles (Al 2 O 3 , CuO) and one nonmetallic oxide nanoparticle (SiO 2 ), dispersed in a 60:40% ethylene glycol/water base fluid. The optimization process has been performed based on the second law of thermodynamic and entropy generation minimization approach. The process has been focused on finding the optimal values for volume fraction, Reynolds number, diameter of particles and average flow temperature. Results show that two metallic oxide nanofluids generate less entropy compared with nonmetallic oxide nanofluid. In addition, comparing these two metallic oxide nanofluids, the maximum amount of total entropy generation is 20% lower when CuO nanoparticles added to the base fluid instead of Al 2 O 3 .  | 
    
| Audience | Academic | 
    
| Author | Okati, V. Farzaneh-Gord, Mahmood Ebrahimi-Moghadam, Amir Lorenzini, Giulio Mohseni-Gharyehsafa, Behnam Ahmadi, Mohammad Hossein  | 
    
| Author_xml | – sequence: 1 givenname: Behnam surname: Mohseni-Gharyehsafa fullname: Mohseni-Gharyehsafa, Behnam organization: Faculty of Mechanical Engineering, Shahrood University of Technology – sequence: 2 givenname: Amir surname: Ebrahimi-Moghadam fullname: Ebrahimi-Moghadam, Amir email: amir_ebrahimi_051@mshdiau.ac.ir organization: Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University – sequence: 3 givenname: V. surname: Okati fullname: Okati, V. organization: Faculty of Mechanical Engineering, Shahrood University of Technology, Faculty of Marine Engineering, Chabahar Maritime University – sequence: 4 givenname: Mahmood surname: Farzaneh-Gord fullname: Farzaneh-Gord, Mahmood organization: Faculty of Mechanical Engineering, Shahrood University of Technology – sequence: 5 givenname: Mohammad Hossein surname: Ahmadi fullname: Ahmadi, Mohammad Hossein email: mohammadhosein.ahmadi@gmail.com, mhosein.ahmadi@shahroodut.ac.ir organization: Faculty of Mechanical Engineering, Shahrood University of Technology – sequence: 6 givenname: Giulio surname: Lorenzini fullname: Lorenzini, Giulio organization: Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma  | 
    
| BookMark | eNp9kU9rHSEUxaWk0CTtB-hO6KqLSdWZUWcZQv8EAoE2e3H0OjHM06k69L1u-tXr6xRCCikuvMr53aP3nKGTEAMg9JaSC0qI-JApGUTbECobwQRv9i_QKe2lbNjA-Emt21pz2pNX6CznB0LIMBB6in7dLsXv_E8fJuzm-AMvKS6QioeMo8PlHrD1zkGCUHDQIbp59TZjH7K3gDU2Ppl11gmXdQQ8HvCaj72qvDY64AkCJF18DHjnw9FpO-ilGmlz_xq9dHrO8Obvfo7uPn28u_rS3Nx-vr66vGlMK4fSDE73suOkHxlYTkYOUjrDR9e5jg2tlZzZWggqdDeCNX3PBTWESUvZIGl7jt5tbavr9xVyUQ9xTaE6KkZlK5iUvKuqi0016RmUDy6WpE1dFnbe1IE7X-8ve9HJoSetrMD7J0DVFNiXSa85q-tvX59q6aY1KeacwKkl-Z1OB0WJOmaotgxVzVAdM1T7yoh_GOPLnwHWh_n5vyTbyFxdwgTp8cPPQ78BmQ60-A | 
    
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2019_114518 crossref_primary_10_1016_j_icheatmasstransfer_2021_105564 crossref_primary_10_1007_s00231_023_03363_x crossref_primary_10_1007_s10973_018_7842_2 crossref_primary_10_1016_j_energy_2019_06_090 crossref_primary_10_2514_1_T6367 crossref_primary_10_1007_s40430_020_02320_7 crossref_primary_10_1088_1755_1315_945_1_012058 crossref_primary_10_1007_s10973_021_10828_w crossref_primary_10_1140_epjp_i2019_12949_6 crossref_primary_10_1007_s10973_021_10865_5 crossref_primary_10_1007_s10973_025_14129_4 crossref_primary_10_1002_htj_23149 crossref_primary_10_1007_s10973_018_7558_3 crossref_primary_10_3390_en15093073 crossref_primary_10_1016_j_desal_2019_06_011 crossref_primary_10_1080_23080477_2020_1842673 crossref_primary_10_1016_j_rineng_2024_103002 crossref_primary_10_1016_j_ijthermalsci_2024_109673 crossref_primary_10_1002_ese3_306 crossref_primary_10_1007_s10973_020_09398_0 crossref_primary_10_1002_er_5697 crossref_primary_10_1007_s10973_019_08169_w crossref_primary_10_1007_s10973_020_09445_w crossref_primary_10_1016_j_diamond_2024_111067 crossref_primary_10_1007_s10973_020_09652_5 crossref_primary_10_1007_s10973_019_08742_3  | 
    
| Cites_doi | 10.1016/j.ijheatmasstransfer.2017.04.041 10.1016/j.molliq.2016.06.091 10.1016/j.ijheatmasstransfer.2017.02.036 10.1016/j.ijheatmasstransfer.2012.04.005 10.1016/j.ijheatmasstransfer.2015.05.099 10.1007/s10973-018-7035-z 10.1016/j.applthermaleng.2016.08.028 10.1016/j.applthermaleng.2017.07.100 10.1016/j.ijheatmasstransfer.2017.03.006 10.1007/s13204-015-0481-z 10.1007/s10973-016-5522-7 10.1007/s11051-004-3170-5 10.1016/j.apenergy.2017.02.064 10.1016/j.ijheatmasstransfer.2010.06.032 10.1016/0360-5442(80)90039-0 10.1016/j.desal.2016.06.010 10.1016/j.energy.2015.01.096 10.1016/j.solener.2017.01.020 10.1016/j.apenergy.2015.07.035 10.1016/j.ijheatmasstransfer.2017.06.069 10.1016/j.solener.2011.09.002 10.1016/j.enconman.2011.10.021 10.1016/j.energy.2014.09.025 10.1016/j.ijheatmasstransfer.2012.06.086 10.1016/j.ijheatmasstransfer.2009.06.027 10.1016/j.applthermaleng.2016.05.064 10.1016/j.ijheatmasstransfer.2014.06.051 10.1016/j.ijheatmasstransfer.2010.06.016 10.1016/j.solener.2017.08.067 10.1016/j.energy.2012.11.036 10.1016/j.applthermaleng.2016.02.093 10.1007/s10973-015-5166-z 10.1007/s10973-017-6900-5  | 
    
| ContentType | Journal Article | 
    
| Copyright | Akadémiai Kiadó, Budapest, Hungary 2018 COPYRIGHT 2019 Springer Copyright Springer Nature B.V. 2019  | 
    
| Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2018 – notice: COPYRIGHT 2019 Springer – notice: Copyright Springer Nature B.V. 2019  | 
    
| DBID | AAYXX CITATION ISR  | 
    
| DOI | 10.1007/s10973-018-7276-x | 
    
| DatabaseName | CrossRef Gale In Context: Science  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1588-2926 | 
    
| EndPage | 811 | 
    
| ExternalDocumentID | A574895038 10_1007_s10973_018_7276_x  | 
    
| GroupedDBID | -4Y -58 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNS ROL RPX RSV S16 S27 S3B SAP SCG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZMTXR ~02 ~8M -Y2 2.D 2P1 2VQ 5QI AAIKT AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABMNI ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADPHR AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA CAG CITATION COF H13 MET MKB N2Q NDZJH O9- OVD RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI VH1 W4F ZE2  | 
    
| ID | FETCH-LOGICAL-c389t-9fa584605b2ed60b6e88fc6bf4f4293d862d429717a4bedc55671c028d129813 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1388-6150 | 
    
| IngestDate | Wed Sep 17 13:51:15 EDT 2025 Mon Oct 20 16:33:39 EDT 2025 Thu Oct 16 14:18:40 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Wed Oct 01 01:07:16 EDT 2025 Fri Feb 21 02:33:12 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Nanofluid Optimization EGM method  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c389t-9fa584605b2ed60b6e88fc6bf4f4293d862d429717a4bedc55671c028d129813 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2183728864 | 
    
| PQPubID | 2043843 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_journals_2183728864 gale_infotracacademiconefile_A574895038 gale_incontextgauss_ISR_A574895038 crossref_primary_10_1007_s10973_018_7276_x crossref_citationtrail_10_1007_s10973_018_7276_x springer_journals_10_1007_s10973_018_7276_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-01-01 | 
    
| PublicationDateYYYYMMDD | 2019-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Dordrecht  | 
    
| PublicationSubtitle | An International Forum for Thermal Studies | 
    
| PublicationTitle | Journal of thermal analysis and calorimetry | 
    
| PublicationTitleAbbrev | J Therm Anal Calorim | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer International Publishing Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V  | 
    
| References | Ahmadi, Ahmadi, Nazari, Mahian, Ghasempour (CR6) 2018; 123456789 Meibodi, Kianifar, Mahian, Wongwises (CR15) 2016; 126 Koo, Kleinstreuer (CR39) 2004; 6 Paoletti, Rispoli, Sciubba (CR31) 1989; 10 MohammadZadeh, Sokhansefat, Kasaeian, Kowsary, Akbarzadeh (CR17) 2015; 82 Ibáñez, López, Pantoja, Moreira, Reyes (CR8) 2013; 50 Jamal-abadi, Zamzamian (CR3) 2013; 9 Singh, Anoop, Sundararajan, Das (CR26) 2010; 53 Hosseinnezhad, Akbari, Hassanzadeh Afrouzi, Biglarian, Koveiti, Toghraie (CR11) 2017 Bellos, Tzivanidis, Tsimpoukis (CR36) 2017; 157 Menbari, Alemrajabi, Rezaei (CR42) 2016; 104 CR38 CR14 Vajjha, Das (CR37) 2009; 52 Ellahi, Hassan, Zeeshan, Khan (CR22) 2015; 6 CR34 CR33 CR10 Esfahani, Akbarzadeh, Rashidi, Rosen, Ellahi (CR12) 2017; 109 Gong, Wang, Wang, Tan, Lai, Han (CR16) 2017; 144 Okati, Behzadmehr, Farsad (CR2) 2016; 397 Bahiraei, Berahmand, Shahsavar (CR13) 2017; 125 Bianco, Manca, Nardini (CR25) 2014; 77 Arabpour, Karimipour, Toghraie, Akbari (CR9) 2017 Mwesigye, Huan (CR28) 2015; 89 Mahian, Kianifar, Sahin, Wongwises (CR18) 2014; 78 Minea, Lorenzini (CR4) 2017; 114 Vajjha, Das, Kulkarni (CR40) 2010; 53 Oullette, Bejan (CR30) 1980; 5 Gutiérrez, Méndez (CR21) 2012; 55 Shalchi-Tabrizi, Seyf (CR24) 2012; 55 Mwesigye, Meyer (CR41) 2017; 193 Torabi, Torabi, Ghiaasiaan, Peterson (CR27) 2017; 111 Siavashi, Jamali (CR23) 2016; 100 Pascale, Gregory, Ambaum, Tailleux (CR32) 2010; 10 Al-Ansary, Zeitoun (CR35) 2011; 85 Maganti, Dhar (CR7) 2017; 109 Ghasemi, Ranjbar (CR29) 2016; 222 Minea (CR5) 2016; 124 Liu, Li (CR19) 2012; 55 Farzaneh-Gord, Ameri, Arabkoohsar (CR20) 2016; 108 Mwesigye, Huan, Meyer (CR1) 2015; 156 A Mwesigye (7276_CR1) 2015; 156 A Arabpour (7276_CR9) 2017 A Shalchi-Tabrizi (7276_CR24) 2012; 55 AA Minea (7276_CR5) 2016; 124 X Gong (7276_CR16) 2017; 144 WR Oullette (7276_CR30) 1980; 5 MH Ahmadi (7276_CR6) 2018; 123456789 E Bellos (7276_CR36) 2017; 157 R Hosseinnezhad (7276_CR11) 2017 M Bahiraei (7276_CR13) 2017; 125 H Al-Ansary (7276_CR35) 2011; 85 O Mahian (7276_CR18) 2014; 78 M Farzaneh-Gord (7276_CR20) 2016; 108 7276_CR34 G Ibáñez (7276_CR8) 2013; 50 7276_CR33 7276_CR14 V Bianco (7276_CR25) 2014; 77 LS Maganti (7276_CR7) 2017; 109 7276_CR10 SS Meibodi (7276_CR15) 2016; 126 P MohammadZadeh (7276_CR17) 2015; 82 M Torabi (7276_CR27) 2017; 111 S Pascale (7276_CR32) 2010; 10 A Mwesigye (7276_CR41) 2017; 193 7276_CR38 RS Vajjha (7276_CR40) 2010; 53 AA Minea (7276_CR4) 2017; 114 JA Esfahani (7276_CR12) 2017; 109 R Ellahi (7276_CR22) 2015; 6 J Koo (7276_CR39) 2004; 6 V Okati (7276_CR2) 2016; 397 ZH Liu (7276_CR19) 2012; 55 S Paoletti (7276_CR31) 1989; 10 A Menbari (7276_CR42) 2016; 104 M Siavashi (7276_CR23) 2016; 100 SE Ghasemi (7276_CR29) 2016; 222 F Gutiérrez (7276_CR21) 2012; 55 RS Vajjha (7276_CR37) 2009; 52 PK Singh (7276_CR26) 2010; 53 A Mwesigye (7276_CR28) 2015; 89 MT Jamal-abadi (7276_CR3) 2013; 9  | 
    
| References_xml | – volume: 111 start-page: 804 year: 2017 end-page: 816 ident: CR27 article-title: The effect of Al O -water nanofluid on the heat transfer and entropy generation of laminar forced convection through isotropic porous media publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.04.041 – volume: 222 start-page: 159 year: 2016 end-page: 166 ident: CR29 article-title: Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.06.091 – volume: 109 start-page: 555 year: 2017 end-page: 563 ident: CR7 article-title: Consequences of flow configuration and nanofluid transport on entropy generation in parallel microchannel cooling systems publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.02.036 – volume: 55 start-page: 4366 year: 2012 end-page: 4375 ident: CR24 article-title: Analysis of entropy generation and convective heat transfer of Al O nanofluid flow in a tangential micro heat sink publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.04.005 – start-page: 1 year: 2017 end-page: 17 ident: CR9 publication-title: Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel – ident: CR14 – volume: 10 start-page: 125 year: 2010 end-page: 139 ident: CR32 article-title: Climate entropy budget of the HadCM3 atmosphere–ocean general circulation model and of FAMOUS, its low-resolution publication-title: Clim Dyn – volume: 89 start-page: 694 year: 2015 end-page: 706 ident: CR28 article-title: Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water-Al O nanofluid publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.05.099 – ident: CR10 – ident: CR33 – volume: 123456789 start-page: 1 year: 2018 end-page: 11 ident: CR6 article-title: A proposed model to predict thermal conductivity ratio of Al O /EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7035-z – volume: 108 start-page: 1279 year: 2016 end-page: 1287 ident: CR20 article-title: Tube-in-tube helical heat exchangers performance optimization by entropy generation minimization approach publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.08.028 – volume: 10 start-page: 21 year: 1989 end-page: 29 ident: CR31 article-title: Calculation of exergetic losses in compact heat exchanger passages publication-title: ASME AES – volume: 125 start-page: 1083 year: 2017 end-page: 1093 ident: CR13 article-title: Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe O nanoparticles in a minichannel heat exchanger publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.07.100 – volume: 109 start-page: 1162 year: 2017 end-page: 1171 ident: CR12 article-title: Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.03.006 – volume: 6 start-page: 1 year: 2015 end-page: 11 ident: CR22 article-title: The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection publication-title: Appl Nanosci doi: 10.1007/s13204-015-0481-z – volume: 126 start-page: 617 year: 2016 end-page: 625 ident: CR15 article-title: Second law analysis of a nanofluid-based solar collector using experimental data publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5522-7 – volume: 6 start-page: 577 year: 2004 end-page: 588 ident: CR39 article-title: A new thermal conductivity model for nanofluids publication-title: J Nanoparticle Res. doi: 10.1007/s11051-004-3170-5 – volume: 193 start-page: 393 year: 2017 end-page: 413 ident: CR41 article-title: Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.02.064 – volume: 53 start-page: 4607 year: 2010 end-page: 4618 ident: CR40 article-title: Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.06.032 – volume: 5 start-page: 587 year: 1980 end-page: 596 ident: CR30 article-title: Conservation of available work (exergy) by using promoters of swirl flow in forced convection heat transfer publication-title: Energy doi: 10.1016/0360-5442(80)90039-0 – volume: 397 start-page: 9 year: 2016 end-page: 21 ident: CR2 article-title: Analysis of a solar desalinator (humidification–dehumidification cycle) including a compound system consisting of a solar humidifier and subsurface condenser using DoE publication-title: Desalination doi: 10.1016/j.desal.2016.06.010 – volume: 82 start-page: 857 year: 2015 end-page: 864 ident: CR17 article-title: Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid publication-title: Energy doi: 10.1016/j.energy.2015.01.096 – volume: 144 start-page: 185 year: 2017 end-page: 202 ident: CR16 article-title: Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting publication-title: Sol Energy doi: 10.1016/j.solener.2017.01.020 – volume: 156 start-page: 398 year: 2015 end-page: 412 ident: CR1 article-title: Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil-Al O nanofluid publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.035 – ident: CR38 – volume: 114 start-page: 286 year: 2017 end-page: 296 ident: CR4 article-title: A numerical study on ZnO based nanofluids behavior on natural convection publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.06.069 – volume: 9 start-page: 177 year: 2013 end-page: 184 ident: CR3 article-title: Optimization of thermal conductivity of Al O nanofluid by using ANN and GRG methods publication-title: Int J Nanosci Nanotechnol – volume: 85 start-page: 3036 year: 2011 end-page: 3045 ident: CR35 article-title: Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector publication-title: Sol Energy doi: 10.1016/j.solener.2011.09.002 – volume: 55 start-page: 1 year: 2012 end-page: 13 ident: CR21 article-title: Entropy generation minimization for the thermal decomposition of methane gas in hydrogen using genetic algorithms publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2011.10.021 – volume: 77 start-page: 403 year: 2014 end-page: 413 ident: CR25 article-title: Performance analysis of turbulent convection heat transfer of Al O water-nanofluid in circular tubes at constant wall temperature publication-title: Energy doi: 10.1016/j.energy.2014.09.025 – volume: 55 start-page: 6786 year: 2012 end-page: 6797 ident: CR19 article-title: A new frontier of nanofluid research—application of nanofluids in heat pipes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.06.086 – volume: 52 start-page: 4675 year: 2009 end-page: 4682 ident: CR37 article-title: Experimental determination of thermal conductivity of three nanofluids and development of new correlations publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2009.06.027 – volume: 104 start-page: 176 year: 2016 end-page: 183 ident: CR42 article-title: Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.05.064 – volume: 78 start-page: 64 year: 2014 end-page: 75 ident: CR18 article-title: Entropy generation during Al O /water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.051 – ident: CR34 – volume: 53 start-page: 4757 year: 2010 end-page: 4767 ident: CR26 article-title: Entropy generation due to flow and heat transfer in nanofluids publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.06.016 – volume: 157 start-page: 514 year: 2017 end-page: 531 ident: CR36 article-title: Thermal enhancement of parabolic trough collector with internally finned absorbers publication-title: Sol Energy doi: 10.1016/j.solener.2017.08.067 – volume: 50 start-page: 143 year: 2013 end-page: 149 ident: CR8 article-title: Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels publication-title: Energy doi: 10.1016/j.energy.2012.11.036 – volume: 100 start-page: 1149 year: 2016 end-page: 1160 ident: CR23 article-title: Heat transfer and entropy generation analysis of turbulent flow of TiO -water nanofluid inside annuli with different radius ratios using two-phase mixture model publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.02.093 – volume: 124 start-page: 407 year: 2016 end-page: 416 ident: CR5 article-title: Comparative study of turbulent heat transfer of nanofluids: effect of thermophysical properties on figure-of-merit ratio publication-title: J Therm Anal Calorim doi: 10.1007/s10973-015-5166-z – year: 2017 ident: CR11 article-title: Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts publication-title: J Therm Anal Calorim doi: 10.1007/s10973-017-6900-5 – volume: 6 start-page: 1 year: 2015 ident: 7276_CR22 publication-title: Appl Nanosci doi: 10.1007/s13204-015-0481-z – volume: 100 start-page: 1149 year: 2016 ident: 7276_CR23 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.02.093 – volume: 109 start-page: 555 year: 2017 ident: 7276_CR7 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.02.036 – volume: 397 start-page: 9 year: 2016 ident: 7276_CR2 publication-title: Desalination doi: 10.1016/j.desal.2016.06.010 – volume: 114 start-page: 286 year: 2017 ident: 7276_CR4 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.06.069 – volume: 125 start-page: 1083 year: 2017 ident: 7276_CR13 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.07.100 – ident: 7276_CR14 – volume: 156 start-page: 398 year: 2015 ident: 7276_CR1 publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.035 – volume: 78 start-page: 64 year: 2014 ident: 7276_CR18 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.051 – volume: 126 start-page: 617 year: 2016 ident: 7276_CR15 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5522-7 – volume: 124 start-page: 407 year: 2016 ident: 7276_CR5 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-015-5166-z – volume: 5 start-page: 587 year: 1980 ident: 7276_CR30 publication-title: Energy doi: 10.1016/0360-5442(80)90039-0 – volume: 82 start-page: 857 year: 2015 ident: 7276_CR17 publication-title: Energy doi: 10.1016/j.energy.2015.01.096 – volume: 104 start-page: 176 year: 2016 ident: 7276_CR42 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.05.064 – volume: 53 start-page: 4757 year: 2010 ident: 7276_CR26 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.06.016 – volume: 89 start-page: 694 year: 2015 ident: 7276_CR28 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.05.099 – ident: 7276_CR34 – volume: 111 start-page: 804 year: 2017 ident: 7276_CR27 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.04.041 – volume: 10 start-page: 21 year: 1989 ident: 7276_CR31 publication-title: ASME AES – volume: 53 start-page: 4607 year: 2010 ident: 7276_CR40 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.06.032 – volume: 193 start-page: 393 year: 2017 ident: 7276_CR41 publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.02.064 – volume: 55 start-page: 6786 year: 2012 ident: 7276_CR19 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.06.086 – volume: 222 start-page: 159 year: 2016 ident: 7276_CR29 publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.06.091 – year: 2017 ident: 7276_CR11 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-017-6900-5 – volume: 157 start-page: 514 year: 2017 ident: 7276_CR36 publication-title: Sol Energy doi: 10.1016/j.solener.2017.08.067 – start-page: 1 volume-title: Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel year: 2017 ident: 7276_CR9 – volume: 109 start-page: 1162 year: 2017 ident: 7276_CR12 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.03.006 – volume: 55 start-page: 1 year: 2012 ident: 7276_CR21 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2011.10.021 – ident: 7276_CR38 – volume: 9 start-page: 177 year: 2013 ident: 7276_CR3 publication-title: Int J Nanosci Nanotechnol – volume: 77 start-page: 403 year: 2014 ident: 7276_CR25 publication-title: Energy doi: 10.1016/j.energy.2014.09.025 – volume: 6 start-page: 577 year: 2004 ident: 7276_CR39 publication-title: J Nanoparticle Res. doi: 10.1007/s11051-004-3170-5 – volume: 85 start-page: 3036 year: 2011 ident: 7276_CR35 publication-title: Sol Energy doi: 10.1016/j.solener.2011.09.002 – volume: 50 start-page: 143 year: 2013 ident: 7276_CR8 publication-title: Energy doi: 10.1016/j.energy.2012.11.036 – volume: 10 start-page: 125 year: 2010 ident: 7276_CR32 publication-title: Clim Dyn – ident: 7276_CR33 – ident: 7276_CR10 – volume: 144 start-page: 185 year: 2017 ident: 7276_CR16 publication-title: Sol Energy doi: 10.1016/j.solener.2017.01.020 – volume: 52 start-page: 4675 year: 2009 ident: 7276_CR37 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2009.06.027 – volume: 123456789 start-page: 1 year: 2018 ident: 7276_CR6 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7035-z – volume: 55 start-page: 4366 year: 2012 ident: 7276_CR24 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.04.005 – volume: 108 start-page: 1279 year: 2016 ident: 7276_CR20 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.08.028  | 
    
| SSID | ssj0009901 | 
    
| Score | 2.385656 | 
    
| Snippet | The use of nanofluids as working fluid is one of the represented methods in efficiency enhancement of various systems. One of the most important subjects in... | 
    
| SourceID | proquest gale crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 801 | 
    
| SubjectTerms | Aluminum oxide Analysis Analytical Chemistry Chemistry Chemistry and Materials Science Circular tubes Copper oxide Copper oxides Cuprite Entropy Ethylene Ethylene glycol Fluid dynamics Fluid flow Forced convection Inorganic Chemistry Laws, regulations and rules Measurement Science and Instrumentation Nanofluids Nanoparticles Optimization Physical Chemistry Polymer Sciences Reynolds number Silicon dioxide Thermodynamics Turbulent flow Working fluids  | 
    
| Title | Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach | 
    
| URI | https://link.springer.com/article/10.1007/s10973-018-7276-x https://www.proquest.com/docview/2183728864  | 
    
| Volume | 135 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1588-2926 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1588-2926 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1588-2926 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: AFBBN dateStart: 19690301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1588-2926 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1588-2926 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcmeBgvaGNDFBg6oUmThiKlbeI4jwVRYJOYxIfEnizbsatKbVI1qQa88K9zl8YUGCDxlEg5Ox93zv1s3_2Ose9oJ0YLQXE61gQRd-1AGREGuh2qjkYEErk6yveUH19Gv67iqyaPu_TR7n5Lsv5TP0p2SxPqUwToc3mAwHE5JjYvNOLLTm_BtJuG81kWmgCxnfutzJe6eOKMnv-S_9sbrV1O_xNbbbAi9ObK_cw-2HyNfTzwJdq-sLs_OODHw1tsDW5U_IMJLa1PiSMVCgeI7cAXQKkgV3nhRrNhVsKwLtIJCsxwWsehQjXTFvQNUBj8AGjFt5jcwKDmpCbVAVGQjJucTfBE5F_ZRf_w4uA4aCoqBAaBSRWkThHgCGPdsRkPNbdCOMO1ixz6pW6G05sMT3CKpyJtMxPHPGkbhCAZwgLR7q6zpbzI7QaDVMcW0YIWISIyy1NlwsS4KDNdBIhRmrRY6L-sNA3bOBW9GMkFTzIpQ6IyJClDXrfYz4cmkznVxlvCu6QuSRQWOcXIDNSsLOXJ-ZnsxcSoQzQ3LfajEXIF3tyoJuUAX4FYr55Ibnu1y2YQl5LQY9IRgkcttudNYXH51WfbfJf0FltBEJbOl3W22VI1ndlvCHQqvcOWe_39_VM6Hv39fbhTG_o9jhL5kA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZQ9zBegA0QhTEshIQEypS2juM8VtNGx8aQoEjjybIdu6rokqpJBNsL_zp3iU238UPaW6RcHNu5nL-z774j5BXoidFCYJyONRHjbhApI-JID2I11IBAmGujfE_55At7f5ac-TzuKkS7hyPJ1lJfSXbLUmxTRLDm8giA4wYD_2TYIxvjd1-PD9Zcu1nc-VmgBMh3Hg4z_9bIteXoplH-43S0XXQO75Np6G4Xa_Jtr6n1nrm8weR4y_E8IPc8CKXjTmu2yB1bbJPN_VD77SH5-REsyfn8EtqjblF-p0vcs18h-SotHQXQSENllZoWqijdopnnFZ231T-poma-agNcad1oS_UFxfj6GcWt5HJ5QWct2TXqBEVuk3OfDEoDw_kjMj08mO5PIl-qITKAeOoocwqRTJzooc15rLkVwhmuHXOw4I1y8JtyuADfUTFtc5MkPB0YwDY54A0xGD0mvaIs7BNCM51YgCFaxAD1LM-UiVPjWG5GgDxZlvZJHD6YNJ7GHKtpLOSagBknVsLESpxY-aNP3vx-ZNlxePxP-CVqgURujAKDb2aqqSp59PmTHCdI1YP8OX3y2gu5El5ulM9lgCEgndY1yZ2gTdJbh0oiLE2HQnDWJ2-Dcqxv_7NvT28l_YJsTqYfTuTJ0enxM3IXkF7W7R3tkF69auxzQFO13vV_zy8y8haN | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQkIAXBBuIjv04oUlIoGhp6zjOY7VRbTBtCDZpb5bt2FWlLqmaVDBe-Nd3l8R0g4HEW6ScncR3zn22775jbA_txBopKU7H2YgL34-0lXFk-rEeGEQg3DdRvqfi6IJ_vEwuuzqnVYh2D0eSbU4DsTQV9f489_u3Et-ylPqXEfpfESGIfMiJJwEN-mIwWrHuZnG74kJzIObzcKx5Xxd3HNPvv-c_zkkb9zN-xp52uBFGraKfsweuWGePD0K5tg328wwn_9X0B7YGPyu_wZy22RfElwqlB8R5EIqh1FDoovSz5TSvYNoU7AQNdrpoYlKhXhoH5hooJH4CtPtbzq9h0vBTkxqB6EiuuvxNCKTkL9j5-MP5wVHUVVeILIKUOsq8JvARJ2bgchEb4aT0VhjPPfqoYY5LnRwvcLmnuXG5TRKR9i3CkRwhguwPX7K1oizcKwaZSRyOvZExojMnMm3j1Hqe2yGCRZ6lPRaHkVW2Yx6nAhgzteJMJmUoVIYiZajvPfbuV5N5S7vxL-E3pC5FdBYFxctM9LKq1PHXL2qUELsOUd702NtOyJf4cKu79AP8BGLAuiO5FdSuugldKUKS6UBKwXvsfTCF1e2_vtvmf0nvskefD8fq5Pj002v2BLFZ1u72bLG1erF024h_arPT2PgN6EP9qA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+flow+properties+of+the+different+nanofluids+inside+a+circular+tube+by+using+entropy+generation+minimization+approach&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Mohseni-Gharyehsafa%2C+Behnam&rft.au=Ebrahimi-Moghadam%2C+Amir&rft.au=Okati%2C+V.&rft.au=Farzaneh-Gord%2C+Mahmood&rft.date=2019-01-01&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=135&rft.issue=1&rft.spage=801&rft.epage=811&rft_id=info:doi/10.1007%2Fs10973-018-7276-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10973_018_7276_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |