Towards automatic anomaly detection in fisheries using electronic monitoring and automatic identification system
To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently,...
Saved in:
Published in | Fisheries research Vol. 272; p. 106939 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-7836 |
DOI | 10.1016/j.fishres.2024.106939 |
Cover
Abstract | To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently, several forms of Electronic Monitoring (EM) have emerged recently and include the use of electronic monitoring using on-board video cameras and Automatic Identification System (AIS). Unfortunately, insufficient cameras, ineffective camera position or obstructions, may lead to objects or behaviours of interest not being observed. In addition, more subtle, anomalous behaviours characteristic of behaviours of interest may still be captured. With the increasing success of deep learning methods, this article identifies the scope and challenges of using state-of-the-art deep learning approaches to anomaly detection in fisheries, and in particular to automatically detect abnormal behaviours from on-board video cameras and AIS data in line with current fishing practices and regulations. This study will take us one step closer towards automatic anomaly detection frameworks that can potentially replace existing manual monitoring methods.
•We review the scope and challenges of current Artificial Intelligence approaches to anomaly detection in fisheries.•A taxonomy of possible anomalies due to unexpected behaviors by fishers or fishing vessels is presented.•Recent approaches to identify anomalies focusing on in-vessel activities and fishing vessel behaviors is described.•The key challenges to apply deep learning methods for automated anomaly detection are identified.•Suitable measures to mitigate those challenges, and possible future directions are proposed. |
---|---|
AbstractList | To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently, several forms of Electronic Monitoring (EM) have emerged recently and include the use of electronic monitoring using on-board video cameras and Automatic Identification System (AIS). Unfortunately, insufficient cameras, ineffective camera position or obstructions, may lead to objects or behaviours of interest not being observed. In addition, more subtle, anomalous behaviours characteristic of behaviours of interest may still be captured. With the increasing success of deep learning methods, this article identifies the scope and challenges of using state-of-the-art deep learning approaches to anomaly detection in fisheries, and in particular to automatically detect abnormal behaviours from on-board video cameras and AIS data in line with current fishing practices and regulations. This study will take us one step closer towards automatic anomaly detection frameworks that can potentially replace existing manual monitoring methods. To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently, several forms of Electronic Monitoring (EM) have emerged recently and include the use of electronic monitoring using on-board video cameras and Automatic Identification System (AIS). Unfortunately, insufficient cameras, ineffective camera position or obstructions, may lead to objects or behaviours of interest not being observed. In addition, more subtle, anomalous behaviours characteristic of behaviours of interest may still be captured. With the increasing success of deep learning methods, this article identifies the scope and challenges of using state-of-the-art deep learning approaches to anomaly detection in fisheries, and in particular to automatically detect abnormal behaviours from on-board video cameras and AIS data in line with current fishing practices and regulations. This study will take us one step closer towards automatic anomaly detection frameworks that can potentially replace existing manual monitoring methods. •We review the scope and challenges of current Artificial Intelligence approaches to anomaly detection in fisheries.•A taxonomy of possible anomalies due to unexpected behaviors by fishers or fishing vessels is presented.•Recent approaches to identify anomalies focusing on in-vessel activities and fishing vessel behaviors is described.•The key challenges to apply deep learning methods for automated anomaly detection are identified.•Suitable measures to mitigate those challenges, and possible future directions are proposed. |
ArticleNumber | 106939 |
Author | Wang, Dadong Rosebrock, Uwe Petersson, Lars Little, L. Richard Ford, Jessica Farazi, Moshiur Smith, Daniel Acharya, Debaditya Rolland, Vivien Tuck, Geoffrey N. Wilcox, Chris |
Author_xml | – sequence: 1 givenname: Debaditya surname: Acharya fullname: Acharya, Debaditya email: debaditya.acharya@rmit.edu.au organization: Geospatial Science, RMIT University, Melbourne, Australia – sequence: 2 givenname: Moshiur surname: Farazi fullname: Farazi, Moshiur organization: Data61, CSIRO, Black Mountain, Canberra, Australia – sequence: 3 givenname: Vivien surname: Rolland fullname: Rolland, Vivien organization: Agriculture and Food, CSIRO, Black Mountain, Canberra, Australia – sequence: 4 givenname: Lars surname: Petersson fullname: Petersson, Lars organization: Data61, CSIRO, Black Mountain, Canberra, Australia – sequence: 5 givenname: Uwe surname: Rosebrock fullname: Rosebrock, Uwe organization: Environment, CSIRO, Hobart, Tasmania, Australia – sequence: 6 givenname: Daniel surname: Smith fullname: Smith, Daniel organization: Data61, CSIRO, Hobart, Tasmania, Australia – sequence: 7 givenname: Jessica surname: Ford fullname: Ford, Jessica organization: Data61, CSIRO, Hobart, Tasmania, Australia – sequence: 8 givenname: Dadong surname: Wang fullname: Wang, Dadong organization: Data61, CSIRO, Marsfield, New South Wales, Australia – sequence: 9 givenname: Geoffrey N. surname: Tuck fullname: Tuck, Geoffrey N. organization: Environment, CSIRO, Hobart, Tasmania, Australia – sequence: 10 givenname: L. Richard surname: Little fullname: Little, L. Richard organization: Environment, CSIRO, Hobart, Tasmania, Australia – sequence: 11 givenname: Chris surname: Wilcox fullname: Wilcox, Chris organization: Environment, CSIRO, Hobart, Tasmania, Australia |
BookMark | eNqFkD1PwzAQhj0UibbwE5AysrQ4cZLGYkCo4kuqxFJmy7HPcFViF9sF9d_jtAyIpcv5dO-HrGdCRtZZIOQqp_Oc5vXNZm4wfHgI84IWZbrVnPERGSetmi0aVp-TSQgbSuliUedjsl27b-l1yOQuul5GVJm0aen2mYYIKqKzGdpsaAWPELJdQPueQZc072zy92lG54ertPpPEWqwEQ0qeWgJ-xChvyBnRnYBLn_fKXl7fFgvn2er16eX5f1qpljD44wbrlugTJasaltam6qRVVsxUxQsSZXSrFAtKK05N4xr1lCTU9OWUPBFqxo2JdfH3q13nzsIUfQYFHSdtOB2QTBa0rIo66JO1tujVXkXggcjFMbDn6OX2ImcioGt2IhftmJgK45sU7r6l9567KXfn8zdHXOQKHwheBEUglWg0Se2Qjs80fADZCOfcw |
CitedBy_id | crossref_primary_10_1093_icesjms_fsae166 crossref_primary_10_1080_23308249_2024_2423189 crossref_primary_10_3389_fmars_2025_1545718 crossref_primary_10_1109_ACCESS_2024_3416389 |
Cites_doi | 10.1111/j.1471-1842.2009.00848.x 10.1007/s11042-020-08949-9 10.1109/ACCESS.2019.2906654 10.1049/cp.2012.0414 10.5394/KINPR.2015.39.5.377 10.1007/s11280-018-0582-1 10.1109/TITS.2017.2724551 10.3390/app9152983 10.3390/jmse8090682 10.1016/j.oceaneng.2019.04.024 10.3390/s21082756 10.1109/TCSVT.2018.2872575 10.1109/ICCV.2019.00136 10.1016/j.patcog.2020.107205 10.5244/C.29.8 10.1016/j.biocon.2020.108461 10.1109/TIFS.2019.2900907 10.1016/j.oceaneng.2020.107478 10.1109/CVPR.2016.90 10.1016/j.fishres.2011.01.013 10.1109/ACCESS.2020.2979869 10.1016/j.fusengdes.2020.111736 10.1007/s12530-015-9133-5 10.1016/j.neucom.2016.09.063 10.1016/j.eswa.2013.04.029 10.1016/j.ijar.2013.03.012 10.1016/j.autcon.2020.103121 10.1017/S0373463317000066 10.1109/CVPR.2015.7298685 10.1145/3439950 10.1017/S1049023X19004588 10.1111/faf.12425 10.1109/ACCESS.2020.3013957 10.1016/j.oceaneng.2010.01.012 10.1016/j.ress.2020.107127 10.1016/j.iot.2021.100436 10.1093/icesjms/fsx109 10.1145/3292500.3330871 10.1109/TII.2019.2938527 10.1111/2041-210X.13282 10.1016/j.oceaneng.2021.109256 10.1109/JIOT.2020.3003922 10.1016/j.patcog.2017.10.002 10.1109/CVPR.2017.143 10.1016/j.ress.2021.107819 10.1115/DETC2021-69799 10.1109/IEEECONF38699.2020.9389122 10.1016/j.eswa.2017.02.011 10.3390/jmse10010112 10.1109/TPAMI.2020.3040591 10.1017/S0373463317000546 10.3390/s22030839 10.1109/CVPR42600.2020.01219 10.3390/e23010018 10.1109/ICCV.2017.391 10.1109/CVPR.2016.86 10.1109/ICBDA.2019.8713215 10.1093/icesjms/fsz149 10.1016/j.engappai.2017.10.001 10.1109/WACV45572.2020.9093417 10.1109/ACCESS.2018.2885055 10.1145/3415958.3433079 10.1007/s13437-018-0151-6 10.1109/CVPR.2019.00718 10.1371/journal.pone.0130746 10.1371/journal.pone.0200189 10.1109/TAES.2021.3096873 10.1117/12.776230 10.1139/cjfas-2020-0446 10.1016/j.biocon.2018.01.003 10.1016/j.oceaneng.2020.107922 10.1109/TCSVT.2016.2589859 10.1109/TPAMI.2007.70711 10.1109/ACCESS.2019.2912612 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fishres.2024.106939 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_fishres_2024_106939 S0165783624000031 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAHBH AAIKJ AAJYS AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SCC SDF SDG SES SEW SPCBC SSA SSZ T5K TN5 UNMZH VH1 WUQ Y6R ~02 ~G- ~HD AAYXX AGCQF CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-9f9dbe03a435bb06f58a5b53f223f9d5cd32cbecdd99f39d380f10fb4e297bc83 |
IEDL.DBID | .~1 |
ISSN | 0165-7836 |
IngestDate | Sat Sep 27 20:33:41 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Wed Aug 27 16:27:41 EDT 2025 Sat Sep 27 17:12:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Automatic Identification System (AIS) Electronic Monitoring (EM) Anomaly detection Sustainable fisheries |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-9f9dbe03a435bb06f58a5b53f223f9d5cd32cbecdd99f39d380f10fb4e297bc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0165783624000031 |
PQID | 3040424626 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040424626 crossref_citationtrail_10_1016_j_fishres_2024_106939 crossref_primary_10_1016_j_fishres_2024_106939 elsevier_sciencedirect_doi_10_1016_j_fishres_2024_106939 |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Fisheries research |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Glemarec, Kindt-Larsen, Lundgaard, Larsen (bib27) 2020; 243 Wojke, Bewley, Paulus (bib120) 2017 Nguyen, Vadaine, Hajduch, Garello, Fablet (bib70) 2018 Weinland, Boyer, Ronfard (bib119) 2007 Pang, G., Shen, C., and van den Hengel, A. (2019). Deep anomaly detection with deviation networks.In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (353–362). Yuan, Z., Liu, J., Liu, Y., and Li, Z. (2019). A novel approach for vessel trajectory reconstruction using ais data.In: The 29th International Ocean and Polar Engineering Conference.OnePetro. Kazemi, Abghari, Lavesson, Johnson, Ryman (bib39) 2013; 40 KÖk, Özdemir (bib43) 2020; 8 Mazzarella, Arguedas, Vespe (bib59) 2015 Sheng, Liu, Zhou, He, Feng (bib95) 2018; 71 French, Fisher, Mackiewicz, Needle (bib21) 2015 Hobday, A., Little, R., Bulman, C., Gardner, C., McGrath-Steer, B., Ogier, E., Rayns, N., Sen, S., Sloan, S., Smith, T. et al. (2019). Best practice guidelines for Australian fisheries management agencies.Technical Report FRDC. Chen, T., Tang, L.-A., Sun, Y., Chen, Z., and Zhang, K. (2016). Entity embedding-based anomaly detection for heterogeneous categorical events.arXiv preprint arXiv:1608.07502. Khokher, Little, Tuck, Smith, Qiao, Devine, O’Neill, Pogonoski, Arangio, Wang (bib40) 2022; 79 Smeureanu, Ionescu, Popescu, Alexe (bib101) 2017 Christensen, J.H., Mogensen, L.V., and Ravn, O. (2020). Single image super-resolution for domain-specific ultra-low bandwidth image transmission.arXiv preprint arXiv:2009.04127. Tu, Zhang, Rachmawati, Rajabally, Huang (bib109) 2017; 19 Tassetti, Galdelli, Pulcinella, Mancini, Bolognini (bib107) 2022; 22 Xie, Lee, Liu, Kotani, Chen (bib123) 2020; 102 Hinami, R., Mei, T., and Satoh, S. (2017). Joint detection and recounting of abnormal events by learning deep generic knowledge.In: Proceedings of the IEEE International Conference on Computer Vision (3619–3627). Riveiro, Pallotta, Vespe (bib88) 2018; 8 Mazzarella, Vespe, Tarchi, Aulicino, Vollero (bib60) 2016 Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., and Zhang, Z. (2015). The application of two-level attention models in deep convolutional neural network for fine-grained image classification.In: Proceedings of the IEEEconference on computer vision and pattern recognition (842–850). Wei, Xie, Wu, Shen (bib118) 2018; 76 Wolsing, Roepert, Bauer, Wehrle (bib121) 2022; 10 Eljabu, Etemad, Matwin (bib14) 2021 An, Cho (bib2) 2015; 2 Cazzanti, Pallotta (bib7) 2015 Mou, Van der Tak, Ligteringen (bib63) 2010; 37 Roy, J. (2008). Anomaly detection in the maritime domain.In: Optics and Photonics in Global Homeland Security IV(180–193). SPIE volume 6945. Bartholomew, Mangel, Alfaro-Shigueto, Pingo, Jimenez, Godley (bib3) 2018; 219 Murray, Perera (bib66) 2021 Ramachandra, Jones, Vatsavai (bib85) 2020 Shahir, Charalampous, Tayebi, Glässer, Wehn (bib92) 2021 Coşar, Donatiello, Bogorny, Garate, Alvares, Brémond (bib12) 2016; 27 Shi, Liu (bib96) 2020; 8 Bekker, Goldberger (bib4) 2016 Sun, Shi, Dong, Wang (bib105) 2016 Nguyen, Im, Lee (bib74) 2015; 39 Song, Wang, Xiao, Han, Cai, Shi (bib102) 2018 Galdelli, Mancini, Ferrà, Tassetti (bib24) 2021; 21 Karataş, G.B., Karagoz, P., and Ayran, O. (2020). Trajectory prediction for maritime vessels using ais data.In: Proceedings of the 12th International Conference on Management of Digital EcoSystems (48–54). Monkman, Hyder, Kaiser, Vidal (bib62) 2019; 10 Guo, Mou, Chen, Chen (bib30) 2021; 234 Wang, Chen, Hoi (bib117) 2020 Galdelli, A., Mancini, A., Frontoni, E., and Tassetti, A. (2021b). A feature encoding approach and a cloud computing architecture to map fishing activities.In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (V007T07A003). American Society of Mechanical Engineers volume 85437. Rong, Teixeira, Soares (bib89) 2019; 182 Mao, Tu, Zhang, Rachmawati, Rajabally, Huang (bib55) 2018 Huang, Hwang, Romain, Wallace (bib36) 2018; 29 Liu, de Souza, Hilliard, Matwin (bib50) 2015 Liu, Shi (bib51) 2020; 8 Chuang, Hwang, Williams (bib11) 2018 Fournier, Hilliard, Rezaee, Pelot (bib20) 2018; 17 Mazzarella, Vespe, Damalas, Osio (bib58) 2014 Yao, Zhang, Zhu, Huang, Bi (bib125) 2017 Sidibé, Shu (bib98) 2017; 70 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need.In: Advances in neural information processing systems (5998–6008). Nguyen, Simonin, Hajduch, Vadaine, Tedeschi, Fablet (bib71) 2020 Ravanbakhsh, Nabi, Mousavi, Sangineto, Sebe (bib86) 2018 Ouyang, Xu, Zhang, Zhou, Yang, Liu, Li (bib76) 2019; 7 Ko, Sim (bib42) 2018; 67 Nawaratne, Alahakoon, De Silva, Yu (bib68) 2019; 16 Qiu, Zhang, Wang, Yu, Zheng, Zheng (bib82) 2018; 6 Wang, Ye, Zhou, Ou, Cheng (bib116) 2020 Ford, Peel, Hardesty, Rosebrock, Wilcox (bib17) 2018; 13 Nguyen, Vadaine, Hajduch, Garello, Fablet (bib72) 2021 Tan, Sun, Kong, Zhang, Yang, Liu (bib106) 2018 Yu, Sghaier, Grabowiecka (bib127) 2020 Ristic, La Scala, Morelande, Gordon (bib87) 2008 Mantecón, Casals, Navarro-Corcuera, del Blanco, Jaureguizar (bib54) 2019 Radon, Wang, Glässer, Wehn, Westwell-Roper (bib83) 2015 Singh, Heymann (bib99) 2020 Alessandrini, Argentieri, Alvarez, Barbas, Delaney, Arguedas, Gammieri, Greidanus, Mazzarella, Vespe (bib1) 2014; 39 Obradović, Miličević, Žubrinić (bib75) 2014; 61 Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields.In: Proceedings of the IEEEconference on computer vision and pattern recognition (7291–7299). Kim, Chi (bib41) 2020; 112 Zhou, Shen, Zeng, Fang, Wei, Zhang (bib132) 2016; 47 Liang, M., Liu, R.W., Zhong, Q., Liu, J., and Zhang, J. (2019). Neural network-based automatic reconstruction of missing vessel trajectory data.In: 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA)(426–430). 10.1109/ICBDA.2019.8713215. Siddiqui, Salman, Malik, Shafait, Mian, Shortis, Harvey (bib97) 2018; 75 Murray, Perera (bib64) 2020; 209 Dalsnes, Hexeberg, Flåten, Eriksen, Brekke (bib13) 2018 Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., and Davis, L.S. (2016). Learning temporal regularity in video sequences.In: Proceedings of the IEEEconference on computer vision and pattern recognition (733–742). Ganokratanaa, Aramvith, Sebe (bib25) 2020; 8 Zissis, Xidias, Lekkas (bib133) 2016; 7 Pang, Shen, Cao, Hengel (bib79) 2021; 54 Perdigão, Lousa, Ascenso, Pereira (bib81) 2020; 79 He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.In: Proceedings of the IEEEconference on computer vision and pattern recognition (770–778). Shahir, Glässer, Nalbandyan, Wehn (bib93) 2014 Pawar, Attar (bib80) 2019; 22 Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N. (2015). Learning deep representations of appearance and motion for anomalous event detection.arXiv preprint arXiv:1510.01553. Liu, Shi, Zhu (bib52) 2019; 9 FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation.Technical Report FAO. 10.4060/cc0461en. Gorelick, Blank, Shechtman, Irani, Basri (bib28) 2007; 29 Li, Liang, Liu (bib45) 2020 Capobianco, Millefiori, Forti, Braca, Willett (bib6) 2021; 57 Tetreault (bib108) 2005 van Helmond, Mortensen, Plet-Hansen, Ulrich, Needle, Oesterwind, Kindt-Larsen, Catchpole, Mangi, Zimmermann (bib111) 2020; 21 Zhao, Wang, Duan, Huang, Cao, Tong, Xu, Bai, Tong, Zhang (bib130) 2020 Grant, Booth (bib29) 2009; 26 Wang, Hwang, Wallace, Rose (bib114) 2019; 7 Wang, He (bib115) 2021 Forti, Millefiori, Braca, Willett (bib19) 2020 French, Mackiewicz, Fisher, Holah, Kilburn, Campbell, Needle (bib22) 2020; 77 Vespe, M., Visentini, I., Bryan, K., and Braca, P. (2012). Unsupervised learning of maritime traffic patterns for anomaly detection.In: 9th IET Data Fusion and Target Tracking Conference (DFTT 2012): Algorithms and Applications.IET. 10.1049/cp.2012.0414. Forti, Millefiori, Braca (bib18) 2019 Mazzarella, Vespe, Alessandrini, Tarchi, Aulicino, Vollero (bib61) 2017; 78 de Souza, Boerder, Matwin, Worm (bib103) 2016; 11 Natale, Gibin, Alessandrini, Vespe, Paulrud (bib67) 2015; 10 Shahir, Glasser, Shahir, Wehn (bib94) 2015 Hobday, Smith, Stobutzki, Bulman, Daley, Dambacher, Deng, Dowdney, Fuller, Furlani (bib34) 2011; 108 Skilton, Gao (bib100) 2020; 159 Yi, K., and Wu, J. (2019). Probabilistic end-to-end noise correction for learning with noisy labels.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (7017–7025). Zhou, Du, Zhu, Peng, Liu, Goh (bib131) 2019; 14 Martineau, E., and Roy, J. (2011). Maritime anomaly detection: Domain introduction and review of selected literature.Technical Report DEFENCE RESEARCH AND DEVELOPMENT CANADA VALCARTIER (QUEBEC). Chong, Tay (bib9) 2017 Van der Maaten, Hinton (bib110) 2008 Stratton (bib104) 2019; 34 Li, Li, Liu, Liu, Yu (bib46) 2018 Murray, Perera (bib65) 2021 Ramachandra, B., Jones, M., and Vatsavai, R. (2020a). Learning a distance function with a siamese network to localize anomalies in videos.In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2598–2607). Liraz, S.P. (2018). Ships’ Trajectories Prediction Using Recurrent Neural Networks Based on AIS Data Technical Report Naval Postgraduate School. Linardatos, Papastefanopoulos, Kotsiantis (bib48) 2021; 23 Pang, G., Yan, C., Shen, C., Hengel, A.v.d., Bai, X.(2020). Self-trained deep ordinal regression for end-to-end video anomaly detection.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (12173–12182). Karataş, Karagoz, Ayran (bib38) 2021; 16 Lane, Nevell, Hayward, Beaney (bib44) 2010 Nguyen, T.-N., and Meunier, J. (2019). Anomaly detection in video sequence with appearance-motion correspondence.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (1273–1283). Gao, Shi (bib26) 2020; 217 Mascaro, Nicholso, Korb (bib57) 2014; 55 Liu, Li, Zhou, Jiang, Sun, Wang, He (bib53) 2019; 32 Zhang, Feng, Goerlandt, Liu (bib129) 2020; 204 Nguyen, D., and Fablet, R. (2021). Traisformer-a generative transformer for ais Yao (10.1016/j.fishres.2024.106939_bib125) 2017 Kim (10.1016/j.fishres.2024.106939_bib41) 2020; 112 Capobianco (10.1016/j.fishres.2024.106939_bib6) 2021; 57 Murray (10.1016/j.fishres.2024.106939_bib65) 2021 10.1016/j.fishres.2024.106939_bib73 Chong (10.1016/j.fishres.2024.106939_bib9) 2017 Mao (10.1016/j.fishres.2024.106939_bib55) 2018 Forti (10.1016/j.fishres.2024.106939_bib19) 2020 Mazzarella (10.1016/j.fishres.2024.106939_bib59) 2015 10.1016/j.fishres.2024.106939_bib78 Feng (10.1016/j.fishres.2024.106939_bib16) 2017; 219 10.1016/j.fishres.2024.106939_bib77 Dalsnes (10.1016/j.fishres.2024.106939_bib13) 2018 Van der Maaten (10.1016/j.fishres.2024.106939_bib110) 2008 Shahir (10.1016/j.fishres.2024.106939_bib93) 2014 Li (10.1016/j.fishres.2024.106939_bib45) 2020 Wang (10.1016/j.fishres.2024.106939_bib117) 2020 Natale (10.1016/j.fishres.2024.106939_bib67) 2015; 10 de Souza (10.1016/j.fishres.2024.106939_bib103) 2016; 11 Zhao (10.1016/j.fishres.2024.106939_bib130) 2020 10.1016/j.fishres.2024.106939_bib84 Nawaratne (10.1016/j.fishres.2024.106939_bib68) 2019; 16 Ristic (10.1016/j.fishres.2024.106939_bib87) 2008 Sheng (10.1016/j.fishres.2024.106939_bib95) 2018; 71 Wang (10.1016/j.fishres.2024.106939_bib114) 2019; 7 Mantecón (10.1016/j.fishres.2024.106939_bib54) 2019 Smeureanu (10.1016/j.fishres.2024.106939_bib101) 2017 Siddiqui (10.1016/j.fishres.2024.106939_bib97) 2018; 75 Zhou (10.1016/j.fishres.2024.106939_bib131) 2019; 14 Liu (10.1016/j.fishres.2024.106939_bib52) 2019; 9 Weinland (10.1016/j.fishres.2024.106939_bib119) 2007 Rong (10.1016/j.fishres.2024.106939_bib89) 2019; 182 Wang (10.1016/j.fishres.2024.106939_bib115) 2021 10.1016/j.fishres.2024.106939_bib113 10.1016/j.fishres.2024.106939_bib112 10.1016/j.fishres.2024.106939_bib15 Singh (10.1016/j.fishres.2024.106939_bib99) 2020 Khokher (10.1016/j.fishres.2024.106939_bib40) 2022; 79 Mazzarella (10.1016/j.fishres.2024.106939_bib60) 2016 Guo (10.1016/j.fishres.2024.106939_bib30) 2021; 234 Liu (10.1016/j.fishres.2024.106939_bib50) 2015 10.1016/j.fishres.2024.106939_bib10 Wei (10.1016/j.fishres.2024.106939_bib118) 2018; 76 10.1016/j.fishres.2024.106939_bib90 French (10.1016/j.fishres.2024.106939_bib22) 2020; 77 Nguyen (10.1016/j.fishres.2024.106939_bib72) 2021 Fournier (10.1016/j.fishres.2024.106939_bib20) 2018; 17 Ganokratanaa (10.1016/j.fishres.2024.106939_bib25) 2020; 8 Nguyen (10.1016/j.fishres.2024.106939_bib71) 2020 Tan (10.1016/j.fishres.2024.106939_bib106) 2018 Kazemi (10.1016/j.fishres.2024.106939_bib39) 2013; 40 Wojke (10.1016/j.fishres.2024.106939_bib120) 2017 Shi (10.1016/j.fishres.2024.106939_bib96) 2020; 8 Bekker (10.1016/j.fishres.2024.106939_bib4) 2016 Pang (10.1016/j.fishres.2024.106939_bib79) 2021; 54 Chuang (10.1016/j.fishres.2024.106939_bib11) 2018 Liu (10.1016/j.fishres.2024.106939_bib51) 2020; 8 Ravanbakhsh (10.1016/j.fishres.2024.106939_bib86) 2018 Li (10.1016/j.fishres.2024.106939_bib46) 2018 Perdigão (10.1016/j.fishres.2024.106939_bib81) 2020; 79 10.1016/j.fishres.2024.106939_bib23 Gao (10.1016/j.fishres.2024.106939_bib26) 2020; 217 Zissis (10.1016/j.fishres.2024.106939_bib133) 2016; 7 Alessandrini (10.1016/j.fishres.2024.106939_bib1) 2014; 39 Lane (10.1016/j.fishres.2024.106939_bib44) 2010 Pawar (10.1016/j.fishres.2024.106939_bib80) 2019; 22 Mazzarella (10.1016/j.fishres.2024.106939_bib61) 2017; 78 Mou (10.1016/j.fishres.2024.106939_bib63) 2010; 37 Forti (10.1016/j.fishres.2024.106939_bib18) 2019 10.1016/j.fishres.2024.106939_bib37 van Helmond (10.1016/j.fishres.2024.106939_bib111) 2020; 21 10.1016/j.fishres.2024.106939_bib32 10.1016/j.fishres.2024.106939_bib31 Mazzarella (10.1016/j.fishres.2024.106939_bib58) 2014 10.1016/j.fishres.2024.106939_bib33 10.1016/j.fishres.2024.106939_bib35 Cazzanti (10.1016/j.fishres.2024.106939_bib7) 2015 French (10.1016/j.fishres.2024.106939_bib21) 2015 Eljabu (10.1016/j.fishres.2024.106939_bib14) 2021 Hobday (10.1016/j.fishres.2024.106939_bib34) 2011; 108 Radon (10.1016/j.fishres.2024.106939_bib83) 2015 Sun (10.1016/j.fishres.2024.106939_bib105) 2016 Shahir (10.1016/j.fishres.2024.106939_bib94) 2015 10.1016/j.fishres.2024.106939_bib122 Sidibé (10.1016/j.fishres.2024.106939_bib98) 2017; 70 10.1016/j.fishres.2024.106939_bib124 An (10.1016/j.fishres.2024.106939_bib2) 2015; 2 10.1016/j.fishres.2024.106939_bib49 10.1016/j.fishres.2024.106939_bib126 Ramachandra (10.1016/j.fishres.2024.106939_bib85) 2020 10.1016/j.fishres.2024.106939_bib128 Murray (10.1016/j.fishres.2024.106939_bib64) 2020; 209 Wolsing (10.1016/j.fishres.2024.106939_bib121) 2022; 10 Liu (10.1016/j.fishres.2024.106939_bib53) 2019; 32 10.1016/j.fishres.2024.106939_bib5 Riveiro (10.1016/j.fishres.2024.106939_bib88) 2018; 8 Xie (10.1016/j.fishres.2024.106939_bib123) 2020; 102 10.1016/j.fishres.2024.106939_bib8 10.1016/j.fishres.2024.106939_bib47 Nguyen (10.1016/j.fishres.2024.106939_bib70) 2018 Galdelli (10.1016/j.fishres.2024.106939_bib24) 2021; 21 Wang (10.1016/j.fishres.2024.106939_bib116) 2020 Huang (10.1016/j.fishres.2024.106939_bib36) 2018; 29 Zhang (10.1016/j.fishres.2024.106939_bib129) 2020; 204 Glemarec (10.1016/j.fishres.2024.106939_bib27) 2020; 243 Ford (10.1016/j.fishres.2024.106939_bib17) 2018; 13 Ouyang (10.1016/j.fishres.2024.106939_bib76) 2019; 7 Mascaro (10.1016/j.fishres.2024.106939_bib57) 2014; 55 Shahir (10.1016/j.fishres.2024.106939_bib92) 2021 Karataş (10.1016/j.fishres.2024.106939_bib38) 2021; 16 Yu (10.1016/j.fishres.2024.106939_bib127) 2020 Bartholomew (10.1016/j.fishres.2024.106939_bib3) 2018; 219 Coşar (10.1016/j.fishres.2024.106939_bib12) 2016; 27 Grant (10.1016/j.fishres.2024.106939_bib29) 2009; 26 10.1016/j.fishres.2024.106939_bib56 Shahir (10.1016/j.fishres.2024.106939_bib91) 2019 Ko (10.1016/j.fishres.2024.106939_bib42) 2018; 67 Nguyen (10.1016/j.fishres.2024.106939_bib74) 2015; 39 Song (10.1016/j.fishres.2024.106939_bib102) 2018 Skilton (10.1016/j.fishres.2024.106939_bib100) 2020; 159 Zhou (10.1016/j.fishres.2024.106939_bib132) 2016; 47 Murray (10.1016/j.fishres.2024.106939_bib66) 2021 Tetreault (10.1016/j.fishres.2024.106939_bib108) 2005 Gorelick (10.1016/j.fishres.2024.106939_bib28) 2007; 29 KÖk (10.1016/j.fishres.2024.106939_bib43) 2020; 8 Qiu (10.1016/j.fishres.2024.106939_bib82) 2018; 6 Obradović (10.1016/j.fishres.2024.106939_bib75) 2014; 61 Linardatos (10.1016/j.fishres.2024.106939_bib48) 2021; 23 Stratton (10.1016/j.fishres.2024.106939_bib104) 2019; 34 10.1016/j.fishres.2024.106939_bib69 Tassetti (10.1016/j.fishres.2024.106939_bib107) 2022; 22 Monkman (10.1016/j.fishres.2024.106939_bib62) 2019; 10 Tu (10.1016/j.fishres.2024.106939_bib109) 2017; 19 |
References_xml | – volume: 219 start-page: 548 year: 2017 end-page: 556 ident: bib16 article-title: Learning deep event models for crowd anomaly detection publication-title: Neurocomputing – start-page: 333 year: 2020 end-page: 338 ident: bib45 article-title: Vessel trajectory similarity measure based on deep convolutional autoencoder publication-title: 2020 5th IEEE International Conference on Big Data Analytics (ICBDA) – year: 2020 ident: bib117 article-title: Deep learning for image super-resolution: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Karataş, G.B., Karagoz, P., and Ayran, O. (2020). Trajectory prediction for maritime vessels using ais data.In: Proceedings of the 12th International Conference on Management of Digital EcoSystems (48–54). – start-page: 1 year: 2014 end-page: 7 ident: bib58 article-title: Discovering vessel activities at sea using ais data: Mapping of fishing footprints publication-title: 17th International conference on information fusion (FUSION) – volume: 8 year: 2018 ident: bib88 publication-title: S. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – start-page: 1 year: 2010 end-page: 8 ident: bib44 article-title: Maritime anomaly detection and threat assessment publication-title: 2010 13th International Conference on Information Fusio – volume: 6 start-page: 78503 year: 2018 end-page: 78512 ident: bib82 article-title: Improving transfer learning and squeeze-and-excitation networks for small-scale fine-grained fish image classification publication-title: IEEE Access – year: 2021 ident: bib66 article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness publication-title: J. Ocean Eng. Sci. – start-page: 1123 year: 2015 end-page: 1133 ident: bib83 article-title: Contextual verification for false alarm reduction in maritime anomaly detection publication-title: 2015 IEEE International Conference on Big Data (Big Data) – start-page: 1 year: 2007 end-page: 7 ident: bib119 article-title: Action recognition from arbitrary views using 3d exemplars publication-title: 2007 IEEE 11th International Conference on Computer Vision – volume: 17 start-page: 311 year: 2018 end-page: 345 ident: bib20 article-title: Past, present, and future of the satellite-based automatic identification system: Areas of applications (2004–2016) publication-title: WMU J. Marit. Aff. – start-page: 841 year: 2020 end-page: 850 ident: bib130 article-title: Multivariate time-series anomaly detection via graph attention network publication-title: 2020 IEEE International Conference on Data Mining (ICDM) – volume: 34 start-page: 347 year: 2019 end-page: 349 ident: bib104 article-title: Literature reviews: methods and applications publication-title: Prehosp. Disaster Med. – start-page: 1279 year: 2015 end-page: 1289 ident: bib94 article-title: Maritime situation analysis framework: Vessel interaction classification and anomaly detection publication-title: 2015 IEEE International Conference on Big Data (Big Data) – volume: 234 year: 2021 ident: bib30 article-title: Improved kinematic interpolation for ais trajectory reconstruction publication-title: Ocean Eng. – volume: 112 year: 2020 ident: bib41 article-title: Multi-camera vision-based productivity monitoring of earthmoving operations publication-title: Autom. Constr. – volume: 21 start-page: 162 year: 2020 end-page: 189 ident: bib111 article-title: Electronic monitoring in fisheries: Lessons from global experiences and future opportunities publication-title: Fish Fish – start-page: 1 year: 2021 end-page: 11 ident: bib115 article-title: A prediction model of vessel trajectory based on generative adversarial network publication-title: J. Navig. – volume: 8 start-page: 682 year: 2020 ident: bib96 article-title: Deep learning in unmanned surface vehicles collision-avoidance pattern based on ais big data with double gru-rnn publication-title: J. Mar. Sci. Eng. – volume: 61 start-page: 96 year: 2014 end-page: 101 ident: bib75 article-title: Machine learning approaches to maritime anomaly detection publication-title: Naše more: Znan. časopis za more i Pomor. – start-page: 3880 year: 2017 end-page: 3887 ident: bib125 article-title: Trajectory clustering via deep representation learning publication-title: 2017 international joint conference on neural networks (IJCNN) – volume: 16 year: 2021 ident: bib38 article-title: Trajectory pattern extraction and anomaly detection for maritime vessels publication-title: Internet Things – volume: 55 start-page: 84 year: 2014 end-page: 98 ident: bib57 article-title: Anomaly detection in vessel tracks using bayesian networks publication-title: Int. J. Approx. Reason. – start-page: 580 year: 2018 end-page: 587 ident: bib13 article-title: The neighbor course distribution method with gaussian mixture models for ais-based vessel trajectory prediction publication-title: 2018 21st International Conference on Information Fusion (FUSION) – reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need.In: Advances in neural information processing systems (5998–6008). – volume: 8 start-page: 161969 year: 2020 end-page: 161980 ident: bib51 article-title: Ship collision risk assessment based on collision detection algorithm publication-title: IEEE Access – volume: 2 start-page: 1 year: 2015 end-page: 18 ident: bib2 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – volume: 10 year: 2015 ident: bib67 article-title: Mapping fishing effort through ais data publication-title: PloS One – volume: 75 start-page: 374 year: 2018 end-page: 389 ident: bib97 article-title: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data publication-title: ICES J. Mar. Sci. – reference: Martineau, E., and Roy, J. (2011). Maritime anomaly detection: Domain introduction and review of selected literature.Technical Report DEFENCE RESEARCH AND DEVELOPMENT CANADA VALCARTIER (QUEBEC). – start-page: 2682 year: 2016 end-page: 2686 ident: bib4 article-title: Training deep neural-networks based on unreliable labels publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 57 start-page: 4329 year: 2021 end-page: 4346 ident: bib6 article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 8 start-page: 50312 year: 2020 end-page: 50329 ident: bib25 article-title: Unsupervised anomaly detection and localization based on deep spatiotemporal translation network publication-title: IEEE Access – volume: 71 start-page: 100 year: 2018 end-page: 116 ident: bib95 article-title: Research on ship classification based on trajectory features publication-title: J. Navig. – reference: Hinami, R., Mei, T., and Satoh, S. (2017). Joint detection and recounting of abnormal events by learning deep generic knowledge.In: Proceedings of the IEEE International Conference on Computer Vision (3619–3627). – start-page: 1928 year: 2021 end-page: 1939 ident: bib92 article-title: Triptracker: Unsupervised learning of fishing vessel routine activity patterns publication-title: 2021 IEEE International Conference on Big Data (Big Data) – start-page: 142 year: 2021 end-page: 147 ident: bib14 article-title: Anomaly detection in maritime domain based on spatio-temporal analysis of ais data using graph neural networks publication-title: 2021 5th International Conference on Vision, Image and Signal Processing (ICVISP) – start-page: 1907 year: 2018 end-page: 1911 ident: bib46 article-title: Object-oriented anomaly detection in surveillance videos publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 529 year: 2020 end-page: 546 ident: bib116 article-title: Ais ship trajectory clustering based on convolutional auto-encoder publication-title: Proceedings of SAI Intelligent Systems Conference – volume: 108 start-page: 372 year: 2011 end-page: 384 ident: bib34 article-title: Ecological risk assessment for the effects of fishing publication-title: Fish. Res. – start-page: 1 year: 2015 end-page: 6 ident: bib7 article-title: Mining maritime vessel traffic: Promises, challenges, techniques publication-title: OCEANS 2015-Genova – volume: 209 year: 2020 ident: bib64 article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical ais data publication-title: Ocean Eng. – volume: 26 start-page: 91 year: 2009 end-page: 108 ident: bib29 article-title: A typology of reviews: an analysis of 14 review types and associated methodologies publication-title: Health Inf. Libr. J. – volume: 29 start-page: 2247 year: 2007 end-page: 2253 ident: bib28 article-title: Actions as space-time shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Pang, G., Shen, C., and van den Hengel, A. (2019). Deep anomaly detection with deviation networks.In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (353–362). – volume: 10 start-page: 2045 year: 2019 end-page: 2056 ident: bib62 article-title: Using machine vision to estimate fish length from images using regional convolutional neural networks publication-title: Methods Ecol. Evol. – volume: 7 start-page: 52836 year: 2019 end-page: 52845 ident: bib114 article-title: Multi-scale fish segmentation refinement and missing shape recovery publication-title: IEEE Access – reference: Pang, G., Yan, C., Shen, C., Hengel, A.v.d., Bai, X.(2020). Self-trained deep ordinal regression for end-to-end video anomaly detection.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (12173–12182). – volume: 19 start-page: 1559 year: 2017 end-page: 1582 ident: bib109 article-title: Exploiting ais data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., and Davis, L.S. (2016). Learning temporal regularity in video sequences.In: Proceedings of the IEEEconference on computer vision and pattern recognition (733–742). – volume: 9 start-page: 2983 year: 2019 ident: bib52 article-title: Vessel trajectory prediction model based on ais sensor data and adaptive chaos differential evolution support vector regression (acde-svr) publication-title: Appl. Sci. – volume: 78 start-page: 110 year: 2017 end-page: 123 ident: bib61 article-title: A novel anomaly detection approach to identify intentional ais on-off switching publication-title: Expert Syst. Appl. – volume: 204 year: 2020 ident: bib129 article-title: Towards a convolutional neural network model for classifying regional ship collision risk levels for waterway risk analysis publication-title: Reliab. Eng. Syst. Saf. – year: 2015 ident: bib21 article-title: Convolutional neural networks for counting fish in fisheries surveillance video publication-title: Proceedings of the Machine Vision of Animals and their Behaviour (MVAB) – volume: 217 year: 2020 ident: bib26 article-title: Ship collision avoidance anthropomorphic decision-making for structured learning based on ais with seq-cgan publication-title: Ocean Eng. – reference: Hobday, A., Little, R., Bulman, C., Gardner, C., McGrath-Steer, B., Ogier, E., Rayns, N., Sen, S., Sloan, S., Smith, T. et al. (2019). Best practice guidelines for Australian fisheries management agencies.Technical Report FRDC. – volume: 7 start-page: 40757 year: 2019 end-page: 40770 ident: bib76 article-title: A 3d-cnn and lstm based multi-task learning architecture for action recognition publication-title: IEEE Access – start-page: 331 year: 2018 end-page: 340 ident: bib70 article-title: A multi-task deep learning architecture for maritime surveillance using ais data streams publication-title: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) – volume: 27 start-page: 683 year: 2016 end-page: 695 ident: bib12 article-title: Toward abnormal trajectory and event detection in video surveillance publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1 year: 2015 end-page: 6 ident: bib59 article-title: Knowledge-based vessel position prediction using historical ais data publication-title: 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF) – volume: 29 start-page: 3146 year: 2018 end-page: 3158 ident: bib36 article-title: Fish tracking and segmentation from stereo videos on the wild sea surface for electronic monitoring of rail fishing publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1689 year: 2018 end-page: 1698 ident: bib86 article-title: Plug-and-play cnn for crowd motion analysis: An application in abnormal event detection publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – volume: 182 start-page: 499 year: 2019 end-page: 511 ident: bib89 article-title: Ship trajectory uncertainty prediction based on a gaussian process model publication-title: Ocean Eng. – volume: 79 start-page: 257 year: 2022 end-page: 266 ident: bib40 article-title: Early lessons in deploying cameras and artificial intelligence technology for fisheries catch monitoring: where machine learning meets commercial fishing publication-title: Can. J. Fish. Aquat. Sci. – reference: Liang, M., Liu, R.W., Zhong, Q., Liu, J., and Zhang, J. (2019). Neural network-based automatic reconstruction of missing vessel trajectory data.In: 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA)(426–430). 10.1109/ICBDA.2019.8713215. – reference: Vespe, M., Visentini, I., Bryan, K., and Braca, P. (2012). Unsupervised learning of maritime traffic patterns for anomaly detection.In: 9th IET Data Fusion and Target Tracking Conference (DFTT 2012): Algorithms and Applications.IET. 10.1049/cp.2012.0414. – reference: Roy, J. (2008). Anomaly detection in the maritime domain.In: Optics and Photonics in Global Homeland Security IV(180–193). SPIE volume 6945. – volume: 39 start-page: 377 year: 2015 end-page: 384 ident: bib74 article-title: The interpolation method for the missing ais data of ship publication-title: J. Navig. Port. Res. – volume: 22 start-page: 839 year: 2022 ident: bib107 article-title: Addressing gaps in small-scale fisheries: a low-cost tracking system publication-title: Sensors – reference: Nguyen, T.-N., and Meunier, J. (2019). Anomaly detection in video sequence with appearance-motion correspondence.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (1273–1283). – volume: 14 start-page: 2537 year: 2019 end-page: 2550 ident: bib131 article-title: Anomalynet: an anomaly detection network for video surveillance publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 77 start-page: 1340 year: 2020 end-page: 1353 ident: bib22 article-title: Deep neural networks for analysis of fisheries surveillance video and automated monitoring of fish discards publication-title: ICES J. Mar. Sci. – start-page: 192 year: 2014 end-page: 199 ident: bib93 article-title: Maritime situation analysis: A multi-vessel interaction and anomaly detection framework publication-title: 2014 IEEE Joint Intelligence and Security Informatics Conference – reference: Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields.In: Proceedings of the IEEEconference on computer vision and pattern recognition (7291–7299). – volume: 39 year: 2014 ident: bib1 article-title: Data driven contextual knowledge from and for maritime situational awareness publication-title: Context-Aware. Geogr. Inf. Serv. (CAGIS 2014) – volume: 21 start-page: 2756 year: 2021 ident: bib24 article-title: A synergic integration of ais data and sar imagery to monitor fisheries and detect suspicious activities publication-title: Sensors – start-page: 832 year: 2020 end-page: 838 ident: bib99 article-title: Machine learning-assisted anomaly detection in maritime navigation using ais data publication-title: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) – volume: 102 year: 2020 ident: bib123 article-title: Scene recognition: a comprehensive survey publication-title: Pattern Recognit. – reference: Christensen, J.H., Mogensen, L.V., and Ravn, O. (2020). Single image super-resolution for domain-specific ultra-low bandwidth image transmission.arXiv preprint arXiv:2009.04127. – start-page: 264 year: 2020 end-page: 268 ident: bib71 article-title: Detection of abnormal vessel behaviours from ais data using geotracknet: from the laboratory to the ocean publication-title: 2020 21st IEEE International Conference on Mobile Data Management (MDM) – volume: 16 start-page: 393 year: 2019 end-page: 402 ident: bib68 article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance publication-title: IEEE Trans. Ind. Inform. – volume: 47 start-page: 358 year: 2016 end-page: 368 ident: bib132 article-title: Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes publication-title: Signal Process.: Image Commun. – start-page: 1590 year: 2005 end-page: 1594 ident: bib108 article-title: Use of the automatic identification system (ais) for maritime domain awareness (mda) publication-title: Proceedings of Oceans 2005 Mts/Ieee – reference: Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N. (2015). Learning deep representations of appearance and motion for anomalous event detection.arXiv preprint arXiv:1510.01553. – start-page: 3645 year: 2017 end-page: 3649 ident: bib120 article-title: Simple online and realtime tracking with a deep association metric publication-title: 2017 IEEE international conference on image processing (ICIP) – start-page: 471 year: 2016 end-page: 476 ident: bib105 article-title: Fish recognition from low-resolution underwater images publication-title: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) – start-page: 847 year: 2018 end-page: 874 ident: bib11 article-title: Automatic fish segmentation and recognition for trawl-based cameras publication-title: Computer Vision: Concepts, Methodologies, Tools, and Applications – start-page: 263 year: 2018 end-page: 277 ident: bib102 article-title: Anomalous trajectory detection using recurrent neural network publication-title: International Conference on Advanced Data Mining and Applications – reference: Liraz, S.P. (2018). Ships’ Trajectories Prediction Using Recurrent Neural Networks Based on AIS Data Technical Report Naval Postgraduate School. – reference: Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., and Zhang, Z. (2015). The application of two-level attention models in deep convolutional neural network for fine-grained image classification.In: Proceedings of the IEEEconference on computer vision and pattern recognition (842–850). – volume: 23 start-page: 18 year: 2021 ident: bib48 article-title: Explainable ai: A review of machine learning interpretability methods publication-title: Entropy – start-page: 9 year: 2008 ident: bib110 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – start-page: 241 year: 2018 end-page: 257 ident: bib55 article-title: An automatic identification system (ais) database for maritime trajectory prediction and data mining publication-title: Proceedings of ELM-2016 – volume: 13 year: 2018 ident: bib17 article-title: Loitering with intent-?atching the outlier vessels at sea publication-title: Plos One – reference: Yuan, Z., Liu, J., Liu, Y., and Li, Z. (2019). A novel approach for vessel trajectory reconstruction using ais data.In: The 29th International Ocean and Polar Engineering Conference.OnePetro. – start-page: 189 year: 2017 end-page: 196 ident: bib9 article-title: Abnormal event detection in videos using spatiotemporal autoencoder publication-title: International symposium on neural networks – volume: 54 start-page: 1 year: 2021 end-page: 38 ident: bib79 article-title: Deep learning for anomaly detection: a review publication-title: ACM Comput. Surv. (CSUR) – start-page: 1 year: 2020 end-page: 8 ident: bib127 article-title: Deep learning approaches for ais data association in the context of maritime domain awareness publication-title: 2020 IEEE 23rd International Conference on Information Fusion (FUSION) – start-page: 1113 year: 2015 end-page: 1120 ident: bib50 article-title: Ship movement anomaly detection using specialized distance measures publication-title: 2015 18th International Conference on Information Fusion (Fusion) – volume: 32 start-page: 1517 year: 2019 end-page: 1528 ident: bib53 article-title: Generative adversarial active learning for unsupervised outlier detection publication-title: IEEE Trans. Knowl. Data Eng. – volume: 40 start-page: 5719 year: 2013 end-page: 5729 ident: bib39 article-title: Open data for anomaly detection in maritime surveillance publication-title: Expert Syst. Appl. – year: 2021 ident: bib65 article-title: An ais-based deep learning framework for regional ship behavior prediction publication-title: Reliab. Eng. Syst. Saf. – year: 2021 ident: bib72 article-title: Geotracknet–a maritime anomaly detector using probabilistic neural network representation of ais tracks and a contrario detection publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1867 year: 2016 end-page: 1873 ident: bib60 article-title: Ais reception characterisation for ais on/off anomaly detection publication-title: 2016 19th International Conference on Information Fusion (FUSION) – reference: Chen, T., Tang, L.-A., Sun, Y., Chen, Z., and Zhang, K. (2016). Entity embedding-based anomaly detection for heterogeneous categorical events.arXiv preprint arXiv:1608.07502. – volume: 243 year: 2020 ident: bib27 article-title: Assessing seabird bycatch in gillnet fisheries using electronic monitoring publication-title: Biol. Conserv. – volume: 219 start-page: 35 year: 2018 end-page: 45 ident: bib3 article-title: Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries publication-title: Biol. Conserv. – volume: 11 year: 2016 ident: bib103 article-title: Improving fishing pattern detection from satellite ais using data mining and machine learning publication-title: PloS One – volume: 79 start-page: 22131 year: 2020 end-page: 22156 ident: bib81 article-title: Visual monitoring of high-sea fishing activities using deep learning-based image processing publication-title: Multimed. Tools Appl. – start-page: 1917 year: 2019 end-page: 1927 ident: bib91 article-title: Mining vessel trajectories for illegal fishing detection publication-title: 2019 IEEE International Conference on Big Data (Big Data) – start-page: 779 year: 2017 end-page: 789 ident: bib101 article-title: Deep appearance features for abnormal behavior detection in video publication-title: International Conference on Image Analysis and Processing – volume: 22 start-page: 571 year: 2019 end-page: 601 ident: bib80 article-title: Deep learning approaches for video-based anomalous activity detection publication-title: World Wide Web – start-page: 270 year: 2018 end-page: 279 ident: bib106 article-title: A survey on deep transfer learning publication-title: International conference on artificial neural networks – volume: 7 start-page: 29 year: 2016 end-page: 40 ident: bib133 article-title: Real-time vessel behavior prediction publication-title: Evol. Syst. – reference: Yi, K., and Wu, J. (2019). Probabilistic end-to-end noise correction for learning with noisy labels.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (7017–7025). – volume: 70 start-page: 847 year: 2017 ident: bib98 article-title: Study of automatic anomalous behaviour detection techniques for maritime vessels publication-title: J. Navig. – volume: 76 start-page: 704 year: 2018 end-page: 714 ident: bib118 article-title: Mask-cnn: Localizing parts and selecting descriptors for fine-grained bird species categorization publication-title: Pattern Recognit. – start-page: 1 year: 2019 end-page: 8 ident: bib54 article-title: Deep learning to enhance maritime situation awareness publication-title: 2019 20th International Radar Symposium (IRS) – reference: FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation.Technical Report FAO. 10.4060/cc0461en. – start-page: 8936 year: 2020 end-page: 8940 ident: bib19 article-title: Prediction of vessel trajectories from ais data via sequence-to-sequence recurrent neural networks publication-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – reference: Ramachandra, B., Jones, M., and Vatsavai, R. (2020a). Learning a distance function with a siamese network to localize anomalies in videos.In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2598–2607). – start-page: 1 year: 2008 end-page: 7 ident: bib87 article-title: Statistical analysis of motion patterns in ais data: Anomaly detection and motion prediction publication-title: 2008 11th International Conference on Information Fusion – reference: Galdelli, A., Mancini, A., Frontoni, E., and Tassetti, A. (2021b). A feature encoding approach and a cloud computing architecture to map fishing activities.In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (V007T07A003). American Society of Mechanical Engineers volume 85437. – volume: 159 year: 2020 ident: bib100 article-title: Combining object detection with generative adversarial networks for in-component anomaly detection publication-title: Fusion Eng. Des. – volume: 67 start-page: 226 year: 2018 end-page: 234 ident: bib42 article-title: Deep convolutional framework for abnormal behavior detection in a smart surveillance system publication-title: Eng. Appl. Artif. Intell. – volume: 37 start-page: 483 year: 2010 end-page: 490 ident: bib63 article-title: Study on collision avoidance in busy waterways by using ais data publication-title: Ocean Eng. – year: 2020 ident: bib85 article-title: A survey of single-scene video anomaly detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 112 year: 2022 ident: bib121 article-title: Anomaly detection in maritime ais tracks: a review of recent approaches publication-title: J. Mar. Sci. Eng. – reference: He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.In: Proceedings of the IEEEconference on computer vision and pattern recognition (770–778). – start-page: 1 year: 2019 end-page: 5 ident: bib18 article-title: Unsupervised extraction of maritime patterns of life from automatic identification system data publication-title: OCEANS 2019-Marseille – volume: 8 start-page: 232 year: 2020 end-page: 243 ident: bib43 article-title: Deepmdp: a novel deep-learning-based missing data prediction protocol for iot publication-title: IEEE Internet Things J. – reference: Nguyen, D., and Fablet, R. (2021). Traisformer-a generative transformer for ais trajectory prediction.arXiv preprint arXiv:2109.03958. – volume: 26 start-page: 91 year: 2009 ident: 10.1016/j.fishres.2024.106939_bib29 article-title: A typology of reviews: an analysis of 14 review types and associated methodologies publication-title: Health Inf. Libr. J. doi: 10.1111/j.1471-1842.2009.00848.x – volume: 79 start-page: 22131 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib81 article-title: Visual monitoring of high-sea fishing activities using deep learning-based image processing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-08949-9 – volume: 7 start-page: 40757 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib76 article-title: A 3d-cnn and lstm based multi-task learning architecture for action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906654 – start-page: 3645 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib120 article-title: Simple online and realtime tracking with a deep association metric – start-page: 9 year: 2008 ident: 10.1016/j.fishres.2024.106939_bib110 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.fishres.2024.106939_bib113 doi: 10.1049/cp.2012.0414 – volume: 39 start-page: 377 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib74 article-title: The interpolation method for the missing ais data of ship publication-title: J. Navig. Port. Res. doi: 10.5394/KINPR.2015.39.5.377 – start-page: 1 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib18 article-title: Unsupervised extraction of maritime patterns of life from automatic identification system data – volume: 22 start-page: 571 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib80 article-title: Deep learning approaches for video-based anomalous activity detection publication-title: World Wide Web doi: 10.1007/s11280-018-0582-1 – volume: 19 start-page: 1559 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib109 article-title: Exploiting ais data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2724551 – start-page: 1 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib127 article-title: Deep learning approaches for ais data association in the context of maritime domain awareness – volume: 9 start-page: 2983 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib52 article-title: Vessel trajectory prediction model based on ais sensor data and adaptive chaos differential evolution support vector regression (acde-svr) publication-title: Appl. Sci. doi: 10.3390/app9152983 – volume: 8 start-page: 682 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib96 article-title: Deep learning in unmanned surface vehicles collision-avoidance pattern based on ais big data with double gru-rnn publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8090682 – volume: 182 start-page: 499 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib89 article-title: Ship trajectory uncertainty prediction based on a gaussian process model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.024 – ident: 10.1016/j.fishres.2024.106939_bib112 – volume: 21 start-page: 2756 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib24 article-title: A synergic integration of ais data and sar imagery to monitor fisheries and detect suspicious activities publication-title: Sensors doi: 10.3390/s21082756 – volume: 29 start-page: 3146 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib36 article-title: Fish tracking and segmentation from stereo videos on the wild sea surface for electronic monitoring of rail fishing publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2872575 – start-page: 1689 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib86 article-title: Plug-and-play cnn for crowd motion analysis: An application in abnormal event detection – start-page: 1 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib54 article-title: Deep learning to enhance maritime situation awareness – start-page: 2682 year: 2016 ident: 10.1016/j.fishres.2024.106939_bib4 article-title: Training deep neural-networks based on unreliable labels – year: 2020 ident: 10.1016/j.fishres.2024.106939_bib117 article-title: Deep learning for image super-resolution: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 10.1016/j.fishres.2024.106939_bib73 doi: 10.1109/ICCV.2019.00136 – volume: 102 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib123 article-title: Scene recognition: a comprehensive survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107205 – start-page: 331 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib70 article-title: A multi-task deep learning architecture for maritime surveillance using ais data streams – start-page: 8936 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib19 article-title: Prediction of vessel trajectories from ais data via sequence-to-sequence recurrent neural networks – ident: 10.1016/j.fishres.2024.106939_bib124 doi: 10.5244/C.29.8 – volume: 243 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib27 article-title: Assessing seabird bycatch in gillnet fisheries using electronic monitoring publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2020.108461 – start-page: 779 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib101 article-title: Deep appearance features for abnormal behavior detection in video – volume: 14 start-page: 2537 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib131 article-title: Anomalynet: an anomaly detection network for video surveillance publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2900907 – start-page: 333 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib45 article-title: Vessel trajectory similarity measure based on deep convolutional autoencoder – volume: 209 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib64 article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical ais data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107478 – volume: 8 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib88 publication-title: S. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – start-page: 1917 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib91 article-title: Mining vessel trajectories for illegal fishing detection – start-page: 832 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib99 article-title: Machine learning-assisted anomaly detection in maritime navigation using ais data – start-page: 263 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib102 article-title: Anomalous trajectory detection using recurrent neural network – ident: 10.1016/j.fishres.2024.106939_bib32 doi: 10.1109/CVPR.2016.90 – start-page: 1123 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib83 article-title: Contextual verification for false alarm reduction in maritime anomaly detection – volume: 108 start-page: 372 year: 2011 ident: 10.1016/j.fishres.2024.106939_bib34 article-title: Ecological risk assessment for the effects of fishing publication-title: Fish. Res. doi: 10.1016/j.fishres.2011.01.013 – volume: 8 start-page: 50312 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib25 article-title: Unsupervised anomaly detection and localization based on deep spatiotemporal translation network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979869 – volume: 159 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib100 article-title: Combining object detection with generative adversarial networks for in-component anomaly detection publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2020.111736 – volume: 7 start-page: 29 year: 2016 ident: 10.1016/j.fishres.2024.106939_bib133 article-title: Real-time vessel behavior prediction publication-title: Evol. Syst. doi: 10.1007/s12530-015-9133-5 – volume: 219 start-page: 548 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib16 article-title: Learning deep event models for crowd anomaly detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.063 – start-page: 142 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib14 article-title: Anomaly detection in maritime domain based on spatio-temporal analysis of ais data using graph neural networks – start-page: 580 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib13 article-title: The neighbor course distribution method with gaussian mixture models for ais-based vessel trajectory prediction – volume: 40 start-page: 5719 year: 2013 ident: 10.1016/j.fishres.2024.106939_bib39 article-title: Open data for anomaly detection in maritime surveillance publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.04.029 – volume: 11 year: 2016 ident: 10.1016/j.fishres.2024.106939_bib103 article-title: Improving fishing pattern detection from satellite ais using data mining and machine learning publication-title: PloS One – start-page: 1 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib7 article-title: Mining maritime vessel traffic: Promises, challenges, techniques – volume: 55 start-page: 84 year: 2014 ident: 10.1016/j.fishres.2024.106939_bib57 article-title: Anomaly detection in vessel tracks using bayesian networks publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2013.03.012 – volume: 112 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib41 article-title: Multi-camera vision-based productivity monitoring of earthmoving operations publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103121 – start-page: 1928 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib92 article-title: Triptracker: Unsupervised learning of fishing vessel routine activity patterns – start-page: 264 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib71 article-title: Detection of abnormal vessel behaviours from ais data using geotracknet: from the laboratory to the ocean – volume: 70 start-page: 847 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib98 article-title: Study of automatic anomalous behaviour detection techniques for maritime vessels publication-title: J. Navig. doi: 10.1017/S0373463317000066 – volume: 32 start-page: 1517 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib53 article-title: Generative adversarial active learning for unsupervised outlier detection publication-title: IEEE Trans. Knowl. Data Eng. – ident: 10.1016/j.fishres.2024.106939_bib122 doi: 10.1109/CVPR.2015.7298685 – ident: 10.1016/j.fishres.2024.106939_bib56 – volume: 54 start-page: 1 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib79 article-title: Deep learning for anomaly detection: a review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3439950 – volume: 34 start-page: 347 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib104 article-title: Literature reviews: methods and applications publication-title: Prehosp. Disaster Med. doi: 10.1017/S1049023X19004588 – volume: 21 start-page: 162 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib111 article-title: Electronic monitoring in fisheries: Lessons from global experiences and future opportunities publication-title: Fish Fish doi: 10.1111/faf.12425 – volume: 8 start-page: 161969 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib51 article-title: Ship collision risk assessment based on collision detection algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013957 – volume: 37 start-page: 483 year: 2010 ident: 10.1016/j.fishres.2024.106939_bib63 article-title: Study on collision avoidance in busy waterways by using ais data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2010.01.012 – volume: 204 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib129 article-title: Towards a convolutional neural network model for classifying regional ship collision risk levels for waterway risk analysis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107127 – volume: 16 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib38 article-title: Trajectory pattern extraction and anomaly detection for maritime vessels publication-title: Internet Things doi: 10.1016/j.iot.2021.100436 – volume: 75 start-page: 374 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib97 article-title: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsx109 – ident: 10.1016/j.fishres.2024.106939_bib77 doi: 10.1145/3292500.3330871 – volume: 16 start-page: 393 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib68 article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2938527 – start-page: 1 year: 2007 ident: 10.1016/j.fishres.2024.106939_bib119 article-title: Action recognition from arbitrary views using 3d exemplars – volume: 10 start-page: 2045 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib62 article-title: Using machine vision to estimate fish length from images using regional convolutional neural networks publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13282 – volume: 234 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib30 article-title: Improved kinematic interpolation for ais trajectory reconstruction publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109256 – ident: 10.1016/j.fishres.2024.106939_bib8 – volume: 8 start-page: 232 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib43 article-title: Deepmdp: a novel deep-learning-based missing data prediction protocol for iot publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3003922 – start-page: 1 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib115 article-title: A prediction model of vessel trajectory based on generative adversarial network publication-title: J. Navig. – start-page: 1 year: 2008 ident: 10.1016/j.fishres.2024.106939_bib87 article-title: Statistical analysis of motion patterns in ais data: Anomaly detection and motion prediction – start-page: 1 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib59 article-title: Knowledge-based vessel position prediction using historical ais data – start-page: 471 year: 2016 ident: 10.1016/j.fishres.2024.106939_bib105 article-title: Fish recognition from low-resolution underwater images – ident: 10.1016/j.fishres.2024.106939_bib15 – start-page: 1 year: 2010 ident: 10.1016/j.fishres.2024.106939_bib44 article-title: Maritime anomaly detection and threat assessment – year: 2021 ident: 10.1016/j.fishres.2024.106939_bib72 article-title: Geotracknet–a maritime anomaly detector using probabilistic neural network representation of ais tracks and a contrario detection publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1867 year: 2016 ident: 10.1016/j.fishres.2024.106939_bib60 article-title: Ais reception characterisation for ais on/off anomaly detection – start-page: 1907 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib46 article-title: Object-oriented anomaly detection in surveillance videos – volume: 76 start-page: 704 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib118 article-title: Mask-cnn: Localizing parts and selecting descriptors for fine-grained bird species categorization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.002 – ident: 10.1016/j.fishres.2024.106939_bib5 doi: 10.1109/CVPR.2017.143 – year: 2021 ident: 10.1016/j.fishres.2024.106939_bib65 article-title: An ais-based deep learning framework for regional ship behavior prediction publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107819 – ident: 10.1016/j.fishres.2024.106939_bib23 doi: 10.1115/DETC2021-69799 – ident: 10.1016/j.fishres.2024.106939_bib10 doi: 10.1109/IEEECONF38699.2020.9389122 – start-page: 1279 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib94 article-title: Maritime situation analysis framework: Vessel interaction classification and anomaly detection – volume: 78 start-page: 110 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib61 article-title: A novel anomaly detection approach to identify intentional ais on-off switching publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.011 – volume: 10 start-page: 112 year: 2022 ident: 10.1016/j.fishres.2024.106939_bib121 article-title: Anomaly detection in maritime ais tracks: a review of recent approaches publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10010112 – year: 2020 ident: 10.1016/j.fishres.2024.106939_bib85 article-title: A survey of single-scene video anomaly detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3040591 – volume: 71 start-page: 100 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib95 article-title: Research on ship classification based on trajectory features publication-title: J. Navig. doi: 10.1017/S0373463317000546 – volume: 22 start-page: 839 year: 2022 ident: 10.1016/j.fishres.2024.106939_bib107 article-title: Addressing gaps in small-scale fisheries: a low-cost tracking system publication-title: Sensors doi: 10.3390/s22030839 – ident: 10.1016/j.fishres.2024.106939_bib78 doi: 10.1109/CVPR42600.2020.01219 – volume: 23 start-page: 18 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib48 article-title: Explainable ai: A review of machine learning interpretability methods publication-title: Entropy doi: 10.3390/e23010018 – ident: 10.1016/j.fishres.2024.106939_bib33 doi: 10.1109/ICCV.2017.391 – ident: 10.1016/j.fishres.2024.106939_bib31 doi: 10.1109/CVPR.2016.86 – start-page: 241 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib55 article-title: An automatic identification system (ais) database for maritime trajectory prediction and data mining – ident: 10.1016/j.fishres.2024.106939_bib47 doi: 10.1109/ICBDA.2019.8713215 – start-page: 529 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib116 article-title: Ais ship trajectory clustering based on convolutional auto-encoder – volume: 47 start-page: 358 year: 2016 ident: 10.1016/j.fishres.2024.106939_bib132 article-title: Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes publication-title: Signal Process.: Image Commun. – volume: 77 start-page: 1340 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib22 article-title: Deep neural networks for analysis of fisheries surveillance video and automated monitoring of fish discards publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsz149 – start-page: 189 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib9 article-title: Abnormal event detection in videos using spatiotemporal autoencoder – volume: 61 start-page: 96 year: 2014 ident: 10.1016/j.fishres.2024.106939_bib75 article-title: Machine learning approaches to maritime anomaly detection publication-title: Naše more: Znan. časopis za more i Pomor. – year: 2021 ident: 10.1016/j.fishres.2024.106939_bib66 article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness publication-title: J. Ocean Eng. Sci. – start-page: 847 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib11 article-title: Automatic fish segmentation and recognition for trawl-based cameras – volume: 39 year: 2014 ident: 10.1016/j.fishres.2024.106939_bib1 article-title: Data driven contextual knowledge from and for maritime situational awareness publication-title: Context-Aware. Geogr. Inf. Serv. (CAGIS 2014) – volume: 67 start-page: 226 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib42 article-title: Deep convolutional framework for abnormal behavior detection in a smart surveillance system publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.001 – ident: 10.1016/j.fishres.2024.106939_bib84 doi: 10.1109/WACV45572.2020.9093417 – start-page: 192 year: 2014 ident: 10.1016/j.fishres.2024.106939_bib93 article-title: Maritime situation analysis: A multi-vessel interaction and anomaly detection framework – ident: 10.1016/j.fishres.2024.106939_bib69 – volume: 6 start-page: 78503 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib82 article-title: Improving transfer learning and squeeze-and-excitation networks for small-scale fine-grained fish image classification publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885055 – ident: 10.1016/j.fishres.2024.106939_bib37 doi: 10.1145/3415958.3433079 – volume: 17 start-page: 311 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib20 article-title: Past, present, and future of the satellite-based automatic identification system: Areas of applications (2004–2016) publication-title: WMU J. Marit. Aff. doi: 10.1007/s13437-018-0151-6 – ident: 10.1016/j.fishres.2024.106939_bib126 doi: 10.1109/CVPR.2019.00718 – start-page: 1 year: 2014 ident: 10.1016/j.fishres.2024.106939_bib58 article-title: Discovering vessel activities at sea using ais data: Mapping of fishing footprints – start-page: 3880 year: 2017 ident: 10.1016/j.fishres.2024.106939_bib125 article-title: Trajectory clustering via deep representation learning – volume: 10 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib67 article-title: Mapping fishing effort through ais data publication-title: PloS One doi: 10.1371/journal.pone.0130746 – volume: 13 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib17 article-title: Loitering with intent-?atching the outlier vessels at sea publication-title: Plos One doi: 10.1371/journal.pone.0200189 – ident: 10.1016/j.fishres.2024.106939_bib35 – start-page: 270 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib106 article-title: A survey on deep transfer learning – volume: 57 start-page: 4329 year: 2021 ident: 10.1016/j.fishres.2024.106939_bib6 article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3096873 – ident: 10.1016/j.fishres.2024.106939_bib128 – year: 2015 ident: 10.1016/j.fishres.2024.106939_bib21 article-title: Convolutional neural networks for counting fish in fisheries surveillance video – ident: 10.1016/j.fishres.2024.106939_bib90 doi: 10.1117/12.776230 – start-page: 841 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib130 article-title: Multivariate time-series anomaly detection via graph attention network – start-page: 1590 year: 2005 ident: 10.1016/j.fishres.2024.106939_bib108 article-title: Use of the automatic identification system (ais) for maritime domain awareness (mda) – volume: 79 start-page: 257 year: 2022 ident: 10.1016/j.fishres.2024.106939_bib40 article-title: Early lessons in deploying cameras and artificial intelligence technology for fisheries catch monitoring: where machine learning meets commercial fishing publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/cjfas-2020-0446 – ident: 10.1016/j.fishres.2024.106939_bib49 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib2 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – volume: 219 start-page: 35 year: 2018 ident: 10.1016/j.fishres.2024.106939_bib3 article-title: Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2018.01.003 – volume: 217 year: 2020 ident: 10.1016/j.fishres.2024.106939_bib26 article-title: Ship collision avoidance anthropomorphic decision-making for structured learning based on ais with seq-cgan publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107922 – volume: 27 start-page: 683 year: 2016 ident: 10.1016/j.fishres.2024.106939_bib12 article-title: Toward abnormal trajectory and event detection in video surveillance publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2589859 – volume: 29 start-page: 2247 year: 2007 ident: 10.1016/j.fishres.2024.106939_bib28 article-title: Actions as space-time shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.70711 – start-page: 1113 year: 2015 ident: 10.1016/j.fishres.2024.106939_bib50 article-title: Ship movement anomaly detection using specialized distance measures – volume: 7 start-page: 52836 year: 2019 ident: 10.1016/j.fishres.2024.106939_bib114 article-title: Multi-scale fish segmentation refinement and missing shape recovery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912612 |
SSID | ssj0007761 |
Score | 2.421076 |
SecondaryResourceType | review_article |
Snippet | To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106939 |
SubjectTerms | Anomaly detection Automatic Identification System (AIS) cameras Deep learning Electronic Monitoring (EM) fisheries Sustainable fisheries |
Title | Towards automatic anomaly detection in fisheries using electronic monitoring and automatic identification system |
URI | https://dx.doi.org/10.1016/j.fishres.2024.106939 https://www.proquest.com/docview/3040424626 |
Volume | 272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0165-7836 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007761 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0165-7836 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007761 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 issn: 0165-7836 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007761 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection issn: 0165-7836 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007761 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0165-7836 databaseCode: AKRWK dateStart: 19810101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007761 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaC7rIeiq5b0cdWaMCuThxbcqxjUKxIOyyXtUBvgp6Bg9YJEufQS3_7SFlutqJAgN5sWRQEUqJI-SNJyI-CK3AyhEhMmbGEKWETBb5y4rhRVqihThVeDfyeFpM7dnPP73vksouFQVhl1P2tTg_aOrYMIjcHy6oa_MFAHIxBQBQkrk2MYGcFwvr6z1uYx2hUtDUJC55g720Uz2De99UaOIZZuzMGbYXAmuFvn0-vNHU4fq4OyUG0G-m4ndon0nP1Edkfz1Yxd4b7TJa3AQK7pmrTLEImVqpqeHh4otY1AXJV06qmPsDgwUOmCHqf0W0lHPoYdjhe9QGp_WegykZUURAkbfM_fyF3Vz9vLydJLKiQGLBLmkR4YbVLcwU2ktZp4XmpuOa5BxsBPnFj88yAUK0VwufC5mXqh6nXzGVipE2ZH5O9elG7E0Id-CGl585wAxaXMMpzbQvoY0da8dSeEtaxUZqYbRyLXjzIDlY2l5H7ErkvW-6fkv4L2bJNt7GLoOxkJP9bNxKOhF2k3zuZSthT-KNE1W6xWcscNBvLGPh6Z-8f_px8xLcW5fOV7DWrjfsGBkyjL8IKvSAfxte_JtO_51_1Vw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cByQDx2Bbs8jMQ1NCR2Gh8rBGp59EKRuFl-olSQVjQ97L_fceJQQEhI3CI7Y0Uz4_GM880MwEnGJAYZnEc6T2hEJTeRxFg5skxLw-WZiqW_GrgdZYN7evXAHlbgvM2F8bDKYPsbm15b6zDSDdzszoqie-cTcXwOgkdBet38AauUoU3uwGp_eD0YvRrkXi9r2hJmLPIEy0Se7uTUFXNkmi_cnVAcy7hvG_75EfXBWNcn0OUmbATXkfSbr9uCFVtuw3r_8SWUz7A7MBvXKNg5kYtqWhdjJbLEh6d_xNiqRl2VpCiJq5HwGCQTj3t_JMtmOOS53uT-tg9JzZuFChOARbUsSVMC-hfcX16MzwdR6KkQaXRNqog7bpSNU4luklJx5lgumWKpQzcBp5g2aaJRrsZw7lJu0jx2Z7FT1Ca8p3Se_oZOOS3tLhCLoUjumNVMo9PFtXRMmQzfMT0lWWz2gLZsFDoUHPd9L55EiyybiMB94bkvGu7vwekr2aypuPEVQd7KSLxTHYGnwlekx61MBW4r_69Elna6mIsUjRtNKIZ7f76__BGsDca3N-JmOLr-Cz_9TAP62YdO9bKwB-jPVOow6Ot_Mj_4Ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+automatic+anomaly+detection+in+fisheries+using+electronic+monitoring+and+automatic+identification+system&rft.jtitle=Fisheries+research&rft.au=Acharya%2C+Debaditya&rft.au=Farazi%2C+Moshiur&rft.au=Rolland%2C+Vivien&rft.au=Petersson%2C+Lars&rft.date=2024-04-01&rft.issn=0165-7836&rft.volume=272&rft.spage=106939&rft_id=info:doi/10.1016%2Fj.fishres.2024.106939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fishres_2024_106939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-7836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-7836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-7836&client=summon |