Towards automatic anomaly detection in fisheries using electronic monitoring and automatic identification system

To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently,...

Full description

Saved in:
Bibliographic Details
Published inFisheries research Vol. 272; p. 106939
Main Authors Acharya, Debaditya, Farazi, Moshiur, Rolland, Vivien, Petersson, Lars, Rosebrock, Uwe, Smith, Daniel, Ford, Jessica, Wang, Dadong, Tuck, Geoffrey N., Little, L. Richard, Wilcox, Chris
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text
ISSN0165-7836
DOI10.1016/j.fishres.2024.106939

Cover

Abstract To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently, several forms of Electronic Monitoring (EM) have emerged recently and include the use of electronic monitoring using on-board video cameras and Automatic Identification System (AIS). Unfortunately, insufficient cameras, ineffective camera position or obstructions, may lead to objects or behaviours of interest not being observed. In addition, more subtle, anomalous behaviours characteristic of behaviours of interest may still be captured. With the increasing success of deep learning methods, this article identifies the scope and challenges of using state-of-the-art deep learning approaches to anomaly detection in fisheries, and in particular to automatically detect abnormal behaviours from on-board video cameras and AIS data in line with current fishing practices and regulations. This study will take us one step closer towards automatic anomaly detection frameworks that can potentially replace existing manual monitoring methods. •We review the scope and challenges of current Artificial Intelligence approaches to anomaly detection in fisheries.•A taxonomy of possible anomalies due to unexpected behaviors by fishers or fishing vessels is presented.•Recent approaches to identify anomalies focusing on in-vessel activities and fishing vessel behaviors is described.•The key challenges to apply deep learning methods for automated anomaly detection are identified.•Suitable measures to mitigate those challenges, and possible future directions are proposed.
AbstractList To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently, several forms of Electronic Monitoring (EM) have emerged recently and include the use of electronic monitoring using on-board video cameras and Automatic Identification System (AIS). Unfortunately, insufficient cameras, ineffective camera position or obstructions, may lead to objects or behaviours of interest not being observed. In addition, more subtle, anomalous behaviours characteristic of behaviours of interest may still be captured. With the increasing success of deep learning methods, this article identifies the scope and challenges of using state-of-the-art deep learning approaches to anomaly detection in fisheries, and in particular to automatically detect abnormal behaviours from on-board video cameras and AIS data in line with current fishing practices and regulations. This study will take us one step closer towards automatic anomaly detection frameworks that can potentially replace existing manual monitoring methods.
To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and ensure fishery regulations are being met. Such monitoring is often performed manually which is an exhaustive and expensive process. Consequently, several forms of Electronic Monitoring (EM) have emerged recently and include the use of electronic monitoring using on-board video cameras and Automatic Identification System (AIS). Unfortunately, insufficient cameras, ineffective camera position or obstructions, may lead to objects or behaviours of interest not being observed. In addition, more subtle, anomalous behaviours characteristic of behaviours of interest may still be captured. With the increasing success of deep learning methods, this article identifies the scope and challenges of using state-of-the-art deep learning approaches to anomaly detection in fisheries, and in particular to automatically detect abnormal behaviours from on-board video cameras and AIS data in line with current fishing practices and regulations. This study will take us one step closer towards automatic anomaly detection frameworks that can potentially replace existing manual monitoring methods. •We review the scope and challenges of current Artificial Intelligence approaches to anomaly detection in fisheries.•A taxonomy of possible anomalies due to unexpected behaviors by fishers or fishing vessels is presented.•Recent approaches to identify anomalies focusing on in-vessel activities and fishing vessel behaviors is described.•The key challenges to apply deep learning methods for automated anomaly detection are identified.•Suitable measures to mitigate those challenges, and possible future directions are proposed.
ArticleNumber 106939
Author Wang, Dadong
Rosebrock, Uwe
Petersson, Lars
Little, L. Richard
Ford, Jessica
Farazi, Moshiur
Smith, Daniel
Acharya, Debaditya
Rolland, Vivien
Tuck, Geoffrey N.
Wilcox, Chris
Author_xml – sequence: 1
  givenname: Debaditya
  surname: Acharya
  fullname: Acharya, Debaditya
  email: debaditya.acharya@rmit.edu.au
  organization: Geospatial Science, RMIT University, Melbourne, Australia
– sequence: 2
  givenname: Moshiur
  surname: Farazi
  fullname: Farazi, Moshiur
  organization: Data61, CSIRO, Black Mountain, Canberra, Australia
– sequence: 3
  givenname: Vivien
  surname: Rolland
  fullname: Rolland, Vivien
  organization: Agriculture and Food, CSIRO, Black Mountain, Canberra, Australia
– sequence: 4
  givenname: Lars
  surname: Petersson
  fullname: Petersson, Lars
  organization: Data61, CSIRO, Black Mountain, Canberra, Australia
– sequence: 5
  givenname: Uwe
  surname: Rosebrock
  fullname: Rosebrock, Uwe
  organization: Environment, CSIRO, Hobart, Tasmania, Australia
– sequence: 6
  givenname: Daniel
  surname: Smith
  fullname: Smith, Daniel
  organization: Data61, CSIRO, Hobart, Tasmania, Australia
– sequence: 7
  givenname: Jessica
  surname: Ford
  fullname: Ford, Jessica
  organization: Data61, CSIRO, Hobart, Tasmania, Australia
– sequence: 8
  givenname: Dadong
  surname: Wang
  fullname: Wang, Dadong
  organization: Data61, CSIRO, Marsfield, New South Wales, Australia
– sequence: 9
  givenname: Geoffrey N.
  surname: Tuck
  fullname: Tuck, Geoffrey N.
  organization: Environment, CSIRO, Hobart, Tasmania, Australia
– sequence: 10
  givenname: L. Richard
  surname: Little
  fullname: Little, L. Richard
  organization: Environment, CSIRO, Hobart, Tasmania, Australia
– sequence: 11
  givenname: Chris
  surname: Wilcox
  fullname: Wilcox, Chris
  organization: Environment, CSIRO, Hobart, Tasmania, Australia
BookMark eNqFkD1PwzAQhj0UibbwE5AysrQ4cZLGYkCo4kuqxFJmy7HPcFViF9sF9d_jtAyIpcv5dO-HrGdCRtZZIOQqp_Oc5vXNZm4wfHgI84IWZbrVnPERGSetmi0aVp-TSQgbSuliUedjsl27b-l1yOQuul5GVJm0aen2mYYIKqKzGdpsaAWPELJdQPueQZc072zy92lG54ertPpPEWqwEQ0qeWgJ-xChvyBnRnYBLn_fKXl7fFgvn2er16eX5f1qpljD44wbrlugTJasaltam6qRVVsxUxQsSZXSrFAtKK05N4xr1lCTU9OWUPBFqxo2JdfH3q13nzsIUfQYFHSdtOB2QTBa0rIo66JO1tujVXkXggcjFMbDn6OX2ImcioGt2IhftmJgK45sU7r6l9567KXfn8zdHXOQKHwheBEUglWg0Se2Qjs80fADZCOfcw
CitedBy_id crossref_primary_10_1093_icesjms_fsae166
crossref_primary_10_1080_23308249_2024_2423189
crossref_primary_10_3389_fmars_2025_1545718
crossref_primary_10_1109_ACCESS_2024_3416389
Cites_doi 10.1111/j.1471-1842.2009.00848.x
10.1007/s11042-020-08949-9
10.1109/ACCESS.2019.2906654
10.1049/cp.2012.0414
10.5394/KINPR.2015.39.5.377
10.1007/s11280-018-0582-1
10.1109/TITS.2017.2724551
10.3390/app9152983
10.3390/jmse8090682
10.1016/j.oceaneng.2019.04.024
10.3390/s21082756
10.1109/TCSVT.2018.2872575
10.1109/ICCV.2019.00136
10.1016/j.patcog.2020.107205
10.5244/C.29.8
10.1016/j.biocon.2020.108461
10.1109/TIFS.2019.2900907
10.1016/j.oceaneng.2020.107478
10.1109/CVPR.2016.90
10.1016/j.fishres.2011.01.013
10.1109/ACCESS.2020.2979869
10.1016/j.fusengdes.2020.111736
10.1007/s12530-015-9133-5
10.1016/j.neucom.2016.09.063
10.1016/j.eswa.2013.04.029
10.1016/j.ijar.2013.03.012
10.1016/j.autcon.2020.103121
10.1017/S0373463317000066
10.1109/CVPR.2015.7298685
10.1145/3439950
10.1017/S1049023X19004588
10.1111/faf.12425
10.1109/ACCESS.2020.3013957
10.1016/j.oceaneng.2010.01.012
10.1016/j.ress.2020.107127
10.1016/j.iot.2021.100436
10.1093/icesjms/fsx109
10.1145/3292500.3330871
10.1109/TII.2019.2938527
10.1111/2041-210X.13282
10.1016/j.oceaneng.2021.109256
10.1109/JIOT.2020.3003922
10.1016/j.patcog.2017.10.002
10.1109/CVPR.2017.143
10.1016/j.ress.2021.107819
10.1115/DETC2021-69799
10.1109/IEEECONF38699.2020.9389122
10.1016/j.eswa.2017.02.011
10.3390/jmse10010112
10.1109/TPAMI.2020.3040591
10.1017/S0373463317000546
10.3390/s22030839
10.1109/CVPR42600.2020.01219
10.3390/e23010018
10.1109/ICCV.2017.391
10.1109/CVPR.2016.86
10.1109/ICBDA.2019.8713215
10.1093/icesjms/fsz149
10.1016/j.engappai.2017.10.001
10.1109/WACV45572.2020.9093417
10.1109/ACCESS.2018.2885055
10.1145/3415958.3433079
10.1007/s13437-018-0151-6
10.1109/CVPR.2019.00718
10.1371/journal.pone.0130746
10.1371/journal.pone.0200189
10.1109/TAES.2021.3096873
10.1117/12.776230
10.1139/cjfas-2020-0446
10.1016/j.biocon.2018.01.003
10.1016/j.oceaneng.2020.107922
10.1109/TCSVT.2016.2589859
10.1109/TPAMI.2007.70711
10.1109/ACCESS.2019.2912612
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.fishres.2024.106939
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_fishres_2024_106939
S0165783624000031
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAJYS
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
VH1
WUQ
Y6R
~02
~G-
~HD
AAYXX
AGCQF
CITATION
7S9
L.6
ID FETCH-LOGICAL-c389t-9f9dbe03a435bb06f58a5b53f223f9d5cd32cbecdd99f39d380f10fb4e297bc83
IEDL.DBID .~1
ISSN 0165-7836
IngestDate Sat Sep 27 20:33:41 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Wed Aug 27 16:27:41 EDT 2025
Sat Sep 27 17:12:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Automatic Identification System (AIS)
Electronic Monitoring (EM)
Anomaly detection
Sustainable fisheries
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-9f9dbe03a435bb06f58a5b53f223f9d5cd32cbecdd99f39d380f10fb4e297bc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0165783624000031
PQID 3040424626
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040424626
crossref_citationtrail_10_1016_j_fishres_2024_106939
crossref_primary_10_1016_j_fishres_2024_106939
elsevier_sciencedirect_doi_10_1016_j_fishres_2024_106939
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Fisheries research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Glemarec, Kindt-Larsen, Lundgaard, Larsen (bib27) 2020; 243
Wojke, Bewley, Paulus (bib120) 2017
Nguyen, Vadaine, Hajduch, Garello, Fablet (bib70) 2018
Weinland, Boyer, Ronfard (bib119) 2007
Pang, G., Shen, C., and van den Hengel, A. (2019). Deep anomaly detection with deviation networks.In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (353–362).
Yuan, Z., Liu, J., Liu, Y., and Li, Z. (2019). A novel approach for vessel trajectory reconstruction using ais data.In: The 29th International Ocean and Polar Engineering Conference.OnePetro.
Kazemi, Abghari, Lavesson, Johnson, Ryman (bib39) 2013; 40
KÖk, Özdemir (bib43) 2020; 8
Mazzarella, Arguedas, Vespe (bib59) 2015
Sheng, Liu, Zhou, He, Feng (bib95) 2018; 71
French, Fisher, Mackiewicz, Needle (bib21) 2015
Hobday, A., Little, R., Bulman, C., Gardner, C., McGrath-Steer, B., Ogier, E., Rayns, N., Sen, S., Sloan, S., Smith, T. et al. (2019). Best practice guidelines for Australian fisheries management agencies.Technical Report FRDC.
Chen, T., Tang, L.-A., Sun, Y., Chen, Z., and Zhang, K. (2016). Entity embedding-based anomaly detection for heterogeneous categorical events.arXiv preprint arXiv:1608.07502.
Khokher, Little, Tuck, Smith, Qiao, Devine, O’Neill, Pogonoski, Arangio, Wang (bib40) 2022; 79
Smeureanu, Ionescu, Popescu, Alexe (bib101) 2017
Christensen, J.H., Mogensen, L.V., and Ravn, O. (2020). Single image super-resolution for domain-specific ultra-low bandwidth image transmission.arXiv preprint arXiv:2009.04127.
Tu, Zhang, Rachmawati, Rajabally, Huang (bib109) 2017; 19
Tassetti, Galdelli, Pulcinella, Mancini, Bolognini (bib107) 2022; 22
Xie, Lee, Liu, Kotani, Chen (bib123) 2020; 102
Hinami, R., Mei, T., and Satoh, S. (2017). Joint detection and recounting of abnormal events by learning deep generic knowledge.In: Proceedings of the IEEE International Conference on Computer Vision (3619–3627).
Riveiro, Pallotta, Vespe (bib88) 2018; 8
Mazzarella, Vespe, Tarchi, Aulicino, Vollero (bib60) 2016
Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., and Zhang, Z. (2015). The application of two-level attention models in deep convolutional neural network for fine-grained image classification.In: Proceedings of the IEEEconference on computer vision and pattern recognition (842–850).
Wei, Xie, Wu, Shen (bib118) 2018; 76
Wolsing, Roepert, Bauer, Wehrle (bib121) 2022; 10
Eljabu, Etemad, Matwin (bib14) 2021
An, Cho (bib2) 2015; 2
Cazzanti, Pallotta (bib7) 2015
Mou, Van der Tak, Ligteringen (bib63) 2010; 37
Roy, J. (2008). Anomaly detection in the maritime domain.In: Optics and Photonics in Global Homeland Security IV(180–193). SPIE volume 6945.
Bartholomew, Mangel, Alfaro-Shigueto, Pingo, Jimenez, Godley (bib3) 2018; 219
Murray, Perera (bib66) 2021
Ramachandra, Jones, Vatsavai (bib85) 2020
Shahir, Charalampous, Tayebi, Glässer, Wehn (bib92) 2021
Coşar, Donatiello, Bogorny, Garate, Alvares, Brémond (bib12) 2016; 27
Shi, Liu (bib96) 2020; 8
Bekker, Goldberger (bib4) 2016
Sun, Shi, Dong, Wang (bib105) 2016
Nguyen, Im, Lee (bib74) 2015; 39
Song, Wang, Xiao, Han, Cai, Shi (bib102) 2018
Galdelli, Mancini, Ferrà, Tassetti (bib24) 2021; 21
Karataş, G.B., Karagoz, P., and Ayran, O. (2020). Trajectory prediction for maritime vessels using ais data.In: Proceedings of the 12th International Conference on Management of Digital EcoSystems (48–54).
Monkman, Hyder, Kaiser, Vidal (bib62) 2019; 10
Guo, Mou, Chen, Chen (bib30) 2021; 234
Wang, Chen, Hoi (bib117) 2020
Galdelli, A., Mancini, A., Frontoni, E., and Tassetti, A. (2021b). A feature encoding approach and a cloud computing architecture to map fishing activities.In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (V007T07A003). American Society of Mechanical Engineers volume 85437.
Rong, Teixeira, Soares (bib89) 2019; 182
Mao, Tu, Zhang, Rachmawati, Rajabally, Huang (bib55) 2018
Huang, Hwang, Romain, Wallace (bib36) 2018; 29
Liu, de Souza, Hilliard, Matwin (bib50) 2015
Liu, Shi (bib51) 2020; 8
Chuang, Hwang, Williams (bib11) 2018
Fournier, Hilliard, Rezaee, Pelot (bib20) 2018; 17
Mazzarella, Vespe, Damalas, Osio (bib58) 2014
Yao, Zhang, Zhu, Huang, Bi (bib125) 2017
Sidibé, Shu (bib98) 2017; 70
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need.In: Advances in neural information processing systems (5998–6008).
Nguyen, Simonin, Hajduch, Vadaine, Tedeschi, Fablet (bib71) 2020
Ravanbakhsh, Nabi, Mousavi, Sangineto, Sebe (bib86) 2018
Ouyang, Xu, Zhang, Zhou, Yang, Liu, Li (bib76) 2019; 7
Ko, Sim (bib42) 2018; 67
Nawaratne, Alahakoon, De Silva, Yu (bib68) 2019; 16
Qiu, Zhang, Wang, Yu, Zheng, Zheng (bib82) 2018; 6
Wang, Ye, Zhou, Ou, Cheng (bib116) 2020
Ford, Peel, Hardesty, Rosebrock, Wilcox (bib17) 2018; 13
Nguyen, Vadaine, Hajduch, Garello, Fablet (bib72) 2021
Tan, Sun, Kong, Zhang, Yang, Liu (bib106) 2018
Yu, Sghaier, Grabowiecka (bib127) 2020
Ristic, La Scala, Morelande, Gordon (bib87) 2008
Mantecón, Casals, Navarro-Corcuera, del Blanco, Jaureguizar (bib54) 2019
Radon, Wang, Glässer, Wehn, Westwell-Roper (bib83) 2015
Singh, Heymann (bib99) 2020
Alessandrini, Argentieri, Alvarez, Barbas, Delaney, Arguedas, Gammieri, Greidanus, Mazzarella, Vespe (bib1) 2014; 39
Obradović, Miličević, Žubrinić (bib75) 2014; 61
Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields.In: Proceedings of the IEEEconference on computer vision and pattern recognition (7291–7299).
Kim, Chi (bib41) 2020; 112
Zhou, Shen, Zeng, Fang, Wei, Zhang (bib132) 2016; 47
Liang, M., Liu, R.W., Zhong, Q., Liu, J., and Zhang, J. (2019). Neural network-based automatic reconstruction of missing vessel trajectory data.In: 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA)(426–430). 10.1109/ICBDA.2019.8713215.
Siddiqui, Salman, Malik, Shafait, Mian, Shortis, Harvey (bib97) 2018; 75
Murray, Perera (bib64) 2020; 209
Dalsnes, Hexeberg, Flåten, Eriksen, Brekke (bib13) 2018
Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., and Davis, L.S. (2016). Learning temporal regularity in video sequences.In: Proceedings of the IEEEconference on computer vision and pattern recognition (733–742).
Ganokratanaa, Aramvith, Sebe (bib25) 2020; 8
Zissis, Xidias, Lekkas (bib133) 2016; 7
Pang, Shen, Cao, Hengel (bib79) 2021; 54
Perdigão, Lousa, Ascenso, Pereira (bib81) 2020; 79
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.In: Proceedings of the IEEEconference on computer vision and pattern recognition (770–778).
Shahir, Glässer, Nalbandyan, Wehn (bib93) 2014
Pawar, Attar (bib80) 2019; 22
Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N. (2015). Learning deep representations of appearance and motion for anomalous event detection.arXiv preprint arXiv:1510.01553.
Liu, Shi, Zhu (bib52) 2019; 9
FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation.Technical Report FAO. 10.4060/cc0461en.
Gorelick, Blank, Shechtman, Irani, Basri (bib28) 2007; 29
Li, Liang, Liu (bib45) 2020
Capobianco, Millefiori, Forti, Braca, Willett (bib6) 2021; 57
Tetreault (bib108) 2005
van Helmond, Mortensen, Plet-Hansen, Ulrich, Needle, Oesterwind, Kindt-Larsen, Catchpole, Mangi, Zimmermann (bib111) 2020; 21
Zhao, Wang, Duan, Huang, Cao, Tong, Xu, Bai, Tong, Zhang (bib130) 2020
Grant, Booth (bib29) 2009; 26
Wang, Hwang, Wallace, Rose (bib114) 2019; 7
Wang, He (bib115) 2021
Forti, Millefiori, Braca, Willett (bib19) 2020
French, Mackiewicz, Fisher, Holah, Kilburn, Campbell, Needle (bib22) 2020; 77
Vespe, M., Visentini, I., Bryan, K., and Braca, P. (2012). Unsupervised learning of maritime traffic patterns for anomaly detection.In: 9th IET Data Fusion and Target Tracking Conference (DFTT 2012): Algorithms and Applications.IET. 10.1049/cp.2012.0414.
Forti, Millefiori, Braca (bib18) 2019
Mazzarella, Vespe, Alessandrini, Tarchi, Aulicino, Vollero (bib61) 2017; 78
de Souza, Boerder, Matwin, Worm (bib103) 2016; 11
Natale, Gibin, Alessandrini, Vespe, Paulrud (bib67) 2015; 10
Shahir, Glasser, Shahir, Wehn (bib94) 2015
Hobday, Smith, Stobutzki, Bulman, Daley, Dambacher, Deng, Dowdney, Fuller, Furlani (bib34) 2011; 108
Skilton, Gao (bib100) 2020; 159
Yi, K., and Wu, J. (2019). Probabilistic end-to-end noise correction for learning with noisy labels.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (7017–7025).
Zhou, Du, Zhu, Peng, Liu, Goh (bib131) 2019; 14
Martineau, E., and Roy, J. (2011). Maritime anomaly detection: Domain introduction and review of selected literature.Technical Report DEFENCE RESEARCH AND DEVELOPMENT CANADA VALCARTIER (QUEBEC).
Chong, Tay (bib9) 2017
Van der Maaten, Hinton (bib110) 2008
Stratton (bib104) 2019; 34
Li, Li, Liu, Liu, Yu (bib46) 2018
Murray, Perera (bib65) 2021
Ramachandra, B., Jones, M., and Vatsavai, R. (2020a). Learning a distance function with a siamese network to localize anomalies in videos.In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2598–2607).
Liraz, S.P. (2018). Ships’ Trajectories Prediction Using Recurrent Neural Networks Based on AIS Data Technical Report Naval Postgraduate School.
Linardatos, Papastefanopoulos, Kotsiantis (bib48) 2021; 23
Pang, G., Yan, C., Shen, C., Hengel, A.v.d., Bai, X.(2020). Self-trained deep ordinal regression for end-to-end video anomaly detection.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (12173–12182).
Karataş, Karagoz, Ayran (bib38) 2021; 16
Lane, Nevell, Hayward, Beaney (bib44) 2010
Nguyen, T.-N., and Meunier, J. (2019). Anomaly detection in video sequence with appearance-motion correspondence.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (1273–1283).
Gao, Shi (bib26) 2020; 217
Mascaro, Nicholso, Korb (bib57) 2014; 55
Liu, Li, Zhou, Jiang, Sun, Wang, He (bib53) 2019; 32
Zhang, Feng, Goerlandt, Liu (bib129) 2020; 204
Nguyen, D., and Fablet, R. (2021). Traisformer-a generative transformer for ais
Yao (10.1016/j.fishres.2024.106939_bib125) 2017
Kim (10.1016/j.fishres.2024.106939_bib41) 2020; 112
Capobianco (10.1016/j.fishres.2024.106939_bib6) 2021; 57
Murray (10.1016/j.fishres.2024.106939_bib65) 2021
10.1016/j.fishres.2024.106939_bib73
Chong (10.1016/j.fishres.2024.106939_bib9) 2017
Mao (10.1016/j.fishres.2024.106939_bib55) 2018
Forti (10.1016/j.fishres.2024.106939_bib19) 2020
Mazzarella (10.1016/j.fishres.2024.106939_bib59) 2015
10.1016/j.fishres.2024.106939_bib78
Feng (10.1016/j.fishres.2024.106939_bib16) 2017; 219
10.1016/j.fishres.2024.106939_bib77
Dalsnes (10.1016/j.fishres.2024.106939_bib13) 2018
Van der Maaten (10.1016/j.fishres.2024.106939_bib110) 2008
Shahir (10.1016/j.fishres.2024.106939_bib93) 2014
Li (10.1016/j.fishres.2024.106939_bib45) 2020
Wang (10.1016/j.fishres.2024.106939_bib117) 2020
Natale (10.1016/j.fishres.2024.106939_bib67) 2015; 10
de Souza (10.1016/j.fishres.2024.106939_bib103) 2016; 11
Zhao (10.1016/j.fishres.2024.106939_bib130) 2020
10.1016/j.fishres.2024.106939_bib84
Nawaratne (10.1016/j.fishres.2024.106939_bib68) 2019; 16
Ristic (10.1016/j.fishres.2024.106939_bib87) 2008
Sheng (10.1016/j.fishres.2024.106939_bib95) 2018; 71
Wang (10.1016/j.fishres.2024.106939_bib114) 2019; 7
Mantecón (10.1016/j.fishres.2024.106939_bib54) 2019
Smeureanu (10.1016/j.fishres.2024.106939_bib101) 2017
Siddiqui (10.1016/j.fishres.2024.106939_bib97) 2018; 75
Zhou (10.1016/j.fishres.2024.106939_bib131) 2019; 14
Liu (10.1016/j.fishres.2024.106939_bib52) 2019; 9
Weinland (10.1016/j.fishres.2024.106939_bib119) 2007
Rong (10.1016/j.fishres.2024.106939_bib89) 2019; 182
Wang (10.1016/j.fishres.2024.106939_bib115) 2021
10.1016/j.fishres.2024.106939_bib113
10.1016/j.fishres.2024.106939_bib112
10.1016/j.fishres.2024.106939_bib15
Singh (10.1016/j.fishres.2024.106939_bib99) 2020
Khokher (10.1016/j.fishres.2024.106939_bib40) 2022; 79
Mazzarella (10.1016/j.fishres.2024.106939_bib60) 2016
Guo (10.1016/j.fishres.2024.106939_bib30) 2021; 234
Liu (10.1016/j.fishres.2024.106939_bib50) 2015
10.1016/j.fishres.2024.106939_bib10
Wei (10.1016/j.fishres.2024.106939_bib118) 2018; 76
10.1016/j.fishres.2024.106939_bib90
French (10.1016/j.fishres.2024.106939_bib22) 2020; 77
Nguyen (10.1016/j.fishres.2024.106939_bib72) 2021
Fournier (10.1016/j.fishres.2024.106939_bib20) 2018; 17
Ganokratanaa (10.1016/j.fishres.2024.106939_bib25) 2020; 8
Nguyen (10.1016/j.fishres.2024.106939_bib71) 2020
Tan (10.1016/j.fishres.2024.106939_bib106) 2018
Kazemi (10.1016/j.fishres.2024.106939_bib39) 2013; 40
Wojke (10.1016/j.fishres.2024.106939_bib120) 2017
Shi (10.1016/j.fishres.2024.106939_bib96) 2020; 8
Bekker (10.1016/j.fishres.2024.106939_bib4) 2016
Pang (10.1016/j.fishres.2024.106939_bib79) 2021; 54
Chuang (10.1016/j.fishres.2024.106939_bib11) 2018
Liu (10.1016/j.fishres.2024.106939_bib51) 2020; 8
Ravanbakhsh (10.1016/j.fishres.2024.106939_bib86) 2018
Li (10.1016/j.fishres.2024.106939_bib46) 2018
Perdigão (10.1016/j.fishres.2024.106939_bib81) 2020; 79
10.1016/j.fishres.2024.106939_bib23
Gao (10.1016/j.fishres.2024.106939_bib26) 2020; 217
Zissis (10.1016/j.fishres.2024.106939_bib133) 2016; 7
Alessandrini (10.1016/j.fishres.2024.106939_bib1) 2014; 39
Lane (10.1016/j.fishres.2024.106939_bib44) 2010
Pawar (10.1016/j.fishres.2024.106939_bib80) 2019; 22
Mazzarella (10.1016/j.fishres.2024.106939_bib61) 2017; 78
Mou (10.1016/j.fishres.2024.106939_bib63) 2010; 37
Forti (10.1016/j.fishres.2024.106939_bib18) 2019
10.1016/j.fishres.2024.106939_bib37
van Helmond (10.1016/j.fishres.2024.106939_bib111) 2020; 21
10.1016/j.fishres.2024.106939_bib32
10.1016/j.fishres.2024.106939_bib31
Mazzarella (10.1016/j.fishres.2024.106939_bib58) 2014
10.1016/j.fishres.2024.106939_bib33
10.1016/j.fishres.2024.106939_bib35
Cazzanti (10.1016/j.fishres.2024.106939_bib7) 2015
French (10.1016/j.fishres.2024.106939_bib21) 2015
Eljabu (10.1016/j.fishres.2024.106939_bib14) 2021
Hobday (10.1016/j.fishres.2024.106939_bib34) 2011; 108
Radon (10.1016/j.fishres.2024.106939_bib83) 2015
Sun (10.1016/j.fishres.2024.106939_bib105) 2016
Shahir (10.1016/j.fishres.2024.106939_bib94) 2015
10.1016/j.fishres.2024.106939_bib122
Sidibé (10.1016/j.fishres.2024.106939_bib98) 2017; 70
10.1016/j.fishres.2024.106939_bib124
An (10.1016/j.fishres.2024.106939_bib2) 2015; 2
10.1016/j.fishres.2024.106939_bib49
10.1016/j.fishres.2024.106939_bib126
Ramachandra (10.1016/j.fishres.2024.106939_bib85) 2020
10.1016/j.fishres.2024.106939_bib128
Murray (10.1016/j.fishres.2024.106939_bib64) 2020; 209
Wolsing (10.1016/j.fishres.2024.106939_bib121) 2022; 10
Liu (10.1016/j.fishres.2024.106939_bib53) 2019; 32
10.1016/j.fishres.2024.106939_bib5
Riveiro (10.1016/j.fishres.2024.106939_bib88) 2018; 8
Xie (10.1016/j.fishres.2024.106939_bib123) 2020; 102
10.1016/j.fishres.2024.106939_bib8
10.1016/j.fishres.2024.106939_bib47
Nguyen (10.1016/j.fishres.2024.106939_bib70) 2018
Galdelli (10.1016/j.fishres.2024.106939_bib24) 2021; 21
Wang (10.1016/j.fishres.2024.106939_bib116) 2020
Huang (10.1016/j.fishres.2024.106939_bib36) 2018; 29
Zhang (10.1016/j.fishres.2024.106939_bib129) 2020; 204
Glemarec (10.1016/j.fishres.2024.106939_bib27) 2020; 243
Ford (10.1016/j.fishres.2024.106939_bib17) 2018; 13
Ouyang (10.1016/j.fishres.2024.106939_bib76) 2019; 7
Mascaro (10.1016/j.fishres.2024.106939_bib57) 2014; 55
Shahir (10.1016/j.fishres.2024.106939_bib92) 2021
Karataş (10.1016/j.fishres.2024.106939_bib38) 2021; 16
Yu (10.1016/j.fishres.2024.106939_bib127) 2020
Bartholomew (10.1016/j.fishres.2024.106939_bib3) 2018; 219
Coşar (10.1016/j.fishres.2024.106939_bib12) 2016; 27
Grant (10.1016/j.fishres.2024.106939_bib29) 2009; 26
10.1016/j.fishres.2024.106939_bib56
Shahir (10.1016/j.fishres.2024.106939_bib91) 2019
Ko (10.1016/j.fishres.2024.106939_bib42) 2018; 67
Nguyen (10.1016/j.fishres.2024.106939_bib74) 2015; 39
Song (10.1016/j.fishres.2024.106939_bib102) 2018
Skilton (10.1016/j.fishres.2024.106939_bib100) 2020; 159
Zhou (10.1016/j.fishres.2024.106939_bib132) 2016; 47
Murray (10.1016/j.fishres.2024.106939_bib66) 2021
Tetreault (10.1016/j.fishres.2024.106939_bib108) 2005
Gorelick (10.1016/j.fishres.2024.106939_bib28) 2007; 29
KÖk (10.1016/j.fishres.2024.106939_bib43) 2020; 8
Qiu (10.1016/j.fishres.2024.106939_bib82) 2018; 6
Obradović (10.1016/j.fishres.2024.106939_bib75) 2014; 61
Linardatos (10.1016/j.fishres.2024.106939_bib48) 2021; 23
Stratton (10.1016/j.fishres.2024.106939_bib104) 2019; 34
10.1016/j.fishres.2024.106939_bib69
Tassetti (10.1016/j.fishres.2024.106939_bib107) 2022; 22
Monkman (10.1016/j.fishres.2024.106939_bib62) 2019; 10
Tu (10.1016/j.fishres.2024.106939_bib109) 2017; 19
References_xml – volume: 219
  start-page: 548
  year: 2017
  end-page: 556
  ident: bib16
  article-title: Learning deep event models for crowd anomaly detection
  publication-title: Neurocomputing
– start-page: 333
  year: 2020
  end-page: 338
  ident: bib45
  article-title: Vessel trajectory similarity measure based on deep convolutional autoencoder
  publication-title: 2020 5th IEEE International Conference on Big Data Analytics (ICBDA)
– year: 2020
  ident: bib117
  article-title: Deep learning for image super-resolution: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Karataş, G.B., Karagoz, P., and Ayran, O. (2020). Trajectory prediction for maritime vessels using ais data.In: Proceedings of the 12th International Conference on Management of Digital EcoSystems (48–54).
– start-page: 1
  year: 2014
  end-page: 7
  ident: bib58
  article-title: Discovering vessel activities at sea using ais data: Mapping of fishing footprints
  publication-title: 17th International conference on information fusion (FUSION)
– volume: 8
  year: 2018
  ident: bib88
  publication-title: S. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib44
  article-title: Maritime anomaly detection and threat assessment
  publication-title: 2010 13th International Conference on Information Fusio
– volume: 6
  start-page: 78503
  year: 2018
  end-page: 78512
  ident: bib82
  article-title: Improving transfer learning and squeeze-and-excitation networks for small-scale fine-grained fish image classification
  publication-title: IEEE Access
– year: 2021
  ident: bib66
  article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness
  publication-title: J. Ocean Eng. Sci.
– start-page: 1123
  year: 2015
  end-page: 1133
  ident: bib83
  article-title: Contextual verification for false alarm reduction in maritime anomaly detection
  publication-title: 2015 IEEE International Conference on Big Data (Big Data)
– start-page: 1
  year: 2007
  end-page: 7
  ident: bib119
  article-title: Action recognition from arbitrary views using 3d exemplars
  publication-title: 2007 IEEE 11th International Conference on Computer Vision
– volume: 17
  start-page: 311
  year: 2018
  end-page: 345
  ident: bib20
  article-title: Past, present, and future of the satellite-based automatic identification system: Areas of applications (2004–2016)
  publication-title: WMU J. Marit. Aff.
– start-page: 841
  year: 2020
  end-page: 850
  ident: bib130
  article-title: Multivariate time-series anomaly detection via graph attention network
  publication-title: 2020 IEEE International Conference on Data Mining (ICDM)
– volume: 34
  start-page: 347
  year: 2019
  end-page: 349
  ident: bib104
  article-title: Literature reviews: methods and applications
  publication-title: Prehosp. Disaster Med.
– start-page: 1279
  year: 2015
  end-page: 1289
  ident: bib94
  article-title: Maritime situation analysis framework: Vessel interaction classification and anomaly detection
  publication-title: 2015 IEEE International Conference on Big Data (Big Data)
– volume: 234
  year: 2021
  ident: bib30
  article-title: Improved kinematic interpolation for ais trajectory reconstruction
  publication-title: Ocean Eng.
– volume: 112
  year: 2020
  ident: bib41
  article-title: Multi-camera vision-based productivity monitoring of earthmoving operations
  publication-title: Autom. Constr.
– volume: 21
  start-page: 162
  year: 2020
  end-page: 189
  ident: bib111
  article-title: Electronic monitoring in fisheries: Lessons from global experiences and future opportunities
  publication-title: Fish Fish
– start-page: 1
  year: 2021
  end-page: 11
  ident: bib115
  article-title: A prediction model of vessel trajectory based on generative adversarial network
  publication-title: J. Navig.
– volume: 8
  start-page: 682
  year: 2020
  ident: bib96
  article-title: Deep learning in unmanned surface vehicles collision-avoidance pattern based on ais big data with double gru-rnn
  publication-title: J. Mar. Sci. Eng.
– volume: 61
  start-page: 96
  year: 2014
  end-page: 101
  ident: bib75
  article-title: Machine learning approaches to maritime anomaly detection
  publication-title: Naše more: Znan. časopis za more i Pomor.
– start-page: 3880
  year: 2017
  end-page: 3887
  ident: bib125
  article-title: Trajectory clustering via deep representation learning
  publication-title: 2017 international joint conference on neural networks (IJCNN)
– volume: 16
  year: 2021
  ident: bib38
  article-title: Trajectory pattern extraction and anomaly detection for maritime vessels
  publication-title: Internet Things
– volume: 55
  start-page: 84
  year: 2014
  end-page: 98
  ident: bib57
  article-title: Anomaly detection in vessel tracks using bayesian networks
  publication-title: Int. J. Approx. Reason.
– start-page: 580
  year: 2018
  end-page: 587
  ident: bib13
  article-title: The neighbor course distribution method with gaussian mixture models for ais-based vessel trajectory prediction
  publication-title: 2018 21st International Conference on Information Fusion (FUSION)
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need.In: Advances in neural information processing systems (5998–6008).
– volume: 8
  start-page: 161969
  year: 2020
  end-page: 161980
  ident: bib51
  article-title: Ship collision risk assessment based on collision detection algorithm
  publication-title: IEEE Access
– volume: 2
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib2
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 10
  year: 2015
  ident: bib67
  article-title: Mapping fishing effort through ais data
  publication-title: PloS One
– volume: 75
  start-page: 374
  year: 2018
  end-page: 389
  ident: bib97
  article-title: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data
  publication-title: ICES J. Mar. Sci.
– reference: Martineau, E., and Roy, J. (2011). Maritime anomaly detection: Domain introduction and review of selected literature.Technical Report DEFENCE RESEARCH AND DEVELOPMENT CANADA VALCARTIER (QUEBEC).
– start-page: 2682
  year: 2016
  end-page: 2686
  ident: bib4
  article-title: Training deep neural-networks based on unreliable labels
  publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 57
  start-page: 4329
  year: 2021
  end-page: 4346
  ident: bib6
  article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 8
  start-page: 50312
  year: 2020
  end-page: 50329
  ident: bib25
  article-title: Unsupervised anomaly detection and localization based on deep spatiotemporal translation network
  publication-title: IEEE Access
– volume: 71
  start-page: 100
  year: 2018
  end-page: 116
  ident: bib95
  article-title: Research on ship classification based on trajectory features
  publication-title: J. Navig.
– reference: Hinami, R., Mei, T., and Satoh, S. (2017). Joint detection and recounting of abnormal events by learning deep generic knowledge.In: Proceedings of the IEEE International Conference on Computer Vision (3619–3627).
– start-page: 1928
  year: 2021
  end-page: 1939
  ident: bib92
  article-title: Triptracker: Unsupervised learning of fishing vessel routine activity patterns
  publication-title: 2021 IEEE International Conference on Big Data (Big Data)
– start-page: 142
  year: 2021
  end-page: 147
  ident: bib14
  article-title: Anomaly detection in maritime domain based on spatio-temporal analysis of ais data using graph neural networks
  publication-title: 2021 5th International Conference on Vision, Image and Signal Processing (ICVISP)
– start-page: 1907
  year: 2018
  end-page: 1911
  ident: bib46
  article-title: Object-oriented anomaly detection in surveillance videos
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 529
  year: 2020
  end-page: 546
  ident: bib116
  article-title: Ais ship trajectory clustering based on convolutional auto-encoder
  publication-title: Proceedings of SAI Intelligent Systems Conference
– volume: 108
  start-page: 372
  year: 2011
  end-page: 384
  ident: bib34
  article-title: Ecological risk assessment for the effects of fishing
  publication-title: Fish. Res.
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib7
  article-title: Mining maritime vessel traffic: Promises, challenges, techniques
  publication-title: OCEANS 2015-Genova
– volume: 209
  year: 2020
  ident: bib64
  article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical ais data
  publication-title: Ocean Eng.
– volume: 26
  start-page: 91
  year: 2009
  end-page: 108
  ident: bib29
  article-title: A typology of reviews: an analysis of 14 review types and associated methodologies
  publication-title: Health Inf. Libr. J.
– volume: 29
  start-page: 2247
  year: 2007
  end-page: 2253
  ident: bib28
  article-title: Actions as space-time shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Pang, G., Shen, C., and van den Hengel, A. (2019). Deep anomaly detection with deviation networks.In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (353–362).
– volume: 10
  start-page: 2045
  year: 2019
  end-page: 2056
  ident: bib62
  article-title: Using machine vision to estimate fish length from images using regional convolutional neural networks
  publication-title: Methods Ecol. Evol.
– volume: 7
  start-page: 52836
  year: 2019
  end-page: 52845
  ident: bib114
  article-title: Multi-scale fish segmentation refinement and missing shape recovery
  publication-title: IEEE Access
– reference: Pang, G., Yan, C., Shen, C., Hengel, A.v.d., Bai, X.(2020). Self-trained deep ordinal regression for end-to-end video anomaly detection.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (12173–12182).
– volume: 19
  start-page: 1559
  year: 2017
  end-page: 1582
  ident: bib109
  article-title: Exploiting ais data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., and Davis, L.S. (2016). Learning temporal regularity in video sequences.In: Proceedings of the IEEEconference on computer vision and pattern recognition (733–742).
– volume: 9
  start-page: 2983
  year: 2019
  ident: bib52
  article-title: Vessel trajectory prediction model based on ais sensor data and adaptive chaos differential evolution support vector regression (acde-svr)
  publication-title: Appl. Sci.
– volume: 78
  start-page: 110
  year: 2017
  end-page: 123
  ident: bib61
  article-title: A novel anomaly detection approach to identify intentional ais on-off switching
  publication-title: Expert Syst. Appl.
– volume: 204
  year: 2020
  ident: bib129
  article-title: Towards a convolutional neural network model for classifying regional ship collision risk levels for waterway risk analysis
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2015
  ident: bib21
  article-title: Convolutional neural networks for counting fish in fisheries surveillance video
  publication-title: Proceedings of the Machine Vision of Animals and their Behaviour (MVAB)
– volume: 217
  year: 2020
  ident: bib26
  article-title: Ship collision avoidance anthropomorphic decision-making for structured learning based on ais with seq-cgan
  publication-title: Ocean Eng.
– reference: Hobday, A., Little, R., Bulman, C., Gardner, C., McGrath-Steer, B., Ogier, E., Rayns, N., Sen, S., Sloan, S., Smith, T. et al. (2019). Best practice guidelines for Australian fisheries management agencies.Technical Report FRDC.
– volume: 7
  start-page: 40757
  year: 2019
  end-page: 40770
  ident: bib76
  article-title: A 3d-cnn and lstm based multi-task learning architecture for action recognition
  publication-title: IEEE Access
– start-page: 331
  year: 2018
  end-page: 340
  ident: bib70
  article-title: A multi-task deep learning architecture for maritime surveillance using ais data streams
  publication-title: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)
– volume: 27
  start-page: 683
  year: 2016
  end-page: 695
  ident: bib12
  article-title: Toward abnormal trajectory and event detection in video surveillance
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib59
  article-title: Knowledge-based vessel position prediction using historical ais data
  publication-title: 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF)
– volume: 29
  start-page: 3146
  year: 2018
  end-page: 3158
  ident: bib36
  article-title: Fish tracking and segmentation from stereo videos on the wild sea surface for electronic monitoring of rail fishing
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1689
  year: 2018
  end-page: 1698
  ident: bib86
  article-title: Plug-and-play cnn for crowd motion analysis: An application in abnormal event detection
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 182
  start-page: 499
  year: 2019
  end-page: 511
  ident: bib89
  article-title: Ship trajectory uncertainty prediction based on a gaussian process model
  publication-title: Ocean Eng.
– volume: 79
  start-page: 257
  year: 2022
  end-page: 266
  ident: bib40
  article-title: Early lessons in deploying cameras and artificial intelligence technology for fisheries catch monitoring: where machine learning meets commercial fishing
  publication-title: Can. J. Fish. Aquat. Sci.
– reference: Liang, M., Liu, R.W., Zhong, Q., Liu, J., and Zhang, J. (2019). Neural network-based automatic reconstruction of missing vessel trajectory data.In: 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA)(426–430). 10.1109/ICBDA.2019.8713215.
– reference: Vespe, M., Visentini, I., Bryan, K., and Braca, P. (2012). Unsupervised learning of maritime traffic patterns for anomaly detection.In: 9th IET Data Fusion and Target Tracking Conference (DFTT 2012): Algorithms and Applications.IET. 10.1049/cp.2012.0414.
– reference: Roy, J. (2008). Anomaly detection in the maritime domain.In: Optics and Photonics in Global Homeland Security IV(180–193). SPIE volume 6945.
– volume: 39
  start-page: 377
  year: 2015
  end-page: 384
  ident: bib74
  article-title: The interpolation method for the missing ais data of ship
  publication-title: J. Navig. Port. Res.
– volume: 22
  start-page: 839
  year: 2022
  ident: bib107
  article-title: Addressing gaps in small-scale fisheries: a low-cost tracking system
  publication-title: Sensors
– reference: Nguyen, T.-N., and Meunier, J. (2019). Anomaly detection in video sequence with appearance-motion correspondence.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (1273–1283).
– volume: 14
  start-page: 2537
  year: 2019
  end-page: 2550
  ident: bib131
  article-title: Anomalynet: an anomaly detection network for video surveillance
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 77
  start-page: 1340
  year: 2020
  end-page: 1353
  ident: bib22
  article-title: Deep neural networks for analysis of fisheries surveillance video and automated monitoring of fish discards
  publication-title: ICES J. Mar. Sci.
– start-page: 192
  year: 2014
  end-page: 199
  ident: bib93
  article-title: Maritime situation analysis: A multi-vessel interaction and anomaly detection framework
  publication-title: 2014 IEEE Joint Intelligence and Security Informatics Conference
– reference: Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields.In: Proceedings of the IEEEconference on computer vision and pattern recognition (7291–7299).
– volume: 39
  year: 2014
  ident: bib1
  article-title: Data driven contextual knowledge from and for maritime situational awareness
  publication-title: Context-Aware. Geogr. Inf. Serv. (CAGIS 2014)
– volume: 21
  start-page: 2756
  year: 2021
  ident: bib24
  article-title: A synergic integration of ais data and sar imagery to monitor fisheries and detect suspicious activities
  publication-title: Sensors
– start-page: 832
  year: 2020
  end-page: 838
  ident: bib99
  article-title: Machine learning-assisted anomaly detection in maritime navigation using ais data
  publication-title: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)
– volume: 102
  year: 2020
  ident: bib123
  article-title: Scene recognition: a comprehensive survey
  publication-title: Pattern Recognit.
– reference: Christensen, J.H., Mogensen, L.V., and Ravn, O. (2020). Single image super-resolution for domain-specific ultra-low bandwidth image transmission.arXiv preprint arXiv:2009.04127.
– start-page: 264
  year: 2020
  end-page: 268
  ident: bib71
  article-title: Detection of abnormal vessel behaviours from ais data using geotracknet: from the laboratory to the ocean
  publication-title: 2020 21st IEEE International Conference on Mobile Data Management (MDM)
– volume: 16
  start-page: 393
  year: 2019
  end-page: 402
  ident: bib68
  article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance
  publication-title: IEEE Trans. Ind. Inform.
– volume: 47
  start-page: 358
  year: 2016
  end-page: 368
  ident: bib132
  article-title: Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes
  publication-title: Signal Process.: Image Commun.
– start-page: 1590
  year: 2005
  end-page: 1594
  ident: bib108
  article-title: Use of the automatic identification system (ais) for maritime domain awareness (mda)
  publication-title: Proceedings of Oceans 2005 Mts/Ieee
– reference: Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N. (2015). Learning deep representations of appearance and motion for anomalous event detection.arXiv preprint arXiv:1510.01553.
– start-page: 3645
  year: 2017
  end-page: 3649
  ident: bib120
  article-title: Simple online and realtime tracking with a deep association metric
  publication-title: 2017 IEEE international conference on image processing (ICIP)
– start-page: 471
  year: 2016
  end-page: 476
  ident: bib105
  article-title: Fish recognition from low-resolution underwater images
  publication-title: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
– start-page: 847
  year: 2018
  end-page: 874
  ident: bib11
  article-title: Automatic fish segmentation and recognition for trawl-based cameras
  publication-title: Computer Vision: Concepts, Methodologies, Tools, and Applications
– start-page: 263
  year: 2018
  end-page: 277
  ident: bib102
  article-title: Anomalous trajectory detection using recurrent neural network
  publication-title: International Conference on Advanced Data Mining and Applications
– reference: Liraz, S.P. (2018). Ships’ Trajectories Prediction Using Recurrent Neural Networks Based on AIS Data Technical Report Naval Postgraduate School.
– reference: Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., and Zhang, Z. (2015). The application of two-level attention models in deep convolutional neural network for fine-grained image classification.In: Proceedings of the IEEEconference on computer vision and pattern recognition (842–850).
– volume: 23
  start-page: 18
  year: 2021
  ident: bib48
  article-title: Explainable ai: A review of machine learning interpretability methods
  publication-title: Entropy
– start-page: 9
  year: 2008
  ident: bib110
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 241
  year: 2018
  end-page: 257
  ident: bib55
  article-title: An automatic identification system (ais) database for maritime trajectory prediction and data mining
  publication-title: Proceedings of ELM-2016
– volume: 13
  year: 2018
  ident: bib17
  article-title: Loitering with intent-?atching the outlier vessels at sea
  publication-title: Plos One
– reference: Yuan, Z., Liu, J., Liu, Y., and Li, Z. (2019). A novel approach for vessel trajectory reconstruction using ais data.In: The 29th International Ocean and Polar Engineering Conference.OnePetro.
– start-page: 189
  year: 2017
  end-page: 196
  ident: bib9
  article-title: Abnormal event detection in videos using spatiotemporal autoencoder
  publication-title: International symposium on neural networks
– volume: 54
  start-page: 1
  year: 2021
  end-page: 38
  ident: bib79
  article-title: Deep learning for anomaly detection: a review
  publication-title: ACM Comput. Surv. (CSUR)
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib127
  article-title: Deep learning approaches for ais data association in the context of maritime domain awareness
  publication-title: 2020 IEEE 23rd International Conference on Information Fusion (FUSION)
– start-page: 1113
  year: 2015
  end-page: 1120
  ident: bib50
  article-title: Ship movement anomaly detection using specialized distance measures
  publication-title: 2015 18th International Conference on Information Fusion (Fusion)
– volume: 32
  start-page: 1517
  year: 2019
  end-page: 1528
  ident: bib53
  article-title: Generative adversarial active learning for unsupervised outlier detection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 40
  start-page: 5719
  year: 2013
  end-page: 5729
  ident: bib39
  article-title: Open data for anomaly detection in maritime surveillance
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: bib65
  article-title: An ais-based deep learning framework for regional ship behavior prediction
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2021
  ident: bib72
  article-title: Geotracknet–a maritime anomaly detector using probabilistic neural network representation of ais tracks and a contrario detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1867
  year: 2016
  end-page: 1873
  ident: bib60
  article-title: Ais reception characterisation for ais on/off anomaly detection
  publication-title: 2016 19th International Conference on Information Fusion (FUSION)
– reference: Chen, T., Tang, L.-A., Sun, Y., Chen, Z., and Zhang, K. (2016). Entity embedding-based anomaly detection for heterogeneous categorical events.arXiv preprint arXiv:1608.07502.
– volume: 243
  year: 2020
  ident: bib27
  article-title: Assessing seabird bycatch in gillnet fisheries using electronic monitoring
  publication-title: Biol. Conserv.
– volume: 219
  start-page: 35
  year: 2018
  end-page: 45
  ident: bib3
  article-title: Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries
  publication-title: Biol. Conserv.
– volume: 11
  year: 2016
  ident: bib103
  article-title: Improving fishing pattern detection from satellite ais using data mining and machine learning
  publication-title: PloS One
– volume: 79
  start-page: 22131
  year: 2020
  end-page: 22156
  ident: bib81
  article-title: Visual monitoring of high-sea fishing activities using deep learning-based image processing
  publication-title: Multimed. Tools Appl.
– start-page: 1917
  year: 2019
  end-page: 1927
  ident: bib91
  article-title: Mining vessel trajectories for illegal fishing detection
  publication-title: 2019 IEEE International Conference on Big Data (Big Data)
– start-page: 779
  year: 2017
  end-page: 789
  ident: bib101
  article-title: Deep appearance features for abnormal behavior detection in video
  publication-title: International Conference on Image Analysis and Processing
– volume: 22
  start-page: 571
  year: 2019
  end-page: 601
  ident: bib80
  article-title: Deep learning approaches for video-based anomalous activity detection
  publication-title: World Wide Web
– start-page: 270
  year: 2018
  end-page: 279
  ident: bib106
  article-title: A survey on deep transfer learning
  publication-title: International conference on artificial neural networks
– volume: 7
  start-page: 29
  year: 2016
  end-page: 40
  ident: bib133
  article-title: Real-time vessel behavior prediction
  publication-title: Evol. Syst.
– reference: Yi, K., and Wu, J. (2019). Probabilistic end-to-end noise correction for learning with noisy labels.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (7017–7025).
– volume: 70
  start-page: 847
  year: 2017
  ident: bib98
  article-title: Study of automatic anomalous behaviour detection techniques for maritime vessels
  publication-title: J. Navig.
– volume: 76
  start-page: 704
  year: 2018
  end-page: 714
  ident: bib118
  article-title: Mask-cnn: Localizing parts and selecting descriptors for fine-grained bird species categorization
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib54
  article-title: Deep learning to enhance maritime situation awareness
  publication-title: 2019 20th International Radar Symposium (IRS)
– reference: FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation.Technical Report FAO. 10.4060/cc0461en.
– start-page: 8936
  year: 2020
  end-page: 8940
  ident: bib19
  article-title: Prediction of vessel trajectories from ais data via sequence-to-sequence recurrent neural networks
  publication-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– reference: Ramachandra, B., Jones, M., and Vatsavai, R. (2020a). Learning a distance function with a siamese network to localize anomalies in videos.In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2598–2607).
– start-page: 1
  year: 2008
  end-page: 7
  ident: bib87
  article-title: Statistical analysis of motion patterns in ais data: Anomaly detection and motion prediction
  publication-title: 2008 11th International Conference on Information Fusion
– reference: Galdelli, A., Mancini, A., Frontoni, E., and Tassetti, A. (2021b). A feature encoding approach and a cloud computing architecture to map fishing activities.In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (V007T07A003). American Society of Mechanical Engineers volume 85437.
– volume: 159
  year: 2020
  ident: bib100
  article-title: Combining object detection with generative adversarial networks for in-component anomaly detection
  publication-title: Fusion Eng. Des.
– volume: 67
  start-page: 226
  year: 2018
  end-page: 234
  ident: bib42
  article-title: Deep convolutional framework for abnormal behavior detection in a smart surveillance system
  publication-title: Eng. Appl. Artif. Intell.
– volume: 37
  start-page: 483
  year: 2010
  end-page: 490
  ident: bib63
  article-title: Study on collision avoidance in busy waterways by using ais data
  publication-title: Ocean Eng.
– year: 2020
  ident: bib85
  article-title: A survey of single-scene video anomaly detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 112
  year: 2022
  ident: bib121
  article-title: Anomaly detection in maritime ais tracks: a review of recent approaches
  publication-title: J. Mar. Sci. Eng.
– reference: He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.In: Proceedings of the IEEEconference on computer vision and pattern recognition (770–778).
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib18
  article-title: Unsupervised extraction of maritime patterns of life from automatic identification system data
  publication-title: OCEANS 2019-Marseille
– volume: 8
  start-page: 232
  year: 2020
  end-page: 243
  ident: bib43
  article-title: Deepmdp: a novel deep-learning-based missing data prediction protocol for iot
  publication-title: IEEE Internet Things J.
– reference: Nguyen, D., and Fablet, R. (2021). Traisformer-a generative transformer for ais trajectory prediction.arXiv preprint arXiv:2109.03958.
– volume: 26
  start-page: 91
  year: 2009
  ident: 10.1016/j.fishres.2024.106939_bib29
  article-title: A typology of reviews: an analysis of 14 review types and associated methodologies
  publication-title: Health Inf. Libr. J.
  doi: 10.1111/j.1471-1842.2009.00848.x
– volume: 79
  start-page: 22131
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib81
  article-title: Visual monitoring of high-sea fishing activities using deep learning-based image processing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08949-9
– volume: 7
  start-page: 40757
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib76
  article-title: A 3d-cnn and lstm based multi-task learning architecture for action recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906654
– start-page: 3645
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib120
  article-title: Simple online and realtime tracking with a deep association metric
– start-page: 9
  year: 2008
  ident: 10.1016/j.fishres.2024.106939_bib110
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.fishres.2024.106939_bib113
  doi: 10.1049/cp.2012.0414
– volume: 39
  start-page: 377
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib74
  article-title: The interpolation method for the missing ais data of ship
  publication-title: J. Navig. Port. Res.
  doi: 10.5394/KINPR.2015.39.5.377
– start-page: 1
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib18
  article-title: Unsupervised extraction of maritime patterns of life from automatic identification system data
– volume: 22
  start-page: 571
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib80
  article-title: Deep learning approaches for video-based anomalous activity detection
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0582-1
– volume: 19
  start-page: 1559
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib109
  article-title: Exploiting ais data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2724551
– start-page: 1
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib127
  article-title: Deep learning approaches for ais data association in the context of maritime domain awareness
– volume: 9
  start-page: 2983
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib52
  article-title: Vessel trajectory prediction model based on ais sensor data and adaptive chaos differential evolution support vector regression (acde-svr)
  publication-title: Appl. Sci.
  doi: 10.3390/app9152983
– volume: 8
  start-page: 682
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib96
  article-title: Deep learning in unmanned surface vehicles collision-avoidance pattern based on ais big data with double gru-rnn
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse8090682
– volume: 182
  start-page: 499
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib89
  article-title: Ship trajectory uncertainty prediction based on a gaussian process model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.024
– ident: 10.1016/j.fishres.2024.106939_bib112
– volume: 21
  start-page: 2756
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib24
  article-title: A synergic integration of ais data and sar imagery to monitor fisheries and detect suspicious activities
  publication-title: Sensors
  doi: 10.3390/s21082756
– volume: 29
  start-page: 3146
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib36
  article-title: Fish tracking and segmentation from stereo videos on the wild sea surface for electronic monitoring of rail fishing
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2872575
– start-page: 1689
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib86
  article-title: Plug-and-play cnn for crowd motion analysis: An application in abnormal event detection
– start-page: 1
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib54
  article-title: Deep learning to enhance maritime situation awareness
– start-page: 2682
  year: 2016
  ident: 10.1016/j.fishres.2024.106939_bib4
  article-title: Training deep neural-networks based on unreliable labels
– year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib117
  article-title: Deep learning for image super-resolution: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.fishres.2024.106939_bib73
  doi: 10.1109/ICCV.2019.00136
– volume: 102
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib123
  article-title: Scene recognition: a comprehensive survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107205
– start-page: 331
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib70
  article-title: A multi-task deep learning architecture for maritime surveillance using ais data streams
– start-page: 8936
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib19
  article-title: Prediction of vessel trajectories from ais data via sequence-to-sequence recurrent neural networks
– ident: 10.1016/j.fishres.2024.106939_bib124
  doi: 10.5244/C.29.8
– volume: 243
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib27
  article-title: Assessing seabird bycatch in gillnet fisheries using electronic monitoring
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2020.108461
– start-page: 779
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib101
  article-title: Deep appearance features for abnormal behavior detection in video
– volume: 14
  start-page: 2537
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib131
  article-title: Anomalynet: an anomaly detection network for video surveillance
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2900907
– start-page: 333
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib45
  article-title: Vessel trajectory similarity measure based on deep convolutional autoencoder
– volume: 209
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib64
  article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical ais data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107478
– volume: 8
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib88
  publication-title: S. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– start-page: 1917
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib91
  article-title: Mining vessel trajectories for illegal fishing detection
– start-page: 832
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib99
  article-title: Machine learning-assisted anomaly detection in maritime navigation using ais data
– start-page: 263
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib102
  article-title: Anomalous trajectory detection using recurrent neural network
– ident: 10.1016/j.fishres.2024.106939_bib32
  doi: 10.1109/CVPR.2016.90
– start-page: 1123
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib83
  article-title: Contextual verification for false alarm reduction in maritime anomaly detection
– volume: 108
  start-page: 372
  year: 2011
  ident: 10.1016/j.fishres.2024.106939_bib34
  article-title: Ecological risk assessment for the effects of fishing
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2011.01.013
– volume: 8
  start-page: 50312
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib25
  article-title: Unsupervised anomaly detection and localization based on deep spatiotemporal translation network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979869
– volume: 159
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib100
  article-title: Combining object detection with generative adversarial networks for in-component anomaly detection
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.111736
– volume: 7
  start-page: 29
  year: 2016
  ident: 10.1016/j.fishres.2024.106939_bib133
  article-title: Real-time vessel behavior prediction
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-015-9133-5
– volume: 219
  start-page: 548
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib16
  article-title: Learning deep event models for crowd anomaly detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.063
– start-page: 142
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib14
  article-title: Anomaly detection in maritime domain based on spatio-temporal analysis of ais data using graph neural networks
– start-page: 580
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib13
  article-title: The neighbor course distribution method with gaussian mixture models for ais-based vessel trajectory prediction
– volume: 40
  start-page: 5719
  year: 2013
  ident: 10.1016/j.fishres.2024.106939_bib39
  article-title: Open data for anomaly detection in maritime surveillance
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.04.029
– volume: 11
  year: 2016
  ident: 10.1016/j.fishres.2024.106939_bib103
  article-title: Improving fishing pattern detection from satellite ais using data mining and machine learning
  publication-title: PloS One
– start-page: 1
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib7
  article-title: Mining maritime vessel traffic: Promises, challenges, techniques
– volume: 55
  start-page: 84
  year: 2014
  ident: 10.1016/j.fishres.2024.106939_bib57
  article-title: Anomaly detection in vessel tracks using bayesian networks
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.03.012
– volume: 112
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib41
  article-title: Multi-camera vision-based productivity monitoring of earthmoving operations
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103121
– start-page: 1928
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib92
  article-title: Triptracker: Unsupervised learning of fishing vessel routine activity patterns
– start-page: 264
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib71
  article-title: Detection of abnormal vessel behaviours from ais data using geotracknet: from the laboratory to the ocean
– volume: 70
  start-page: 847
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib98
  article-title: Study of automatic anomalous behaviour detection techniques for maritime vessels
  publication-title: J. Navig.
  doi: 10.1017/S0373463317000066
– volume: 32
  start-page: 1517
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib53
  article-title: Generative adversarial active learning for unsupervised outlier detection
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: 10.1016/j.fishres.2024.106939_bib122
  doi: 10.1109/CVPR.2015.7298685
– ident: 10.1016/j.fishres.2024.106939_bib56
– volume: 54
  start-page: 1
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib79
  article-title: Deep learning for anomaly detection: a review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3439950
– volume: 34
  start-page: 347
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib104
  article-title: Literature reviews: methods and applications
  publication-title: Prehosp. Disaster Med.
  doi: 10.1017/S1049023X19004588
– volume: 21
  start-page: 162
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib111
  article-title: Electronic monitoring in fisheries: Lessons from global experiences and future opportunities
  publication-title: Fish Fish
  doi: 10.1111/faf.12425
– volume: 8
  start-page: 161969
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib51
  article-title: Ship collision risk assessment based on collision detection algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013957
– volume: 37
  start-page: 483
  year: 2010
  ident: 10.1016/j.fishres.2024.106939_bib63
  article-title: Study on collision avoidance in busy waterways by using ais data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2010.01.012
– volume: 204
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib129
  article-title: Towards a convolutional neural network model for classifying regional ship collision risk levels for waterway risk analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107127
– volume: 16
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib38
  article-title: Trajectory pattern extraction and anomaly detection for maritime vessels
  publication-title: Internet Things
  doi: 10.1016/j.iot.2021.100436
– volume: 75
  start-page: 374
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib97
  article-title: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsx109
– ident: 10.1016/j.fishres.2024.106939_bib77
  doi: 10.1145/3292500.3330871
– volume: 16
  start-page: 393
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib68
  article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2938527
– start-page: 1
  year: 2007
  ident: 10.1016/j.fishres.2024.106939_bib119
  article-title: Action recognition from arbitrary views using 3d exemplars
– volume: 10
  start-page: 2045
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib62
  article-title: Using machine vision to estimate fish length from images using regional convolutional neural networks
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13282
– volume: 234
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib30
  article-title: Improved kinematic interpolation for ais trajectory reconstruction
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109256
– ident: 10.1016/j.fishres.2024.106939_bib8
– volume: 8
  start-page: 232
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib43
  article-title: Deepmdp: a novel deep-learning-based missing data prediction protocol for iot
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3003922
– start-page: 1
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib115
  article-title: A prediction model of vessel trajectory based on generative adversarial network
  publication-title: J. Navig.
– start-page: 1
  year: 2008
  ident: 10.1016/j.fishres.2024.106939_bib87
  article-title: Statistical analysis of motion patterns in ais data: Anomaly detection and motion prediction
– start-page: 1
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib59
  article-title: Knowledge-based vessel position prediction using historical ais data
– start-page: 471
  year: 2016
  ident: 10.1016/j.fishres.2024.106939_bib105
  article-title: Fish recognition from low-resolution underwater images
– ident: 10.1016/j.fishres.2024.106939_bib15
– start-page: 1
  year: 2010
  ident: 10.1016/j.fishres.2024.106939_bib44
  article-title: Maritime anomaly detection and threat assessment
– year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib72
  article-title: Geotracknet–a maritime anomaly detector using probabilistic neural network representation of ais tracks and a contrario detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1867
  year: 2016
  ident: 10.1016/j.fishres.2024.106939_bib60
  article-title: Ais reception characterisation for ais on/off anomaly detection
– start-page: 1907
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib46
  article-title: Object-oriented anomaly detection in surveillance videos
– volume: 76
  start-page: 704
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib118
  article-title: Mask-cnn: Localizing parts and selecting descriptors for fine-grained bird species categorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.002
– ident: 10.1016/j.fishres.2024.106939_bib5
  doi: 10.1109/CVPR.2017.143
– year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib65
  article-title: An ais-based deep learning framework for regional ship behavior prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107819
– ident: 10.1016/j.fishres.2024.106939_bib23
  doi: 10.1115/DETC2021-69799
– ident: 10.1016/j.fishres.2024.106939_bib10
  doi: 10.1109/IEEECONF38699.2020.9389122
– start-page: 1279
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib94
  article-title: Maritime situation analysis framework: Vessel interaction classification and anomaly detection
– volume: 78
  start-page: 110
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib61
  article-title: A novel anomaly detection approach to identify intentional ais on-off switching
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.011
– volume: 10
  start-page: 112
  year: 2022
  ident: 10.1016/j.fishres.2024.106939_bib121
  article-title: Anomaly detection in maritime ais tracks: a review of recent approaches
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10010112
– year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib85
  article-title: A survey of single-scene video anomaly detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3040591
– volume: 71
  start-page: 100
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib95
  article-title: Research on ship classification based on trajectory features
  publication-title: J. Navig.
  doi: 10.1017/S0373463317000546
– volume: 22
  start-page: 839
  year: 2022
  ident: 10.1016/j.fishres.2024.106939_bib107
  article-title: Addressing gaps in small-scale fisheries: a low-cost tracking system
  publication-title: Sensors
  doi: 10.3390/s22030839
– ident: 10.1016/j.fishres.2024.106939_bib78
  doi: 10.1109/CVPR42600.2020.01219
– volume: 23
  start-page: 18
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib48
  article-title: Explainable ai: A review of machine learning interpretability methods
  publication-title: Entropy
  doi: 10.3390/e23010018
– ident: 10.1016/j.fishres.2024.106939_bib33
  doi: 10.1109/ICCV.2017.391
– ident: 10.1016/j.fishres.2024.106939_bib31
  doi: 10.1109/CVPR.2016.86
– start-page: 241
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib55
  article-title: An automatic identification system (ais) database for maritime trajectory prediction and data mining
– ident: 10.1016/j.fishres.2024.106939_bib47
  doi: 10.1109/ICBDA.2019.8713215
– start-page: 529
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib116
  article-title: Ais ship trajectory clustering based on convolutional auto-encoder
– volume: 47
  start-page: 358
  year: 2016
  ident: 10.1016/j.fishres.2024.106939_bib132
  article-title: Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes
  publication-title: Signal Process.: Image Commun.
– volume: 77
  start-page: 1340
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib22
  article-title: Deep neural networks for analysis of fisheries surveillance video and automated monitoring of fish discards
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz149
– start-page: 189
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib9
  article-title: Abnormal event detection in videos using spatiotemporal autoencoder
– volume: 61
  start-page: 96
  year: 2014
  ident: 10.1016/j.fishres.2024.106939_bib75
  article-title: Machine learning approaches to maritime anomaly detection
  publication-title: Naše more: Znan. časopis za more i Pomor.
– year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib66
  article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness
  publication-title: J. Ocean Eng. Sci.
– start-page: 847
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib11
  article-title: Automatic fish segmentation and recognition for trawl-based cameras
– volume: 39
  year: 2014
  ident: 10.1016/j.fishres.2024.106939_bib1
  article-title: Data driven contextual knowledge from and for maritime situational awareness
  publication-title: Context-Aware. Geogr. Inf. Serv. (CAGIS 2014)
– volume: 67
  start-page: 226
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib42
  article-title: Deep convolutional framework for abnormal behavior detection in a smart surveillance system
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.001
– ident: 10.1016/j.fishres.2024.106939_bib84
  doi: 10.1109/WACV45572.2020.9093417
– start-page: 192
  year: 2014
  ident: 10.1016/j.fishres.2024.106939_bib93
  article-title: Maritime situation analysis: A multi-vessel interaction and anomaly detection framework
– ident: 10.1016/j.fishres.2024.106939_bib69
– volume: 6
  start-page: 78503
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib82
  article-title: Improving transfer learning and squeeze-and-excitation networks for small-scale fine-grained fish image classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885055
– ident: 10.1016/j.fishres.2024.106939_bib37
  doi: 10.1145/3415958.3433079
– volume: 17
  start-page: 311
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib20
  article-title: Past, present, and future of the satellite-based automatic identification system: Areas of applications (2004–2016)
  publication-title: WMU J. Marit. Aff.
  doi: 10.1007/s13437-018-0151-6
– ident: 10.1016/j.fishres.2024.106939_bib126
  doi: 10.1109/CVPR.2019.00718
– start-page: 1
  year: 2014
  ident: 10.1016/j.fishres.2024.106939_bib58
  article-title: Discovering vessel activities at sea using ais data: Mapping of fishing footprints
– start-page: 3880
  year: 2017
  ident: 10.1016/j.fishres.2024.106939_bib125
  article-title: Trajectory clustering via deep representation learning
– volume: 10
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib67
  article-title: Mapping fishing effort through ais data
  publication-title: PloS One
  doi: 10.1371/journal.pone.0130746
– volume: 13
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib17
  article-title: Loitering with intent-?atching the outlier vessels at sea
  publication-title: Plos One
  doi: 10.1371/journal.pone.0200189
– ident: 10.1016/j.fishres.2024.106939_bib35
– start-page: 270
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib106
  article-title: A survey on deep transfer learning
– volume: 57
  start-page: 4329
  year: 2021
  ident: 10.1016/j.fishres.2024.106939_bib6
  article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3096873
– ident: 10.1016/j.fishres.2024.106939_bib128
– year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib21
  article-title: Convolutional neural networks for counting fish in fisheries surveillance video
– ident: 10.1016/j.fishres.2024.106939_bib90
  doi: 10.1117/12.776230
– start-page: 841
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib130
  article-title: Multivariate time-series anomaly detection via graph attention network
– start-page: 1590
  year: 2005
  ident: 10.1016/j.fishres.2024.106939_bib108
  article-title: Use of the automatic identification system (ais) for maritime domain awareness (mda)
– volume: 79
  start-page: 257
  year: 2022
  ident: 10.1016/j.fishres.2024.106939_bib40
  article-title: Early lessons in deploying cameras and artificial intelligence technology for fisheries catch monitoring: where machine learning meets commercial fishing
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/cjfas-2020-0446
– ident: 10.1016/j.fishres.2024.106939_bib49
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib2
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 219
  start-page: 35
  year: 2018
  ident: 10.1016/j.fishres.2024.106939_bib3
  article-title: Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2018.01.003
– volume: 217
  year: 2020
  ident: 10.1016/j.fishres.2024.106939_bib26
  article-title: Ship collision avoidance anthropomorphic decision-making for structured learning based on ais with seq-cgan
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107922
– volume: 27
  start-page: 683
  year: 2016
  ident: 10.1016/j.fishres.2024.106939_bib12
  article-title: Toward abnormal trajectory and event detection in video surveillance
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2589859
– volume: 29
  start-page: 2247
  year: 2007
  ident: 10.1016/j.fishres.2024.106939_bib28
  article-title: Actions as space-time shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.70711
– start-page: 1113
  year: 2015
  ident: 10.1016/j.fishres.2024.106939_bib50
  article-title: Ship movement anomaly detection using specialized distance measures
– volume: 7
  start-page: 52836
  year: 2019
  ident: 10.1016/j.fishres.2024.106939_bib114
  article-title: Multi-scale fish segmentation refinement and missing shape recovery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912612
SSID ssj0007761
Score 2.421076
SecondaryResourceType review_article
Snippet To ensure sustainable fisheries, many complex on-vessel activities are periodically monitored to provide data to assist the assessment of stock status and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106939
SubjectTerms Anomaly detection
Automatic Identification System (AIS)
cameras
Deep learning
Electronic Monitoring (EM)
fisheries
Sustainable fisheries
Title Towards automatic anomaly detection in fisheries using electronic monitoring and automatic identification system
URI https://dx.doi.org/10.1016/j.fishres.2024.106939
https://www.proquest.com/docview/3040424626
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0165-7836
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007761
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0165-7836
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007761
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  issn: 0165-7836
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007761
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  issn: 0165-7836
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007761
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0165-7836
  databaseCode: AKRWK
  dateStart: 19810101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007761
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaC7rIeiq5b0cdWaMCuThxbcqxjUKxIOyyXtUBvgp6Bg9YJEufQS3_7SFlutqJAgN5sWRQEUqJI-SNJyI-CK3AyhEhMmbGEKWETBb5y4rhRVqihThVeDfyeFpM7dnPP73vksouFQVhl1P2tTg_aOrYMIjcHy6oa_MFAHIxBQBQkrk2MYGcFwvr6z1uYx2hUtDUJC55g720Uz2De99UaOIZZuzMGbYXAmuFvn0-vNHU4fq4OyUG0G-m4ndon0nP1Edkfz1Yxd4b7TJa3AQK7pmrTLEImVqpqeHh4otY1AXJV06qmPsDgwUOmCHqf0W0lHPoYdjhe9QGp_WegykZUURAkbfM_fyF3Vz9vLydJLKiQGLBLmkR4YbVLcwU2ktZp4XmpuOa5BxsBPnFj88yAUK0VwufC5mXqh6nXzGVipE2ZH5O9elG7E0Id-CGl585wAxaXMMpzbQvoY0da8dSeEtaxUZqYbRyLXjzIDlY2l5H7ErkvW-6fkv4L2bJNt7GLoOxkJP9bNxKOhF2k3zuZSthT-KNE1W6xWcscNBvLGPh6Z-8f_px8xLcW5fOV7DWrjfsGBkyjL8IKvSAfxte_JtO_51_1Vw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cByQDx2Bbs8jMQ1NCR2Gh8rBGp59EKRuFl-olSQVjQ97L_fceJQQEhI3CI7Y0Uz4_GM880MwEnGJAYZnEc6T2hEJTeRxFg5skxLw-WZiqW_GrgdZYN7evXAHlbgvM2F8bDKYPsbm15b6zDSDdzszoqie-cTcXwOgkdBet38AauUoU3uwGp_eD0YvRrkXi9r2hJmLPIEy0Se7uTUFXNkmi_cnVAcy7hvG_75EfXBWNcn0OUmbATXkfSbr9uCFVtuw3r_8SWUz7A7MBvXKNg5kYtqWhdjJbLEh6d_xNiqRl2VpCiJq5HwGCQTj3t_JMtmOOS53uT-tg9JzZuFChOARbUsSVMC-hfcX16MzwdR6KkQaXRNqog7bpSNU4luklJx5lgumWKpQzcBp5g2aaJRrsZw7lJu0jx2Z7FT1Ca8p3Se_oZOOS3tLhCLoUjumNVMo9PFtXRMmQzfMT0lWWz2gLZsFDoUHPd9L55EiyybiMB94bkvGu7vwekr2aypuPEVQd7KSLxTHYGnwlekx61MBW4r_69Elna6mIsUjRtNKIZ7f76__BGsDca3N-JmOLr-Cz_9TAP62YdO9bKwB-jPVOow6Ot_Mj_4Ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+automatic+anomaly+detection+in+fisheries+using+electronic+monitoring+and+automatic+identification+system&rft.jtitle=Fisheries+research&rft.au=Acharya%2C+Debaditya&rft.au=Farazi%2C+Moshiur&rft.au=Rolland%2C+Vivien&rft.au=Petersson%2C+Lars&rft.date=2024-04-01&rft.issn=0165-7836&rft.volume=272&rft.spage=106939&rft_id=info:doi/10.1016%2Fj.fishres.2024.106939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fishres_2024_106939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-7836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-7836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-7836&client=summon