pyRMSD: a Python package for efficient pairwise RMSD matrix calculation and handling
We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matri...
        Saved in:
      
    
          | Published in | Bioinformatics Vol. 29; no. 18; pp. 2363 - 2364 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
        
        15.09.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4803 1367-4811 1367-4811 1460-2059  | 
| DOI | 10.1093/bioinformatics/btt402 | 
Cover
| Abstract | We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.
Availability: The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.
Contact:  victor.guallar@bsc.es
Supplementary information:  Supplementary data are available at Bioinformatics online. | 
    
|---|---|
| AbstractList | We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.
The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.
victor.guallar@bsc.es
Supplementary data are available at Bioinformatics online. We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.SUMMARYWe introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.AVAILABILITYThe source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.victor.guallar@bsc.esCONTACTvictor.guallar@bsc.esSupplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.Availability: The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.Contact: victor.guallarsc.esSupplementary information: Supplementary data are available at Bioinformatics online. We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms. Availability: The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section. Contact: victor.guallar@bsc.es Supplementary information: Supplementary data are available at Bioinformatics online.  | 
    
| Author | Gil, Víctor A. Guallar, Víctor  | 
    
| Author_xml | – sequence: 1 givenname: Víctor A. surname: Gil fullname: Gil, Víctor A. – sequence: 2 givenname: Víctor surname: Guallar fullname: Guallar, Víctor  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23846743$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkEtPxCAUhYnR-P4JGpZuxoFCC9WV8Z2M0fhYNxToDMrQCjQ6_17G0Ul0oxsgl-_ce-7ZAquudRqAPYwOMSrJsDatcU3rpyIaGYZ1jBRlK2ATk4INKMd4dflGZANshfCMEMpRXqyDjYxwWjBKNsFjN7u_eTg7ggLezeKkdbAT8kWMNUy9oW4aI412MVWNfzNBwzkN01Bv3qEUVvY2GUgy4RScpMMaN94Ba42wQe9-3dvg6eL88fRqMLq9vD49GQ0k4WUccIklqRvNZMZlpkquqCJE0yJnRErMa4VyRbnCLP2XvEYI55lElCrEiMg12QbFom_vOjF7E9ZWnTdT4WcVRtU8pupnTNUipiQ8WAg73772OsRqaoLU1gqn2z5UmJKEMUzwP9CMM0ZLnCd0_wvt66lWSy_faSfgeAFI34bgdVNJEz_ji14Y-6fp_Jf6f8t-ALz5r8E | 
    
| CitedBy_id | crossref_primary_10_1016_j_jsb_2018_07_001 crossref_primary_10_1093_bioinformatics_btaa018 crossref_primary_10_1038_s41596_021_00640_z crossref_primary_10_1016_j_str_2020_12_006 crossref_primary_10_1093_bioinformatics_btw628 crossref_primary_10_3390_biom10091236 crossref_primary_10_1063_1_4965440 crossref_primary_10_1093_bioinformatics_btx551 crossref_primary_10_1021_ct500306s crossref_primary_10_1099_jgv_0_000569  | 
    
| Cites_doi | 10.1107/S0108767305015266 10.1007/s11222-007-9033-z 10.1107/S0567739478001680 10.1021/bi00053a005 10.1186/1471-2105-12-445  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btt402 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1367-4811 1460-2059  | 
    
| EndPage | 2364 | 
    
| ExternalDocumentID | 10.1093/bioinformatics/btt402 23846743 10_1093_bioinformatics_btt402  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 482 7QO 8FD ABJNI FR3 P64 ROZ TN5 WH7 .-4 .GJ ABEFU ABNGD ACUKT ADTOC AFFNX AGQPQ AI. AQDSO ATTQO AZFZN C1A CAG COF ELUNK HVGLF NTWIH O~Y PB- RNI RZF RZO UNPAY VH1 ZGI  | 
    
| ID | FETCH-LOGICAL-c389t-8c1c3bfe7c28c2d98d4d33e46573cc18bd05d48d1728c98b00152c044d073a5e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4803 1367-4811  | 
    
| IngestDate | Tue Aug 19 18:54:09 EDT 2025 Tue Oct 07 10:10:08 EDT 2025 Thu Jul 10 18:20:37 EDT 2025 Mon Jul 21 06:04:49 EDT 2025 Tue Jul 01 03:27:08 EDT 2025 Thu Apr 24 23:12:27 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 18 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c389t-8c1c3bfe7c28c2d98d4d33e46573cc18bd05d48d1728c98b00152c044d073a5e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/29/18/2363/50782218/bioinformatics_29_18_2363.pdf | 
    
| PMID | 23846743 | 
    
| PQID | 1428774915 | 
    
| PQPubID | 23479 | 
    
| PageCount | 2 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btt402 proquest_miscellaneous_1434027131 proquest_miscellaneous_1428774915 pubmed_primary_23846743 crossref_citationtrail_10_1093_bioinformatics_btt402 crossref_primary_10_1093_bioinformatics_btt402  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-09-15 2013-Sep-15 20130915  | 
    
| PublicationDateYYYYMMDD | 2013-09-15 | 
    
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Bioinformatics | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2013 | 
    
| References | Luxburg (2023070311400281400_btt402-B4) 2007; 17 Karpen (2023070311400281400_btt402-B3) 1993; 32 Phillips (2023070311400281400_btt402-B5) 2011; 12 Kabsch (2023070311400281400_btt402-B2) 1978; 34 Heisterberg (2023070311400281400_btt402-B1) 1990 Theobald (2023070311400281400_btt402-B6) 2005; 61  | 
    
| References_xml | – volume: 61 start-page: 478 year: 2005 ident: 2023070311400281400_btt402-B6 article-title: Rapid calculation of RMSDs using a quaternion-based characteristic polynomial publication-title: Acta. Crystallogr. A doi: 10.1107/S0108767305015266 – volume: 17 start-page: 395 year: 2007 ident: 2023070311400281400_btt402-B4 article-title: A tutorial on spectral clustering publication-title: Stat. Comp. doi: 10.1007/s11222-007-9033-z – year: 1990 ident: 2023070311400281400_btt402-B1 article-title: QTRFIT algorithm for superimposing two similar rigid molecules – volume: 34 start-page: 827 year: 1978 ident: 2023070311400281400_btt402-B2 article-title: A discussion of the solution for the best rotation to relate two sets of vectors publication-title: Acta. Crystallogr. A doi: 10.1107/S0567739478001680 – volume: 32 start-page: 412 year: 1993 ident: 2023070311400281400_btt402-B3 article-title: Statistical clustering techniques for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories of YPGDV publication-title: Biochemistry doi: 10.1021/bi00053a005 – volume: 12 start-page: 445 year: 2011 ident: 2023070311400281400_btt402-B5 article-title: Validating clustering of molecular dynamics simulations using polymer models publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-445  | 
    
| SSID | ssj0005056 ssj0051444  | 
    
| Score | 2.172067 | 
    
| Snippet | We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation... | 
    
| SourceID | unpaywall proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 2363 | 
    
| SubjectTerms | Algorithms Data Interpretation, Statistical Programming Languages Software  | 
    
| Title | pyRMSD: a Python package for efficient pairwise RMSD matrix calculation and handling | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23846743 https://www.proquest.com/docview/1428774915 https://www.proquest.com/docview/1434027131 https://academic.oup.com/bioinformatics/article-pdf/29/18/2363/50782218/bioinformatics_29_18_2363.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford - Revues - OpenAccess customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford - Revues - OpenAccess customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7aOiHEA-NO0ZiMxGuS-tY4vE0b04S0MUErlafIt0rVSlptqUb5AfxujhOngiJxeeAtic6xE_vY53Ps8x2A11xP1SBnMimUZ4lwuUyMExQ7xDLm0CGKadjRPb8Yno3Fu4mc7IDvYmF0PBWediENZraIFKKBtjiL7Zks3TRjRUZVxviQZ7LxdHj3s3jJipKqMoikqLELe0OJkL0He-OLy6NPbUxWngjVZFCO15R2kT4F367e1LWIf2A2PuwXYHoP7q6qpV7f6vn8B2d1ug_fus9sz6hcpavapPbrFgPkf2-HB3A_wl1y1JbzEHZ89QjutAkw149htFx_OP948oZocrkOLAYEl_BXOMURLJT4ht4CvSI-nV3fzm48CdLkc0gr8IWgddmYfIzoypGGMAI98RMYn74dHZ8lMc9DYhEu1Ymy1HIz9bllyqKBKCcc514MZc6tpcq4gXRCuZBKyxaqwXnMDoRwOD9p6flT6FWLyj8HIijiL6oNp1YLroyymuOKjCmfez1wtg-i67nSRhL0kItjXrab8bzcari2w_uQbtSWLQvInxRedWZR4ngNmzC68ovVTRkY7hByF1T-ToZjGTnltA_PWpvaVIsQKySI4X3INkb2d-_04p81DqBXX6_8S4RdtTmE3dH7yWEcOt8Bq600ww | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDaX00PdjQxtU6NX26rWWewtpQwgkhDYL6cnotbBk410SL8nmB_R3d2TLS7qFJjn0ZpsZyZZGmk-W5huAz1yP1SBnMimUZ4lwuUyMExQ7xDLm0CGKcdjRPTwa7o_Ewak83QDfxcLoeCo87UIazGQWKUQDbXEW2zOZu3HGioyqjPEhz2Tj6fDuT_GSFSVVZRBJUeMRbA4lQvYebI6Ojnd-tjFZeSJUk0E5XlPaRfoUfL16U9ci_oFZ-bC_gOlTeLKo5np5pafTW85q7zn86j6zPaNyli5qk9qbNQbI_94OL-BZhLtkpy3nJWz46hU8bhNgLl_DyXz5_fDH1y9Ek-NlYDEguIQ_wymOYKHEN_QW6BXx6eTianLpSZAm5yGtwDVB67Ix-RjRlSMNYQR64jcw2vt2srufxDwPiUW4VCfKUsvN2OeWKYsGopxwnHsxlDm3lirjBtIJ5UIqLVuoBucxOxDC4fykpedvoVfNKv8eiKCIv6g2nFotuDLKao4rMqZ87vXA2T6IrudKG0nQQy6OadluxvNyreHaDu9DulKbtywgdyl86syixPEaNmF05WeLyzIw3CHkLqj8lwzHMnLKaR_etTa1qhYhVkgQw_uQrYzsfu-09WCND9CrLxb-I8Ku2mzHQfMbdEIzpw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyRMSD%3A+a+Python+package+for+efficient+pairwise+RMSD+matrix+calculation+and+handling&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Gil%2C+V%C3%ADctor+A&rft.au=Guallar%2C+V%C3%ADctor&rft.date=2013-09-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=29&rft.issue=18&rft.spage=2363&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtt402&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |