pyRMSD: a Python package for efficient pairwise RMSD matrix calculation and handling

We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matri...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 29; no. 18; pp. 2363 - 2364
Main Authors Gil, Víctor A., Guallar, Víctor
Format Journal Article
LanguageEnglish
Published England 15.09.2013
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btt402

Cover

Abstract We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms. Availability: The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section. Contact:  victor.guallar@bsc.es Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms. The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section. victor.guallar@bsc.es Supplementary data are available at Bioinformatics online.
We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.SUMMARYWe introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.AVAILABILITYThe source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.victor.guallar@bsc.esCONTACTvictor.guallar@bsc.esSupplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms.Availability: The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section.Contact: victor.guallarsc.esSupplementary information: Supplementary data are available at Bioinformatics online.
We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation (RMSD)-related calculations of large sets of structures. It is specially tuned to do fast collective RMSD calculations, as pairwise RMSD matrices, implementing up to three well-known superposition algorithms. pyRMSD provides its own symmetric distance matrix class that, besides the fact that it can be used as a regular matrix, helps to save memory and increases memory access speed. This last feature can dramatically improve the overall performance of any Python algorithm using it. In addition, its extensibility, testing suites and documentation make it a good choice to those in need of a workbench for developing or testing new algorithms. Availability: The source code (under MIT license), installer, test suites and benchmarks can be found at https://pele.bsc.es/ under the tools section. Contact:  victor.guallar@bsc.es Supplementary information:  Supplementary data are available at Bioinformatics online.
Author Gil, Víctor A.
Guallar, Víctor
Author_xml – sequence: 1
  givenname: Víctor A.
  surname: Gil
  fullname: Gil, Víctor A.
– sequence: 2
  givenname: Víctor
  surname: Guallar
  fullname: Guallar, Víctor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23846743$$D View this record in MEDLINE/PubMed
BookMark eNqNkEtPxCAUhYnR-P4JGpZuxoFCC9WV8Z2M0fhYNxToDMrQCjQ6_17G0Ul0oxsgl-_ce-7ZAquudRqAPYwOMSrJsDatcU3rpyIaGYZ1jBRlK2ATk4INKMd4dflGZANshfCMEMpRXqyDjYxwWjBKNsFjN7u_eTg7ggLezeKkdbAT8kWMNUy9oW4aI412MVWNfzNBwzkN01Bv3qEUVvY2GUgy4RScpMMaN94Ba42wQe9-3dvg6eL88fRqMLq9vD49GQ0k4WUccIklqRvNZMZlpkquqCJE0yJnRErMa4VyRbnCLP2XvEYI55lElCrEiMg12QbFom_vOjF7E9ZWnTdT4WcVRtU8pupnTNUipiQ8WAg73772OsRqaoLU1gqn2z5UmJKEMUzwP9CMM0ZLnCd0_wvt66lWSy_faSfgeAFI34bgdVNJEz_ji14Y-6fp_Jf6f8t-ALz5r8E
CitedBy_id crossref_primary_10_1016_j_jsb_2018_07_001
crossref_primary_10_1093_bioinformatics_btaa018
crossref_primary_10_1038_s41596_021_00640_z
crossref_primary_10_1016_j_str_2020_12_006
crossref_primary_10_1093_bioinformatics_btw628
crossref_primary_10_3390_biom10091236
crossref_primary_10_1063_1_4965440
crossref_primary_10_1093_bioinformatics_btx551
crossref_primary_10_1021_ct500306s
crossref_primary_10_1099_jgv_0_000569
Cites_doi 10.1107/S0108767305015266
10.1007/s11222-007-9033-z
10.1107/S0567739478001680
10.1021/bi00053a005
10.1186/1471-2105-12-445
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btt402
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 2364
ExternalDocumentID 10.1093/bioinformatics/btt402
23846743
10_1093_bioinformatics_btt402
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
482
7QO
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
.-4
.GJ
ABEFU
ABNGD
ACUKT
ADTOC
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
ELUNK
HVGLF
NTWIH
O~Y
PB-
RNI
RZF
RZO
UNPAY
VH1
ZGI
ID FETCH-LOGICAL-c389t-8c1c3bfe7c28c2d98d4d33e46573cc18bd05d48d1728c98b00152c044d073a5e3
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Tue Aug 19 18:54:09 EDT 2025
Tue Oct 07 10:10:08 EDT 2025
Thu Jul 10 18:20:37 EDT 2025
Mon Jul 21 06:04:49 EDT 2025
Tue Jul 01 03:27:08 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-8c1c3bfe7c28c2d98d4d33e46573cc18bd05d48d1728c98b00152c044d073a5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/29/18/2363/50782218/bioinformatics_29_18_2363.pdf
PMID 23846743
PQID 1428774915
PQPubID 23479
PageCount 2
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btt402
proquest_miscellaneous_1434027131
proquest_miscellaneous_1428774915
pubmed_primary_23846743
crossref_citationtrail_10_1093_bioinformatics_btt402
crossref_primary_10_1093_bioinformatics_btt402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-15
2013-Sep-15
20130915
PublicationDateYYYYMMDD 2013-09-15
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2013
References Luxburg (2023070311400281400_btt402-B4) 2007; 17
Karpen (2023070311400281400_btt402-B3) 1993; 32
Phillips (2023070311400281400_btt402-B5) 2011; 12
Kabsch (2023070311400281400_btt402-B2) 1978; 34
Heisterberg (2023070311400281400_btt402-B1) 1990
Theobald (2023070311400281400_btt402-B6) 2005; 61
References_xml – volume: 61
  start-page: 478
  year: 2005
  ident: 2023070311400281400_btt402-B6
  article-title: Rapid calculation of RMSDs using a quaternion-based characteristic polynomial
  publication-title: Acta. Crystallogr. A
  doi: 10.1107/S0108767305015266
– volume: 17
  start-page: 395
  year: 2007
  ident: 2023070311400281400_btt402-B4
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comp.
  doi: 10.1007/s11222-007-9033-z
– year: 1990
  ident: 2023070311400281400_btt402-B1
  article-title: QTRFIT algorithm for superimposing two similar rigid molecules
– volume: 34
  start-page: 827
  year: 1978
  ident: 2023070311400281400_btt402-B2
  article-title: A discussion of the solution for the best rotation to relate two sets of vectors
  publication-title: Acta. Crystallogr. A
  doi: 10.1107/S0567739478001680
– volume: 32
  start-page: 412
  year: 1993
  ident: 2023070311400281400_btt402-B3
  article-title: Statistical clustering techniques for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories of YPGDV
  publication-title: Biochemistry
  doi: 10.1021/bi00053a005
– volume: 12
  start-page: 445
  year: 2011
  ident: 2023070311400281400_btt402-B5
  article-title: Validating clustering of molecular dynamics simulations using polymer models
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-445
SSID ssj0005056
ssj0051444
Score 2.172067
Snippet We introduce pyRMSD, an open source standalone Python package that aims at offering an integrative and efficient way of performing Root Mean Square Deviation...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2363
SubjectTerms Algorithms
Data Interpretation, Statistical
Programming Languages
Software
Title pyRMSD: a Python package for efficient pairwise RMSD matrix calculation and handling
URI https://www.ncbi.nlm.nih.gov/pubmed/23846743
https://www.proquest.com/docview/1428774915
https://www.proquest.com/docview/1434027131
https://academic.oup.com/bioinformatics/article-pdf/29/18/2363/50782218/bioinformatics_29_18_2363.pdf
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford - Revues - OpenAccess
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford - Revues - OpenAccess
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7aOiHEA-NO0ZiMxGuS-tY4vE0b04S0MUErlafIt0rVSlptqUb5AfxujhOngiJxeeAtic6xE_vY53Ps8x2A11xP1SBnMimUZ4lwuUyMExQ7xDLm0CGKadjRPb8Yno3Fu4mc7IDvYmF0PBWediENZraIFKKBtjiL7Zks3TRjRUZVxviQZ7LxdHj3s3jJipKqMoikqLELe0OJkL0He-OLy6NPbUxWngjVZFCO15R2kT4F367e1LWIf2A2PuwXYHoP7q6qpV7f6vn8B2d1ug_fus9sz6hcpavapPbrFgPkf2-HB3A_wl1y1JbzEHZ89QjutAkw149htFx_OP948oZocrkOLAYEl_BXOMURLJT4ht4CvSI-nV3fzm48CdLkc0gr8IWgddmYfIzoypGGMAI98RMYn74dHZ8lMc9DYhEu1Ymy1HIz9bllyqKBKCcc514MZc6tpcq4gXRCuZBKyxaqwXnMDoRwOD9p6flT6FWLyj8HIijiL6oNp1YLroyymuOKjCmfez1wtg-i67nSRhL0kItjXrab8bzcari2w_uQbtSWLQvInxRedWZR4ngNmzC68ovVTRkY7hByF1T-ToZjGTnltA_PWpvaVIsQKySI4X3INkb2d-_04p81DqBXX6_8S4RdtTmE3dH7yWEcOt8Bq600ww
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDaX00PdjQxtU6NX26rWWewtpQwgkhDYL6cnotbBk410SL8nmB_R3d2TLS7qFJjn0ZpsZyZZGmk-W5huAz1yP1SBnMimUZ4lwuUyMExQ7xDLm0CGKcdjRPTwa7o_Ewak83QDfxcLoeCo87UIazGQWKUQDbXEW2zOZu3HGioyqjPEhz2Tj6fDuT_GSFSVVZRBJUeMRbA4lQvYebI6Ojnd-tjFZeSJUk0E5XlPaRfoUfL16U9ci_oFZ-bC_gOlTeLKo5np5pafTW85q7zn86j6zPaNyli5qk9qbNQbI_94OL-BZhLtkpy3nJWz46hU8bhNgLl_DyXz5_fDH1y9Ek-NlYDEguIQ_wymOYKHEN_QW6BXx6eTianLpSZAm5yGtwDVB67Ix-RjRlSMNYQR64jcw2vt2srufxDwPiUW4VCfKUsvN2OeWKYsGopxwnHsxlDm3lirjBtIJ5UIqLVuoBucxOxDC4fykpedvoVfNKv8eiKCIv6g2nFotuDLKao4rMqZ87vXA2T6IrudKG0nQQy6OadluxvNyreHaDu9DulKbtywgdyl86syixPEaNmF05WeLyzIw3CHkLqj8lwzHMnLKaR_etTa1qhYhVkgQw_uQrYzsfu-09WCND9CrLxb-I8Ku2mzHQfMbdEIzpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyRMSD%3A+a+Python+package+for+efficient+pairwise+RMSD+matrix+calculation+and+handling&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Gil%2C+V%C3%ADctor+A&rft.au=Guallar%2C+V%C3%ADctor&rft.date=2013-09-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=29&rft.issue=18&rft.spage=2363&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtt402&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon