The effect of anomalous resistivity on fast electrothermal instability

This manuscript presents a new theoretical contribution toward the growth rate of the “fast” form of electrothermal instability (ETI) in the presence of anomalous resistivity (AR). Current-driven ETI is present in all pulsed-power platforms, and has been shown to seed the disruptive magneto Rayleigh...

Full description

Saved in:
Bibliographic Details
Published inPhysics of plasmas Vol. 28; no. 10; pp. 102106 - 102116
Main Authors Masti, R. L., Ellison, C. L., Farmer, W. A., Tummel, K., Srinivasan, B.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.10.2021
Subjects
Online AccessGet full text
ISSN1070-664X
1527-2419
1089-7674
1089-7674
DOI10.1063/5.0059754

Cover

Abstract This manuscript presents a new theoretical contribution toward the growth rate of the “fast” form of electrothermal instability (ETI) in the presence of anomalous resistivity (AR). Current-driven ETI is present in all pulsed-power platforms, and has been shown to seed the disruptive magneto Rayleigh–Taylor instability. Fluid simulations of low-density, current-carrying plasmas are often subject to nonphysical runaway Ohmic heating due to an under predicted resistivity when using purely collisional resistivity models. AR models provide mechanisms to increase the resistivity as the drift speed increases through increased current density. The derivation of a new, generalized growth rate is presented for the ETI, which includes a resistivity that is dependent on current density, and marks the key contributions of this work. This new growth rate is then compared to the growth rate without AR. Although the striation form of the ETI growth rate is unaffected by the inclusion of AR, the filamentation form of the ETI growth rate depends on the AR. Hence, the new growth rate is verified through 1D simulations of the filamentation form of ETI. The impact of AR can be significant: up to twelve orders of magnitude on the temporally varying local growth rate for a certain choice of parameters. For experimentally relevant conditions based on kinetic simulations, the growth rate can be increased by up to four orders of magnitude if the AR is dominated by the lower-hybrid drift instability.
AbstractList This manuscript presents a new theoretical contribution toward the growth rate of the “fast” form of electrothermal instability (ETI) in the presence of anomalous resistivity (AR). Current-driven ETI is present in all pulsed-power platforms, and has been shown to seed the disruptive magneto Rayleigh–Taylor instability. Fluid simulations of low-density, current-carrying plasmas are often subject to nonphysical runaway Ohmic heating due to an under predicted resistivity when using purely collisional resistivity models. AR models provide mechanisms to increase the resistivity as the drift speed increases through increased current density. The derivation of a new, generalized growth rate is presented for the ETI, which includes a resistivity that is dependent on current density, and marks the key contributions of this work. This new growth rate is then compared to the growth rate without AR. Although the striation form of the ETI growth rate is unaffected by the inclusion of AR, the filamentation form of the ETI growth rate depends on the AR. Hence, the new growth rate is verified through 1D simulations of the filamentation form of ETI. The impact of AR can be significant: up to twelve orders of magnitude on the temporally varying local growth rate for a certain choice of parameters. For experimentally relevant conditions based on kinetic simulations, the growth rate can be increased by up to four orders of magnitude if the AR is dominated by the lower-hybrid drift instability.
Author Tummel, K.
Srinivasan, B.
Farmer, W. A.
Masti, R. L.
Ellison, C. L.
Author_xml – sequence: 1
  givenname: R. L.
  surname: Masti
  fullname: Masti, R. L.
  email: rlm7819@vt.edu
  organization: 2Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA
– sequence: 2
  givenname: C. L.
  surname: Ellison
  fullname: Ellison, C. L.
  organization: Lawrence Livermore National Laboratory
– sequence: 3
  givenname: W. A.
  surname: Farmer
  fullname: Farmer, W. A.
  organization: Lawrence Livermore National Laboratory
– sequence: 4
  givenname: K.
  surname: Tummel
  fullname: Tummel, K.
  organization: Lawrence Livermore National Laboratory
– sequence: 5
  givenname: B.
  surname: Srinivasan
  fullname: Srinivasan, B.
  organization: Virginia Polytechnic Institute and State University
BackLink https://www.osti.gov/biblio/1825096$$D View this record in Osti.gov
BookMark eNp90M1KAzEUBeAgFdTqwjcYdKUwNtP8zSxFrAqCmwruwp1MQlPGpCap0rc3pVVBpatk8d1zOfcIDZx3GqHTCl9VmJMRu8KYNYLRPXRY4bopBRd0sP4LXHJOXw7QUYxzjDHlrD5Ek-lMF9oYrVLhTQHOv0Lvl7EIOtqY7LtNq8K7wkBMhe4zCz7NdMiqsC4maG2fyTHaN9BHfbJ9h-h5cju9uS8fn-4ebq4fS0XqJpXUkK5ru04QqATUvMItV2A4bwS0xhhF2o60CrDmvGOkVjVVZEwxBUGVYUCG6HKTu3QLWH1A38tFsK8QVrLCcn0ByeT2AhmfbbDPRWRUNmk1U9653EJW9Zjhhmd0vkGL4N-WOiY598vgcgk5ZjUWQlDeZHWxUSr4GIM2O9eOftm8GZL1LgWw_b8T21bxS37Hv_vwA-WiM7vw3-RPIDqiGg
CODEN PHPAEN
CitedBy_id crossref_primary_10_1063_5_0125112
crossref_primary_10_1063_5_0222434
crossref_primary_10_1063_5_0244304
crossref_primary_10_1109_TPS_2024_3440255
crossref_primary_10_1109_TPS_2024_3352420
crossref_primary_10_1103_PhysRevE_107_065209
crossref_primary_10_1063_5_0159797
Cites_doi 10.1016/0370-1573(90)90122-I
10.1088/0029-5515/17/6/017
10.1002/1521-3986(200103)41:2/3<267::AID-CTPP267>3.0.CO;2-P
10.1103/PhysRevLett.27.1175
10.1103/RevModPhys.72.167
10.1063/1.1694240
10.1103/PhysRevAccelBeams.20.010401
10.1017/S0074180900075781
10.1063/1.2966121
10.1103/PhysRevLett.92.115001
10.1063/5.0044729
10.1016/S0010-4655(00)00216-2
10.1063/1.5086056
10.1063/1.359955
10.1002/2014JA019978
10.1103/PhysRevLett.32.409
10.1063/1.863120
10.2172/15005830
10.1029/RG015i001p00113
10.1063/1.1693287
10.1016/j.hedp.2021.100925
10.1088/1361-648X/aae4af
10.1109/PLASMA.2016.7534167
10.1103/PhysRevE.47.4337
10.1002/2014JA020503
10.1063/1.4751868
10.1063/1.4802836
10.1029/JA073i019p06366
10.1103/PhysRevLett.36.1038
10.1063/5.0004508
10.1063/1.1761637
10.1103/PhysRevAccelBeams.22.070401
10.1063/1.1356737
10.1063/5.0018965
10.1063/1.5085673
10.1063/1.866963
10.1063/1.5094349
10.1086/148317
10.1103/PhysRev.112.1504
10.1063/1.5025724
10.1063/1.5028365
10.1103/PhysRevE.66.025401
10.1007/978-1-4684-1788-3_1
10.1103/PhysRevA.39.5842
10.1103/PhysRevAccelBeams.21.030401
10.1007/s00193-015-0566-3
10.1063/1.3560911
10.1002/2016GL069553
10.1103/PhysRevLett.32.138
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
ADTOC
UNPAY
DOI 10.1063/5.0059754
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1089-7674
ExternalDocumentID oai:osti.gov:1783920
1825096
10_1063_5_0059754
pop
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-SC0016515
  funderid: https://doi.org/10.13039/100000015
– fundername: Lawrence Livermore National Laboratory
  grantid: DE-AC52-07NA27344
  funderid: https://doi.org/10.13039/100006227
– fundername: U.S. Department of Energy
  grantid: DE-NA0003881
  funderid: https://doi.org/10.13039/100000015
GroupedDBID -~X
0ZJ
123
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABEFF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACXMS
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
N9A
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
T9H
TN5
WH7
XFK
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ABPTK
AGIHO
AQWKA
OTOTI
UE8
ADTOC
UNPAY
ID FETCH-LOGICAL-c389t-4f3ddbdd73a17a8610b6caf6697abfffc3bd3bca0e66d538c84c32404a74cf5a3
IEDL.DBID UNPAY
ISSN 1070-664X
1527-2419
1089-7674
IngestDate Sun Oct 26 04:05:04 EDT 2025
Thu May 18 22:29:46 EDT 2023
Sun Jun 29 12:09:33 EDT 2025
Tue Jul 01 01:15:17 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Thu Jun 23 13:36:40 EDT 2022
Fri Jun 21 00:30:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-4f3ddbdd73a17a8610b6caf6697abfffc3bd3bca0e66d538c84c32404a74cf5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
NA0003881; SC0016515
ORCID 0000-0001-6758-220X
0000-0002-0712-1097
0000-0002-1253-5868
0000-0003-2425-5377
0000-0001-8002-7868
0000000324255377
0000000212535868
0000000180027868
0000000207121097
000000016758220X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1783920
PQID 2580777469
PQPubID 2050668
PageCount 11
ParticipantIDs proquest_journals_2580777469
unpaywall_primary_10_1063_5_0059754
crossref_citationtrail_10_1063_5_0059754
crossref_primary_10_1063_5_0059754
osti_scitechconnect_1825096
scitation_primary_10_1063_5_0059754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Physics of plasmas
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Desjarlais, Kress, Collins (c28) 2002
Zhou, Li, Deng, Huang, Pang, Yuan, Xu, Tang (c14) 2014
Kadomstev, Mikhailovsky, Timofeev (c43) 1964
Wang, Shi, Xu, Zhao (c23) 2020
Rahman, Ruskov, Ney, Conti, Valenzuela, Aybar, Narkis, Beg, Dutra, Covington (c40) 2019
Papadopoulos (c19) 1977
Desjarlais (c29) 2001
Maron, Sarid, Zahavi, Perelmutter, Sarfaty (c11) 1989
Divin, Khotyaintsev, Vaivads, André, Markidis, Lapenta (c13) 2015
Ellison, Whitley, Brown, Copeland, Garbett, Le, Schneider, Walters, Chen, Castor, Craxton, Gatu Johnson, Garcia, Graziani, Kemp, Krauland, McKenty, Lahmann, Pino, Rubery, Scott, Shepherd, Sio (c31) 2018
Bychenkov, Silin, Uryupin (c48) 1988
Field (c37) 1965
Farmer, Ellison, Hammer (c34) 2019
Ossakow (c44) 1968
Hutsel, Corcoran, Cuneo, Gomez, Hess, Hinshelwood, Jennings, Laity, Lamppa, McBride, Moore, Myers, Rose, Slutz, Stygar, Waisman, Welch, Whitney (c27) 2018
Galeev, Sagdeev (c45) 1979
Davidson, Krall (c20) 1977
Welch, Bennett, Genoni, Rose, Thoma, Miller, Stygar (c2) 2019
Liewer, Krall (c47) 1973
Oreshkin (c4) 2008
Morgan, Greenough (c30) 2016
DeSilva, Dove, Spalding, Goldenbaum (c9) 1971
Bretz, DeSilva (c10) 1974
Peterson, Sinars, Yu, Herrmann, Cuneo, Slutz, Smith, Atherton, Knudson, Nakhleh (c5) 2012
Ji, Terry, Yamada, Kulsrud, Kuritsyn, Ren (c18) 2004
Gary (c21) 1980
Sinars, Slutz, Herrmann, McBride, Cuneo, Jennings, Chittenden, Velikovich, Peterson, Vesey (c35) 2011
More, Warren, Young, Zimmerman (c52) 1988
Gomez, Gilgenbach, Cuneo, Jennings, McBride, Waisman, Hutsel, Stygar, Rose, Maron (c1) 2017
Buneman (c49) 1958
Seyler, Martin, Hamlin (c3) 2018
Ryutov, Derzon, Matzen (c6) 2000
Aranson, Meerson, Sasorov (c38) 1993
Narkis, Rahman, Valenzuela, Conti, McBride, Venosa, Beg (c39) 2019
Baldwin, Rowlands (c42) 1966
Tummel, Ellison, Farmer, Hammer, Parker, Lechien (c22) 2020
McKenna, Kristal, Thomas (c12) 1974
Masti, Ellison, King, Stoltz, Srinivasan (c33) 2021
Commisso, Griem (c17) 1976
Wang, Zhao, Fu, Shi (c36) 2021
Hsu, Carter, Fiksel, Ji, Kulsrud, Yamada (c16) 2001
Peterson, Yu, Sinars, Cuneo, Slutz, Koning, Marinak, Nakhleh, Herrmann (c24) 2013
Manheimer, Flynn (c7) 1971
Lane, Leung, Thompson, Cuneo (c26) 2018
Young, Corey (c53) 1995
Torbert, Burch, Giles, Gershman, Pollock, Dorelli, Avanov, Argall, Shuster, Strangeway (c15) 2016
Darlington, McAbee, Rodrigue (c32) 2001
c49/c49_1
c33/c33_1
Ossakow S. L. (c44/c44_1) 1968; 73
c51/c51_1
c22/c22_1
c27/c27_1
c5/c5_1
c38/c38_1
c2/c2_1
c10/c10_1
c39/c39_1
c23/c23_1
Papadopoulos K. (c19/c19_1) 1977; 15
c12/c12_1
c16/c16_1
c46/c46_1
c52/c52_1
c9/c9_1
c17/c17_1
Divin A. (c13/c13_1) 2015; 120
c3/c3_1
c11/c11_1
c28/c28_1
Baker D. (c8/c8_1) 1971
c34/c34_1
Zhou M. (c14/c14_1) 2014; 119
c40/c40_1
Spitzer L. (c41/c41_1) 2006
c29/c29_1
c47/c47_1
c7/c7_1
c31/c31_1
c4/c4_1
c1/c1_1
c36/c36_1
c42/c42_1
c35/c35_1
c53/c53_1
c24/c24_1
c18/c18_1
c30/c30_1
c50/c50_1
c48/c48_1
c21/c21_1
Torbert R. (c15/c15_1) 2016; 43
c32/c32_1
c26/c26_1
c6/c6_1
c25/c25_1
Galeev A. (c45/c45_1) 1979; 7
c37/c37_1
c20/c20_1
c54/c54_1
Kadomstev B. B. (c43/c43_1) 1964; 47
References_xml – start-page: 070401
  year: 2019
  ident: c2
  publication-title: Phys. Rev. Accel. Beams
– start-page: 531
  year: 1965
  ident: c37
  publication-title: Astrophys. J.
– start-page: 257
  year: 1979
  ident: c45
  publication-title: RvPP
– start-page: 025401
  year: 2002
  ident: c28
  publication-title: Phys. Rev. E
– start-page: 167
  year: 2000
  ident: c6
  publication-title: Rev. Mod. Phys.
– start-page: 119
  year: 1988
  ident: c48
  publication-title: Phys. Rep.
– start-page: 8228
  year: 2014
  ident: c14
  publication-title: J. Geophys. Res.
– start-page: 409
  year: 1974
  ident: c12
  publication-title: Phys. Rev. Lett.
– start-page: 2675
  year: 2015
  ident: c13
  publication-title: J. Geophys. Res.
– start-page: 42
  year: 1971
  ident: c9
  publication-title: Phys. Fluids
– start-page: 1038
  year: 1976
  ident: c17
  publication-title: Phys. Rev. Lett.
– start-page: 1313
  year: 1977
  ident: c20
  publication-title: Nucl. Fusion
– start-page: 010401
  year: 2017
  ident: c1
  publication-title: Phys. Rev. Accel. Beams
– start-page: 465002
  year: 2018
  ident: c26
  publication-title: J. Phys.: Condens. Matter
– start-page: 063507
  year: 2021
  ident: c36
  publication-title: Phys. Plasmas
– start-page: 1504
  year: 1958
  ident: c49
  publication-title: Phys. Rev.
– start-page: 062711
  year: 2018
  ident: c3
  publication-title: Phys. Plasmas
– start-page: 5918
  year: 2016
  ident: c15
  publication-title: Geophys. Res. Lett.
– start-page: 072120
  year: 2019
  ident: c34
  publication-title: Phys. Plasmas
– start-page: 1953
  year: 1973
  ident: c47
  publication-title: Phys. Fluids
– start-page: 112102
  year: 2020
  ident: c23
  publication-title: Phys. Plasmas
– start-page: 115001
  year: 2004
  ident: c18
  publication-title: Phys. Rev. Lett.
– start-page: 267
  year: 2001
  ident: c29
  publication-title: Contrib. Plasma Phys.
– start-page: 072710
  year: 2018
  ident: c31
  publication-title: Phys. Plasmas
– start-page: 1916
  year: 2001
  ident: c16
  publication-title: Phys. Plasmas
– start-page: 100925
  year: 2021
  ident: c33
  publication-title: High Energy Density Phys.
– start-page: 092103
  year: 2008
  ident: c4
  publication-title: Phys. Plasmas
– start-page: 3748
  year: 1995
  ident: c53
  publication-title: J. Appl. Phys.
– start-page: 092306
  year: 2020
  ident: c22
  publication-title: Phys. Plasmas
– start-page: 052706
  year: 2019
  ident: c40
  publication-title: Phys. Plasmas
– start-page: 2266
  year: 1964
  ident: c43
  publication-title: Zh. Eksperim. i Teor. Fiz.
– start-page: 030401
  year: 2018
  ident: c27
  publication-title: Phys. Rev. Accel. Beams
– start-page: 138
  year: 1974
  ident: c10
  publication-title: Phys. Rev. Lett.
– start-page: 1193
  year: 1980
  ident: c21
  publication-title: Phys. Fluids
– start-page: 4337
  year: 1993
  ident: c38
  publication-title: Phys. Rev. E
– start-page: 113
  year: 1977
  ident: c19
  publication-title: Rev. Geophys.
– start-page: 056305
  year: 2013
  ident: c24
  publication-title: Phys. Plasmas
– start-page: 58
  year: 2001
  ident: c32
  publication-title: Comput. Phys. Commun.
– start-page: 032708
  year: 2019
  ident: c39
  publication-title: Phys. Plasmas
– start-page: 5842
  year: 1989
  ident: c11
  publication-title: Phys. Rev. A
– start-page: 1175
  year: 1971
  ident: c7
  publication-title: Phys. Rev. Lett.
– start-page: 056301
  year: 2011
  ident: c35
  publication-title: Phys. Plasmas
– start-page: 092701
  year: 2012
  ident: c5
  publication-title: Phys. Plasmas
– start-page: 2444
  year: 1966
  ident: c42
  publication-title: Phys. Fluids
– start-page: 3059
  year: 1988
  ident: c52
  publication-title: Phys. Fluids
– start-page: 355
  year: 2016
  ident: c30
  publication-title: Shock Waves
– start-page: 6366
  year: 1968
  ident: c44
  publication-title: J. Geophys. Res.
– ident: c48/c48_1
  doi: 10.1016/0370-1573(90)90122-I
– ident: c20/c20_1
  doi: 10.1088/0029-5515/17/6/017
– ident: c29/c29_1
  doi: 10.1002/1521-3986(200103)41:2/3<267::AID-CTPP267>3.0.CO;2-P
– ident: c7/c7_1
  doi: 10.1103/PhysRevLett.27.1175
– volume: 47
  start-page: 2266
  year: 1964
  ident: c43/c43_1
  publication-title: Zh. Eksperim. i Teor. Fiz.
– ident: c6/c6_1
  doi: 10.1103/RevModPhys.72.167
– ident: c47/c47_1
  doi: 10.1063/1.1694240
– ident: c1/c1_1
  doi: 10.1103/PhysRevAccelBeams.20.010401
– ident: c50/c50_1
  doi: 10.1017/S0074180900075781
– ident: c4/c4_1
  doi: 10.1063/1.2966121
– volume-title: Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research (
  year: 1971
  ident: c8/c8_1
– ident: c18/c18_1
  doi: 10.1103/PhysRevLett.92.115001
– ident: c36/c36_1
  doi: 10.1063/5.0044729
– ident: c32/c32_1
  doi: 10.1016/S0010-4655(00)00216-2
– ident: c51/c51_1
– ident: c39/c39_1
  doi: 10.1063/1.5086056
– ident: c53/c53_1
  doi: 10.1063/1.359955
– volume: 119
  start-page: 8228
  year: 2014
  ident: c14/c14_1
  publication-title: J. Geophys. Res.
  doi: 10.1002/2014JA019978
– ident: c12/c12_1
  doi: 10.1103/PhysRevLett.32.409
– ident: c21/c21_1
  doi: 10.1063/1.863120
– ident: c54/c54_1
  doi: 10.2172/15005830
– volume: 15
  start-page: 113
  year: 1977
  ident: c19/c19_1
  publication-title: Rev. Geophys.
  doi: 10.1029/RG015i001p00113
– ident: c9/c9_1
  doi: 10.1063/1.1693287
– ident: c33/c33_1
  doi: 10.1016/j.hedp.2021.100925
– ident: c26/c26_1
  doi: 10.1088/1361-648X/aae4af
– ident: c25/c25_1
  doi: 10.1109/PLASMA.2016.7534167
– ident: c38/c38_1
  doi: 10.1103/PhysRevE.47.4337
– volume: 120
  start-page: 2675
  year: 2015
  ident: c13/c13_1
  publication-title: J. Geophys. Res.
  doi: 10.1002/2014JA020503
– ident: c5/c5_1
  doi: 10.1063/1.4751868
– ident: c24/c24_1
  doi: 10.1063/1.4802836
– volume: 73
  start-page: 6366
  year: 1968
  ident: c44/c44_1
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA073i019p06366
– volume: 7
  start-page: 257
  year: 1979
  ident: c45/c45_1
  publication-title: RvPP
– ident: c17/c17_1
  doi: 10.1103/PhysRevLett.36.1038
– ident: c22/c22_1
  doi: 10.1063/5.0004508
– ident: c42/c42_1
  doi: 10.1063/1.1761637
– ident: c2/c2_1
  doi: 10.1103/PhysRevAccelBeams.22.070401
– ident: c16/c16_1
  doi: 10.1063/1.1356737
– ident: c23/c23_1
  doi: 10.1063/5.0018965
– ident: c40/c40_1
  doi: 10.1063/1.5085673
– ident: c52/c52_1
  doi: 10.1063/1.866963
– ident: c34/c34_1
  doi: 10.1063/1.5094349
– ident: c37/c37_1
  doi: 10.1086/148317
– ident: c49/c49_1
  doi: 10.1103/PhysRev.112.1504
– ident: c31/c31_1
  doi: 10.1063/1.5025724
– ident: c3/c3_1
  doi: 10.1063/1.5028365
– ident: c28/c28_1
  doi: 10.1103/PhysRevE.66.025401
– ident: c46/c46_1
  doi: 10.1007/978-1-4684-1788-3_1
– ident: c11/c11_1
  doi: 10.1103/PhysRevA.39.5842
– volume-title: Physics of Fully Ionized Gases
  year: 2006
  ident: c41/c41_1
– ident: c27/c27_1
  doi: 10.1103/PhysRevAccelBeams.21.030401
– ident: c30/c30_1
  doi: 10.1007/s00193-015-0566-3
– ident: c35/c35_1
  doi: 10.1063/1.3560911
– volume: 43
  start-page: 5918
  year: 2016
  ident: c15/c15_1
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069553
– ident: c10/c10_1
  doi: 10.1103/PhysRevLett.32.138
SSID ssj0004658
Score 2.3935263
Snippet This manuscript presents a new theoretical contribution toward the growth rate of the “fast” form of electrothermal instability (ETI) in the presence of...
SourceID unpaywall
osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102106
SubjectTerms Current carrying plasmas
Current density
Drift
Electrical resistivity
Plasma physics
Plasmas (physics)
Simulation
Striations
Taylor instability
Title The effect of anomalous resistivity on fast electrothermal instability
URI http://dx.doi.org/10.1063/5.0059754
https://www.proquest.com/docview/2580777469
https://www.osti.gov/biblio/1825096
https://www.osti.gov/biblio/1783920
UnpaywallVersion submittedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004658
  issn: 1089-7674
  databaseCode: ADMLS
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5ViRAn3ojQUq0oBy5uU-8re4woUYVohQSRwmm1u_aKqMaOGoeq_Hpm_AgUlcfNh5HX3hnvfOP99huAVyLjklTMkzTSNiMujokzxidOSi5MdMFzOo18dq5O5-LdQi524KA_C0O0ygqDu-FU-qUvltXRsaYsjnX5UEkE3AMYzs8_TD-3bEIsfpRYtDR6k5A0TaOQmuoEc5PptYQUP6J_J4iepbiRgQY02A10eRdTT7sLjtebcuWur1xR_JJ0ZvfhpH_clmtycbip_WH4_puS4z_e5wHc60Anm7ZR8hB28vIR3GnIn2H9GGYYK6wldrAqMldWX11RbdYMS3FaAqi9BKtKFt26Zl3fHMKNaMWWBC8bgu31E5jP3n56c5p0_RWSgDClTkTkWeazTHN3rN0EgZRXwUWljHY-xhi4z7gPbpwrleHCGCYikH6fcFqEKB1_CoOyKvNnwIxI07GahDxEL1TOXXTa59qkPiKgk34Er_s5t_30Ug-Mwjab4IpbaTv3jODl1nTVKm7cZrRLs2rJV3n4EogUFGqLxRLJ2Yxgr_en7T7JtU3lZKwR7CozgoOtj_82xC1W36rLnxZ2lUW02sbIn-_1_L-s9mBQX27yF4hyar8Pw-nJ2fuP-120_wAgxvrl
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqrSpOlBYQCwVZLQcuabfxa32sgFVVqVUPrLScrLETixUhWXWzReXXM5PH9qHyuOUwihPPxPNN_Pkbxt7LTChSMU_SSNuMuDgmYK1PQCkhbYTgBZ1GPr_Qp1N5NlOzDXbQn4UhWmWFwd1wKv3cF_Pq6NhQFse6fFMrBNwDtjm9uDz52rIJsfjRctbS6G1C0jSNQmpqEsxNttcS0uKI_p0gelbyXgYa0GD30OUTTD3tLjher8oF3PyEoriTdCbb7FP_uC3X5PvhqvaH4dcDJcd_vM8z9rQDnfykjZIdtpGXu2yrIX-G5XM2wVjhLbGDV5FDWf2AolotOZbitARQewlelTzCsuZd3xzCjWjF5wQvG4LtzQs2nXz-8vE06forJAFhSp3IKLLMZ5kRcGxgjEDK6wBRa2vAxxiD8JnwAUa51hkujGEsA-n3STAyRAXiJRuUVZm_YtzKNB3pcchD9FLnAiIYnxub-oiATvkh-9DPueunl3pgFK7ZBNfCKde5Z8j216aLVnHjMaM3NKuOfJWHb4FIQaF2WCyRnM2Q7fX-dN0nuXSpGo8Mgl1th-xg7eO_DfGI1XV1dWvhFllEq3WM_Pler__Lao8N6qtV_hZRTu3fdVH-G1Fx-VE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+anomalous+resistivity+on+fast+electrothermal+instability&rft.jtitle=Physics+of+plasmas&rft.au=Ellison%2C+C+L&rft.au=Farmer%2C+W+A&rft.au=Tummel%2C+K&rft.au=Srinivasan%2C+B&rft.date=2021-10-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=28&rft.issue=10&rft_id=info:doi/10.1063%2F5.0059754&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon