Highly Efficient Compression Algorithms for Multichannel EEG

The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman codi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 5; pp. 957 - 968
Main Authors Shaw, Laxmi, Rahman, Daleef, Routray, Aurobinda
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2018
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2018.2826559

Cover

Abstract The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.
AbstractList The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.
The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.
Author Routray, Aurobinda
Rahman, Daleef
Shaw, Laxmi
Author_xml – sequence: 1
  givenname: Laxmi
  orcidid: 0000-0002-8238-1999
  surname: Shaw
  fullname: Shaw, Laxmi
  email: laxmi.shaw@ee.iitkgp.ernet.in
  organization: Department of Electrical Engineering, IIT Kharagpur, Kharagpur, India
– sequence: 2
  givenname: Daleef
  surname: Rahman
  fullname: Rahman, Daleef
  organization: Department of Electrical Engineering, IIT Kharagpur, Kharagpur, India
– sequence: 3
  givenname: Aurobinda
  orcidid: 0000-0003-2750-6768
  surname: Routray
  fullname: Routray, Aurobinda
  organization: Department of Electrical Engineering, IIT Kharagpur, Kharagpur, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29752230$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlOwzAQhi1URBd4AZBQjlxSPF4SR-JSVaFFKiBBOUdOMmmNshQ7PfTtSWnpgQMnj6zvn-Ubkl7d1EjINdAxAI3uly_vb_GYUVBjplggZXRGBiCl8ikD2tvXXPiCM9onQ-c-KYUwkOEF6bMolIxxOiAPc7NalzsvLgqTGaxbb9pUG4vOmab2JuWqsaZdV84rGus9b8vWZGtd11h6cTy7JOeFLh1eHd8R-XiMl9O5v3idPU0nCz_jKmp9kWnASOSgmNCKaplmeUB10S0QoCy6vyIPUw5pgBRzCkEKOaQsz4GjAEQ-IneHvhvbfG3RtUllXIZlqWtsti5hlCsWApNRh94e0W1aYZ5srKm03SW_F3cAOwCZbZyzWJwQoMlea_KjNdlrTY5au5D6E8pMq9tOUWu1Kf-P3hyiBhFPsxQXQkQR_wYDqITL
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3347592
crossref_primary_10_3390_app8091474
crossref_primary_10_1109_TBCAS_2019_2938672
crossref_primary_10_1109_ACCESS_2022_3166476
crossref_primary_10_1109_ACCESS_2020_3023915
crossref_primary_10_3233_JCM_204582
crossref_primary_10_3390_s20247106
crossref_primary_10_1007_s12652_021_03275_w
crossref_primary_10_1109_TBCAS_2019_2936534
crossref_primary_10_3390_s21020516
crossref_primary_10_1109_ACCESS_2020_2999091
crossref_primary_10_1007_s11277_024_10912_y
crossref_primary_10_1109_TNNLS_2020_3027773
crossref_primary_10_1007_s00034_022_02071_x
crossref_primary_10_1016_j_bspc_2021_102749
crossref_primary_10_1088_2631_8695_ab8f06
crossref_primary_10_1002_ett_4115
crossref_primary_10_1007_s13246_020_00863_6
Cites_doi 10.1109/TITB.2007.907981
10.1109/JBHI.2014.2346493
10.1109/JBHI.2013.2263198
10.1155/2012/302581
10.1088/2057-1976/aa6db8
10.1016/j.neuroimage.2007.01.051
10.1145/214762.214771
10.1016/B978-012620861-0/50005-X
10.1111/j.1469-8986.1973.tb00803.x
10.1109/TIT.1966.1053907
10.1109/IEMBS.2010.5628020
10.1007/s00422-010-0406-6
10.1088/1741-2560/4/3/012
10.1109/10.552239
10.1109/MSP.2015.2481559
10.1016/0013-4694(91)90040-B
10.1155/2011/860549
10.1109/TITB.2007.899497
10.1109/ICONIP.2002.1199034
10.1016/S0165-0173(98)00056-3
10.1109/TIT.2010.2050803
10.1037/2326-5523.1.S.48
10.1109/TITB.2012.2194298
10.1109/7333.918276
10.1109/EMBC.2012.6347331
10.1109/4233.788586
10.1002/j.1538-7305.1948.tb01338.x
10.1109/MAHC.1985.10011
10.1109/TITB.2012.2230012
10.1016/0196-6774(85)90036-7
10.1016/j.bspc.2011.06.007
10.1109/TIT.1986.1057132
10.1001/archpsyc.1966.01730120026004
10.1109/TIT.1977.1055714
10.1097/00004691-199901000-00002
10.1109/EMBSISC.2016.7508624
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNSRE.2018.2826559
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 968
ExternalDocumentID 29752230
10_1109_TNSRE_2018_2826559
8344499
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Human Resources Development, Government of India
  funderid: 10.13039/501100004541
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c389t-4ca1e94d1824a80a5bcd60af2306e5f4a8fd7b31b6e0ed016b1d1b2dd13e41ee3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 19:12:41 EDT 2025
Wed Feb 19 02:35:31 EST 2025
Wed Oct 01 01:12:24 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-4ca1e94d1824a80a5bcd60af2306e5f4a8fd7b31b6e0ed016b1d1b2dd13e41ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2750-6768
0000-0002-8238-1999
PMID 29752230
PQID 2038271259
PQPubID 23479
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2018_2826559
proquest_miscellaneous_2038271259
pubmed_primary_29752230
ieee_primary_8344499
crossref_primary_10_1109_TNSRE_2018_2826559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
2018-5-00
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref12
ref15
ref36
ref14
nelson (ref24) 1996; 2
ref30
ref33
ref11
ref32
ref10
ref2
ref39
ref17
ref16
ref19
ref18
palendeng (ref21) 2012; 178
lal (ref38) 2005
capurro (ref34) 2014
ref23
ref26
ref25
ref20
ref42
john (ref1) 1983
ref41
ali shoeb (ref37) 2009
ref22
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
sayood (ref31) 2006
References_xml – ident: ref15
  doi: 10.1109/TITB.2007.907981
– ident: ref26
  doi: 10.1109/JBHI.2014.2346493
– year: 2006
  ident: ref31
  publication-title: Introduction to Data Compression
– ident: ref25
  doi: 10.1109/JBHI.2013.2263198
– year: 1983
  ident: ref1
  article-title: System and method for electrode pair derivations in electroencephalography
– ident: ref22
  doi: 10.1155/2012/302581
– ident: ref42
  doi: 10.1088/2057-1976/aa6db8
– ident: ref39
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: ref33
  doi: 10.1145/214762.214771
– ident: ref32
  doi: 10.1016/B978-012620861-0/50005-X
– ident: ref5
  doi: 10.1111/j.1469-8986.1973.tb00803.x
– volume: 178
  start-page: 163
  year: 2012
  ident: ref21
  article-title: EEG data compression to monitor DoA in telemedicine
  publication-title: Stud Health Technol Inform
– ident: ref43
  doi: 10.1109/TIT.1966.1053907
– ident: ref20
  doi: 10.1109/IEMBS.2010.5628020
– ident: ref35
  doi: 10.1007/s00422-010-0406-6
– start-page: 2040
  year: 2014
  ident: ref34
  article-title: Low-complexity, multi-channel, lossless and near-lossless EEG compression
  publication-title: Proc 22nd Eur Signal Process Conf (EUSIPCO)
– ident: ref40
  doi: 10.1088/1741-2560/4/3/012
– ident: ref10
  doi: 10.1109/10.552239
– ident: ref9
  doi: 10.1109/MSP.2015.2481559
– year: 2009
  ident: ref37
  article-title: Application of machine learning to epileptic seizure onset detection and treatment
– ident: ref7
  doi: 10.1016/0013-4694(91)90040-B
– ident: ref18
  doi: 10.1155/2011/860549
– start-page: 737
  year: 2005
  ident: ref38
  article-title: Methods towards invasive human brain computer interfaces
  publication-title: Advances in Neural IInformation Processing Systems
– ident: ref13
  doi: 10.1109/TITB.2007.899497
– ident: ref12
  doi: 10.1109/ICONIP.2002.1199034
– ident: ref4
  doi: 10.1016/S0165-0173(98)00056-3
– ident: ref28
  doi: 10.1109/TIT.2010.2050803
– ident: ref3
  doi: 10.1037/2326-5523.1.S.48
– ident: ref23
  doi: 10.1109/TITB.2012.2194298
– ident: ref8
  doi: 10.1109/7333.918276
– ident: ref11
  doi: 10.1109/EMBC.2012.6347331
– ident: ref19
  doi: 10.1109/4233.788586
– ident: ref29
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref36
  doi: 10.1109/MAHC.1985.10011
– ident: ref27
  doi: 10.1109/TITB.2012.2230012
– ident: ref30
  doi: 10.1016/0196-6774(85)90036-7
– ident: ref14
  doi: 10.1016/j.bspc.2011.06.007
– volume: 2
  year: 1996
  ident: ref24
  publication-title: The Data Compression Book
– ident: ref17
  doi: 10.1109/TIT.1986.1057132
– ident: ref6
  doi: 10.1001/archpsyc.1966.01730120026004
– ident: ref16
  doi: 10.1109/TIT.1977.1055714
– ident: ref2
  doi: 10.1097/00004691-199901000-00002
– ident: ref41
  doi: 10.1109/EMBSISC.2016.7508624
SSID ssj0017657
Score 2.3866367
Snippet The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 957
SubjectTerms Brain modeling
Compression algorithms
context-based
EEG
Electroencephalography
Entropy
entropy coder
Huffman coding
linear prediction
Lossless compression
MVAR
Predictive models
Title Highly Efficient Compression Algorithms for Multichannel EEG
URI https://ieeexplore.ieee.org/document/8344499
https://www.ncbi.nlm.nih.gov/pubmed/29752230
https://www.proquest.com/docview/2038271259
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy4tLX0sfchIbS9tljjx2onUC6oCCAkOdJG4RbE9AdRttoLsof31nXEeolWLuEWRx4k94_ibeOYbgHepzq30zkWZqnWkXCaj3NXkrBijCY8nTtWc4Hxyqo_O1fHF7GINPo25MIgYgs9wypfhLN8v3Yp_le1xTQhC6OuwbjLd5WqNJwZGB1ZPWsAqUmkSDwkycb43P_16VnAUVzYlB0MThmYK4NwQ9ODg5zv7USiw8n-sGfacg8dwMrxtF2rybbpq7dT9-ovI8aHD2YJHPfgU-521PIE1bJ7C-7tEw2LesQyID-LsDw7vbfjMISGLn6IIpBPUs-BvSRdG24j9xeXy5rq9-n4rCAaLkNfLScUNLkRRHD6D84Ni_uUo6msvRI4gTEtaqyTmypP7oaosrmbWeR1XNXssOKvpXu2NTaXVGKMn3EgalzbxXqaoJGL6HDaaZYMvQcjaoZPeKlUxXJlVUiWxMWjY1ZFWTUAOGihdPyiuj7Eog4MS52VQYMkKLHsFTuDjKPOjo-W4t_U2z_7Ysp_4CewOii5pUfFJSdXgcnVLwmmWGMJ-1OZFZwGj8GA4O__u9BVs8qO7mMjXsNHerPAN4ZbWvg0G-xsFYea1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0JZnkYCLpBtnDhxInGpUMoC3T2UrdRbFNsTqLpkUZs9wK9nxnmoIEDcrMi2bM84_sae-QbgeZzmRjprg0zVaaBsJoPc1mSsaJ0SHo-sqjnAeb5IZ8fqw0lysgWvx1gYRPTOZzjlon_Ld2u74auyPc4JQQj9ClxNqJB00Vrjm4FOPa8nbWEVqDgKhxCZMN9bLj4dFezHlU3JxEgJRTMJcK4JfLD786UTyadY-Tva9KfOwU2YD-PtnE3OppvWTO2P36gc_3dCt-BGDz_Ffqcvt2ELmzvw4jLVsFh2PAPipTj6hcV7B96wU8jquyg87QT1LPhv0jnSNmJ_9Xl9ftp--XohCAgLH9nLYcUNrkRRvLsLxwfF8u0s6LMvBJZATEtyqyTmypEBoqosrBJjXRpWNdssmNT0rXbaxNKkGKIj5EgylyZyTsaoJGJ8D7abdYP3QcjaopXOKFUxYEkqqaJQa9Rs7EijJiAHCZS2nxRnyFiV3kQJ89ILsGQBlr0AJ_BqbPOtI-b4Z-0dXv2xZr_wE3g2CLqkbcVvJVWD680FNY6zSBP6ozq7nQaMjQfFefDnTp_Ctdlyflgevl98fAjXeRidh-Qj2G7PN_iYUExrnnjl_QlCbeoC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Compression+Algorithms+for+Multichannel+EEG&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shaw%2C+Laxmi&rft.au=Rahman%2C+Daleef&rft.au=Routray%2C+Aurobinda&rft.date=2018-05-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=26&rft.issue=5&rft.spage=957&rft.epage=968&rft_id=info:doi/10.1109%2FTNSRE.2018.2826559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2018_2826559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon