Highly Efficient Compression Algorithms for Multichannel EEG
The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman codi...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 5; pp. 957 - 968 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.05.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2018.2826559 |
Cover
| Abstract | The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods. |
|---|---|
| AbstractList | The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods. The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods. |
| Author | Routray, Aurobinda Rahman, Daleef Shaw, Laxmi |
| Author_xml | – sequence: 1 givenname: Laxmi orcidid: 0000-0002-8238-1999 surname: Shaw fullname: Shaw, Laxmi email: laxmi.shaw@ee.iitkgp.ernet.in organization: Department of Electrical Engineering, IIT Kharagpur, Kharagpur, India – sequence: 2 givenname: Daleef surname: Rahman fullname: Rahman, Daleef organization: Department of Electrical Engineering, IIT Kharagpur, Kharagpur, India – sequence: 3 givenname: Aurobinda orcidid: 0000-0003-2750-6768 surname: Routray fullname: Routray, Aurobinda organization: Department of Electrical Engineering, IIT Kharagpur, Kharagpur, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29752230$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMlOwzAQhi1URBd4AZBQjlxSPF4SR-JSVaFFKiBBOUdOMmmNshQ7PfTtSWnpgQMnj6zvn-Ubkl7d1EjINdAxAI3uly_vb_GYUVBjplggZXRGBiCl8ikD2tvXXPiCM9onQ-c-KYUwkOEF6bMolIxxOiAPc7NalzsvLgqTGaxbb9pUG4vOmab2JuWqsaZdV84rGus9b8vWZGtd11h6cTy7JOeFLh1eHd8R-XiMl9O5v3idPU0nCz_jKmp9kWnASOSgmNCKaplmeUB10S0QoCy6vyIPUw5pgBRzCkEKOaQsz4GjAEQ-IneHvhvbfG3RtUllXIZlqWtsti5hlCsWApNRh94e0W1aYZ5srKm03SW_F3cAOwCZbZyzWJwQoMlea_KjNdlrTY5au5D6E8pMq9tOUWu1Kf-P3hyiBhFPsxQXQkQR_wYDqITL |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3347592 crossref_primary_10_3390_app8091474 crossref_primary_10_1109_TBCAS_2019_2938672 crossref_primary_10_1109_ACCESS_2022_3166476 crossref_primary_10_1109_ACCESS_2020_3023915 crossref_primary_10_3233_JCM_204582 crossref_primary_10_3390_s20247106 crossref_primary_10_1007_s12652_021_03275_w crossref_primary_10_1109_TBCAS_2019_2936534 crossref_primary_10_3390_s21020516 crossref_primary_10_1109_ACCESS_2020_2999091 crossref_primary_10_1007_s11277_024_10912_y crossref_primary_10_1109_TNNLS_2020_3027773 crossref_primary_10_1007_s00034_022_02071_x crossref_primary_10_1016_j_bspc_2021_102749 crossref_primary_10_1088_2631_8695_ab8f06 crossref_primary_10_1002_ett_4115 crossref_primary_10_1007_s13246_020_00863_6 |
| Cites_doi | 10.1109/TITB.2007.907981 10.1109/JBHI.2014.2346493 10.1109/JBHI.2013.2263198 10.1155/2012/302581 10.1088/2057-1976/aa6db8 10.1016/j.neuroimage.2007.01.051 10.1145/214762.214771 10.1016/B978-012620861-0/50005-X 10.1111/j.1469-8986.1973.tb00803.x 10.1109/TIT.1966.1053907 10.1109/IEMBS.2010.5628020 10.1007/s00422-010-0406-6 10.1088/1741-2560/4/3/012 10.1109/10.552239 10.1109/MSP.2015.2481559 10.1016/0013-4694(91)90040-B 10.1155/2011/860549 10.1109/TITB.2007.899497 10.1109/ICONIP.2002.1199034 10.1016/S0165-0173(98)00056-3 10.1109/TIT.2010.2050803 10.1037/2326-5523.1.S.48 10.1109/TITB.2012.2194298 10.1109/7333.918276 10.1109/EMBC.2012.6347331 10.1109/4233.788586 10.1002/j.1538-7305.1948.tb01338.x 10.1109/MAHC.1985.10011 10.1109/TITB.2012.2230012 10.1016/0196-6774(85)90036-7 10.1016/j.bspc.2011.06.007 10.1109/TIT.1986.1057132 10.1001/archpsyc.1966.01730120026004 10.1109/TIT.1977.1055714 10.1097/00004691-199901000-00002 10.1109/EMBSISC.2016.7508624 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNSRE.2018.2826559 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 968 |
| ExternalDocumentID | 29752230 10_1109_TNSRE_2018_2826559 8344499 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministry of Human Resources Development, Government of India funderid: 10.13039/501100004541 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c389t-4ca1e94d1824a80a5bcd60af2306e5f4a8fd7b31b6e0ed016b1d1b2dd13e41ee3 |
| IEDL.DBID | RIE |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Thu Jul 10 19:12:41 EDT 2025 Wed Feb 19 02:35:31 EST 2025 Wed Oct 01 01:12:24 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-4ca1e94d1824a80a5bcd60af2306e5f4a8fd7b31b6e0ed016b1d1b2dd13e41ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2750-6768 0000-0002-8238-1999 |
| PMID | 29752230 |
| PQID | 2038271259 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2018_2826559 proquest_miscellaneous_2038271259 pubmed_primary_29752230 ieee_primary_8344499 crossref_primary_10_1109_TNSRE_2018_2826559 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-May 2018-5-00 2018-05-00 20180501 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ref12 ref15 ref36 ref14 nelson (ref24) 1996; 2 ref30 ref33 ref11 ref32 ref10 ref2 ref39 ref17 ref16 ref19 ref18 palendeng (ref21) 2012; 178 lal (ref38) 2005 capurro (ref34) 2014 ref23 ref26 ref25 ref20 ref42 john (ref1) 1983 ref41 ali shoeb (ref37) 2009 ref22 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 sayood (ref31) 2006 |
| References_xml | – ident: ref15 doi: 10.1109/TITB.2007.907981 – ident: ref26 doi: 10.1109/JBHI.2014.2346493 – year: 2006 ident: ref31 publication-title: Introduction to Data Compression – ident: ref25 doi: 10.1109/JBHI.2013.2263198 – year: 1983 ident: ref1 article-title: System and method for electrode pair derivations in electroencephalography – ident: ref22 doi: 10.1155/2012/302581 – ident: ref42 doi: 10.1088/2057-1976/aa6db8 – ident: ref39 doi: 10.1016/j.neuroimage.2007.01.051 – ident: ref33 doi: 10.1145/214762.214771 – ident: ref32 doi: 10.1016/B978-012620861-0/50005-X – ident: ref5 doi: 10.1111/j.1469-8986.1973.tb00803.x – volume: 178 start-page: 163 year: 2012 ident: ref21 article-title: EEG data compression to monitor DoA in telemedicine publication-title: Stud Health Technol Inform – ident: ref43 doi: 10.1109/TIT.1966.1053907 – ident: ref20 doi: 10.1109/IEMBS.2010.5628020 – ident: ref35 doi: 10.1007/s00422-010-0406-6 – start-page: 2040 year: 2014 ident: ref34 article-title: Low-complexity, multi-channel, lossless and near-lossless EEG compression publication-title: Proc 22nd Eur Signal Process Conf (EUSIPCO) – ident: ref40 doi: 10.1088/1741-2560/4/3/012 – ident: ref10 doi: 10.1109/10.552239 – ident: ref9 doi: 10.1109/MSP.2015.2481559 – year: 2009 ident: ref37 article-title: Application of machine learning to epileptic seizure onset detection and treatment – ident: ref7 doi: 10.1016/0013-4694(91)90040-B – ident: ref18 doi: 10.1155/2011/860549 – start-page: 737 year: 2005 ident: ref38 article-title: Methods towards invasive human brain computer interfaces publication-title: Advances in Neural IInformation Processing Systems – ident: ref13 doi: 10.1109/TITB.2007.899497 – ident: ref12 doi: 10.1109/ICONIP.2002.1199034 – ident: ref4 doi: 10.1016/S0165-0173(98)00056-3 – ident: ref28 doi: 10.1109/TIT.2010.2050803 – ident: ref3 doi: 10.1037/2326-5523.1.S.48 – ident: ref23 doi: 10.1109/TITB.2012.2194298 – ident: ref8 doi: 10.1109/7333.918276 – ident: ref11 doi: 10.1109/EMBC.2012.6347331 – ident: ref19 doi: 10.1109/4233.788586 – ident: ref29 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref36 doi: 10.1109/MAHC.1985.10011 – ident: ref27 doi: 10.1109/TITB.2012.2230012 – ident: ref30 doi: 10.1016/0196-6774(85)90036-7 – ident: ref14 doi: 10.1016/j.bspc.2011.06.007 – volume: 2 year: 1996 ident: ref24 publication-title: The Data Compression Book – ident: ref17 doi: 10.1109/TIT.1986.1057132 – ident: ref6 doi: 10.1001/archpsyc.1966.01730120026004 – ident: ref16 doi: 10.1109/TIT.1977.1055714 – ident: ref2 doi: 10.1097/00004691-199901000-00002 – ident: ref41 doi: 10.1109/EMBSISC.2016.7508624 |
| SSID | ssj0017657 |
| Score | 2.3866367 |
| Snippet | The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 957 |
| SubjectTerms | Brain modeling Compression algorithms context-based EEG Electroencephalography Entropy entropy coder Huffman coding linear prediction Lossless compression MVAR Predictive models |
| Title | Highly Efficient Compression Algorithms for Multichannel EEG |
| URI | https://ieeexplore.ieee.org/document/8344499 https://www.ncbi.nlm.nih.gov/pubmed/29752230 https://www.proquest.com/docview/2038271259 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy4tLX0sfchIbS9tljjx2onUC6oCCAkOdJG4RbE9AdRttoLsof31nXEeolWLuEWRx4k94_ibeOYbgHepzq30zkWZqnWkXCaj3NXkrBijCY8nTtWc4Hxyqo_O1fHF7GINPo25MIgYgs9wypfhLN8v3Yp_le1xTQhC6OuwbjLd5WqNJwZGB1ZPWsAqUmkSDwkycb43P_16VnAUVzYlB0MThmYK4NwQ9ODg5zv7USiw8n-sGfacg8dwMrxtF2rybbpq7dT9-ovI8aHD2YJHPfgU-521PIE1bJ7C-7tEw2LesQyID-LsDw7vbfjMISGLn6IIpBPUs-BvSRdG24j9xeXy5rq9-n4rCAaLkNfLScUNLkRRHD6D84Ni_uUo6msvRI4gTEtaqyTmypP7oaosrmbWeR1XNXssOKvpXu2NTaXVGKMn3EgalzbxXqaoJGL6HDaaZYMvQcjaoZPeKlUxXJlVUiWxMWjY1ZFWTUAOGihdPyiuj7Eog4MS52VQYMkKLHsFTuDjKPOjo-W4t_U2z_7Ysp_4CewOii5pUfFJSdXgcnVLwmmWGMJ-1OZFZwGj8GA4O__u9BVs8qO7mMjXsNHerPAN4ZbWvg0G-xsFYea1 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0JZnkYCLpBtnDhxInGpUMoC3T2UrdRbFNsTqLpkUZs9wK9nxnmoIEDcrMi2bM84_sae-QbgeZzmRjprg0zVaaBsJoPc1mSsaJ0SHo-sqjnAeb5IZ8fqw0lysgWvx1gYRPTOZzjlon_Ld2u74auyPc4JQQj9ClxNqJB00Vrjm4FOPa8nbWEVqDgKhxCZMN9bLj4dFezHlU3JxEgJRTMJcK4JfLD786UTyadY-Tva9KfOwU2YD-PtnE3OppvWTO2P36gc_3dCt-BGDz_Ffqcvt2ELmzvw4jLVsFh2PAPipTj6hcV7B96wU8jquyg87QT1LPhv0jnSNmJ_9Xl9ftp--XohCAgLH9nLYcUNrkRRvLsLxwfF8u0s6LMvBJZATEtyqyTmypEBoqosrBJjXRpWNdssmNT0rXbaxNKkGKIj5EgylyZyTsaoJGJ8D7abdYP3QcjaopXOKFUxYEkqqaJQa9Rs7EijJiAHCZS2nxRnyFiV3kQJ89ILsGQBlr0AJ_BqbPOtI-b4Z-0dXv2xZr_wE3g2CLqkbcVvJVWD680FNY6zSBP6ozq7nQaMjQfFefDnTp_Ctdlyflgevl98fAjXeRidh-Qj2G7PN_iYUExrnnjl_QlCbeoC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Compression+Algorithms+for+Multichannel+EEG&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shaw%2C+Laxmi&rft.au=Rahman%2C+Daleef&rft.au=Routray%2C+Aurobinda&rft.date=2018-05-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=26&rft.issue=5&rft.spage=957&rft.epage=968&rft_id=info:doi/10.1109%2FTNSRE.2018.2826559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2018_2826559 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |