The finite cell method for polygonal meshes: poly-FCM
In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and th...
Saved in:
| Published in | Computational mechanics Vol. 58; no. 4; pp. 587 - 618 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2016
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0178-7675 1432-0924 |
| DOI | 10.1007/s00466-016-1307-x |
Cover
| Abstract | In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases. |
|---|---|
| AbstractList | In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases. |
| Audience | Academic |
| Author | Duczek, Sascha Gabbert, Ulrich |
| Author_xml | – sequence: 1 givenname: Sascha surname: Duczek fullname: Duczek, Sascha email: sascha.duczek@ovgu.de organization: Faculty of Mechanical Engineering, Computational Mechanics, Otto-von-Guericke-University Magdeburg – sequence: 2 givenname: Ulrich surname: Gabbert fullname: Gabbert, Ulrich organization: Faculty of Mechanical Engineering, Computational Mechanics, Otto-von-Guericke-University Magdeburg |
| BookMark | eNp9kc1qGzEUhUVJoM7PA3Q30FUXSq40Y0nTnTFNa0gJ5GctNPKVLTMeuZIMzttXznQRF1q0uHD4voukc0HOhjAgIZ8Y3DAAeZsAGiEoMEFZDZIePpAJa2pOoeXNGZkAk4pKIacfyUVKGwA2VfV0QqbPa6ycH3zGymLfV1vM67CsXIjVLvSvqzCYY5jWmL6-JfRu_vOKnDvTJ7z-My_Jy9235_kPev_wfTGf3VNbqzbTxnC2FAJYp1qB0mLHVWeYs6bhtelaw-TSKdZJQKuk5GgtMiusUwCKd1Bfks_j3l0Mv_aYst6EfSw3SpopBUqIlstC3YzUyvSo_eBCjsaWs8Stt-WfnC_5rJEg65qro_DlRChMxkNemX1KevH0eMrKkbUxpBTRaeuzyb4o0fheM9DHAvRYgC4F6GMB-lBM9pe5i35r4ut_HT46qbDDCuO7B_9T-g39iphG |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2024_04_008 crossref_primary_10_1016_j_cma_2017_11_014 crossref_primary_10_1002_cnm_2880 crossref_primary_10_1002_nme_5628 crossref_primary_10_1016_j_cma_2022_115565 crossref_primary_10_1007_s12206_017_1138_5 crossref_primary_10_1016_j_compstruc_2023_107175 crossref_primary_10_1007_s00466_019_01803_2 crossref_primary_10_1016_j_cma_2020_113050 crossref_primary_10_1002_pamm_202000230 crossref_primary_10_1002_nme_5609 crossref_primary_10_1186_s40323_020_00157_2 crossref_primary_10_1007_s00419_020_01772_6 crossref_primary_10_1016_j_cma_2018_01_031 crossref_primary_10_1002_pamm_201710117 crossref_primary_10_1108_EC_07_2022_0452 crossref_primary_10_1016_j_cma_2018_02_029 crossref_primary_10_1016_j_cma_2020_112833 |
| Cites_doi | 10.1142/S0218202514400077 10.1007/s00158-015-1309-x 10.1007/s00466-011-0668-4 10.1002/nme.4802 10.1145/1183287.1183295 10.1016/j.cma.2006.05.012 10.1111/j.1467-8659.2012.03059.x 10.1016/j.commatsci.2013.10.012 10.1007/s11831-014-9115-y 10.1016/j.compfluid.2015.08.027 10.1007/s10915-015-9997-3 10.1016/j.finel.2013.01.006 10.1007/978-90-481-2822-8_9 10.1007/978-3-642-38762-3_1 10.1111/j.1467-8659.2007.01058.x 10.1002/9780470749081 10.1007/BF02905933 10.1002/nme.4851 10.1007/s00158-008-0261-4 10.1007/978-1-4899-5681-1 10.1111/j.1365-246X.1995.tb06841.x 10.1007/s00466-015-1197-3 10.1016/j.cma.2013.04.009 10.1007/s00466-013-0853-8 10.1007/3-540-26772-7_8 10.1007/978-3-642-15414-0_20 10.1007/s00466-016-1273-3 10.1016/0021-9991(84)90128-1 10.1109/TIT.1982.1056489 10.1002/nme.2763 10.1007/s11081-011-9159-x 10.1002/nme.1534 10.1016/j.cma.2016.04.006 10.1007/s00791-012-0175-y 10.1016/S0167-8396(03)00002-5 10.1007/s00158-011-0696-x 10.1007/s00466-010-0562-5 10.1002/nme.1141 10.1002/nme.5207 10.1002/nme.3289 10.1002/fld.3843 10.1201/9781420011685 10.1016/j.cma.2014.07.016 10.1016/j.cma.2013.10.025 10.1007/s00158-015-1252-x 10.1007/BF02127699 10.1002/nme.4744 10.1137/120874746 10.1007/s10915-014-9894-1 10.1017/S0962492902000077 10.1002/nme.4645 10.1016/j.camwa.2012.09.002 10.1109/TMAG.2014.2345497 10.1142/S021987620600117X 10.1016/j.finel.2004.08.002 10.1007/978-1-84882-784-4 10.1016/j.jcp.2014.05.019 10.1016/j.cma.2008.02.036 10.1016/j.jcp.2007.01.026 10.1016/j.cagd.2005.06.004 10.1088/1757-899X/10/1/012170 10.1145/1186822.1073229 10.1016/j.cma.2007.08.013 10.1016/S0168-874X(97)00006-1 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R 10.1137/130925712 10.1002/nme.4522 10.1002/nme.2149 10.1016/j.cma.2006.05.013 10.1007/s00466-012-0681-2 10.1007/s10704-014-9961-5 10.1016/j.cma.2012.06.011 10.1016/j.cma.2015.05.007 10.1016/j.camwa.2015.05.009 10.1007/s10444-005-9008-6 10.1007/s00707-014-1227-9 10.1016/j.cma.2014.07.009 10.1002/9781119993834 10.1016/j.cagd.2006.12.001 10.1016/j.cma.2012.09.012 10.1108/EC-04-2014-0070 10.1002/nme.1193 10.1080/10867651.2002.10487551 10.1061/(ASCE)0893-1321(2003)16:1(9) 10.1002/nme.4562 10.1017/S0305004100056589 10.1002/nme.4663 10.1007/s10444-004-7611-6 10.1007/978-3-319-06404-8_6 10.1142/S0218202514400065 10.1007/s10483-014-1861-9 10.1111/j.1467-8659.2008.01292.x 10.1142/S0218202512500492 10.1046/j.1365-246x.1999.00967.x 10.1007/s00466-007-0173-y 10.1007/s00158-011-0706-z 10.1117/12.2009983 10.1016/j.compstruc.2013.01.017 10.1007/s00466-009-0414-3 10.1201/9781420011692 10.1038/376655a0 10.1090/S0025-5718-2014-02807-X 10.1142/S0219876213500023 10.1007/s00466-014-1019-z 10.1002/9780470510858 10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P 10.1002/nme.4269 10.1016/j.finel.2014.03.006 10.1002/nme.2759 10.1016/j.cma.2014.05.005 10.1016/j.ultras.2012.05.008 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T 10.1142/S021820251440003X |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2016 COPYRIGHT 2016 Springer Copyright Springer Science & Business Media 2016 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: COPYRIGHT 2016 Springer – notice: Copyright Springer Science & Business Media 2016 |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s00466-016-1307-x |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1432-0924 |
| EndPage | 618 |
| ExternalDocumentID | A470733287 10_1007_s00466_016_1307_x |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 XH6 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c389t-4a21d6601b896e7ceb28ba1fca423ab9a17df81b70ec8772ecce1c6cf80082b03 |
| IEDL.DBID | U2A |
| ISSN | 0178-7675 |
| IngestDate | Fri Jul 25 11:15:55 EDT 2025 Mon Oct 20 16:36:06 EDT 2025 Thu Oct 16 15:13:08 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 Wed Oct 01 04:31:31 EDT 2025 Fri Feb 21 02:32:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Finite cell method Polygonal finite element methods Fictitious domain method Generalized barycentric coordinates |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-4a21d6601b896e7ceb28ba1fca423ab9a17df81b70ec8772ecce1c6cf80082b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1880866927 |
| PQPubID | 2043755 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_1880866927 gale_infotracacademiconefile_A470733287 gale_incontextgauss_ISR_A470733287 crossref_citationtrail_10_1007_s00466_016_1307_x crossref_primary_10_1007_s00466_016_1307_x springer_journals_10_1007_s00466_016_1307_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics |
| PublicationTitle | Computational mechanics |
| PublicationTitleAbbrev | Comput Mech |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | SambridgeMBraunJMcQueenHGeophysical parametrization and interpolyation of irregular data using natural neighboursGeophys J Int199512283785710.1111/j.1365-246X.1995.tb06841.x HeinzeSJoulaianMDüsterANumerical homogenization of hybrid metal foams using the finite cell methodComput Math Appl20157015011517339695810.1016/j.camwa.2015.05.009 ParvizianJDüsterARankEFinite cell method: h- and p-extension for embedded domain problems in solid mechanicsComput Mech20074112113323778021162.7450610.1007/s00466-007-0173-y Schillinger D, Cai Q, Mundani R-P, Rank E (2013) A review of the finite cell method for nonlinear structural analysis of complex CAD and image-based geometric models. In: Advanced computing. Lecture notes in computational science and engineering, vol 93. Springer, New York, pp 1–23 Demkowicz L (2006) Computing with hp-adaptive finite elements: vol 1: one and two dimensional elliptic and Maxwell problems. Chapman and Hall, Boca Raton WachspressEA rational finite element basis1975New YorkAcademic Press0322.65001 DuczekSLiefoldSGabbertUThe finite and spectral cell methods for smart structure applications: transient analysisActa Mech201522684586933166731317.7408410.1007/s00707-014-1227-9 SukumarNTabarraeiANeittaanmäkiPRossiTKorotovSOñateEPériauxJKnörzerDPolygonal interpolants: construction and adaptive computations on quadtree meshesProceedings of the European congress on computational methods in applied sciences and engineering (ECCOMAS)2014JyvaskylaUniversity of Jyväskylä JoulaianMDüsterALocal enrichment of the finite cell method for problems with material interfacesComput Mech2013527417621311.7412310.1007/s00466-013-0853-8 KomatitschDVilotteJPVaiRCastillo-CovarrubiasJMSánchez-SesmaFJThe spectral element method for elastic wave equations—application to 2-D and 3-D seismic problemsInt J Numer Methods Eng199945113911640947.7407410.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T Schillinger D (2012) The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. PhD Thesis, Technical University Munich ChiongIOoiETSongCTin-LoiFScaled boundary polygons with applications to fracture analysis of functionally graded materialsInt J Numer Methods Eng201498562589319785210.1002/nme.4645 SzabóBBabuškaIIntroduction to finite element analysis: formulation, verification and validation2011New YorkWiley0588072010.1002/9781119993834 RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng200719676678122781781121.6536410.1016/j.cma.2006.05.012 TabarraeiASukumarNExtended finite element method onpolygonal and quadtree meshesComput Methods Appl Mech Eng200819742543823623821169.7463410.1016/j.cma.2007.08.013 ZanderNKollmannsbergerSRuessMYosibashZRankEThe finite cell method for linear thermoelasticityComput Math Appl2012643527354129925321268.7402010.1016/j.camwa.2012.09.002 KomatitschDTrompJIntroduction to the spectral element method for three-dimensional seismic wave propagationGeophys J Int199913980682210.1046/j.1365-246x.1999.00967.x SchillingerDDüsterARankEThe hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanicsInt J Numer Methods Eng2012891171120228969031242.7416110.1002/nme.3289 FloaterMSMean value coordinatesComput Aided Geom Des200320192719683041069.6555310.1016/S0167-8396(03)00002-5 RanjbarMMashayekhiMParvizianJDüsterARankEUsing the finite cell method to predict crack initiation in ductile materialsComput Mater Sci20148242743410.1016/j.commatsci.2013.10.012 Varduhn V, Hsu M-C, Ruess M, Schillinger D (2016) The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes. Int J Numer Methods Eng 1–26. doi:10.1002/nme.5207 YangZRuessMKollmannsbergerSDüsterARankEAn efficient integration technique for the voxel-based finite cell methodInt J Numer Methods Eng20129145747110.1002/nme.4269 HughesTJRThe finite element method: linear static and dynamic finite element analysis1987Englewood CliffPrentice-Hall0634.73056 KudelaLZanderNBogTKollmannsbergerSRankEEfficient and accurate numerical quadrature for immersed boundary methodsAdv Model Simul Eng Sci20152–10122 KhoeiARYasbolaghiRBiabanakiSORA polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: a study on polygonal shape functionsEng Comput2015321391143110.1108/EC-04-2014-0070 Xu F, Schillinger D, D K, Varduhn V, Wang C, Hsu M-C, (2015) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 1–19: doi:10.1016/j.compfluid.2015.08.027 MukherjeeTWebbJPHierarchical bases for polygonal finite elementsIEEE Trans Magn2015511410.1109/TMAG.2014.2345497 EbeidaMSMitchellSAPatneyADavidsonAAOwensJDA simple algorithm for maximal Poisson-disk sampling inhigh dimensionsComput Graph Forum20123178579410.1111/j.1467-8659.2012.03059.x BiabanakiSORKhoeiARA polygonal finite element method for modeling arbitrary interfaces in large deformation problemsComput Mech201250193329469151312.7403210.1007/s00466-011-0668-4 Talischi C, Pereira A, Menezes IFM, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747 RankEDüsterASchillingerDYangZThe finite cell method: high order simulation of complex structures without meshingComputational structural engineering2009BerlinSpringer879210.1007/978-90-481-2822-8_9 Yang Z (2011) The finite cell method for geometry-based structural simulation. PhD Thesis, Technical University Munich SehlhorstH-GJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3 Zienkiewicz OC, Taylor RL (2000) The finite element method: vol 1: the basis. Butterworth Heinemann, Oxford OstachowiczWKudelaPKrawczukMŻakAGuided waves in structures for SHM: the time-domain spectral element method2011New YorkWiley1242.74044 SukumarNConstruction of polygonal interpolants: a maximum entropy approachInt J Numer Methods Eng2004612159218121016021073.6550510.1002/nme.1193 FloaterMSKósGReimersMMean value coordinates in 3DComput Aided Geom Des20052262363121690521080.5201010.1016/j.cagd.2005.06.004 SukumarNMoranBBelytschkoTThe natural element method in solid mechanicsInt J Numer Methods Eng19984383988716509180940.7407810.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R MousaviSEXiaoHSukumarNGeneralized gaussian quadrature rules on arbitrary polygonsInt J Numer Methods Eng2010829911326543611183.65026 Düster A, Sehlhorst H-G, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 1:1–19 Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20 No. 458 Beirão da VeigaLBrezziFMariniLDVirtual elements for linear elasticity problemsSIAM J Numer Anal20135179491230330331268.7401010.1137/120874746 Dumonet D (2014) Towards efficient and accurate 3D cut cell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich TabarraeiASukumarNApplication of polygonal finite elements in linear elasticityInt J Comput Methods2006350352023458591198.7410410.1142/S021987620600117X Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD Thesis, Technical University Munich JuTLiepaPWarrenJA general geometric construction of coordinates in a convex simplicial polytopeComput Aided Geom Des20072416117823078961171.6533710.1016/j.cagd.2006.12.001 Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. In: IOP conference series: materials science and engineering, vol 10 BiabanakiSORKhoeiARWriggersPPolygonal finite element methods for contact-impact problems on non-conformal meshesComput Methods Appl Mech Eng201426919822131446391296.7410510.1016/j.cma.2013.10.025 HateleyJCWeiHChengLFast methods for computing centroidal Voronoi tessellationsJ Sci Comput20156318521233152731328.6238610.1007/s10915-014-9894-1 LeonSESpringDWPaulinoGHReduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elementsInt J Numer Methods Eng2014100555576327106910.1002/nme.4744 TalischiCPereiraAPaulinoGHMenezesIFMCarvalhoMSPolygonal finite elements for incompressible fluid flowInt J Numer Methods Fluids201474134151314666810.1002/fld.3843 SzabóBBabuškaIFinite element analysis1991New YorkWiley0792.73003 WarrenJSchaferSHiraniANDesburnMBarycentric coordinates for convex setsAdv Comput Math20072731933823360011124.5201010.1007/s10444-005-9008-6 Duczek S, Duvigneau F, Gabbert U (2015) The finite cell method for arbitrary tetrahedral meshes. Finite Elem Anal Des 1–29 (under review) MilbradtPPickTPolytope finite elementsInt J Numer Methods Eng2008731811183523979721162.6540610.1002/nme.2149 GainALTalischiCPaulinoGHOn the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshesComput Methods Appl Mech Eng2014282132160326989410.1016/j.cma.2014.05.005 TalischiCPaulinoGKPereiraAMenezesIFMPolygonal finite elements for topology optimization: a unifying paradigmInt J Numer Methods Eng2010826716981188.74072 Duczek S, Joulaian M, Düster A, Gabbert U (2013) Simulation of Lamb waves using the spectral cell method. In: Proceedings of SPIE smart structures/NDE, vol 8695 Sukumar N, Bolander JE (2009) Sukumar N, Bolander JE (2009) Voronoi-based interpolants for fracture modelling. In: Tessellations in the sciences: virtues, techniques and applications of geometric tiling. Springer, Berlin, p 27 GlowinskiRKuznetsovYDistributed Lagrange multipliers based on fictitious domain method for second order elliptic problemsComput Methods Appl Mech Eng20071961498150622770331173.65 1307_CR7 1307_CR126 R Sibson (1307_CR89) 1980; 87 SE Leon (1307_CR26) 2014; 100 S Heinze (1307_CR51) 2015; 70 S Duczek (1307_CR68) 2014; 99 D Schillinger (1307_CR53) 2012; 89 JC Hateley (1307_CR21) 2015; 63 A Tabarraei (1307_CR10) 2005; 41 1307_CR62 MS Floater (1307_CR81) 2014; 52 MF Benedetto (1307_CR133) 2014; 280 N Sukumar (1307_CR12) 2004; 61 1307_CR121 IA Viktorov (1307_CR125) 1967 1307_CR69 1307_CR2 1307_CR122 DW Spring (1307_CR33) 2014; 189 M Sambridge (1307_CR94) 1995; 122 J Warren (1307_CR79) 1996; 6 Z Yang (1307_CR48) 2012; 91 N Sukumar (1307_CR91) 2001; 50 M Joulaian (1307_CR111) 2016; 57 I Chiong (1307_CR5) 2014; 98 A Abedian (1307_CR56) 2014; 35 G Dasgupta (1307_CR112) 2003; 16 1307_CR73 A Tabarraei (1307_CR23) 2006; 3 MS Floater (1307_CR86) 2006; 24 H Chi (1307_CR6) 2015; 101 J Braun (1307_CR93) 1995; 376 N Sukumar (1307_CR96) 2004; 61 1307_CR106 S Duczek (1307_CR114) 2015; 56 1307_CR107 1307_CR104 1307_CR105 N Sukumar (1307_CR3) 2006; 13 M Dauge (1307_CR44) 2015; 65 D Komatitsch (1307_CR66) 1999; 45 C Talischi (1307_CR34) 2014; 74 T Mukherjee (1307_CR13) 2015; 51 M Kraus (1307_CR22) 2013; 120 1307_CR43 1307_CR46 1307_CR40 C Talischi (1307_CR20) 2012; 45 1307_CR41 H-G Sehlhorst (1307_CR49) 2009; 45 J Parvizian (1307_CR36) 2007; 41 J Warren (1307_CR80) 2007; 27 M Arroyo (1307_CR98) 2006; 62 1307_CR100 1307_CR117 A Abedian (1307_CR55) 2013; 69 1307_CR118 1307_CR115 C Talischi (1307_CR29) 2010; 82 K Hormann (1307_CR99) 2008; 27 N Sukumar (1307_CR9) 2014 Z Yang (1307_CR47) 2011; 14 1307_CR54 P Milbradt (1307_CR4) 2008; 73 MS Ebeida (1307_CR19) 2012; 31 M Ranjbar (1307_CR57) 2014; 82 M Wicke (1307_CR88) 2007; 26 1307_CR50 1307_CR52 1307_CR110 MS Floater (1307_CR82) 2003; 20 B Szabó (1307_CR42) 2011 K Hormann (1307_CR83) 2006; 25 D Schillinger (1307_CR70) 2014; 22 AT Patera (1307_CR65) 1984; 54 C Talischi (1307_CR30) 2012; 45 L Beiräo da Veiga (1307_CR132) 2014; 24 G Manzini (1307_CR77) 2014; 24 S Natarajan (1307_CR95) 2014; 85 A Tabarraei (1307_CR11) 2008; 197 SOR Biabanaki (1307_CR25) 2014; 269 D Komatitsch (1307_CR67) 1999; 139 AL Gain (1307_CR102) 2015; 293 Y Sudhakar (1307_CR113) 2014; 273 N Sukumar (1307_CR97) 2013; 263 JA Cottrell (1307_CR1) 2009 AR Khoei (1307_CR27) 2015; 32 L Beirão da Veiga (1307_CR130) 2013; 51 1307_CR32 E Rank (1307_CR45) 2009 1307_CR31 M Ruess (1307_CR103) 2013; 95 L Kudela (1307_CR116) 2015; 2–10 CS Peskin (1307_CR35) 2002; 11 N Zander (1307_CR60) 2012; 64 TJR Hughes (1307_CR71) 1987 1307_CR39 H Ledoux (1307_CR92) 2005 ZAB Ahmad (1307_CR124) 2012; 52 N Sukumar (1307_CR90) 1998; 43 J Fish (1307_CR72) 2007 I Ramière (1307_CR74) 2007; 196 AL Gain (1307_CR134) 2014; 282 SE Mousavi (1307_CR108) 2010; 82 E Wachspress (1307_CR14) 1975 1307_CR87 JE Bishop (1307_CR15) 2014; 97 SOR Biabanaki (1307_CR24) 2012; 50 MS Floater (1307_CR84) 2005; 22 1307_CR85 SE Mousavi (1307_CR109) 2011; 47 R Glowinski (1307_CR76) 2007; 196 M Joulaian (1307_CR59) 2013; 52 M Joulaian (1307_CR63) 2014; 54 M Meyer (1307_CR78) 2002; 7 I Ramière (1307_CR75) 2007; 225 SP Lloyd (1307_CR119) 1982; 28 G Királyfalvi (1307_CR120) 1997; 27 A Rand (1307_CR128) 2014; 83 C Talischi (1307_CR8) 2014; 24 F Brezzi (1307_CR131) 2013; 253 C Talischi (1307_CR28) 2009; 37 B Szabó (1307_CR38) 1991 C Willberg (1307_CR127) 2012; 241–244 W Ostachowicz (1307_CR64) 2011 T Ju (1307_CR101) 2007; 24 L Beirão da Veiga (1307_CR129) 2013; 23 1307_CR18 J Parvizian (1307_CR58) 2012; 13 A Düster (1307_CR37) 2008; 197 S Duczek (1307_CR61) 2015; 226 1307_CR17 1307_CR16 CV Verhoosel (1307_CR123) 2015; 284 |
| References_xml | – reference: WillbergCDuczekSVivar PerezJMSchmickerDGabberUComparison of different higher order finite element schemes for the simulation of Lamb wavesComput Methods Appl Mech Eng2012241–24424626110.1016/j.cma.2012.06.011 – reference: Kudela L (2013) Highly accurate subcell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich – reference: JoulaianMDuczekSGabbertUDüsterAFinite and spectral cell method for wave propagation in heterogeneous materialsComput Mech20145466167532469121311.7405610.1007/s00466-014-1019-z – reference: SchillingerDDüsterARankEThe hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanicsInt J Numer Methods Eng2012891171120228969031242.7416110.1002/nme.3289 – reference: Talischi C, Pereira A, Menezes IFM, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747 – reference: EbeidaMSMitchellSAPatneyADavidsonAAOwensJDA simple algorithm for maximal Poisson-disk sampling inhigh dimensionsComput Graph Forum20123178579410.1111/j.1467-8659.2012.03059.x – reference: DasguptaGIntegration within polygonal finite elementsJ Aerosp Eng20031691810.1061/(ASCE)0893-1321(2003)16:1(9) – reference: BiabanakiSORKhoeiARA polygonal finite element method for modeling arbitrary interfaces in large deformation problemsComput Mech201250193329469151312.7403210.1007/s00466-011-0668-4 – reference: DaugeMDüsterARankETheoretical and numerical investigation of the finite cell methodJ Sci Comput2015651039106434172711331.6516010.1007/s10915-015-9997-3 – reference: KomatitschDVilotteJPVaiRCastillo-CovarrubiasJMSánchez-SesmaFJThe spectral element method for elastic wave equations—application to 2-D and 3-D seismic problemsInt J Numer Methods Eng199945113911640947.7407410.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T – reference: BishopJEA displacement-based finite element formulation for general polyhedra using harmonic shape functionsInt J Numer Methods Eng201497131314667010.1002/nme.4562 – reference: CottrellJAHughesTJRBazilevsYIsogeometric analysis: toward Integration of CAD and FEA2009ChichesterWiley10.1002/9780470749081 – reference: ViktorovIARayleigh and Lamb waves1967New YorkPlenum Press10.1007/978-1-4899-5681-1 – reference: Beirão da VeigaLBrezziFMariniLDVirtual elements for linear elasticity problemsSIAM J Numer Anal20135179491230330331268.7401010.1137/120874746 – reference: Düster A, Sehlhorst H-G, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 1:1–19 – reference: Duarte LS, Celes W, Pereira A, Menezes IFM, Paulino GH (2015) PolyTop++: an efficient alternative for serial and parallel topology optimization on CPUs & GPUs. Struct Multidiscip Optim (online), 1–15 – reference: RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng200719676678122781781121.6536410.1016/j.cma.2006.05.012 – reference: FloaterMSGilletteASukumarNGradient bounds for Wachspress coordinates on polytopesSIAM J Numer Anal20145251553231669661292.6500610.1137/130925712 – reference: Filipov ET, Chun J, Paulino GH, Song J (2016) Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics. Struct Multidiscip Optim 53(4):673–694 – reference: YangZKollmannsbergerSDüsterARuessMGrande GarciaEBurgkartRRankENon-standard bone simulation: interactive numerical analysis by computational steeringComput Vis Sci201114207216291695910.1007/s00791-012-0175-y – reference: JoulaianMDüsterALocal enrichment of the finite cell method for problems with material interfacesComput Mech2013527417621311.7412310.1007/s00466-013-0853-8 – reference: VerhooselCVvan ZwietenGJVan RietbergenBde BorstRImage-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular boneComput Methods Appl Mech Eng2015284138164331028210.1016/j.cma.2014.07.009 – reference: Xu F, Schillinger D, D K, Varduhn V, Wang C, Hsu M-C, (2015) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 1–19: doi:10.1016/j.compfluid.2015.08.027 – reference: Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10(23):1350002/1–1350002/24 – reference: SukumarNTabarraeiANeittaanmäkiPRossiTKorotovSOñateEPériauxJKnörzerDPolygonal interpolants: construction and adaptive computations on quadtree meshesProceedings of the European congress on computational methods in applied sciences and engineering (ECCOMAS)2014JyvaskylaUniversity of Jyväskylä – reference: KhoeiARYasbolaghiRBiabanakiSORA polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: a study on polygonal shape functionsEng Comput2015321391143110.1108/EC-04-2014-0070 – reference: MilbradtPPickTPolytope finite elementsInt J Numer Methods Eng2008731811183523979721162.6540610.1002/nme.2149 – reference: SibsonRA vector identity for the Dirichlet tessellationMath Proc Camb Philos Soc1980871511555493040466.5201010.1017/S0305004100056589 – reference: ChiongIOoiETSongCTin-LoiFScaled boundary polygons with applications to fracture analysis of functionally graded materialsInt J Numer Methods Eng201498562589319785210.1002/nme.4645 – reference: HateleyJCWeiHChengLFast methods for computing centroidal Voronoi tessellationsJ Sci Comput20156318521233152731328.6238610.1007/s10915-014-9894-1 – reference: HeinzeSJoulaianMDüsterANumerical homogenization of hybrid metal foams using the finite cell methodComput Math Appl20157015011517339695810.1016/j.camwa.2015.05.009 – reference: Sieger D, Alliez P, Botsch M (2010) Optimizing Voronoi diagrams for polygonal finite element computations. In: Proceedings of the 19th international meshing roundtable – reference: Pick T (2007) Natürliche Elementkoordinaten auf Polyedern: Ein objektorientierter Entwurf am Beispiel der FEM. PhD Thesis, Leibnitz University Hannover – reference: BrezziFMariniLDVirtual element methods for plate bending problemsComput Methods Appl Mech Eng201325345546230028041297.7404910.1016/j.cma.2012.09.012 – reference: MousaviSEXiaoHSukumarNGeneralized gaussian quadrature rules on arbitrary polygonsInt J Numer Methods Eng2010829911326543611183.65026 – reference: TalischiCPaulinoGHLeCHHoneycomb Wachspress finite elements for structural topology optimizationStruct Multidiscip Optim20093756958324710181274.7445210.1007/s00158-008-0261-4 – reference: Sukumar N, Bolander JE (2009) Sukumar N, Bolander JE (2009) Voronoi-based interpolants for fracture modelling. In: Tessellations in the sciences: virtues, techniques and applications of geometric tiling. Springer, Berlin, p 27 – reference: KudelaLZanderNBogTKollmannsbergerSRankEEfficient and accurate numerical quadrature for immersed boundary methodsAdv Model Simul Eng Sci20152–10122 – reference: TabarraeiASukumarNExtended finite element method onpolygonal and quadtree meshesComput Methods Appl Mech Eng200819742543823623821169.7463410.1016/j.cma.2007.08.013 – reference: TabarraeiASukumarNApplication of polygonal finite elements in linear elasticityInt J Comput Methods2006350352023458591198.7410410.1142/S021987620600117X – reference: KomatitschDTrompJIntroduction to the spectral element method for three-dimensional seismic wave propagationGeophys J Int199913980682210.1046/j.1365-246x.1999.00967.x – reference: KrausMRajagopalASteinmannPInvestigations on the polygonal finite element method: constrained adaptive Delaunay tessellation and conformal interpolantsComput Struct2013120334610.1016/j.compstruc.2013.01.017 – reference: WarrenJBarycentric coordinates for convex polytopesAdv Comput Math199669710814317880873.5201310.1007/BF02127699 – reference: RankEDüsterASchillingerDYangZThe finite cell method: high order simulation of complex structures without meshingComputational structural engineering2009BerlinSpringer879210.1007/978-90-481-2822-8_9 – reference: OstachowiczWKudelaPKrawczukMŻakAGuided waves in structures for SHM: the time-domain spectral element method2011New YorkWiley1242.74044 – reference: HughesTJRThe finite element method: linear static and dynamic finite element analysis1987Englewood CliffPrentice-Hall0634.73056 – reference: SudhakarYMoitinho de AlmeidaJPWallWAAn accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methodsJ Comput Phys201427339341510.1016/j.jcp.2014.05.019 – reference: TalischiCPaulinoGHPereiraAMenezesIFMPolyMesher: a general-purpose mesh generator for polygonal elements written in MatlabStruct Multidiscip Optim20124530932828971151274.7440110.1007/s00158-011-0706-z – reference: FloaterMSHormannKKósGA general construction of barycentric coordinates over convex polygonsAdv Comput Math2006243113311095.6501610.1007/s10444-004-7611-6 – reference: Dumonet D (2014) Towards efficient and accurate 3D cut cell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich – reference: SpringDWLeonSEPaulinoGHUnstructured polygonal meshes with adaptive refinement for the numerical simualtion of dynamic cohesive fractureInt J Fract2014189335710.1007/s10704-014-9961-5 – reference: GlowinskiRKuznetsovYDistributed Lagrange multipliers based on fictitious domain method for second order elliptic problemsComput Methods Appl Mech Eng20071961498150622770331173.6536910.1016/j.cma.2006.05.013 – reference: MousaviSESukumarNNumerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedronsComput Mech20114753555427884291221.6507810.1007/s00466-010-0562-5 – reference: SzabóBBabuškaIFinite element analysis1991New YorkWiley0792.73003 – reference: TalischiCPaulinoGHAddressing integration error for polygonal finite elements through polynomial projections: a patch test connectionMath Models Methods Appl Sci2014241701172732002461291.6534910.1142/S0218202514400077 – reference: Schillinger D (2012) The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. PhD Thesis, Technical University Munich – reference: Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. In: IOP conference series: materials science and engineering, vol 10 – reference: TabarraeiASukumarNAdaptive computations on conforming quadtree meshesFinite Elem Anal Des20054168670210.1016/j.finel.2004.08.002 – reference: SukumarNMoranBBelytschkoTThe natural element method in solid mechanicsInt J Numer Methods Eng19984383988716509180940.7407810.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R – reference: Beirão da VeigaLBrezziFCangianiAManziniGMariniLDRussoABasic principles of virtual element methodsMath Models Methods Appl Sci20132319921429974710614442410.1142/S0218202512500492 – reference: BenedettoMFBerroneSPieracciniSSiaclóSThe virtual element method for discrete fracture network simulationsComput Methods Appl Mech Eng2014280135156325553510.1016/j.cma.2014.07.016 – reference: RuessMSchillingerDBazilevsYVarduhnVRankEWeakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell methodInt J Numer Methods Eng201395811846309235110.1002/nme.4522 – reference: FishJBelytschkoTA first course in finite elements2007New YorkWiley1135.7400110.1002/9780470510858 – reference: DuczekSLiefoldSGabbertUThe finite and spectral cell methods for smart structure applications: transient analysisActa Mech201522684586933166731317.7408410.1007/s00707-014-1227-9 – reference: Beiräo da VeigaLBrezziFMariniLDRussoAThe hitchhiker’s guide to the virtual element methodMath Models Methods Appl Sci201424154132002421291.6533610.1142/S021820251440003X – reference: KirályfalviGSzabóBQuasi-regional mapping for the p-version of the finite element methodFinite Elem Anal Des199727859714748180916.7305610.1016/S0168-874X(97)00006-1 – reference: LeonSESpringDWPaulinoGHReduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elementsInt J Numer Methods Eng2014100555576327106910.1002/nme.4744 – reference: Ebeida MS, Mitchell SA (2012) Uniform random Voronoi meshes. In: Proceedings of the 20th international meshing roundtable, pp 273–290 – reference: Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2008) Computing with hp-adaptive finite elements: vol 2, frontiers: three dimensional elliptic and Maxwell problems with applications. Chapman and Hall, Boca Raton – reference: SukumarNTabarraeiAConforming polygonal finite elementsInt J Numer Methods Eng2004612045206621015991073.6556310.1002/nme.1141 – reference: HormannKFloaterMSMean value coordinates for arbitrary planar polygonsACM Trans Graph2006251424144110.1145/1183287.1183295 – reference: SzabóBBabuškaIIntroduction to finite element analysis: formulation, verification and validation2011New YorkWiley0588072010.1002/9781119993834 – reference: SambridgeMBraunJMcQueenHGeophysical parametrization and interpolyation of irregular data using natural neighboursGeophys J Int199512283785710.1111/j.1365-246X.1995.tb06841.x – reference: TalischiCPereiraAPaulinoGHMenezesIFMCarvalhoMSPolygonal finite elements for incompressible fluid flowInt J Numer Methods Fluids201474134151314666810.1002/fld.3843 – reference: WickeMBotschMGrossMA finite element method onconvex polyhedraComput Graph Forum20072635536410.1111/j.1467-8659.2007.01058.x – reference: JoulaianMHubrichSDüsterANumerical integration of discontinuities on arbitrary domains based on moment fittingComput Mech20165797999935002840659455510.1007/s00466-016-1273-3 – reference: FloaterMSKósGReimersMMean value coordinates in 3DComput Aided Geom Des20052262363121690521080.5201010.1016/j.cagd.2005.06.004 – reference: AhmadZABGabbertUSimulation of Lamb wave reflections at plate edges using the semi-analytical finite element methodUltrasonics20125281582010.1016/j.ultras.2012.05.008 – reference: TalischiCPaulinoGHPereiraAMenezesIFMPolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshesStruct Multidiscip Optim20124532935728971161274.7440210.1007/s00158-011-0696-x – reference: Yang Z (2011) The finite cell method for geometry-based structural simulation. PhD Thesis, Technical University Munich – reference: LloydSPLeast squares quantization in PCMIEEE Trans Inf Theory1982281291376518070504.9401510.1109/TIT.1982.1056489 – reference: Balafas G (2014) Polyhedral mesh generation for CFD-analysis of complex structures. Master’s Thesis, Technical University Munich – reference: PateraATA spectral element method for fluid dynamics: laminar flow in a channel expansionJ Comput Phys1984544684880535.7603510.1016/0021-9991(84)90128-1 – reference: Duczek S, Duvigneau F, Gabbert U (2015) The finite cell method for arbitrary tetrahedral meshes. Finite Elem Anal Des 1–29 (under review) – reference: RanjbarMMashayekhiMParvizianJDüsterARankEUsing the finite cell method to predict crack initiation in ductile materialsComput Mater Sci20148242743410.1016/j.commatsci.2013.10.012 – reference: MeyerMLeeHBarrADesburnMGeneralized barycentric coordinates on irregular polygonsJ Graph Tools2002713221024.6810910.1080/10867651.2002.10487551 – reference: WarrenJSchaferSHiraniANDesburnMBarycentric coordinates for convex setsAdv Comput Math20072731933823360011124.5201010.1007/s10444-005-9008-6 – reference: Pick T, Milbradt P (2006) Quadrature points on polyhedral elements. In: Proceedings of the 23th joint international conference on computing and decision making in civil and building engineering – reference: Aurenhammer F, Klein R (1999) Voronoi diagrams. Tech. Rep. Technical University of Graz & FernUniversität Hagen – reference: LedouxHGoldCAn efficient natural neighbour interpolation algorithm for geoscientific modellingDevelopments in spatial data handling2005BerlinSpringer9710810.1007/3-540-26772-7_8 – reference: SukumarNMalschEARecent advances in the construction of polygonal finite element interpolantsArch Comput Methods Eng20061312916322836201101.6510810.1007/BF02905933 – reference: Demkowicz L (2006) Computing with hp-adaptive finite elements: vol 1: one and two dimensional elliptic and Maxwell problems. Chapman and Hall, Boca Raton – reference: Schillinger D, Cai Q, Mundani R-P, Rank E (2013) A review of the finite cell method for nonlinear structural analysis of complex CAD and image-based geometric models. In: Advanced computing. Lecture notes in computational science and engineering, vol 93. Springer, New York, pp 1–23 – reference: Duczek S, Joulaian M, Düster A, Gabbert U (2013) Simulation of Lamb waves using the spectral cell method. In: Proceedings of SPIE smart structures/NDE, vol 8695 – reference: ArroyoMOrtiMLocal maximum-entropy approximationschemes: a seamless bridge between finite elements and mesh free methodsInt J Numer Methods Eng200662216722021146.7404810.1002/nme.1534 – reference: BiabanakiSORKhoeiARWriggersPPolygonal finite element methods for contact-impact problems on non-conformal meshesComput Methods Appl Mech Eng201426919822131446391296.7410510.1016/j.cma.2013.10.025 – reference: YangZRuessMKollmannsbergerSDüsterARankEAn efficient integration technique for the voxel-based finite cell methodInt J Numer Methods Eng20129145747110.1002/nme.4269 – reference: Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: Accurately integrating discontinous functions in 3D. Comput Methods Appl Mech Eng 1–33 (online) – reference: Zienkiewicz OC, Taylor RL (2000) The finite element method: vol 1: the basis. Butterworth Heinemann, Oxford – reference: GainALTalischiCPaulinoGHOn the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshesComput Methods Appl Mech Eng2014282132160326989410.1016/j.cma.2014.05.005 – reference: Su Z, Ye L (2009) Lecture notes in applied and computational mechanics: vol 48, identification of damage using Lamb waves. Springer, Berlin – reference: SchillingerDRuessMThe finite cell method: a review in the context of high-order structural analysis of CAD and image-based geometric modelsArch Comput Methods Eng2014223391455335802610.1007/s11831-014-9115-y – reference: DuczekSGabbertUEfficient integration method for fictitious domain approachesComput Mech20155672573833955091329.6522110.1007/s00466-015-1197-3 – reference: SehlhorstH-GJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3 – reference: Sehlhorst H-G (2011) Numerical homogenization startegies for cellular materials with applications in structural mechanics. PhD Thesis, Hamburg Uneversity of Technology – reference: ParvizianJDüsterARankETopology optimization using the finite cell methodOptim Eng201213577828786731293.7435710.1007/s11081-011-9159-x – reference: SukumarNQuadratic maximum-entropy serendipity shape functions for arbitrary planar polygonsComput Methods Appl Mech Eng2013263274130828181286.6516810.1016/j.cma.2013.04.009 – reference: MukherjeeTWebbJPHierarchical bases for polygonal finite elementsIEEE Trans Magn2015511410.1109/TMAG.2014.2345497 – reference: SukumarNConstruction of polygonal interpolants: a maximum entropy approachInt J Numer Methods Eng2004612159218121016021073.6550510.1002/nme.1193 – reference: DuczekSJoulaianMDüsterAGabbertUNumerical analysis of Lamb waves using the finite and spectral cell methodsInt J Numer Methods Eng201499265332264451311.7405610.1002/nme.4663 – reference: Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD Thesis, Technical University Munich – reference: PeskinCSThe immersed boundary methodActa Numer20021147951720093781123.7430910.1017/S0962492902000077 – reference: AbedianAParvizianJDüsterARankEThe FCM compared to the h-version FEM for elasto-plastic problemsAppl Math Mech2014351239124810.1007/s10483-014-1861-9 – reference: RamièreIAngotPBelliardMA general fictitious domain method with immersed jumps and multilevel nested structured meshesJ Comput Phys20072251347138723491851122.6511510.1016/j.jcp.2007.01.026 – reference: JuTLiepaPWarrenJA general geometric construction of coordinates in a convex simplicial polytopeComput Aided Geom Des20072416117823078961171.6533710.1016/j.cagd.2006.12.001 – reference: TalischiCPaulinoGKPereiraAMenezesIFMPolygonal finite elements for topology optimization: a unifying paradigmInt J Numer Methods Eng2010826716981188.74072 – reference: BraunJSambridgeMA numerical method for solving partial differential equations on highly irregular evolving gridsNature199537665566010.1038/376655a0 – reference: HormannKSukumarNMaximum entropy coordinates for arbitrary polytopesComput Graph Forum2008271513152010.1111/j.1467-8659.2008.01292.x – reference: SukumarNMoranBSemenovAYBelikovVVNatural neighbour Galerkin methodsInt J Numer Methods Eng20015012718085181082.7455410.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P – reference: FloaterMSMean value coordinatesComput Aided Geom Des200320192719683041069.6555310.1016/S0167-8396(03)00002-5 – reference: WachspressEA rational finite element basis1975New YorkAcademic Press0322.65001 – reference: Floater M S (2014) Wachspress and mean value coordinates. In: Approximation theory XIV: San Antonio 2013—Springer proceedings in mathematics and statistics, vol 83, pp 81–102 – reference: ParvizianJDüsterARankEFinite cell method: h- and p-extension for embedded domain problems in solid mechanicsComput Mech20074112113323778021162.7450610.1007/s00466-007-0173-y – reference: DüsterAParvizianJYangZRankEThe finite cell method for three-dimensional problems of solid mechanicsComput Methods Appl Mech Eng20081973768378224581141194.7451710.1016/j.cma.2008.02.036 – reference: ZanderNKollmannsbergerSRuessMYosibashZRankEThe finite cell method for linear thermoelasticityComput Math Appl2012643527354129925321268.7402010.1016/j.camwa.2012.09.002 – reference: NatarajanSOoiETChiongISongCConvergence and accuracy of displacement based finite element formulations over arbitrary polygons:laplace interpolants, strain smoothing and scaled boundary polygon formulationFinite Elem Anal Des201485101122319464110.1016/j.finel.2014.03.006 – reference: Ju T, Schafer S, Warr (2005) Mean value coordinates for closed triangular meshes. In: ACM Transactions on Graphics (TOG)—proceedings of ACM SIGGRAPH, vol 27, pp 561–566 – reference: Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20 No. 458 – reference: Varduhn V, Hsu M-C, Ruess M, Schillinger D (2016) The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes. Int J Numer Methods Eng 1–26. doi:10.1002/nme.5207 – reference: AbedianAParvizianJDüsterARankEThe finite cell method for the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} flow theory of plasticityFinite Elem Anal Des201369374710.1016/j.finel.2013.01.006 – reference: GainALPaulinoGHDuarteLSMenezesIFMTopology optimization using polytopesComput Methods Appl Mech Eng2015293411430339591410.1016/j.cma.2015.05.007 – reference: ManziniGRussoASukumarNNew perspectives on polygonal and polyhedral finite element methodsMath Models Methods Appl Sci2014241665169932002451291.6532210.1142/S0218202514400065 – reference: RandAGilletteABajajCQuadratic serendipity finite elements on polygons using generalized barycentric coordinatesAMS Math Comput2014832691271632468061300.6509110.1090/S0025-5718-2014-02807-X – reference: ChiHTalischiCLopez-PamiesOPaulinoGHPolygonal finite elements for finite elasticityInt J Numer Methods Eng2015101305328330126810.1002/nme.4802 – ident: 1307_CR117 – volume: 24 start-page: 1701 year: 2014 ident: 1307_CR8 publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202514400077 – ident: 1307_CR7 doi: 10.1007/s00158-015-1309-x – volume: 50 start-page: 19 year: 2012 ident: 1307_CR24 publication-title: Comput Mech doi: 10.1007/s00466-011-0668-4 – ident: 1307_CR100 – volume: 101 start-page: 305 year: 2015 ident: 1307_CR6 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4802 – volume: 25 start-page: 1424 year: 2006 ident: 1307_CR83 publication-title: ACM Trans Graph doi: 10.1145/1183287.1183295 – ident: 1307_CR50 – volume-title: Proceedings of the European congress on computational methods in applied sciences and engineering (ECCOMAS) year: 2014 ident: 1307_CR9 – volume: 196 start-page: 766 year: 2007 ident: 1307_CR74 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2006.05.012 – volume: 31 start-page: 785 year: 2012 ident: 1307_CR19 publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2012.03059.x – volume: 82 start-page: 427 year: 2014 ident: 1307_CR57 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2013.10.012 – volume: 22 start-page: 391 issue: 3 year: 2014 ident: 1307_CR70 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-014-9115-y – ident: 1307_CR73 – ident: 1307_CR106 doi: 10.1016/j.compfluid.2015.08.027 – volume: 65 start-page: 1039 year: 2015 ident: 1307_CR44 publication-title: J Sci Comput doi: 10.1007/s10915-015-9997-3 – volume: 69 start-page: 37 year: 2013 ident: 1307_CR55 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2013.01.006 – ident: 1307_CR32 – start-page: 87 volume-title: Computational structural engineering year: 2009 ident: 1307_CR45 doi: 10.1007/978-90-481-2822-8_9 – ident: 1307_CR69 doi: 10.1007/978-3-642-38762-3_1 – volume: 26 start-page: 355 year: 2007 ident: 1307_CR88 publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2007.01058.x – volume-title: Isogeometric analysis: toward Integration of CAD and FEA year: 2009 ident: 1307_CR1 doi: 10.1002/9780470749081 – volume: 13 start-page: 129 year: 2006 ident: 1307_CR3 publication-title: Arch Comput Methods Eng doi: 10.1007/BF02905933 – ident: 1307_CR121 doi: 10.1002/nme.4851 – volume: 37 start-page: 569 year: 2009 ident: 1307_CR28 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0261-4 – volume-title: Rayleigh and Lamb waves year: 1967 ident: 1307_CR125 doi: 10.1007/978-1-4899-5681-1 – volume-title: A rational finite element basis year: 1975 ident: 1307_CR14 – volume: 122 start-page: 837 year: 1995 ident: 1307_CR94 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.1995.tb06841.x – volume: 56 start-page: 725 year: 2015 ident: 1307_CR114 publication-title: Comput Mech doi: 10.1007/s00466-015-1197-3 – volume: 263 start-page: 27 year: 2013 ident: 1307_CR97 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2013.04.009 – volume: 52 start-page: 741 year: 2013 ident: 1307_CR59 publication-title: Comput Mech doi: 10.1007/s00466-013-0853-8 – start-page: 97 volume-title: Developments in spatial data handling year: 2005 ident: 1307_CR92 doi: 10.1007/3-540-26772-7_8 – ident: 1307_CR17 doi: 10.1007/978-3-642-15414-0_20 – volume: 57 start-page: 979 year: 2016 ident: 1307_CR111 publication-title: Comput Mech doi: 10.1007/s00466-016-1273-3 – volume: 54 start-page: 468 year: 1984 ident: 1307_CR65 publication-title: J Comput Phys doi: 10.1016/0021-9991(84)90128-1 – volume: 28 start-page: 129 year: 1982 ident: 1307_CR119 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – volume: 82 start-page: 671 year: 2010 ident: 1307_CR29 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2763 – volume: 13 start-page: 57 year: 2012 ident: 1307_CR58 publication-title: Optim Eng doi: 10.1007/s11081-011-9159-x – volume: 62 start-page: 2167 year: 2006 ident: 1307_CR98 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1534 – ident: 1307_CR115 – ident: 1307_CR118 doi: 10.1016/j.cma.2016.04.006 – volume: 14 start-page: 207 year: 2011 ident: 1307_CR47 publication-title: Comput Vis Sci doi: 10.1007/s00791-012-0175-y – volume: 20 start-page: 19 year: 2003 ident: 1307_CR82 publication-title: Comput Aided Geom Des doi: 10.1016/S0167-8396(03)00002-5 – volume: 45 start-page: 329 year: 2012 ident: 1307_CR30 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0696-x – ident: 1307_CR46 – volume: 47 start-page: 535 year: 2011 ident: 1307_CR109 publication-title: Comput Mech doi: 10.1007/s00466-010-0562-5 – ident: 1307_CR18 – volume-title: Finite element analysis year: 1991 ident: 1307_CR38 – volume: 61 start-page: 2045 year: 2004 ident: 1307_CR12 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1141 – ident: 1307_CR105 doi: 10.1002/nme.5207 – volume: 89 start-page: 1171 year: 2012 ident: 1307_CR53 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.3289 – volume: 74 start-page: 134 year: 2014 ident: 1307_CR34 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.3843 – ident: 1307_CR40 doi: 10.1201/9781420011685 – volume: 280 start-page: 135 year: 2014 ident: 1307_CR133 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.07.016 – volume: 269 start-page: 198 year: 2014 ident: 1307_CR25 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2013.10.025 – ident: 1307_CR31 doi: 10.1007/s00158-015-1252-x – volume: 6 start-page: 97 year: 1996 ident: 1307_CR79 publication-title: Adv Comput Math doi: 10.1007/BF02127699 – volume: 100 start-page: 555 year: 2014 ident: 1307_CR26 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4744 – volume: 51 start-page: 794 year: 2013 ident: 1307_CR130 publication-title: SIAM J Numer Anal doi: 10.1137/120874746 – volume: 63 start-page: 185 year: 2015 ident: 1307_CR21 publication-title: J Sci Comput doi: 10.1007/s10915-014-9894-1 – volume: 11 start-page: 479 year: 2002 ident: 1307_CR35 publication-title: Acta Numer doi: 10.1017/S0962492902000077 – volume: 98 start-page: 562 year: 2014 ident: 1307_CR5 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4645 – volume: 64 start-page: 3527 year: 2012 ident: 1307_CR60 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2012.09.002 – volume: 51 start-page: 1 year: 2015 ident: 1307_CR13 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2014.2345497 – volume: 3 start-page: 503 year: 2006 ident: 1307_CR23 publication-title: Int J Comput Methods doi: 10.1142/S021987620600117X – volume: 41 start-page: 686 year: 2005 ident: 1307_CR10 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2004.08.002 – ident: 1307_CR126 doi: 10.1007/978-1-84882-784-4 – volume: 273 start-page: 393 year: 2014 ident: 1307_CR113 publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.05.019 – volume: 197 start-page: 3768 year: 2008 ident: 1307_CR37 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.02.036 – volume: 225 start-page: 1347 year: 2007 ident: 1307_CR75 publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.01.026 – volume: 22 start-page: 623 year: 2005 ident: 1307_CR84 publication-title: Comput Aided Geom Des doi: 10.1016/j.cagd.2005.06.004 – ident: 1307_CR52 doi: 10.1088/1757-899X/10/1/012170 – ident: 1307_CR85 doi: 10.1145/1186822.1073229 – volume: 197 start-page: 425 year: 2008 ident: 1307_CR11 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.08.013 – volume-title: Guided waves in structures for SHM: the time-domain spectral element method year: 2011 ident: 1307_CR64 – volume: 27 start-page: 85 year: 1997 ident: 1307_CR120 publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(97)00006-1 – ident: 1307_CR16 – volume: 43 start-page: 839 year: 1998 ident: 1307_CR90 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R – volume: 52 start-page: 515 year: 2014 ident: 1307_CR81 publication-title: SIAM J Numer Anal doi: 10.1137/130925712 – volume: 95 start-page: 811 year: 2013 ident: 1307_CR103 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4522 – volume: 73 start-page: 1811 year: 2008 ident: 1307_CR4 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2149 – ident: 1307_CR107 – ident: 1307_CR110 – volume: 196 start-page: 1498 year: 2007 ident: 1307_CR76 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2006.05.013 – ident: 1307_CR122 doi: 10.1007/s00466-012-0681-2 – volume: 189 start-page: 33 year: 2014 ident: 1307_CR33 publication-title: Int J Fract doi: 10.1007/s10704-014-9961-5 – ident: 1307_CR39 – ident: 1307_CR54 – volume: 241–244 start-page: 246 year: 2012 ident: 1307_CR127 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2012.06.011 – volume: 293 start-page: 411 year: 2015 ident: 1307_CR102 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2015.05.007 – volume: 70 start-page: 1501 year: 2015 ident: 1307_CR51 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2015.05.009 – volume: 27 start-page: 319 year: 2007 ident: 1307_CR80 publication-title: Adv Comput Math doi: 10.1007/s10444-005-9008-6 – volume: 226 start-page: 845 year: 2015 ident: 1307_CR61 publication-title: Acta Mech doi: 10.1007/s00707-014-1227-9 – volume: 284 start-page: 138 year: 2015 ident: 1307_CR123 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.07.009 – volume-title: Introduction to finite element analysis: formulation, verification and validation year: 2011 ident: 1307_CR42 doi: 10.1002/9781119993834 – volume: 24 start-page: 161 year: 2007 ident: 1307_CR101 publication-title: Comput Aided Geom Des doi: 10.1016/j.cagd.2006.12.001 – volume: 253 start-page: 455 year: 2013 ident: 1307_CR131 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2012.09.012 – volume: 32 start-page: 1391 year: 2015 ident: 1307_CR27 publication-title: Eng Comput doi: 10.1108/EC-04-2014-0070 – ident: 1307_CR43 – volume: 61 start-page: 2159 year: 2004 ident: 1307_CR96 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1193 – volume: 7 start-page: 13 year: 2002 ident: 1307_CR78 publication-title: J Graph Tools doi: 10.1080/10867651.2002.10487551 – volume: 16 start-page: 9 year: 2003 ident: 1307_CR112 publication-title: J Aerosp Eng doi: 10.1061/(ASCE)0893-1321(2003)16:1(9) – volume: 97 start-page: 1 year: 2014 ident: 1307_CR15 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4562 – volume: 87 start-page: 151 year: 1980 ident: 1307_CR89 publication-title: Math Proc Camb Philos Soc doi: 10.1017/S0305004100056589 – volume: 99 start-page: 26 year: 2014 ident: 1307_CR68 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4663 – volume: 24 start-page: 311 year: 2006 ident: 1307_CR86 publication-title: Adv Comput Math doi: 10.1007/s10444-004-7611-6 – ident: 1307_CR87 doi: 10.1007/978-3-319-06404-8_6 – volume: 24 start-page: 1665 year: 2014 ident: 1307_CR77 publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202514400065 – volume: 35 start-page: 1239 year: 2014 ident: 1307_CR56 publication-title: Appl Math Mech doi: 10.1007/s10483-014-1861-9 – volume: 27 start-page: 1513 year: 2008 ident: 1307_CR99 publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2008.01292.x – volume: 23 start-page: 199 year: 2013 ident: 1307_CR129 publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202512500492 – ident: 1307_CR2 – volume: 139 start-page: 806 year: 1999 ident: 1307_CR67 publication-title: Geophys J Int doi: 10.1046/j.1365-246x.1999.00967.x – volume: 41 start-page: 121 year: 2007 ident: 1307_CR36 publication-title: Comput Mech doi: 10.1007/s00466-007-0173-y – volume: 45 start-page: 309 year: 2012 ident: 1307_CR20 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0706-z – volume: 2–10 start-page: 1 year: 2015 ident: 1307_CR116 publication-title: Adv Model Simul Eng Sci – ident: 1307_CR62 doi: 10.1117/12.2009983 – volume: 120 start-page: 33 year: 2013 ident: 1307_CR22 publication-title: Comput Struct doi: 10.1016/j.compstruc.2013.01.017 – volume: 45 start-page: 45 year: 2009 ident: 1307_CR49 publication-title: Comput Mech doi: 10.1007/s00466-009-0414-3 – ident: 1307_CR41 doi: 10.1201/9781420011692 – volume: 376 start-page: 655 year: 1995 ident: 1307_CR93 publication-title: Nature doi: 10.1038/376655a0 – volume: 83 start-page: 2691 year: 2014 ident: 1307_CR128 publication-title: AMS Math Comput doi: 10.1090/S0025-5718-2014-02807-X – ident: 1307_CR104 doi: 10.1142/S0219876213500023 – volume: 54 start-page: 661 year: 2014 ident: 1307_CR63 publication-title: Comput Mech doi: 10.1007/s00466-014-1019-z – volume-title: A first course in finite elements year: 2007 ident: 1307_CR72 doi: 10.1002/9780470510858 – volume: 50 start-page: 1 year: 2001 ident: 1307_CR91 publication-title: Int J Numer Methods Eng doi: 10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P – volume: 91 start-page: 457 year: 2012 ident: 1307_CR48 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4269 – volume-title: The finite element method: linear static and dynamic finite element analysis year: 1987 ident: 1307_CR71 – volume: 85 start-page: 101 year: 2014 ident: 1307_CR95 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2014.03.006 – volume: 82 start-page: 99 year: 2010 ident: 1307_CR108 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2759 – volume: 282 start-page: 132 year: 2014 ident: 1307_CR134 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.05.005 – volume: 52 start-page: 815 year: 2012 ident: 1307_CR124 publication-title: Ultrasonics doi: 10.1016/j.ultras.2012.05.008 – volume: 45 start-page: 1139 year: 1999 ident: 1307_CR66 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T – volume: 24 start-page: 1541 year: 2014 ident: 1307_CR132 publication-title: Math Models Methods Appl Sci doi: 10.1142/S021820251440003X |
| SSID | ssj0015835 |
| Score | 2.2460656 |
| Snippet | In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 587 |
| SubjectTerms | Classical and Continuum Physics Computational Science and Engineering Engineering Mathematical analysis Numerical integration Original Paper Theoretical and Applied Mechanics |
| Title | The finite cell method for polygonal meshes: poly-FCM |
| URI | https://link.springer.com/article/10.1007/s00466-016-1307-x https://www.proquest.com/docview/1880866927 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1432-0924 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1432-0924 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: AMVHM dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: AFBBN dateStart: 19860301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0924 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SXvTgoypWa1lEEJSFfWRf3trStSrtQS3UU8gm2SqUtrgt6L93ZpstrS_wtJDMvmayyTc7mW8IOZeu61MVSFMJ5ZtUcgwSJgInw4h6HnTmGd7dnt_p07uBN9B53Fmx270ISeYz9TLZDV059H6RN88KTACOZQ_ZvGAQ953GMnTghYuqmja4R8hUUoQyf7rE2mL0dUr-FhvNl5x4l2xrrGg0FsbdIxtqXCE7Gjca-qvMKmRrhVRwn3hgeSN9RSxp4G95Y1Ek2gB0akwno48hYm9ozF5Udp23mHGre0D6cfup1TF1cQRTAMaYmZQ7tvTBnUrCyFeBAA85TLidCg4AiScRtwOZAiYNLCVCgNBgKmULX6QhrvqJ5R6S0ngyVkfEcEPhRDKKhBQKK5JxnlCHu55MBQ2pTKvEKrTEhGYOxwIWI7bkPM4Vy3C3GCqWvVfJ5fKU6YI24y_hM1Q9QzqKMe53GfJ5lrHbxwfWoAFWlQS3rkoutFA6gZsLrtMH4BWQwWpNslaYkOkPMmNIOxf6fuRA91Vh1pXu357t-F_SJ2TTyUcXbvarkdLsba5OAbTMkjopN-Jms4fHm-f7dj0ftJ8OoOSc |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kHtSDb7FaNYggKJEm2by8lWKtj3rQCnpaNrubKkorpgX11zuTbIpv8Lq7SfYxu_tNZuYbgB3leQHTobK11IHNlCAjYSLpMIyZ72NlHuHduQja1-z0xr8xcdxZ6e1emiTzk3oc7EaqHGm_xJtXD20EjpMM9RO3ApON49uzo7HxwI-KvJoOKkjEVVIaM396yafr6Ouh_M06ml86rTnolt0tfE0eDkbD5EC-fWFy_Od45mHWgFCrUUjNAkzo_iLMGUBqme2eLcLMB7bCJfBRpKz0nkCqRf_7rSL7tIWw13oaPL72CNRjYXans8O8xG41O8tw3TrqNtu2ybpgSwQvQ5sJ11EB6mlJFAc6lKh6R4lwUikQeYkkFk6oUgS7YV3LCLE5yoB2ZCDTiOBEUvdWoNIf9PUqWF4k3VjFsVRSU6ozIRLmCs9XqWQRU2kV6uXkc2koySkzxiMfkynnk8TJDY0mib9UYW_8yFPBx_FX421aUU48F31ypOmJUZbxk6tL3mAhpatEfbEKu6ZROsCPS2HiEnAIRI31qWWtlAxudnrGic8uCoLYxer9cqE_VP_Wt7V_td6CqXa3c87PTy7O1mHazaWGPAprUBk-j_QGIqNhsml2wjvpdAGI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-iIPrBx1ScTi0iCErZ2qYvv43p2NQNUQf7FtIkncLoht1A_3vv2nRsvsCvSfq6uyS_6-V-R8iZdByPKl-aSijPpJJjkDASuBiG1HWhM8vw7nS9Vo_e9t2-rnOaFqfdi5BkntOALE3JpDqWcXWW-IZuHXrCyKFX800AkSsUeRLAoHt2fRZGcIO8wqYFrhKylhRhzZ9usbAxfV2ev8VJs-2nuUU2NG406rmit8mSSkpkU2NIQ8_QtETW5wgGd4gLVmDEr4grDfxFb-QFow1AqsZ4NPwYIA6HxvRFpVdZi9lsdHZJr3nz3GiZulCCKQBvTEzKbUt64FpFQegpX4C3HETcigUHsMSjkFu-jAGf-jUlAoDToDZlCU_EASKAqObskeVklKh9YjiBsEMZhkIKhdXJOI-ozR1XxoIGVMZlUiukxIRmEcdiFkM24z_OBMvw5BgKlr2XycXsknFOofHX4FMUPUNqigTPvgz4NE1Z--mR1amPFSbBxSuTcz0oHsHDBdepBPAJyGa1MLJSqJDpyZkypKALPC-0ofuyUOtc92_vdvCv0Sdk9eG6ye7b3btDsmZnhoZnACtkefI2VUeAZSbRcWavn-J36LQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+finite+cell+method+for+polygonal+meshes%3A+poly-FCM&rft.jtitle=Computational+mechanics&rft.au=Duczek%2C+Sascha&rft.au=Gabbert%2C+Ulrich&rft.date=2016-10-01&rft.pub=Springer&rft.issn=0178-7675&rft.volume=58&rft.issue=4&rft.spage=587&rft_id=info:doi/10.1007%2Fs00466-016-1307-x&rft.externalDocID=A470733287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon |