The finite cell method for polygonal meshes: poly-FCM

In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and th...

Full description

Saved in:
Bibliographic Details
Published inComputational mechanics Vol. 58; no. 4; pp. 587 - 618
Main Authors Duczek, Sascha, Gabbert, Ulrich
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2016
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-7675
1432-0924
DOI10.1007/s00466-016-1307-x

Cover

Abstract In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.
AbstractList In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.
Audience Academic
Author Duczek, Sascha
Gabbert, Ulrich
Author_xml – sequence: 1
  givenname: Sascha
  surname: Duczek
  fullname: Duczek, Sascha
  email: sascha.duczek@ovgu.de
  organization: Faculty of Mechanical Engineering, Computational Mechanics, Otto-von-Guericke-University Magdeburg
– sequence: 2
  givenname: Ulrich
  surname: Gabbert
  fullname: Gabbert, Ulrich
  organization: Faculty of Mechanical Engineering, Computational Mechanics, Otto-von-Guericke-University Magdeburg
BookMark eNp9kc1qGzEUhUVJoM7PA3Q30FUXSq40Y0nTnTFNa0gJ5GctNPKVLTMeuZIMzttXznQRF1q0uHD4voukc0HOhjAgIZ8Y3DAAeZsAGiEoMEFZDZIePpAJa2pOoeXNGZkAk4pKIacfyUVKGwA2VfV0QqbPa6ycH3zGymLfV1vM67CsXIjVLvSvqzCYY5jWmL6-JfRu_vOKnDvTJ7z-My_Jy9235_kPev_wfTGf3VNbqzbTxnC2FAJYp1qB0mLHVWeYs6bhtelaw-TSKdZJQKuk5GgtMiusUwCKd1Bfks_j3l0Mv_aYst6EfSw3SpopBUqIlstC3YzUyvSo_eBCjsaWs8Stt-WfnC_5rJEg65qro_DlRChMxkNemX1KevH0eMrKkbUxpBTRaeuzyb4o0fheM9DHAvRYgC4F6GMB-lBM9pe5i35r4ut_HT46qbDDCuO7B_9T-g39iphG
CitedBy_id crossref_primary_10_1016_j_camwa_2024_04_008
crossref_primary_10_1016_j_cma_2017_11_014
crossref_primary_10_1002_cnm_2880
crossref_primary_10_1002_nme_5628
crossref_primary_10_1016_j_cma_2022_115565
crossref_primary_10_1007_s12206_017_1138_5
crossref_primary_10_1016_j_compstruc_2023_107175
crossref_primary_10_1007_s00466_019_01803_2
crossref_primary_10_1016_j_cma_2020_113050
crossref_primary_10_1002_pamm_202000230
crossref_primary_10_1002_nme_5609
crossref_primary_10_1186_s40323_020_00157_2
crossref_primary_10_1007_s00419_020_01772_6
crossref_primary_10_1016_j_cma_2018_01_031
crossref_primary_10_1002_pamm_201710117
crossref_primary_10_1108_EC_07_2022_0452
crossref_primary_10_1016_j_cma_2018_02_029
crossref_primary_10_1016_j_cma_2020_112833
Cites_doi 10.1142/S0218202514400077
10.1007/s00158-015-1309-x
10.1007/s00466-011-0668-4
10.1002/nme.4802
10.1145/1183287.1183295
10.1016/j.cma.2006.05.012
10.1111/j.1467-8659.2012.03059.x
10.1016/j.commatsci.2013.10.012
10.1007/s11831-014-9115-y
10.1016/j.compfluid.2015.08.027
10.1007/s10915-015-9997-3
10.1016/j.finel.2013.01.006
10.1007/978-90-481-2822-8_9
10.1007/978-3-642-38762-3_1
10.1111/j.1467-8659.2007.01058.x
10.1002/9780470749081
10.1007/BF02905933
10.1002/nme.4851
10.1007/s00158-008-0261-4
10.1007/978-1-4899-5681-1
10.1111/j.1365-246X.1995.tb06841.x
10.1007/s00466-015-1197-3
10.1016/j.cma.2013.04.009
10.1007/s00466-013-0853-8
10.1007/3-540-26772-7_8
10.1007/978-3-642-15414-0_20
10.1007/s00466-016-1273-3
10.1016/0021-9991(84)90128-1
10.1109/TIT.1982.1056489
10.1002/nme.2763
10.1007/s11081-011-9159-x
10.1002/nme.1534
10.1016/j.cma.2016.04.006
10.1007/s00791-012-0175-y
10.1016/S0167-8396(03)00002-5
10.1007/s00158-011-0696-x
10.1007/s00466-010-0562-5
10.1002/nme.1141
10.1002/nme.5207
10.1002/nme.3289
10.1002/fld.3843
10.1201/9781420011685
10.1016/j.cma.2014.07.016
10.1016/j.cma.2013.10.025
10.1007/s00158-015-1252-x
10.1007/BF02127699
10.1002/nme.4744
10.1137/120874746
10.1007/s10915-014-9894-1
10.1017/S0962492902000077
10.1002/nme.4645
10.1016/j.camwa.2012.09.002
10.1109/TMAG.2014.2345497
10.1142/S021987620600117X
10.1016/j.finel.2004.08.002
10.1007/978-1-84882-784-4
10.1016/j.jcp.2014.05.019
10.1016/j.cma.2008.02.036
10.1016/j.jcp.2007.01.026
10.1016/j.cagd.2005.06.004
10.1088/1757-899X/10/1/012170
10.1145/1186822.1073229
10.1016/j.cma.2007.08.013
10.1016/S0168-874X(97)00006-1
10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
10.1137/130925712
10.1002/nme.4522
10.1002/nme.2149
10.1016/j.cma.2006.05.013
10.1007/s00466-012-0681-2
10.1007/s10704-014-9961-5
10.1016/j.cma.2012.06.011
10.1016/j.cma.2015.05.007
10.1016/j.camwa.2015.05.009
10.1007/s10444-005-9008-6
10.1007/s00707-014-1227-9
10.1016/j.cma.2014.07.009
10.1002/9781119993834
10.1016/j.cagd.2006.12.001
10.1016/j.cma.2012.09.012
10.1108/EC-04-2014-0070
10.1002/nme.1193
10.1080/10867651.2002.10487551
10.1061/(ASCE)0893-1321(2003)16:1(9)
10.1002/nme.4562
10.1017/S0305004100056589
10.1002/nme.4663
10.1007/s10444-004-7611-6
10.1007/978-3-319-06404-8_6
10.1142/S0218202514400065
10.1007/s10483-014-1861-9
10.1111/j.1467-8659.2008.01292.x
10.1142/S0218202512500492
10.1046/j.1365-246x.1999.00967.x
10.1007/s00466-007-0173-y
10.1007/s00158-011-0706-z
10.1117/12.2009983
10.1016/j.compstruc.2013.01.017
10.1007/s00466-009-0414-3
10.1201/9781420011692
10.1038/376655a0
10.1090/S0025-5718-2014-02807-X
10.1142/S0219876213500023
10.1007/s00466-014-1019-z
10.1002/9780470510858
10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P
10.1002/nme.4269
10.1016/j.finel.2014.03.006
10.1002/nme.2759
10.1016/j.cma.2014.05.005
10.1016/j.ultras.2012.05.008
10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
10.1142/S021820251440003X
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
COPYRIGHT 2016 Springer
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: COPYRIGHT 2016 Springer
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
ISR
DOI 10.1007/s00466-016-1307-x
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1432-0924
EndPage 618
ExternalDocumentID A470733287
10_1007_s00466_016_1307_x
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c389t-4a21d6601b896e7ceb28ba1fca423ab9a17df81b70ec8772ecce1c6cf80082b03
IEDL.DBID U2A
ISSN 0178-7675
IngestDate Fri Jul 25 11:15:55 EDT 2025
Mon Oct 20 16:36:06 EDT 2025
Thu Oct 16 15:13:08 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
Wed Oct 01 04:31:31 EDT 2025
Fri Feb 21 02:32:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Finite cell method
Polygonal finite element methods
Fictitious domain method
Generalized barycentric coordinates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-4a21d6601b896e7ceb28ba1fca423ab9a17df81b70ec8772ecce1c6cf80082b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880866927
PQPubID 2043755
PageCount 32
ParticipantIDs proquest_journals_1880866927
gale_infotracacademiconefile_A470733287
gale_incontextgauss_ISR_A470733287
crossref_citationtrail_10_1007_s00466_016_1307_x
crossref_primary_10_1007_s00466_016_1307_x
springer_journals_10_1007_s00466_016_1307_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References SambridgeMBraunJMcQueenHGeophysical parametrization and interpolyation of irregular data using natural neighboursGeophys J Int199512283785710.1111/j.1365-246X.1995.tb06841.x
HeinzeSJoulaianMDüsterANumerical homogenization of hybrid metal foams using the finite cell methodComput Math Appl20157015011517339695810.1016/j.camwa.2015.05.009
ParvizianJDüsterARankEFinite cell method: h- and p-extension for embedded domain problems in solid mechanicsComput Mech20074112113323778021162.7450610.1007/s00466-007-0173-y
Schillinger D, Cai Q, Mundani R-P, Rank E (2013) A review of the finite cell method for nonlinear structural analysis of complex CAD and image-based geometric models. In: Advanced computing. Lecture notes in computational science and engineering, vol 93. Springer, New York, pp 1–23
Demkowicz L (2006) Computing with hp-adaptive finite elements: vol 1: one and two dimensional elliptic and Maxwell problems. Chapman and Hall, Boca Raton
WachspressEA rational finite element basis1975New YorkAcademic Press0322.65001
DuczekSLiefoldSGabbertUThe finite and spectral cell methods for smart structure applications: transient analysisActa Mech201522684586933166731317.7408410.1007/s00707-014-1227-9
SukumarNTabarraeiANeittaanmäkiPRossiTKorotovSOñateEPériauxJKnörzerDPolygonal interpolants: construction and adaptive computations on quadtree meshesProceedings of the European congress on computational methods in applied sciences and engineering (ECCOMAS)2014JyvaskylaUniversity of Jyväskylä
JoulaianMDüsterALocal enrichment of the finite cell method for problems with material interfacesComput Mech2013527417621311.7412310.1007/s00466-013-0853-8
KomatitschDVilotteJPVaiRCastillo-CovarrubiasJMSánchez-SesmaFJThe spectral element method for elastic wave equations—application to 2-D and 3-D seismic problemsInt J Numer Methods Eng199945113911640947.7407410.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
Schillinger D (2012) The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. PhD Thesis, Technical University Munich
ChiongIOoiETSongCTin-LoiFScaled boundary polygons with applications to fracture analysis of functionally graded materialsInt J Numer Methods Eng201498562589319785210.1002/nme.4645
SzabóBBabuškaIIntroduction to finite element analysis: formulation, verification and validation2011New YorkWiley0588072010.1002/9781119993834
RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng200719676678122781781121.6536410.1016/j.cma.2006.05.012
TabarraeiASukumarNExtended finite element method onpolygonal and quadtree meshesComput Methods Appl Mech Eng200819742543823623821169.7463410.1016/j.cma.2007.08.013
ZanderNKollmannsbergerSRuessMYosibashZRankEThe finite cell method for linear thermoelasticityComput Math Appl2012643527354129925321268.7402010.1016/j.camwa.2012.09.002
KomatitschDTrompJIntroduction to the spectral element method for three-dimensional seismic wave propagationGeophys J Int199913980682210.1046/j.1365-246x.1999.00967.x
SchillingerDDüsterARankEThe hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanicsInt J Numer Methods Eng2012891171120228969031242.7416110.1002/nme.3289
FloaterMSMean value coordinatesComput Aided Geom Des200320192719683041069.6555310.1016/S0167-8396(03)00002-5
RanjbarMMashayekhiMParvizianJDüsterARankEUsing the finite cell method to predict crack initiation in ductile materialsComput Mater Sci20148242743410.1016/j.commatsci.2013.10.012
Varduhn V, Hsu M-C, Ruess M, Schillinger D (2016) The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes. Int J Numer Methods Eng 1–26. doi:10.1002/nme.5207
YangZRuessMKollmannsbergerSDüsterARankEAn efficient integration technique for the voxel-based finite cell methodInt J Numer Methods Eng20129145747110.1002/nme.4269
HughesTJRThe finite element method: linear static and dynamic finite element analysis1987Englewood CliffPrentice-Hall0634.73056
KudelaLZanderNBogTKollmannsbergerSRankEEfficient and accurate numerical quadrature for immersed boundary methodsAdv Model Simul Eng Sci20152–10122
KhoeiARYasbolaghiRBiabanakiSORA polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: a study on polygonal shape functionsEng Comput2015321391143110.1108/EC-04-2014-0070
Xu F, Schillinger D, D K, Varduhn V, Wang C, Hsu M-C, (2015) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 1–19: doi:10.1016/j.compfluid.2015.08.027
MukherjeeTWebbJPHierarchical bases for polygonal finite elementsIEEE Trans Magn2015511410.1109/TMAG.2014.2345497
EbeidaMSMitchellSAPatneyADavidsonAAOwensJDA simple algorithm for maximal Poisson-disk sampling inhigh dimensionsComput Graph Forum20123178579410.1111/j.1467-8659.2012.03059.x
BiabanakiSORKhoeiARA polygonal finite element method for modeling arbitrary interfaces in large deformation problemsComput Mech201250193329469151312.7403210.1007/s00466-011-0668-4
Talischi C, Pereira A, Menezes IFM, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747
RankEDüsterASchillingerDYangZThe finite cell method: high order simulation of complex structures without meshingComputational structural engineering2009BerlinSpringer879210.1007/978-90-481-2822-8_9
Yang Z (2011) The finite cell method for geometry-based structural simulation. PhD Thesis, Technical University Munich
SehlhorstH-GJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3
Zienkiewicz OC, Taylor RL (2000) The finite element method: vol 1: the basis. Butterworth Heinemann, Oxford
OstachowiczWKudelaPKrawczukMŻakAGuided waves in structures for SHM: the time-domain spectral element method2011New YorkWiley1242.74044
SukumarNConstruction of polygonal interpolants: a maximum entropy approachInt J Numer Methods Eng2004612159218121016021073.6550510.1002/nme.1193
FloaterMSKósGReimersMMean value coordinates in 3DComput Aided Geom Des20052262363121690521080.5201010.1016/j.cagd.2005.06.004
SukumarNMoranBBelytschkoTThe natural element method in solid mechanicsInt J Numer Methods Eng19984383988716509180940.7407810.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
MousaviSEXiaoHSukumarNGeneralized gaussian quadrature rules on arbitrary polygonsInt J Numer Methods Eng2010829911326543611183.65026
Düster A, Sehlhorst H-G, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 1:1–19
Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20 No. 458
Beirão da VeigaLBrezziFMariniLDVirtual elements for linear elasticity problemsSIAM J Numer Anal20135179491230330331268.7401010.1137/120874746
Dumonet D (2014) Towards efficient and accurate 3D cut cell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich
TabarraeiASukumarNApplication of polygonal finite elements in linear elasticityInt J Comput Methods2006350352023458591198.7410410.1142/S021987620600117X
Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD Thesis, Technical University Munich
JuTLiepaPWarrenJA general geometric construction of coordinates in a convex simplicial polytopeComput Aided Geom Des20072416117823078961171.6533710.1016/j.cagd.2006.12.001
Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. In: IOP conference series: materials science and engineering, vol 10
BiabanakiSORKhoeiARWriggersPPolygonal finite element methods for contact-impact problems on non-conformal meshesComput Methods Appl Mech Eng201426919822131446391296.7410510.1016/j.cma.2013.10.025
HateleyJCWeiHChengLFast methods for computing centroidal Voronoi tessellationsJ Sci Comput20156318521233152731328.6238610.1007/s10915-014-9894-1
LeonSESpringDWPaulinoGHReduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elementsInt J Numer Methods Eng2014100555576327106910.1002/nme.4744
TalischiCPereiraAPaulinoGHMenezesIFMCarvalhoMSPolygonal finite elements for incompressible fluid flowInt J Numer Methods Fluids201474134151314666810.1002/fld.3843
SzabóBBabuškaIFinite element analysis1991New YorkWiley0792.73003
WarrenJSchaferSHiraniANDesburnMBarycentric coordinates for convex setsAdv Comput Math20072731933823360011124.5201010.1007/s10444-005-9008-6
Duczek S, Duvigneau F, Gabbert U (2015) The finite cell method for arbitrary tetrahedral meshes. Finite Elem Anal Des 1–29 (under review)
MilbradtPPickTPolytope finite elementsInt J Numer Methods Eng2008731811183523979721162.6540610.1002/nme.2149
GainALTalischiCPaulinoGHOn the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshesComput Methods Appl Mech Eng2014282132160326989410.1016/j.cma.2014.05.005
TalischiCPaulinoGKPereiraAMenezesIFMPolygonal finite elements for topology optimization: a unifying paradigmInt J Numer Methods Eng2010826716981188.74072
Duczek S, Joulaian M, Düster A, Gabbert U (2013) Simulation of Lamb waves using the spectral cell method. In: Proceedings of SPIE smart structures/NDE, vol 8695
Sukumar N, Bolander JE (2009) Sukumar N, Bolander JE (2009) Voronoi-based interpolants for fracture modelling. In: Tessellations in the sciences: virtues, techniques and applications of geometric tiling. Springer, Berlin, p 27
GlowinskiRKuznetsovYDistributed Lagrange multipliers based on fictitious domain method for second order elliptic problemsComput Methods Appl Mech Eng20071961498150622770331173.65
1307_CR7
1307_CR126
R Sibson (1307_CR89) 1980; 87
SE Leon (1307_CR26) 2014; 100
S Heinze (1307_CR51) 2015; 70
S Duczek (1307_CR68) 2014; 99
D Schillinger (1307_CR53) 2012; 89
JC Hateley (1307_CR21) 2015; 63
A Tabarraei (1307_CR10) 2005; 41
1307_CR62
MS Floater (1307_CR81) 2014; 52
MF Benedetto (1307_CR133) 2014; 280
N Sukumar (1307_CR12) 2004; 61
1307_CR121
IA Viktorov (1307_CR125) 1967
1307_CR69
1307_CR2
1307_CR122
DW Spring (1307_CR33) 2014; 189
M Sambridge (1307_CR94) 1995; 122
J Warren (1307_CR79) 1996; 6
Z Yang (1307_CR48) 2012; 91
N Sukumar (1307_CR91) 2001; 50
M Joulaian (1307_CR111) 2016; 57
I Chiong (1307_CR5) 2014; 98
A Abedian (1307_CR56) 2014; 35
G Dasgupta (1307_CR112) 2003; 16
1307_CR73
A Tabarraei (1307_CR23) 2006; 3
MS Floater (1307_CR86) 2006; 24
H Chi (1307_CR6) 2015; 101
J Braun (1307_CR93) 1995; 376
N Sukumar (1307_CR96) 2004; 61
1307_CR106
S Duczek (1307_CR114) 2015; 56
1307_CR107
1307_CR104
1307_CR105
N Sukumar (1307_CR3) 2006; 13
M Dauge (1307_CR44) 2015; 65
D Komatitsch (1307_CR66) 1999; 45
C Talischi (1307_CR34) 2014; 74
T Mukherjee (1307_CR13) 2015; 51
M Kraus (1307_CR22) 2013; 120
1307_CR43
1307_CR46
1307_CR40
C Talischi (1307_CR20) 2012; 45
1307_CR41
H-G Sehlhorst (1307_CR49) 2009; 45
J Parvizian (1307_CR36) 2007; 41
J Warren (1307_CR80) 2007; 27
M Arroyo (1307_CR98) 2006; 62
1307_CR100
1307_CR117
A Abedian (1307_CR55) 2013; 69
1307_CR118
1307_CR115
C Talischi (1307_CR29) 2010; 82
K Hormann (1307_CR99) 2008; 27
N Sukumar (1307_CR9) 2014
Z Yang (1307_CR47) 2011; 14
1307_CR54
P Milbradt (1307_CR4) 2008; 73
MS Ebeida (1307_CR19) 2012; 31
M Ranjbar (1307_CR57) 2014; 82
M Wicke (1307_CR88) 2007; 26
1307_CR50
1307_CR52
1307_CR110
MS Floater (1307_CR82) 2003; 20
B Szabó (1307_CR42) 2011
K Hormann (1307_CR83) 2006; 25
D Schillinger (1307_CR70) 2014; 22
AT Patera (1307_CR65) 1984; 54
C Talischi (1307_CR30) 2012; 45
L Beiräo da Veiga (1307_CR132) 2014; 24
G Manzini (1307_CR77) 2014; 24
S Natarajan (1307_CR95) 2014; 85
A Tabarraei (1307_CR11) 2008; 197
SOR Biabanaki (1307_CR25) 2014; 269
D Komatitsch (1307_CR67) 1999; 139
AL Gain (1307_CR102) 2015; 293
Y Sudhakar (1307_CR113) 2014; 273
N Sukumar (1307_CR97) 2013; 263
JA Cottrell (1307_CR1) 2009
AR Khoei (1307_CR27) 2015; 32
L Beirão da Veiga (1307_CR130) 2013; 51
1307_CR32
E Rank (1307_CR45) 2009
1307_CR31
M Ruess (1307_CR103) 2013; 95
L Kudela (1307_CR116) 2015; 2–10
CS Peskin (1307_CR35) 2002; 11
N Zander (1307_CR60) 2012; 64
TJR Hughes (1307_CR71) 1987
1307_CR39
H Ledoux (1307_CR92) 2005
ZAB Ahmad (1307_CR124) 2012; 52
N Sukumar (1307_CR90) 1998; 43
J Fish (1307_CR72) 2007
I Ramière (1307_CR74) 2007; 196
AL Gain (1307_CR134) 2014; 282
SE Mousavi (1307_CR108) 2010; 82
E Wachspress (1307_CR14) 1975
1307_CR87
JE Bishop (1307_CR15) 2014; 97
SOR Biabanaki (1307_CR24) 2012; 50
MS Floater (1307_CR84) 2005; 22
1307_CR85
SE Mousavi (1307_CR109) 2011; 47
R Glowinski (1307_CR76) 2007; 196
M Joulaian (1307_CR59) 2013; 52
M Joulaian (1307_CR63) 2014; 54
M Meyer (1307_CR78) 2002; 7
I Ramière (1307_CR75) 2007; 225
SP Lloyd (1307_CR119) 1982; 28
G Királyfalvi (1307_CR120) 1997; 27
A Rand (1307_CR128) 2014; 83
C Talischi (1307_CR8) 2014; 24
F Brezzi (1307_CR131) 2013; 253
C Talischi (1307_CR28) 2009; 37
B Szabó (1307_CR38) 1991
C Willberg (1307_CR127) 2012; 241–244
W Ostachowicz (1307_CR64) 2011
T Ju (1307_CR101) 2007; 24
L Beirão da Veiga (1307_CR129) 2013; 23
1307_CR18
J Parvizian (1307_CR58) 2012; 13
A Düster (1307_CR37) 2008; 197
S Duczek (1307_CR61) 2015; 226
1307_CR17
1307_CR16
CV Verhoosel (1307_CR123) 2015; 284
References_xml – reference: WillbergCDuczekSVivar PerezJMSchmickerDGabberUComparison of different higher order finite element schemes for the simulation of Lamb wavesComput Methods Appl Mech Eng2012241–24424626110.1016/j.cma.2012.06.011
– reference: Kudela L (2013) Highly accurate subcell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich
– reference: JoulaianMDuczekSGabbertUDüsterAFinite and spectral cell method for wave propagation in heterogeneous materialsComput Mech20145466167532469121311.7405610.1007/s00466-014-1019-z
– reference: SchillingerDDüsterARankEThe hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanicsInt J Numer Methods Eng2012891171120228969031242.7416110.1002/nme.3289
– reference: Talischi C, Pereira A, Menezes IFM, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747
– reference: EbeidaMSMitchellSAPatneyADavidsonAAOwensJDA simple algorithm for maximal Poisson-disk sampling inhigh dimensionsComput Graph Forum20123178579410.1111/j.1467-8659.2012.03059.x
– reference: DasguptaGIntegration within polygonal finite elementsJ Aerosp Eng20031691810.1061/(ASCE)0893-1321(2003)16:1(9)
– reference: BiabanakiSORKhoeiARA polygonal finite element method for modeling arbitrary interfaces in large deformation problemsComput Mech201250193329469151312.7403210.1007/s00466-011-0668-4
– reference: DaugeMDüsterARankETheoretical and numerical investigation of the finite cell methodJ Sci Comput2015651039106434172711331.6516010.1007/s10915-015-9997-3
– reference: KomatitschDVilotteJPVaiRCastillo-CovarrubiasJMSánchez-SesmaFJThe spectral element method for elastic wave equations—application to 2-D and 3-D seismic problemsInt J Numer Methods Eng199945113911640947.7407410.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
– reference: BishopJEA displacement-based finite element formulation for general polyhedra using harmonic shape functionsInt J Numer Methods Eng201497131314667010.1002/nme.4562
– reference: CottrellJAHughesTJRBazilevsYIsogeometric analysis: toward Integration of CAD and FEA2009ChichesterWiley10.1002/9780470749081
– reference: ViktorovIARayleigh and Lamb waves1967New YorkPlenum Press10.1007/978-1-4899-5681-1
– reference: Beirão da VeigaLBrezziFMariniLDVirtual elements for linear elasticity problemsSIAM J Numer Anal20135179491230330331268.7401010.1137/120874746
– reference: Düster A, Sehlhorst H-G, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 1:1–19
– reference: Duarte LS, Celes W, Pereira A, Menezes IFM, Paulino GH (2015) PolyTop++: an efficient alternative for serial and parallel topology optimization on CPUs & GPUs. Struct Multidiscip Optim (online), 1–15
– reference: RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng200719676678122781781121.6536410.1016/j.cma.2006.05.012
– reference: FloaterMSGilletteASukumarNGradient bounds for Wachspress coordinates on polytopesSIAM J Numer Anal20145251553231669661292.6500610.1137/130925712
– reference: Filipov ET, Chun J, Paulino GH, Song J (2016) Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics. Struct Multidiscip Optim 53(4):673–694
– reference: YangZKollmannsbergerSDüsterARuessMGrande GarciaEBurgkartRRankENon-standard bone simulation: interactive numerical analysis by computational steeringComput Vis Sci201114207216291695910.1007/s00791-012-0175-y
– reference: JoulaianMDüsterALocal enrichment of the finite cell method for problems with material interfacesComput Mech2013527417621311.7412310.1007/s00466-013-0853-8
– reference: VerhooselCVvan ZwietenGJVan RietbergenBde BorstRImage-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular boneComput Methods Appl Mech Eng2015284138164331028210.1016/j.cma.2014.07.009
– reference: Xu F, Schillinger D, D K, Varduhn V, Wang C, Hsu M-C, (2015) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 1–19: doi:10.1016/j.compfluid.2015.08.027
– reference: Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10(23):1350002/1–1350002/24
– reference: SukumarNTabarraeiANeittaanmäkiPRossiTKorotovSOñateEPériauxJKnörzerDPolygonal interpolants: construction and adaptive computations on quadtree meshesProceedings of the European congress on computational methods in applied sciences and engineering (ECCOMAS)2014JyvaskylaUniversity of Jyväskylä
– reference: KhoeiARYasbolaghiRBiabanakiSORA polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: a study on polygonal shape functionsEng Comput2015321391143110.1108/EC-04-2014-0070
– reference: MilbradtPPickTPolytope finite elementsInt J Numer Methods Eng2008731811183523979721162.6540610.1002/nme.2149
– reference: SibsonRA vector identity for the Dirichlet tessellationMath Proc Camb Philos Soc1980871511555493040466.5201010.1017/S0305004100056589
– reference: ChiongIOoiETSongCTin-LoiFScaled boundary polygons with applications to fracture analysis of functionally graded materialsInt J Numer Methods Eng201498562589319785210.1002/nme.4645
– reference: HateleyJCWeiHChengLFast methods for computing centroidal Voronoi tessellationsJ Sci Comput20156318521233152731328.6238610.1007/s10915-014-9894-1
– reference: HeinzeSJoulaianMDüsterANumerical homogenization of hybrid metal foams using the finite cell methodComput Math Appl20157015011517339695810.1016/j.camwa.2015.05.009
– reference: Sieger D, Alliez P, Botsch M (2010) Optimizing Voronoi diagrams for polygonal finite element computations. In: Proceedings of the 19th international meshing roundtable
– reference: Pick T (2007) Natürliche Elementkoordinaten auf Polyedern: Ein objektorientierter Entwurf am Beispiel der FEM. PhD Thesis, Leibnitz University Hannover
– reference: BrezziFMariniLDVirtual element methods for plate bending problemsComput Methods Appl Mech Eng201325345546230028041297.7404910.1016/j.cma.2012.09.012
– reference: MousaviSEXiaoHSukumarNGeneralized gaussian quadrature rules on arbitrary polygonsInt J Numer Methods Eng2010829911326543611183.65026
– reference: TalischiCPaulinoGHLeCHHoneycomb Wachspress finite elements for structural topology optimizationStruct Multidiscip Optim20093756958324710181274.7445210.1007/s00158-008-0261-4
– reference: Sukumar N, Bolander JE (2009) Sukumar N, Bolander JE (2009) Voronoi-based interpolants for fracture modelling. In: Tessellations in the sciences: virtues, techniques and applications of geometric tiling. Springer, Berlin, p 27
– reference: KudelaLZanderNBogTKollmannsbergerSRankEEfficient and accurate numerical quadrature for immersed boundary methodsAdv Model Simul Eng Sci20152–10122
– reference: TabarraeiASukumarNExtended finite element method onpolygonal and quadtree meshesComput Methods Appl Mech Eng200819742543823623821169.7463410.1016/j.cma.2007.08.013
– reference: TabarraeiASukumarNApplication of polygonal finite elements in linear elasticityInt J Comput Methods2006350352023458591198.7410410.1142/S021987620600117X
– reference: KomatitschDTrompJIntroduction to the spectral element method for three-dimensional seismic wave propagationGeophys J Int199913980682210.1046/j.1365-246x.1999.00967.x
– reference: KrausMRajagopalASteinmannPInvestigations on the polygonal finite element method: constrained adaptive Delaunay tessellation and conformal interpolantsComput Struct2013120334610.1016/j.compstruc.2013.01.017
– reference: WarrenJBarycentric coordinates for convex polytopesAdv Comput Math199669710814317880873.5201310.1007/BF02127699
– reference: RankEDüsterASchillingerDYangZThe finite cell method: high order simulation of complex structures without meshingComputational structural engineering2009BerlinSpringer879210.1007/978-90-481-2822-8_9
– reference: OstachowiczWKudelaPKrawczukMŻakAGuided waves in structures for SHM: the time-domain spectral element method2011New YorkWiley1242.74044
– reference: HughesTJRThe finite element method: linear static and dynamic finite element analysis1987Englewood CliffPrentice-Hall0634.73056
– reference: SudhakarYMoitinho de AlmeidaJPWallWAAn accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methodsJ Comput Phys201427339341510.1016/j.jcp.2014.05.019
– reference: TalischiCPaulinoGHPereiraAMenezesIFMPolyMesher: a general-purpose mesh generator for polygonal elements written in MatlabStruct Multidiscip Optim20124530932828971151274.7440110.1007/s00158-011-0706-z
– reference: FloaterMSHormannKKósGA general construction of barycentric coordinates over convex polygonsAdv Comput Math2006243113311095.6501610.1007/s10444-004-7611-6
– reference: Dumonet D (2014) Towards efficient and accurate 3D cut cell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich
– reference: SpringDWLeonSEPaulinoGHUnstructured polygonal meshes with adaptive refinement for the numerical simualtion of dynamic cohesive fractureInt J Fract2014189335710.1007/s10704-014-9961-5
– reference: GlowinskiRKuznetsovYDistributed Lagrange multipliers based on fictitious domain method for second order elliptic problemsComput Methods Appl Mech Eng20071961498150622770331173.6536910.1016/j.cma.2006.05.013
– reference: MousaviSESukumarNNumerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedronsComput Mech20114753555427884291221.6507810.1007/s00466-010-0562-5
– reference: SzabóBBabuškaIFinite element analysis1991New YorkWiley0792.73003
– reference: TalischiCPaulinoGHAddressing integration error for polygonal finite elements through polynomial projections: a patch test connectionMath Models Methods Appl Sci2014241701172732002461291.6534910.1142/S0218202514400077
– reference: Schillinger D (2012) The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. PhD Thesis, Technical University Munich
– reference: Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. In: IOP conference series: materials science and engineering, vol 10
– reference: TabarraeiASukumarNAdaptive computations on conforming quadtree meshesFinite Elem Anal Des20054168670210.1016/j.finel.2004.08.002
– reference: SukumarNMoranBBelytschkoTThe natural element method in solid mechanicsInt J Numer Methods Eng19984383988716509180940.7407810.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
– reference: Beirão da VeigaLBrezziFCangianiAManziniGMariniLDRussoABasic principles of virtual element methodsMath Models Methods Appl Sci20132319921429974710614442410.1142/S0218202512500492
– reference: BenedettoMFBerroneSPieracciniSSiaclóSThe virtual element method for discrete fracture network simulationsComput Methods Appl Mech Eng2014280135156325553510.1016/j.cma.2014.07.016
– reference: RuessMSchillingerDBazilevsYVarduhnVRankEWeakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell methodInt J Numer Methods Eng201395811846309235110.1002/nme.4522
– reference: FishJBelytschkoTA first course in finite elements2007New YorkWiley1135.7400110.1002/9780470510858
– reference: DuczekSLiefoldSGabbertUThe finite and spectral cell methods for smart structure applications: transient analysisActa Mech201522684586933166731317.7408410.1007/s00707-014-1227-9
– reference: Beiräo da VeigaLBrezziFMariniLDRussoAThe hitchhiker’s guide to the virtual element methodMath Models Methods Appl Sci201424154132002421291.6533610.1142/S021820251440003X
– reference: KirályfalviGSzabóBQuasi-regional mapping for the p-version of the finite element methodFinite Elem Anal Des199727859714748180916.7305610.1016/S0168-874X(97)00006-1
– reference: LeonSESpringDWPaulinoGHReduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elementsInt J Numer Methods Eng2014100555576327106910.1002/nme.4744
– reference: Ebeida MS, Mitchell SA (2012) Uniform random Voronoi meshes. In: Proceedings of the 20th international meshing roundtable, pp 273–290
– reference: Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2008) Computing with hp-adaptive finite elements: vol 2, frontiers: three dimensional elliptic and Maxwell problems with applications. Chapman and Hall, Boca Raton
– reference: SukumarNTabarraeiAConforming polygonal finite elementsInt J Numer Methods Eng2004612045206621015991073.6556310.1002/nme.1141
– reference: HormannKFloaterMSMean value coordinates for arbitrary planar polygonsACM Trans Graph2006251424144110.1145/1183287.1183295
– reference: SzabóBBabuškaIIntroduction to finite element analysis: formulation, verification and validation2011New YorkWiley0588072010.1002/9781119993834
– reference: SambridgeMBraunJMcQueenHGeophysical parametrization and interpolyation of irregular data using natural neighboursGeophys J Int199512283785710.1111/j.1365-246X.1995.tb06841.x
– reference: TalischiCPereiraAPaulinoGHMenezesIFMCarvalhoMSPolygonal finite elements for incompressible fluid flowInt J Numer Methods Fluids201474134151314666810.1002/fld.3843
– reference: WickeMBotschMGrossMA finite element method onconvex polyhedraComput Graph Forum20072635536410.1111/j.1467-8659.2007.01058.x
– reference: JoulaianMHubrichSDüsterANumerical integration of discontinuities on arbitrary domains based on moment fittingComput Mech20165797999935002840659455510.1007/s00466-016-1273-3
– reference: FloaterMSKósGReimersMMean value coordinates in 3DComput Aided Geom Des20052262363121690521080.5201010.1016/j.cagd.2005.06.004
– reference: AhmadZABGabbertUSimulation of Lamb wave reflections at plate edges using the semi-analytical finite element methodUltrasonics20125281582010.1016/j.ultras.2012.05.008
– reference: TalischiCPaulinoGHPereiraAMenezesIFMPolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshesStruct Multidiscip Optim20124532935728971161274.7440210.1007/s00158-011-0696-x
– reference: Yang Z (2011) The finite cell method for geometry-based structural simulation. PhD Thesis, Technical University Munich
– reference: LloydSPLeast squares quantization in PCMIEEE Trans Inf Theory1982281291376518070504.9401510.1109/TIT.1982.1056489
– reference: Balafas G (2014) Polyhedral mesh generation for CFD-analysis of complex structures. Master’s Thesis, Technical University Munich
– reference: PateraATA spectral element method for fluid dynamics: laminar flow in a channel expansionJ Comput Phys1984544684880535.7603510.1016/0021-9991(84)90128-1
– reference: Duczek S, Duvigneau F, Gabbert U (2015) The finite cell method for arbitrary tetrahedral meshes. Finite Elem Anal Des 1–29 (under review)
– reference: RanjbarMMashayekhiMParvizianJDüsterARankEUsing the finite cell method to predict crack initiation in ductile materialsComput Mater Sci20148242743410.1016/j.commatsci.2013.10.012
– reference: MeyerMLeeHBarrADesburnMGeneralized barycentric coordinates on irregular polygonsJ Graph Tools2002713221024.6810910.1080/10867651.2002.10487551
– reference: WarrenJSchaferSHiraniANDesburnMBarycentric coordinates for convex setsAdv Comput Math20072731933823360011124.5201010.1007/s10444-005-9008-6
– reference: Pick T, Milbradt P (2006) Quadrature points on polyhedral elements. In: Proceedings of the 23th joint international conference on computing and decision making in civil and building engineering
– reference: Aurenhammer F, Klein R (1999) Voronoi diagrams. Tech. Rep. Technical University of Graz & FernUniversität Hagen
– reference: LedouxHGoldCAn efficient natural neighbour interpolation algorithm for geoscientific modellingDevelopments in spatial data handling2005BerlinSpringer9710810.1007/3-540-26772-7_8
– reference: SukumarNMalschEARecent advances in the construction of polygonal finite element interpolantsArch Comput Methods Eng20061312916322836201101.6510810.1007/BF02905933
– reference: Demkowicz L (2006) Computing with hp-adaptive finite elements: vol 1: one and two dimensional elliptic and Maxwell problems. Chapman and Hall, Boca Raton
– reference: Schillinger D, Cai Q, Mundani R-P, Rank E (2013) A review of the finite cell method for nonlinear structural analysis of complex CAD and image-based geometric models. In: Advanced computing. Lecture notes in computational science and engineering, vol 93. Springer, New York, pp 1–23
– reference: Duczek S, Joulaian M, Düster A, Gabbert U (2013) Simulation of Lamb waves using the spectral cell method. In: Proceedings of SPIE smart structures/NDE, vol 8695
– reference: ArroyoMOrtiMLocal maximum-entropy approximationschemes: a seamless bridge between finite elements and mesh free methodsInt J Numer Methods Eng200662216722021146.7404810.1002/nme.1534
– reference: BiabanakiSORKhoeiARWriggersPPolygonal finite element methods for contact-impact problems on non-conformal meshesComput Methods Appl Mech Eng201426919822131446391296.7410510.1016/j.cma.2013.10.025
– reference: YangZRuessMKollmannsbergerSDüsterARankEAn efficient integration technique for the voxel-based finite cell methodInt J Numer Methods Eng20129145747110.1002/nme.4269
– reference: Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: Accurately integrating discontinous functions in 3D. Comput Methods Appl Mech Eng 1–33 (online)
– reference: Zienkiewicz OC, Taylor RL (2000) The finite element method: vol 1: the basis. Butterworth Heinemann, Oxford
– reference: GainALTalischiCPaulinoGHOn the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshesComput Methods Appl Mech Eng2014282132160326989410.1016/j.cma.2014.05.005
– reference: Su Z, Ye L (2009) Lecture notes in applied and computational mechanics: vol 48, identification of damage using Lamb waves. Springer, Berlin
– reference: SchillingerDRuessMThe finite cell method: a review in the context of high-order structural analysis of CAD and image-based geometric modelsArch Comput Methods Eng2014223391455335802610.1007/s11831-014-9115-y
– reference: DuczekSGabbertUEfficient integration method for fictitious domain approachesComput Mech20155672573833955091329.6522110.1007/s00466-015-1197-3
– reference: SehlhorstH-GJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3
– reference: Sehlhorst H-G (2011) Numerical homogenization startegies for cellular materials with applications in structural mechanics. PhD Thesis, Hamburg Uneversity of Technology
– reference: ParvizianJDüsterARankETopology optimization using the finite cell methodOptim Eng201213577828786731293.7435710.1007/s11081-011-9159-x
– reference: SukumarNQuadratic maximum-entropy serendipity shape functions for arbitrary planar polygonsComput Methods Appl Mech Eng2013263274130828181286.6516810.1016/j.cma.2013.04.009
– reference: MukherjeeTWebbJPHierarchical bases for polygonal finite elementsIEEE Trans Magn2015511410.1109/TMAG.2014.2345497
– reference: SukumarNConstruction of polygonal interpolants: a maximum entropy approachInt J Numer Methods Eng2004612159218121016021073.6550510.1002/nme.1193
– reference: DuczekSJoulaianMDüsterAGabbertUNumerical analysis of Lamb waves using the finite and spectral cell methodsInt J Numer Methods Eng201499265332264451311.7405610.1002/nme.4663
– reference: Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD Thesis, Technical University Munich
– reference: PeskinCSThe immersed boundary methodActa Numer20021147951720093781123.7430910.1017/S0962492902000077
– reference: AbedianAParvizianJDüsterARankEThe FCM compared to the h-version FEM for elasto-plastic problemsAppl Math Mech2014351239124810.1007/s10483-014-1861-9
– reference: RamièreIAngotPBelliardMA general fictitious domain method with immersed jumps and multilevel nested structured meshesJ Comput Phys20072251347138723491851122.6511510.1016/j.jcp.2007.01.026
– reference: JuTLiepaPWarrenJA general geometric construction of coordinates in a convex simplicial polytopeComput Aided Geom Des20072416117823078961171.6533710.1016/j.cagd.2006.12.001
– reference: TalischiCPaulinoGKPereiraAMenezesIFMPolygonal finite elements for topology optimization: a unifying paradigmInt J Numer Methods Eng2010826716981188.74072
– reference: BraunJSambridgeMA numerical method for solving partial differential equations on highly irregular evolving gridsNature199537665566010.1038/376655a0
– reference: HormannKSukumarNMaximum entropy coordinates for arbitrary polytopesComput Graph Forum2008271513152010.1111/j.1467-8659.2008.01292.x
– reference: SukumarNMoranBSemenovAYBelikovVVNatural neighbour Galerkin methodsInt J Numer Methods Eng20015012718085181082.7455410.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P
– reference: FloaterMSMean value coordinatesComput Aided Geom Des200320192719683041069.6555310.1016/S0167-8396(03)00002-5
– reference: WachspressEA rational finite element basis1975New YorkAcademic Press0322.65001
– reference: Floater M S (2014) Wachspress and mean value coordinates. In: Approximation theory XIV: San Antonio 2013—Springer proceedings in mathematics and statistics, vol 83, pp 81–102
– reference: ParvizianJDüsterARankEFinite cell method: h- and p-extension for embedded domain problems in solid mechanicsComput Mech20074112113323778021162.7450610.1007/s00466-007-0173-y
– reference: DüsterAParvizianJYangZRankEThe finite cell method for three-dimensional problems of solid mechanicsComput Methods Appl Mech Eng20081973768378224581141194.7451710.1016/j.cma.2008.02.036
– reference: ZanderNKollmannsbergerSRuessMYosibashZRankEThe finite cell method for linear thermoelasticityComput Math Appl2012643527354129925321268.7402010.1016/j.camwa.2012.09.002
– reference: NatarajanSOoiETChiongISongCConvergence and accuracy of displacement based finite element formulations over arbitrary polygons:laplace interpolants, strain smoothing and scaled boundary polygon formulationFinite Elem Anal Des201485101122319464110.1016/j.finel.2014.03.006
– reference: Ju T, Schafer S, Warr (2005) Mean value coordinates for closed triangular meshes. In: ACM Transactions on Graphics (TOG)—proceedings of ACM SIGGRAPH, vol 27, pp 561–566
– reference: Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20 No. 458
– reference: Varduhn V, Hsu M-C, Ruess M, Schillinger D (2016) The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes. Int J Numer Methods Eng 1–26. doi:10.1002/nme.5207
– reference: AbedianAParvizianJDüsterARankEThe finite cell method for the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} flow theory of plasticityFinite Elem Anal Des201369374710.1016/j.finel.2013.01.006
– reference: GainALPaulinoGHDuarteLSMenezesIFMTopology optimization using polytopesComput Methods Appl Mech Eng2015293411430339591410.1016/j.cma.2015.05.007
– reference: ManziniGRussoASukumarNNew perspectives on polygonal and polyhedral finite element methodsMath Models Methods Appl Sci2014241665169932002451291.6532210.1142/S0218202514400065
– reference: RandAGilletteABajajCQuadratic serendipity finite elements on polygons using generalized barycentric coordinatesAMS Math Comput2014832691271632468061300.6509110.1090/S0025-5718-2014-02807-X
– reference: ChiHTalischiCLopez-PamiesOPaulinoGHPolygonal finite elements for finite elasticityInt J Numer Methods Eng2015101305328330126810.1002/nme.4802
– ident: 1307_CR117
– volume: 24
  start-page: 1701
  year: 2014
  ident: 1307_CR8
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202514400077
– ident: 1307_CR7
  doi: 10.1007/s00158-015-1309-x
– volume: 50
  start-page: 19
  year: 2012
  ident: 1307_CR24
  publication-title: Comput Mech
  doi: 10.1007/s00466-011-0668-4
– ident: 1307_CR100
– volume: 101
  start-page: 305
  year: 2015
  ident: 1307_CR6
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4802
– volume: 25
  start-page: 1424
  year: 2006
  ident: 1307_CR83
  publication-title: ACM Trans Graph
  doi: 10.1145/1183287.1183295
– ident: 1307_CR50
– volume-title: Proceedings of the European congress on computational methods in applied sciences and engineering (ECCOMAS)
  year: 2014
  ident: 1307_CR9
– volume: 196
  start-page: 766
  year: 2007
  ident: 1307_CR74
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2006.05.012
– volume: 31
  start-page: 785
  year: 2012
  ident: 1307_CR19
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2012.03059.x
– volume: 82
  start-page: 427
  year: 2014
  ident: 1307_CR57
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2013.10.012
– volume: 22
  start-page: 391
  issue: 3
  year: 2014
  ident: 1307_CR70
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-014-9115-y
– ident: 1307_CR73
– ident: 1307_CR106
  doi: 10.1016/j.compfluid.2015.08.027
– volume: 65
  start-page: 1039
  year: 2015
  ident: 1307_CR44
  publication-title: J Sci Comput
  doi: 10.1007/s10915-015-9997-3
– volume: 69
  start-page: 37
  year: 2013
  ident: 1307_CR55
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2013.01.006
– ident: 1307_CR32
– start-page: 87
  volume-title: Computational structural engineering
  year: 2009
  ident: 1307_CR45
  doi: 10.1007/978-90-481-2822-8_9
– ident: 1307_CR69
  doi: 10.1007/978-3-642-38762-3_1
– volume: 26
  start-page: 355
  year: 2007
  ident: 1307_CR88
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2007.01058.x
– volume-title: Isogeometric analysis: toward Integration of CAD and FEA
  year: 2009
  ident: 1307_CR1
  doi: 10.1002/9780470749081
– volume: 13
  start-page: 129
  year: 2006
  ident: 1307_CR3
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/BF02905933
– ident: 1307_CR121
  doi: 10.1002/nme.4851
– volume: 37
  start-page: 569
  year: 2009
  ident: 1307_CR28
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-008-0261-4
– volume-title: Rayleigh and Lamb waves
  year: 1967
  ident: 1307_CR125
  doi: 10.1007/978-1-4899-5681-1
– volume-title: A rational finite element basis
  year: 1975
  ident: 1307_CR14
– volume: 122
  start-page: 837
  year: 1995
  ident: 1307_CR94
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.1995.tb06841.x
– volume: 56
  start-page: 725
  year: 2015
  ident: 1307_CR114
  publication-title: Comput Mech
  doi: 10.1007/s00466-015-1197-3
– volume: 263
  start-page: 27
  year: 2013
  ident: 1307_CR97
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2013.04.009
– volume: 52
  start-page: 741
  year: 2013
  ident: 1307_CR59
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0853-8
– start-page: 97
  volume-title: Developments in spatial data handling
  year: 2005
  ident: 1307_CR92
  doi: 10.1007/3-540-26772-7_8
– ident: 1307_CR17
  doi: 10.1007/978-3-642-15414-0_20
– volume: 57
  start-page: 979
  year: 2016
  ident: 1307_CR111
  publication-title: Comput Mech
  doi: 10.1007/s00466-016-1273-3
– volume: 54
  start-page: 468
  year: 1984
  ident: 1307_CR65
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(84)90128-1
– volume: 28
  start-page: 129
  year: 1982
  ident: 1307_CR119
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 82
  start-page: 671
  year: 2010
  ident: 1307_CR29
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2763
– volume: 13
  start-page: 57
  year: 2012
  ident: 1307_CR58
  publication-title: Optim Eng
  doi: 10.1007/s11081-011-9159-x
– volume: 62
  start-page: 2167
  year: 2006
  ident: 1307_CR98
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1534
– ident: 1307_CR115
– ident: 1307_CR118
  doi: 10.1016/j.cma.2016.04.006
– volume: 14
  start-page: 207
  year: 2011
  ident: 1307_CR47
  publication-title: Comput Vis Sci
  doi: 10.1007/s00791-012-0175-y
– volume: 20
  start-page: 19
  year: 2003
  ident: 1307_CR82
  publication-title: Comput Aided Geom Des
  doi: 10.1016/S0167-8396(03)00002-5
– volume: 45
  start-page: 329
  year: 2012
  ident: 1307_CR30
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0696-x
– ident: 1307_CR46
– volume: 47
  start-page: 535
  year: 2011
  ident: 1307_CR109
  publication-title: Comput Mech
  doi: 10.1007/s00466-010-0562-5
– ident: 1307_CR18
– volume-title: Finite element analysis
  year: 1991
  ident: 1307_CR38
– volume: 61
  start-page: 2045
  year: 2004
  ident: 1307_CR12
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1141
– ident: 1307_CR105
  doi: 10.1002/nme.5207
– volume: 89
  start-page: 1171
  year: 2012
  ident: 1307_CR53
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.3289
– volume: 74
  start-page: 134
  year: 2014
  ident: 1307_CR34
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.3843
– ident: 1307_CR40
  doi: 10.1201/9781420011685
– volume: 280
  start-page: 135
  year: 2014
  ident: 1307_CR133
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.07.016
– volume: 269
  start-page: 198
  year: 2014
  ident: 1307_CR25
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2013.10.025
– ident: 1307_CR31
  doi: 10.1007/s00158-015-1252-x
– volume: 6
  start-page: 97
  year: 1996
  ident: 1307_CR79
  publication-title: Adv Comput Math
  doi: 10.1007/BF02127699
– volume: 100
  start-page: 555
  year: 2014
  ident: 1307_CR26
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4744
– volume: 51
  start-page: 794
  year: 2013
  ident: 1307_CR130
  publication-title: SIAM J Numer Anal
  doi: 10.1137/120874746
– volume: 63
  start-page: 185
  year: 2015
  ident: 1307_CR21
  publication-title: J Sci Comput
  doi: 10.1007/s10915-014-9894-1
– volume: 11
  start-page: 479
  year: 2002
  ident: 1307_CR35
  publication-title: Acta Numer
  doi: 10.1017/S0962492902000077
– volume: 98
  start-page: 562
  year: 2014
  ident: 1307_CR5
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4645
– volume: 64
  start-page: 3527
  year: 2012
  ident: 1307_CR60
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2012.09.002
– volume: 51
  start-page: 1
  year: 2015
  ident: 1307_CR13
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2014.2345497
– volume: 3
  start-page: 503
  year: 2006
  ident: 1307_CR23
  publication-title: Int J Comput Methods
  doi: 10.1142/S021987620600117X
– volume: 41
  start-page: 686
  year: 2005
  ident: 1307_CR10
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2004.08.002
– ident: 1307_CR126
  doi: 10.1007/978-1-84882-784-4
– volume: 273
  start-page: 393
  year: 2014
  ident: 1307_CR113
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.05.019
– volume: 197
  start-page: 3768
  year: 2008
  ident: 1307_CR37
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.02.036
– volume: 225
  start-page: 1347
  year: 2007
  ident: 1307_CR75
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.01.026
– volume: 22
  start-page: 623
  year: 2005
  ident: 1307_CR84
  publication-title: Comput Aided Geom Des
  doi: 10.1016/j.cagd.2005.06.004
– ident: 1307_CR52
  doi: 10.1088/1757-899X/10/1/012170
– ident: 1307_CR85
  doi: 10.1145/1186822.1073229
– volume: 197
  start-page: 425
  year: 2008
  ident: 1307_CR11
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.08.013
– volume-title: Guided waves in structures for SHM: the time-domain spectral element method
  year: 2011
  ident: 1307_CR64
– volume: 27
  start-page: 85
  year: 1997
  ident: 1307_CR120
  publication-title: Finite Elem Anal Des
  doi: 10.1016/S0168-874X(97)00006-1
– ident: 1307_CR16
– volume: 43
  start-page: 839
  year: 1998
  ident: 1307_CR90
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
– volume: 52
  start-page: 515
  year: 2014
  ident: 1307_CR81
  publication-title: SIAM J Numer Anal
  doi: 10.1137/130925712
– volume: 95
  start-page: 811
  year: 2013
  ident: 1307_CR103
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4522
– volume: 73
  start-page: 1811
  year: 2008
  ident: 1307_CR4
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2149
– ident: 1307_CR107
– ident: 1307_CR110
– volume: 196
  start-page: 1498
  year: 2007
  ident: 1307_CR76
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2006.05.013
– ident: 1307_CR122
  doi: 10.1007/s00466-012-0681-2
– volume: 189
  start-page: 33
  year: 2014
  ident: 1307_CR33
  publication-title: Int J Fract
  doi: 10.1007/s10704-014-9961-5
– ident: 1307_CR39
– ident: 1307_CR54
– volume: 241–244
  start-page: 246
  year: 2012
  ident: 1307_CR127
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.06.011
– volume: 293
  start-page: 411
  year: 2015
  ident: 1307_CR102
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2015.05.007
– volume: 70
  start-page: 1501
  year: 2015
  ident: 1307_CR51
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2015.05.009
– volume: 27
  start-page: 319
  year: 2007
  ident: 1307_CR80
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-005-9008-6
– volume: 226
  start-page: 845
  year: 2015
  ident: 1307_CR61
  publication-title: Acta Mech
  doi: 10.1007/s00707-014-1227-9
– volume: 284
  start-page: 138
  year: 2015
  ident: 1307_CR123
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.07.009
– volume-title: Introduction to finite element analysis: formulation, verification and validation
  year: 2011
  ident: 1307_CR42
  doi: 10.1002/9781119993834
– volume: 24
  start-page: 161
  year: 2007
  ident: 1307_CR101
  publication-title: Comput Aided Geom Des
  doi: 10.1016/j.cagd.2006.12.001
– volume: 253
  start-page: 455
  year: 2013
  ident: 1307_CR131
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.09.012
– volume: 32
  start-page: 1391
  year: 2015
  ident: 1307_CR27
  publication-title: Eng Comput
  doi: 10.1108/EC-04-2014-0070
– ident: 1307_CR43
– volume: 61
  start-page: 2159
  year: 2004
  ident: 1307_CR96
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1193
– volume: 7
  start-page: 13
  year: 2002
  ident: 1307_CR78
  publication-title: J Graph Tools
  doi: 10.1080/10867651.2002.10487551
– volume: 16
  start-page: 9
  year: 2003
  ident: 1307_CR112
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)0893-1321(2003)16:1(9)
– volume: 97
  start-page: 1
  year: 2014
  ident: 1307_CR15
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4562
– volume: 87
  start-page: 151
  year: 1980
  ident: 1307_CR89
  publication-title: Math Proc Camb Philos Soc
  doi: 10.1017/S0305004100056589
– volume: 99
  start-page: 26
  year: 2014
  ident: 1307_CR68
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4663
– volume: 24
  start-page: 311
  year: 2006
  ident: 1307_CR86
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-004-7611-6
– ident: 1307_CR87
  doi: 10.1007/978-3-319-06404-8_6
– volume: 24
  start-page: 1665
  year: 2014
  ident: 1307_CR77
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202514400065
– volume: 35
  start-page: 1239
  year: 2014
  ident: 1307_CR56
  publication-title: Appl Math Mech
  doi: 10.1007/s10483-014-1861-9
– volume: 27
  start-page: 1513
  year: 2008
  ident: 1307_CR99
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2008.01292.x
– volume: 23
  start-page: 199
  year: 2013
  ident: 1307_CR129
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202512500492
– ident: 1307_CR2
– volume: 139
  start-page: 806
  year: 1999
  ident: 1307_CR67
  publication-title: Geophys J Int
  doi: 10.1046/j.1365-246x.1999.00967.x
– volume: 41
  start-page: 121
  year: 2007
  ident: 1307_CR36
  publication-title: Comput Mech
  doi: 10.1007/s00466-007-0173-y
– volume: 45
  start-page: 309
  year: 2012
  ident: 1307_CR20
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0706-z
– volume: 2–10
  start-page: 1
  year: 2015
  ident: 1307_CR116
  publication-title: Adv Model Simul Eng Sci
– ident: 1307_CR62
  doi: 10.1117/12.2009983
– volume: 120
  start-page: 33
  year: 2013
  ident: 1307_CR22
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2013.01.017
– volume: 45
  start-page: 45
  year: 2009
  ident: 1307_CR49
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0414-3
– ident: 1307_CR41
  doi: 10.1201/9781420011692
– volume: 376
  start-page: 655
  year: 1995
  ident: 1307_CR93
  publication-title: Nature
  doi: 10.1038/376655a0
– volume: 83
  start-page: 2691
  year: 2014
  ident: 1307_CR128
  publication-title: AMS Math Comput
  doi: 10.1090/S0025-5718-2014-02807-X
– ident: 1307_CR104
  doi: 10.1142/S0219876213500023
– volume: 54
  start-page: 661
  year: 2014
  ident: 1307_CR63
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1019-z
– volume-title: A first course in finite elements
  year: 2007
  ident: 1307_CR72
  doi: 10.1002/9780470510858
– volume: 50
  start-page: 1
  year: 2001
  ident: 1307_CR91
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P
– volume: 91
  start-page: 457
  year: 2012
  ident: 1307_CR48
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4269
– volume-title: The finite element method: linear static and dynamic finite element analysis
  year: 1987
  ident: 1307_CR71
– volume: 85
  start-page: 101
  year: 2014
  ident: 1307_CR95
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2014.03.006
– volume: 82
  start-page: 99
  year: 2010
  ident: 1307_CR108
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2759
– volume: 282
  start-page: 132
  year: 2014
  ident: 1307_CR134
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.05.005
– volume: 52
  start-page: 815
  year: 2012
  ident: 1307_CR124
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2012.05.008
– volume: 45
  start-page: 1139
  year: 1999
  ident: 1307_CR66
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
– volume: 24
  start-page: 1541
  year: 2014
  ident: 1307_CR132
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S021820251440003X
SSID ssj0015835
Score 2.2460656
Snippet In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 587
SubjectTerms Classical and Continuum Physics
Computational Science and Engineering
Engineering
Mathematical analysis
Numerical integration
Original Paper
Theoretical and Applied Mechanics
Title The finite cell method for polygonal meshes: poly-FCM
URI https://link.springer.com/article/10.1007/s00466-016-1307-x
https://www.proquest.com/docview/1880866927
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1432-0924
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AMVHM
  dateStart: 19860301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SXvTgoypWa1lEEJSFfWRf3trStSrtQS3UU8gm2SqUtrgt6L93ZpstrS_wtJDMvmayyTc7mW8IOZeu61MVSFMJ5ZtUcgwSJgInw4h6HnTmGd7dnt_p07uBN9B53Fmx270ISeYz9TLZDV059H6RN88KTACOZQ_ZvGAQ953GMnTghYuqmja4R8hUUoQyf7rE2mL0dUr-FhvNl5x4l2xrrGg0FsbdIxtqXCE7Gjca-qvMKmRrhVRwn3hgeSN9RSxp4G95Y1Ek2gB0akwno48hYm9ozF5Udp23mHGre0D6cfup1TF1cQRTAMaYmZQ7tvTBnUrCyFeBAA85TLidCg4AiScRtwOZAiYNLCVCgNBgKmULX6QhrvqJ5R6S0ngyVkfEcEPhRDKKhBQKK5JxnlCHu55MBQ2pTKvEKrTEhGYOxwIWI7bkPM4Vy3C3GCqWvVfJ5fKU6YI24y_hM1Q9QzqKMe53GfJ5lrHbxwfWoAFWlQS3rkoutFA6gZsLrtMH4BWQwWpNslaYkOkPMmNIOxf6fuRA91Vh1pXu357t-F_SJ2TTyUcXbvarkdLsba5OAbTMkjopN-Jms4fHm-f7dj0ftJ8OoOSc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kHtSDb7FaNYggKJEm2by8lWKtj3rQCnpaNrubKkorpgX11zuTbIpv8Lq7SfYxu_tNZuYbgB3leQHTobK11IHNlCAjYSLpMIyZ72NlHuHduQja1-z0xr8xcdxZ6e1emiTzk3oc7EaqHGm_xJtXD20EjpMM9RO3ApON49uzo7HxwI-KvJoOKkjEVVIaM396yafr6Ouh_M06ml86rTnolt0tfE0eDkbD5EC-fWFy_Od45mHWgFCrUUjNAkzo_iLMGUBqme2eLcLMB7bCJfBRpKz0nkCqRf_7rSL7tIWw13oaPL72CNRjYXans8O8xG41O8tw3TrqNtu2ybpgSwQvQ5sJ11EB6mlJFAc6lKh6R4lwUikQeYkkFk6oUgS7YV3LCLE5yoB2ZCDTiOBEUvdWoNIf9PUqWF4k3VjFsVRSU6ozIRLmCs9XqWQRU2kV6uXkc2koySkzxiMfkynnk8TJDY0mib9UYW_8yFPBx_FX421aUU48F31ypOmJUZbxk6tL3mAhpatEfbEKu6ZROsCPS2HiEnAIRI31qWWtlAxudnrGic8uCoLYxer9cqE_VP_Wt7V_td6CqXa3c87PTy7O1mHazaWGPAprUBk-j_QGIqNhsml2wjvpdAGI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-iIPrBx1ScTi0iCErZ2qYvv43p2NQNUQf7FtIkncLoht1A_3vv2nRsvsCvSfq6uyS_6-V-R8iZdByPKl-aSijPpJJjkDASuBiG1HWhM8vw7nS9Vo_e9t2-rnOaFqfdi5BkntOALE3JpDqWcXWW-IZuHXrCyKFX800AkSsUeRLAoHt2fRZGcIO8wqYFrhKylhRhzZ9usbAxfV2ev8VJs-2nuUU2NG406rmit8mSSkpkU2NIQ8_QtETW5wgGd4gLVmDEr4grDfxFb-QFow1AqsZ4NPwYIA6HxvRFpVdZi9lsdHZJr3nz3GiZulCCKQBvTEzKbUt64FpFQegpX4C3HETcigUHsMSjkFu-jAGf-jUlAoDToDZlCU_EASKAqObskeVklKh9YjiBsEMZhkIKhdXJOI-ozR1XxoIGVMZlUiukxIRmEcdiFkM24z_OBMvw5BgKlr2XycXsknFOofHX4FMUPUNqigTPvgz4NE1Z--mR1amPFSbBxSuTcz0oHsHDBdepBPAJyGa1MLJSqJDpyZkypKALPC-0ofuyUOtc92_vdvCv0Sdk9eG6ye7b3btDsmZnhoZnACtkefI2VUeAZSbRcWavn-J36LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+finite+cell+method+for+polygonal+meshes%3A+poly-FCM&rft.jtitle=Computational+mechanics&rft.au=Duczek%2C+Sascha&rft.au=Gabbert%2C+Ulrich&rft.date=2016-10-01&rft.pub=Springer&rft.issn=0178-7675&rft.volume=58&rft.issue=4&rft.spage=587&rft_id=info:doi/10.1007%2Fs00466-016-1307-x&rft.externalDocID=A470733287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon