Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model
We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to high...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 18; no. 6; pp. 8524 - 8534 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1551-0018 1551-0018 |
DOI | 10.3934/mbe.2021421 |
Cover
Abstract | We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved. |
---|---|
AbstractList | We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved. We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved.We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved. |
Author | Hwang, Sunwoo Hwang, Hyung Ju Lee, Seongwon |
Author_xml | – sequence: 1 givenname: Sunwoo surname: Hwang fullname: Hwang, Sunwoo – sequence: 2 givenname: Seongwon surname: Lee fullname: Lee, Seongwon – sequence: 3 givenname: Hyung Ju surname: Hwang fullname: Hwang, Hyung Ju |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34814310$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkc1vVCEUxYmpsR-6cm9YmphXgcvAsDRNtY2NLtQ14cGlQ33vMQJT0_9e7IyNq0suvxwO55ySoyUvSMhrzs7BgHw_j3gumOBS8GfkhK9WfGCMr4_-Ox-T01rvGAMJIF-QY5BrLoGzExK_4K64iS7Yfufyk7rttmTnN7RlGlxzQyjpHheKtaXZtZQXmiP1G5xzc74lTysuNbV0n9oDTQttG6SfcZqwDN_wFic654DTS_I8uqniq8M8Iz8-Xn6_uBpuvn66vvhwM3hYmzZIwYKRka24gyjMqHUUo3AjjkEYDYBBRAmRR61HgaCU4KvgdXSGo1Y6whm53uuG7O7stnTP5cFml-zjIpdb60p3PaE1igk0IkiNSirvTQBEZdagmcR-17Xe7rV6Ir92PQA7p-r719yCeVetUIwbraRUHX1zQHfjjOHp4X85d-DdHvAl11owPiGc2b8t2t6iPbQIfwBWl47S |
Cites_doi | 10.1073/pnas.1718942115 10.1007/BF02476407 10.3934/nhm.2020011 10.1137/S0036139995291544 10.1016/0022-5193(71)90051-8 10.1007/s002850000038 10.1016/j.jcp.2018.10.045 10.1016/j.jcp.2020.109665 10.1016/S0092-8240(05)80208-3 10.1074/jbc.R300010200 10.1016/0925-2312(95)00070-4 10.57262/die/1369316501 10.1016/S0022-5193(86)80171-0 10.1016/0022-5193(71)90050-6 10.7717/peerj-cs.68 10.1007/BF01895688 10.1016/0022-5193(70)90092-5 10.1529/biophysj.103.036699 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics Pohang University of Science and Technology Pohang, Republic of Korea Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon, Republic of Korea |
CorporateAuthor_xml | – name: Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon, Republic of Korea – name: Department of Mathematics Pohang University of Science and Technology Pohang, Republic of Korea |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.3934/mbe.2021421 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 8534 |
ExternalDocumentID | oai_doaj_org_article_9602e92d47e646cc9d3ee6983704e602 34814310 10_3934_mbe_2021421 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c389t-420d94f051a3f29b77f2b2abebd29733ed2f43f1f77b2e366215dc7fa91e767f3 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 01:30:56 EDT 2025 Fri Jul 11 09:19:06 EDT 2025 Thu Jan 02 22:56:00 EST 2025 Tue Jul 01 02:58:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | artificial neural networks differential equation approximated solution Patlak-Keller-Segel equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-420d94f051a3f29b77f2b2abebd29733ed2f43f1f77b2e366215dc7fa91e767f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/9602e92d47e646cc9d3ee6983704e602 |
PMID | 34814310 |
PQID | 2601976446 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9602e92d47e646cc9d3ee6983704e602 proquest_miscellaneous_2601976446 pubmed_primary_34814310 crossref_primary_10_3934_mbe_2021421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationTitleAlternate | Math Biosci Eng |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2021421-1 key-10.3934/mbe.2021421-2 key-10.3934/mbe.2021421-3 key-10.3934/mbe.2021421-4 key-10.3934/mbe.2021421-10 key-10.3934/mbe.2021421-5 key-10.3934/mbe.2021421-20 key-10.3934/mbe.2021421-6 key-10.3934/mbe.2021421-7 key-10.3934/mbe.2021421-8 key-10.3934/mbe.2021421-14 key-10.3934/mbe.2021421-9 key-10.3934/mbe.2021421-13 key-10.3934/mbe.2021421-12 key-10.3934/mbe.2021421-11 key-10.3934/mbe.2021421-18 key-10.3934/mbe.2021421-17 key-10.3934/mbe.2021421-16 key-10.3934/mbe.2021421-15 key-10.3934/mbe.2021421-19 |
References_xml | – ident: key-10.3934/mbe.2021421-15 doi: 10.1073/pnas.1718942115 – ident: key-10.3934/mbe.2021421-6 doi: 10.1007/BF02476407 – ident: key-10.3934/mbe.2021421-9 doi: 10.3934/nhm.2020011 – ident: key-10.3934/mbe.2021421-10 – ident: key-10.3934/mbe.2021421-13 doi: 10.1137/S0036139995291544 – ident: key-10.3934/mbe.2021421-8 doi: 10.1016/0022-5193(71)90051-8 – ident: key-10.3934/mbe.2021421-20 doi: 10.1007/s002850000038 – ident: key-10.3934/mbe.2021421-11 doi: 10.1016/j.jcp.2018.10.045 – ident: key-10.3934/mbe.2021421-17 doi: 10.1016/j.jcp.2020.109665 – ident: key-10.3934/mbe.2021421-5 doi: 10.1016/S0092-8240(05)80208-3 – ident: key-10.3934/mbe.2021421-1 doi: 10.1074/jbc.R300010200 – ident: key-10.3934/mbe.2021421-12 doi: 10.1016/0925-2312(95)00070-4 – ident: key-10.3934/mbe.2021421-14 doi: 10.57262/die/1369316501 – ident: key-10.3934/mbe.2021421-4 doi: 10.1016/S0022-5193(86)80171-0 – ident: key-10.3934/mbe.2021421-18 – ident: key-10.3934/mbe.2021421-7 doi: 10.1016/0022-5193(71)90050-6 – ident: key-10.3934/mbe.2021421-19 doi: 10.7717/peerj-cs.68 – ident: key-10.3934/mbe.2021421-16 doi: 10.1007/BF01895688 – ident: key-10.3934/mbe.2021421-3 doi: 10.1016/0022-5193(70)90092-5 – ident: key-10.3934/mbe.2021421-2 doi: 10.1529/biophysj.103.036699 |
SSID | ssj0034334 |
Score | 2.2042131 |
Snippet | We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 8524 |
SubjectTerms | approximated solution artificial neural networks Chemotaxis differential equation Models, Biological Neural Networks, Computer patlak-keller-segel equation Population Dynamics |
Title | Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34814310 https://www.proquest.com/docview/2601976446 https://doaj.org/article/9602e92d47e646cc9d3ee6983704e602 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFhL2W7SbZZHNUcVkUvOjC3kqe4MFWdrsH_70zTbvoQbx4bQtN50sz3yQz3xAyUOByrNculwXzuYhB5UZB1MqtgbXQacQcsy2e5WwuHhfjxbdWX5gTluSBk-GGwLBZ0MwLFaSQzmnPQ5AaNVtEkElGstBFH0ylNZgLzkWqxuOai-G7RUVMVBcb_fA_rUz_79yy9THTfbLXkUN6mwZ1QLZCdUh2UrvIzyMSUUkD7lcpdZv2euC0qSlmeuZ-iWsXReGMVJFI60gBFYCjrYWiK0xXT_0i6FtFgfzRJ9y5X-YveHZO2744x2Q-fXi9n-Vdn4TcAd1ocsEKr0WE38vwyLRVKjLLjA3WY2cqHjyLgsdRVMqywKUEN--dikaPgpIq8hOyXdVVOCPUOF9MjFTBCS7c2NugnNdxIo0upJY2I4PeeuVHksMoIYxAI5dg5LIzckbu0LKbR1DDur0AyJYdsuVfyGbkpselhDmPBxmmCvV6VaIMGtAoiGQzcpoA27wKC4uBFBXn_zGEC7KLX5S2XC7JdrNchysgIY29bufbF-IE2hE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+approach+to+data-driven+estimation+of+chemotactic+sensitivity+in+the+Keller-Segel+model&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Hwang%2C+Sunwoo&rft.au=Lee%2C+Seongwon&rft.au=Hwang%2C+Hyung+Ju&rft.date=2021-01-01&rft.issn=1551-0018&rft.volume=18&rft.issue=6&rft.spage=8524&rft.epage=8534&rft_id=info:doi/10.3934%2Fmbe.2021421&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_mbe_2021421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |