Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model

We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to high...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 18; no. 6; pp. 8524 - 8534
Main Authors Hwang, Sunwoo, Lee, Seongwon, Hwang, Hyung Ju
Format Journal Article
LanguageEnglish
Published United States AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN1551-0018
1551-0018
DOI10.3934/mbe.2021421

Cover

Abstract We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved.
AbstractList We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved.
We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved.We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the population dynamics of chemotactic cells. Aggregation originates from the chemotaxis of mobile cells, where cells are attracted to migrate to higher concentrations of the chemical signal region produced by themselves. The neural net can be used to find the approximate solution of the PDE. We proved that the error, the difference between the actual value and the predicted value, is bound to a constant multiple of the loss we are learning. Also, the Neural Net approximation can be easily applied to the inverse problem. It was confirmed that even when the coefficient of the PDE equation was unknown, prediction with high accuracy was achieved.
Author Hwang, Sunwoo
Hwang, Hyung Ju
Lee, Seongwon
Author_xml – sequence: 1
  givenname: Sunwoo
  surname: Hwang
  fullname: Hwang, Sunwoo
– sequence: 2
  givenname: Seongwon
  surname: Lee
  fullname: Lee, Seongwon
– sequence: 3
  givenname: Hyung Ju
  surname: Hwang
  fullname: Hwang, Hyung Ju
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34814310$$D View this record in MEDLINE/PubMed
BookMark eNpNkc1vVCEUxYmpsR-6cm9YmphXgcvAsDRNtY2NLtQ14cGlQ33vMQJT0_9e7IyNq0suvxwO55ySoyUvSMhrzs7BgHw_j3gumOBS8GfkhK9WfGCMr4_-Ox-T01rvGAMJIF-QY5BrLoGzExK_4K64iS7Yfufyk7rttmTnN7RlGlxzQyjpHheKtaXZtZQXmiP1G5xzc74lTysuNbV0n9oDTQttG6SfcZqwDN_wFic654DTS_I8uqniq8M8Iz8-Xn6_uBpuvn66vvhwM3hYmzZIwYKRka24gyjMqHUUo3AjjkEYDYBBRAmRR61HgaCU4KvgdXSGo1Y6whm53uuG7O7stnTP5cFml-zjIpdb60p3PaE1igk0IkiNSirvTQBEZdagmcR-17Xe7rV6Ir92PQA7p-r719yCeVetUIwbraRUHX1zQHfjjOHp4X85d-DdHvAl11owPiGc2b8t2t6iPbQIfwBWl47S
Cites_doi 10.1073/pnas.1718942115
10.1007/BF02476407
10.3934/nhm.2020011
10.1137/S0036139995291544
10.1016/0022-5193(71)90051-8
10.1007/s002850000038
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2020.109665
10.1016/S0092-8240(05)80208-3
10.1074/jbc.R300010200
10.1016/0925-2312(95)00070-4
10.57262/die/1369316501
10.1016/S0022-5193(86)80171-0
10.1016/0022-5193(71)90050-6
10.7717/peerj-cs.68
10.1007/BF01895688
10.1016/0022-5193(70)90092-5
10.1529/biophysj.103.036699
ContentType Journal Article
CorporateAuthor Department of Mathematics Pohang University of Science and Technology Pohang, Republic of Korea
Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
CorporateAuthor_xml – name: Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
– name: Department of Mathematics Pohang University of Science and Technology Pohang, Republic of Korea
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.3934/mbe.2021421
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 8534
ExternalDocumentID oai_doaj_org_article_9602e92d47e646cc9d3ee6983704e602
34814310
10_3934_mbe_2021421
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c389t-420d94f051a3f29b77f2b2abebd29733ed2f43f1f77b2e366215dc7fa91e767f3
IEDL.DBID DOA
ISSN 1551-0018
IngestDate Wed Aug 27 01:30:56 EDT 2025
Fri Jul 11 09:19:06 EDT 2025
Thu Jan 02 22:56:00 EST 2025
Tue Jul 01 02:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords artificial neural networks
differential equation
approximated solution
Patlak-Keller-Segel equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-420d94f051a3f29b77f2b2abebd29733ed2f43f1f77b2e366215dc7fa91e767f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/9602e92d47e646cc9d3ee6983704e602
PMID 34814310
PQID 2601976446
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_9602e92d47e646cc9d3ee6983704e602
proquest_miscellaneous_2601976446
pubmed_primary_34814310
crossref_primary_10_3934_mbe_2021421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2021421-1
key-10.3934/mbe.2021421-2
key-10.3934/mbe.2021421-3
key-10.3934/mbe.2021421-4
key-10.3934/mbe.2021421-10
key-10.3934/mbe.2021421-5
key-10.3934/mbe.2021421-20
key-10.3934/mbe.2021421-6
key-10.3934/mbe.2021421-7
key-10.3934/mbe.2021421-8
key-10.3934/mbe.2021421-14
key-10.3934/mbe.2021421-9
key-10.3934/mbe.2021421-13
key-10.3934/mbe.2021421-12
key-10.3934/mbe.2021421-11
key-10.3934/mbe.2021421-18
key-10.3934/mbe.2021421-17
key-10.3934/mbe.2021421-16
key-10.3934/mbe.2021421-15
key-10.3934/mbe.2021421-19
References_xml – ident: key-10.3934/mbe.2021421-15
  doi: 10.1073/pnas.1718942115
– ident: key-10.3934/mbe.2021421-6
  doi: 10.1007/BF02476407
– ident: key-10.3934/mbe.2021421-9
  doi: 10.3934/nhm.2020011
– ident: key-10.3934/mbe.2021421-10
– ident: key-10.3934/mbe.2021421-13
  doi: 10.1137/S0036139995291544
– ident: key-10.3934/mbe.2021421-8
  doi: 10.1016/0022-5193(71)90051-8
– ident: key-10.3934/mbe.2021421-20
  doi: 10.1007/s002850000038
– ident: key-10.3934/mbe.2021421-11
  doi: 10.1016/j.jcp.2018.10.045
– ident: key-10.3934/mbe.2021421-17
  doi: 10.1016/j.jcp.2020.109665
– ident: key-10.3934/mbe.2021421-5
  doi: 10.1016/S0092-8240(05)80208-3
– ident: key-10.3934/mbe.2021421-1
  doi: 10.1074/jbc.R300010200
– ident: key-10.3934/mbe.2021421-12
  doi: 10.1016/0925-2312(95)00070-4
– ident: key-10.3934/mbe.2021421-14
  doi: 10.57262/die/1369316501
– ident: key-10.3934/mbe.2021421-4
  doi: 10.1016/S0022-5193(86)80171-0
– ident: key-10.3934/mbe.2021421-18
– ident: key-10.3934/mbe.2021421-7
  doi: 10.1016/0022-5193(71)90050-6
– ident: key-10.3934/mbe.2021421-19
  doi: 10.7717/peerj-cs.68
– ident: key-10.3934/mbe.2021421-16
  doi: 10.1007/BF01895688
– ident: key-10.3934/mbe.2021421-3
  doi: 10.1016/0022-5193(70)90092-5
– ident: key-10.3934/mbe.2021421-2
  doi: 10.1529/biophysj.103.036699
SSID ssj0034334
Score 2.2042131
Snippet We consider the mathematical model of chemotaxis introduced by Patlak, Keller, and Segel. Aggregation and progression waves are present everywhere in the...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 8524
SubjectTerms approximated solution
artificial neural networks
Chemotaxis
differential equation
Models, Biological
Neural Networks, Computer
patlak-keller-segel equation
Population Dynamics
Title Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model
URI https://www.ncbi.nlm.nih.gov/pubmed/34814310
https://www.proquest.com/docview/2601976446
https://doaj.org/article/9602e92d47e646cc9d3ee6983704e602
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFhL2W7SbZZHNUcVkUvOjC3kqe4MFWdrsH_70zTbvoQbx4bQtN50sz3yQz3xAyUOByrNculwXzuYhB5UZB1MqtgbXQacQcsy2e5WwuHhfjxbdWX5gTluSBk-GGwLBZ0MwLFaSQzmnPQ5AaNVtEkElGstBFH0ylNZgLzkWqxuOai-G7RUVMVBcb_fA_rUz_79yy9THTfbLXkUN6mwZ1QLZCdUh2UrvIzyMSUUkD7lcpdZv2euC0qSlmeuZ-iWsXReGMVJFI60gBFYCjrYWiK0xXT_0i6FtFgfzRJ9y5X-YveHZO2744x2Q-fXi9n-Vdn4TcAd1ocsEKr0WE38vwyLRVKjLLjA3WY2cqHjyLgsdRVMqywKUEN--dikaPgpIq8hOyXdVVOCPUOF9MjFTBCS7c2NugnNdxIo0upJY2I4PeeuVHksMoIYxAI5dg5LIzckbu0LKbR1DDur0AyJYdsuVfyGbkpselhDmPBxmmCvV6VaIMGtAoiGQzcpoA27wKC4uBFBXn_zGEC7KLX5S2XC7JdrNchysgIY29bufbF-IE2hE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+approach+to+data-driven+estimation+of+chemotactic+sensitivity+in+the+Keller-Segel+model&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Hwang%2C+Sunwoo&rft.au=Lee%2C+Seongwon&rft.au=Hwang%2C+Hyung+Ju&rft.date=2021-01-01&rft.issn=1551-0018&rft.volume=18&rft.issue=6&rft.spage=8524&rft.epage=8534&rft_id=info:doi/10.3934%2Fmbe.2021421&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_mbe_2021421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon