Revaccination of Children after Completion of Standard Chemotherapy for Acute Leukemia
Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1–18 years) who had completed sta...
Saved in:
Published in | Clinical infectious diseases Vol. 44; no. 5; pp. 635 - 642 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The University of Chicago Press
01.03.2007
University of Chicago Press Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 1058-4838 1537-6591 1537-6591 |
DOI | 10.1086/511636 |
Cover
Abstract | Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1–18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ⩾6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2–4 weeks and 12 months after vaccination. Results. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1–0.17 IU/mL), for 87% for Hib (GMC, 0.5 µg/mL; 95% CI, 0.37–0.74 µg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163–557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1 : 2.9; 95% CI, 1 : 2.2 to 1 : 3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1–2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 µg/mL; 6.5µg/mL; 95% CI, 5.1–8.2 µg/mL), 94% achieving optimal antibody concentrations to measles (defined as ⩾120 mIU/mL; 2720 mIU/mL; 95% CI, 1423–5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ⩾1 : 8; 1 : 1000; 95% CI, 1 : 483–1 : 2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ⩾1 : 8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. |
---|---|
AbstractList | After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted.
Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines > or = 6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination.
Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 microg/mL; 95% CI, 0.37-0.74 microg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as > 0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as > 1.0 microg/mL; 6.5 microg/mL; 95% CI, 5.1-8.2 microg/mL), 94% achieving optimal antibody concentrations to measles (defined as > or = 120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as > or = 1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as > or = 1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination.
Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. Background . After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method . Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ⩾6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination. Results . Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 µg/mL; 95% CI, 0.37-0.74 µg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1 : 2.9; 95% CI, 1 : 2.2 to 1 : 3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 µg/mL; 6.5µg/mL; 95% CI, 5.1-8.2 µg/mL), 94% achieving optimal antibody concentrations to measles (defined as ⩾120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ⩾1 : 8; 1 : 1000; 95% CI, 1 : 483-1 : 2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ⩾1 : 8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion . Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ...6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 μg/mL; 95% CI, 0.37-0.74 μg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 μg/mL; 6.5 μg/mL; 95% CI, 5.1-8.2 μg/mL), 94% achieving optimal antibody concentrations to measles (defined as ...120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ...1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ...1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. (ProQuest Information and Learning: ... denotes formulae/symbols omitted.) Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1–18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ⩾6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2–4 weeks and 12 months after vaccination. Results. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1–0.17 IU/mL), for 87% for Hib (GMC, 0.5 µg/mL; 95% CI, 0.37–0.74 µg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163–557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1 : 2.9; 95% CI, 1 : 2.2 to 1 : 3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1–2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 µg/mL; 6.5µg/mL; 95% CI, 5.1–8.2 µg/mL), 94% achieving optimal antibody concentrations to measles (defined as ⩾120 mIU/mL; 2720 mIU/mL; 95% CI, 1423–5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ⩾1 : 8; 1 : 1000; 95% CI, 1 : 483–1 : 2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ⩾1 : 8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted.BACKGROUNDAfter the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted.Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines > or = 6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination.METHODFifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines > or = 6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination.Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 microg/mL; 95% CI, 0.37-0.74 microg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as > 0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as > 1.0 microg/mL; 6.5 microg/mL; 95% CI, 5.1-8.2 microg/mL), 94% achieving optimal antibody concentrations to measles (defined as > or = 120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as > or = 1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as > or = 1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination.RESULTSPrevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 microg/mL; 95% CI, 0.37-0.74 microg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as > 0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as > 1.0 microg/mL; 6.5 microg/mL; 95% CI, 5.1-8.2 microg/mL), 94% achieving optimal antibody concentrations to measles (defined as > or = 120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as > or = 1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as > or = 1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination.Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.CONCLUSIONRevaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ≥6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination. Results. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 μg/mL; 95% CI, 0.37-0.74 μg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 μg/mL; 6.5 μg/mL; 95% CI, 5.1-8.2 μg/mL), 94% achieving optimal antibody concentrations to measles (defined as ≥120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ≥1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ≥1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. |
Author | Irving, Diane Sheldon, Joanne Cohen, Bernard J. Heath, Paul T. Borrow, Ray Patel, Soonie R. Ortín, Miguel |
Author_xml | – sequence: 1 givenname: Soonie R. surname: Patel fullname: Patel, Soonie R. email: soonier@doctors.org.uk organization: Pediatric Oncology Department, Royal Marsden Hospital, Sutton – sequence: 2 givenname: Miguel surname: Ortín fullname: Ortín, Miguel organization: Pediatric Oncology Department, Royal Marsden Hospital, Sutton – sequence: 3 givenname: Bernard J. surname: Cohen fullname: Cohen, Bernard J. organization: Virus Reference Department, Center for Infections, Health Protection Agency, London – sequence: 4 givenname: Ray surname: Borrow fullname: Borrow, Ray organization: Meningococcal Reference Unit, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, United Kingdom – sequence: 5 givenname: Diane surname: Irving fullname: Irving, Diane organization: Protein Reference Unit, St. Georges Hospital, London – sequence: 6 givenname: Joanne surname: Sheldon fullname: Sheldon, Joanne organization: Protein Reference Unit, St. Georges Hospital, London – sequence: 7 givenname: Paul T. surname: Heath fullname: Heath, Paul T. organization: Vaccine Institute and Child Health, St. George's University of London, London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17278052$$D View this record in MEDLINE/PubMed |
BookMark | eNp10V1r1jAUB_AgE_eifgKRuguvrCbNay-3Z86JDwg6h3gT0uSU9Vnb1CQd27dftHuBiVc58P9xknOyi7ZGPwJCLwl-T7ASHzghgoonaIdwKkvBa7KVa8xVyRRV22g3xg3GhCjMn6FtIiuZq2oHnX2DS2NtN5rU-bHwbbE673oXYCxMmyAUKz9MPdyF35MZnQkuKxh8Oodgpuui9aE4sHOCYg3zBQydeY6etqaP8OL23EM_jj-erk7K9ddPn1cH69JSVaeSVsoKR6QT0gE33AElTGKrao4pro11xDHqKodNbRrCWsnzOJixhpsGN5LuobdL3yn43zPEpIcuWuh7M4Kfoxaqlnl-leH-I7jxcxjz23RF6porSkVGr2_R3Azg9BS6wYRrfbeuh-ts8DEGaB8I1n_-QS__kOG7R9B26e-KUzBd_y9_s3A_T_9v-Woxm5h8uFeMCYYFzXG5xF1McHUfm3ChhaSS65Ofv_ThlyN6tuZH-pTeAIrdqP8 |
CitedBy_id | crossref_primary_10_1002_pbc_22135 crossref_primary_10_1002_pbc_22256 crossref_primary_10_1080_21645515_2015_1039208 crossref_primary_10_51523_2708_6011_2021_18_2_1 crossref_primary_10_3109_08880011003621752 crossref_primary_10_1016_j_blre_2015_10_001 crossref_primary_10_1016_j_vaccine_2010_02_096 crossref_primary_10_1002_pbc_22130 crossref_primary_10_1155_2014_707691 crossref_primary_10_1080_21645515_2020_1797367 crossref_primary_10_3390_vaccines9060653 crossref_primary_10_3389_fped_2021_705179 crossref_primary_10_1016_j_bulcan_2024_10_013 crossref_primary_10_1016_j_leukres_2010_10_005 crossref_primary_10_1111_apa_17070 crossref_primary_10_3346_jkms_2012_27_1_78 crossref_primary_10_1080_21645515_2015_1062189 crossref_primary_10_1097_MPH_0000000000002774 crossref_primary_10_1086_518982 crossref_primary_10_1002_jha2_27 crossref_primary_10_1086_518980 crossref_primary_10_1111_j_1365_2141_2010_08522_x crossref_primary_10_1002_pbc_26187 crossref_primary_10_1002_pbc_28565 crossref_primary_10_1200_JCO_22_00230 crossref_primary_10_1586_ehm_10_58 crossref_primary_10_1016_j_vaccine_2021_10_040 crossref_primary_10_1002_pbc_22221 crossref_primary_10_1016_j_vaccine_2018_01_061 crossref_primary_10_1016_j_yapd_2012_04_017 crossref_primary_10_1111_bjh_14685 crossref_primary_10_1007_s00520_009_0804_2 crossref_primary_10_1097_MPH_0000000000001293 crossref_primary_10_1093_cid_ciz965 crossref_primary_10_3109_10428194_2013_816423 crossref_primary_10_1080_15513815_2021_1953653 crossref_primary_10_1016_j_blre_2017_08_009 crossref_primary_10_1016_j_pedneo_2016_04_003 crossref_primary_10_1002_pbc_25086 crossref_primary_10_1016_S1473_3099_18_30601_7 crossref_primary_10_3947_ic_2019_51_2_183 crossref_primary_10_1007_s00112_013_2884_9 crossref_primary_10_1097_INF_0000000000000502 crossref_primary_10_1002_pbc_25685 crossref_primary_10_1002_cnr2_1907 crossref_primary_10_1002_pbc_22415 crossref_primary_10_3109_08880011003767720 crossref_primary_10_1016_j_bbmt_2020_05_006 crossref_primary_10_1586_erv_10_157 crossref_primary_10_1371_journal_pone_0191804 crossref_primary_10_1007_s11764_020_00890_y crossref_primary_10_1097_MPH_0000000000000697 crossref_primary_10_1016_j_uct_2007_07_002 crossref_primary_10_1007_s13312_019_1678_0 crossref_primary_10_1586_14760584_2014_897615 crossref_primary_10_3389_fragi_2021_708788 crossref_primary_10_1200_JCO_2017_76_1643 crossref_primary_10_1002_pbc_26047 crossref_primary_10_1111_j_1440_1754_2007_01162_x crossref_primary_10_1016_j_pcl_2007_10_012 crossref_primary_10_1111_tid_12359 crossref_primary_10_1002_pbc_23258 crossref_primary_10_1097_INF_0000000000001850 crossref_primary_10_1111_j_1365_2141_2010_08478_x crossref_primary_10_1002_pbc_21792 crossref_primary_10_1002_pbc_23333 crossref_primary_10_1016_j_paed_2023_05_004 crossref_primary_10_1093_cid_ciaa163 crossref_primary_10_1080_10245332_2018_1460035 crossref_primary_10_1002_pbc_30321 crossref_primary_10_1016_j_phoj_2020_06_004 crossref_primary_10_1093_cid_cit684 crossref_primary_10_1002_pbc_31611 crossref_primary_10_1177_1043454220958675 crossref_primary_10_2217_imt_12_23 crossref_primary_10_1016_j_pepo_2017_03_004 crossref_primary_10_1002_pbc_21864 crossref_primary_10_1016_S2352_4642_20_30312_6 |
Cites_doi | 10.1086/314753 10.1002/cncr.20384 10.1093/ije/22.5.936 10.1128/IAI.69.3.1568-1573.2001 10.1111/j.1365-2141.1995.tb03313.x 10.1136/adc.63.6.612 10.1542/peds.74.1.86 10.3109/10428199409114144 10.1111/j.1600-0609.2004.00340.x 10.1016/0140-6736(93)90693-B 10.1038/sj.leu.2400970 10.1007/s005200050196 10.1016/S0022-3476(95)70259-8 10.1001/jama.284.18.2334 10.1080/08880010151114741 10.1157/13055208 10.1038/sj.leu.2404326 10.1542/peds.109.1.1 10.1128/CDLI.10.5.780-786.2003 10.1111/j.1651-2227.1995.tb13605.x 10.1056/NEJM199003013220903 10.1097/01.mph.0000163214.37147.5a 10.1002/1097-0142(19920315)69:6<1481::AID-CNCR2820690628>3.0.CO;2-L 10.1093/clinids/6.Supplement_2.S540 10.1093/infdis/161.5.926 10.1001/jama.1992.03480090085032 10.1128/CDLI.4.2.156-167.1997 10.1097/00006454-200101000-00013 10.1046/j.1365-2141.1999.01684.x 10.3109/08880019409141671 10.1097/00043426-199809000-00008 10.1093/infdis/147.6.1100 10.1097/00043426-200411000-00008 10.1542/peds.67.2.222 10.1001/archpedi.1991.02160080065022 |
ContentType | Journal Article |
Copyright | Copyright 2007 The Infectious Diseases Society of America 2007 by the Infectious Diseases Society of America 2007 Copyright University of Chicago, acting through its Press Mar 1, 2007 |
Copyright_xml | – notice: Copyright 2007 The Infectious Diseases Society of America – notice: 2007 by the Infectious Diseases Society of America 2007 – notice: Copyright University of Chicago, acting through its Press Mar 1, 2007 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T2 7T7 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
DOI | 10.1086/511636 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Safety Science Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1537-6591 |
EndPage | 642 |
ExternalDocumentID | 1212697141 17278052 10_1086_511636 10.1086/511636 4464063 ark_67375_HXZ_BKD3VL5D_T |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- ..I .2P .I3 .ZR 08P 0R~ 1TH 29B 2AX 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 6J9 AABZA AACGO AACZT AAJKP AAJQQ AAMVS AANCE AAOGV AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNGD ABNHQ ABOCM ABPLY ABPQP ABPTD ABQLI ABQNK ABTLG ABVGC ABWST ABXSQ ABXVV ACGFO ACGFS ACHIC ACPRK ACUFI ACUKT ACUTJ ACUTO ACYHN ADBBV ADGZP ADHKW ADHZD ADIPN ADNBA ADQBN ADQXQ ADRTK ADULT ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFNX AFFZL AFIYH AFOFC AFRAH AFXAL AGINJ AGORE AGQPQ AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIAGR AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQKUS AQVQM ASPBG ATGXG AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BSCLL BTRTY BVRKM C1A C45 CDBKE CS3 CZ4 DAKXR DCCCD DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H5~ HAR HQ3 HTVGU HVGLF HW0 HZ~ IOX IPSME J21 J5H JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST JXSIZ KAQDR KBUDW KOP KSI KSN L7B MHKGH MJL ML0 N4W N9A NGC NOMLY NOYVH NU- NVLIB O0~ O9- OAUYM OAWHX OCZFY ODMLO ODZKP OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TMA TR2 W8F X7H YAYTL YKOAZ YXANX ~91 ~S- AAYOK AASNB ADACV ADJQC ADRIX AFXEN DOOOF ESX JSODD M49 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T2 7T7 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
ID | FETCH-LOGICAL-c389t-328c6d17d67de5a5de31470c8950309acd1d43d2d0a9ab14f75483044b5ab0b73 |
ISSN | 1058-4838 1537-6591 |
IngestDate | Fri Sep 05 06:22:31 EDT 2025 Fri Jul 25 06:51:27 EDT 2025 Wed Feb 19 01:42:36 EST 2025 Thu Apr 24 22:55:43 EDT 2025 Tue Jul 01 04:28:51 EDT 2025 Wed Sep 11 04:50:58 EDT 2024 Thu Jun 19 15:26:22 EDT 2025 Sat Sep 20 11:02:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-328c6d17d67de5a5de31470c8950309acd1d43d2d0a9ab14f75483044b5ab0b73 |
Notes | ark:/67375/HXZ-BKD3VL5D-T istex:EBAC80D4D258D79054D9EAA07B2FE57118B62181 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 17278052 |
PQID | 219958336 |
PQPubID | 48300 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68978388 proquest_journals_219958336 pubmed_primary_17278052 crossref_primary_10_1086_511636 crossref_citationtrail_10_1086_511636 oup_primary_10_1086_511636 jstor_primary_4464063 istex_primary_ark_67375_HXZ_BKD3VL5D_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-03-01 20070301 2007-Mar-01 |
PublicationDateYYYYMMDD | 2007-03-01 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Clinical infectious diseases |
PublicationTitleAbbrev | Clinical Infectious Diseases |
PublicationTitleAlternate | Clinical Infectious Diseases |
PublicationYear | 2007 |
Publisher | The University of Chicago Press University of Chicago Press Oxford University Press |
Publisher_xml | – name: The University of Chicago Press – name: University of Chicago Press – name: Oxford University Press |
References | Abrahamsson (5_15882330) 1995; 84 Robertson (37_4953408) 1988; 63 Smith (14_15937789) 1995; 127 Fioredda (18_18584403) 2005; 74 Markowitz (25_5546858) 1990; 322 Kristinsson (11_11102439) 2001; 18 Moriniere (40_10260570) 1993; 341 Fleisher (15_11463174) 2002; 109 (30_28005868) 2003; 10 Caver (8_5971032) 1998; 12 Ercan (20_18892692) 2005; 27 (35_38579231) 1999; 179 van Tilburg (19_22814513) 2006; 20 (10_38278272) 2003; 31 Borrow (29_11049332) 2001; 69 SUTTER (38_14562525) 1993; 22 (32_38733324) 1990; 161 Plotkin (28_11015250) 2001; 20 Ridgway (13_20134096) 1991; 145 Kung (21_13255016) 1984; 74 (27_38730923) 1983; 147 (24_24347920) 1984; 6 (6_37900107) 1992; 69 Mustafa (9_6201025) 1998; 20 Ljungman (39_9481662) 1991; 7 Alanko (7_15578900) 1994; 11 Chessells (2_15785767) 1995; 89 Heath (34_10539948) 2000; 284 Kaplan (36_9741335) 1992; 267 (26_28005869) 1997; 4 Wheatley (3_10996977) 1999; 107 (22_10206807) 1993; 42 Spickermann (4_15817860) 1994; 16 (17_38278273) 2004; 101 Ek (16_18520540) 2004; 26 van der Does-van den Berg (12_8403864) 1981; 67 Hamarstr m (31_6185072) 1998; 6 (33_38278275) 2004; 12 17278053 - Clin Infect Dis. 2007 Mar 1;44(5):643-5 |
References_xml | – volume: 179 start-page: 1569 issn: 0022-1899 issue: 6 year: 1999 ident: 35_38579231 publication-title: Journal of Infectious Diseases doi: 10.1086/314753 – volume: 101 start-page: 635 issn: 1097-0142 year: 2004 ident: 17_38278273 doi: 10.1002/cncr.20384 – volume: 22 start-page: 936 issn: 0300-5771 issue: 5 year: 1993 ident: 38_14562525 publication-title: International Journal of Epidemiology doi: 10.1093/ije/22.5.936 – volume: 69 start-page: 1568 issn: 0019-9567 issue: 3 year: 2001 ident: 29_11049332 publication-title: Infection and Immunity doi: 10.1128/IAI.69.3.1568-1573.2001 – volume: 89 start-page: 364 issn: 0007-1048 issue: 2 year: 1995 ident: 2_15785767 publication-title: British journal of haematology doi: 10.1111/j.1365-2141.1995.tb03313.x – volume: 63 start-page: 612 issn: 0003-9888 issue: 6 year: 1988 ident: 37_4953408 publication-title: Archives of Disease in Childhood doi: 10.1136/adc.63.6.612 – volume: 74 start-page: 86 issn: 0031-4005 issue: 1 year: 1984 ident: 21_13255016 publication-title: Pediatrics doi: 10.1542/peds.74.1.86 – volume: 16 start-page: 89 issn: 1042-8194 issue: 1-2 year: 1994 ident: 4_15817860 publication-title: Leukemia & lymphoma doi: 10.3109/10428199409114144 – volume: 74 start-page: 20 issn: 0902-4441 issue: 1 year: 2005 ident: 18_18584403 publication-title: European journal of haematology doi: 10.1111/j.1600-0609.2004.00340.x – volume: 341 start-page: 1545 issn: 0140-6736 issue: 8860 year: 1993 ident: 40_10260570 publication-title: Lancet doi: 10.1016/0140-6736(93)90693-B – volume: 12 start-page: 619 issn: 0887-6924 issue: 4 year: 1998 ident: 8_5971032 publication-title: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K doi: 10.1038/sj.leu.2400970 – volume: 6 start-page: 469 issn: 0941-4355 issue: 5 year: 1998 ident: 31_6185072 publication-title: Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer doi: 10.1007/s005200050196 – volume: 127 start-page: 68 issn: 0022-3476 issue: 1 year: 1995 ident: 14_15937789 publication-title: The Journal of pediatrics doi: 10.1016/S0022-3476(95)70259-8 – volume: 284 start-page: 2334 issn: 0098-7484 issue: 18 year: 2000 ident: 34_10539948 publication-title: JAMA doi: 10.1001/jama.284.18.2334 – volume: 18 start-page: 167 issn: 0888-0018 issue: 3 year: 2001 ident: 11_11102439 publication-title: Pediatric hematology and oncology doi: 10.1080/08880010151114741 – volume: 31 start-page: 303 year: 2003 ident: 10_38278272 publication-title: ALLERGOL IMMUNOLPATHOL doi: 10.1157/13055208 – volume: 20 start-page: 1717 issn: 0887-6924 issue: 10 year: 2006 ident: 19_22814513 publication-title: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K doi: 10.1038/sj.leu.2404326 – volume: 109 start-page: 1 issn: 0031-4005 issue: 1 year: 2002 ident: 15_11463174 publication-title: Pediatrics doi: 10.1542/peds.109.1.1 – volume: 10 start-page: 780 year: 2003 ident: 30_28005868 publication-title: CLIN DIAGN LAB IMMUNOL doi: 10.1128/CDLI.10.5.780-786.2003 – volume: 7 start-page: 89 issn: 0268-3369 issue: 2 year: 1991 ident: 39_9481662 publication-title: Bone marrow transplantation – volume: 84 start-page: 177 issn: 0803-5253 issue: 2 year: 1995 ident: 5_15882330 publication-title: Acta paediatrica (Oslo, Norway : 1992) doi: 10.1111/j.1651-2227.1995.tb13605.x – volume: 322 start-page: 580 issn: 0028-4793 issue: 9 year: 1990 ident: 25_5546858 publication-title: New England Journal of Medicine doi: 10.1056/NEJM199003013220903 – volume: 27 start-page: 273 issn: 1077-4114 issue: 5 year: 2005 ident: 20_18892692 publication-title: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology doi: 10.1097/01.mph.0000163214.37147.5a – volume: 69 start-page: 1481 issn: 1097-0142 year: 1992 ident: 6_37900107 doi: 10.1002/1097-0142(19920315)69:6<1481::AID-CNCR2820690628>3.0.CO;2-L – volume: 42 start-page: 1 issn: 1057-5987 issue: RR-4 year: 1993 ident: 22_10206807 publication-title: MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports / Centers for Disease Control – volume: 12 start-page: 937 issn: 1080-6040 year: 2004 ident: 33_38278275 publication-title: Emerging infectious diseases – volume: 6 start-page: 540 issn: 0162-0886 year: 1984 ident: 24_24347920 publication-title: Reviews of infectious diseases doi: 10.1093/clinids/6.Supplement_2.S540 – volume: 161 start-page: 926 issn: 0022-1899 issue: 5 year: 1990 ident: 32_38733324 publication-title: Journal of Infectious Diseases doi: 10.1093/infdis/161.5.926 – volume: 267 start-page: 1237 issn: 0098-7484 issue: 9 year: 1992 ident: 36_9741335 publication-title: JAMA doi: 10.1001/jama.1992.03480090085032 – volume: 4 start-page: 156 year: 1997 ident: 26_28005869 publication-title: CLIN DIAGN LAB IMMUNOL doi: 10.1128/CDLI.4.2.156-167.1997 – volume: 20 start-page: 63 issn: 0891-3668 issue: 1 year: 2001 ident: 28_11015250 publication-title: The Pediatric infectious disease journal doi: 10.1097/00006454-200101000-00013 – volume: 107 start-page: 69 issn: 0007-1048 issue: 1 year: 1999 ident: 3_10996977 publication-title: British journal of haematology doi: 10.1046/j.1365-2141.1999.01684.x – volume: 11 start-page: 281 issn: 0888-0018 issue: 3 year: 1994 ident: 7_15578900 publication-title: Pediatric hematology and oncology doi: 10.3109/08880019409141671 – volume: 20 start-page: 451 issn: 1077-4114 issue: 5 year: 1998 ident: 9_6201025 publication-title: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology doi: 10.1097/00043426-199809000-00008 – volume: 147 start-page: 1100 issn: 0022-1899 issue: 6 year: 1983 ident: 27_38730923 publication-title: Journal of Infectious Diseases doi: 10.1093/infdis/147.6.1100 – volume: 26 start-page: 727 issn: 1077-4114 issue: 11 year: 2004 ident: 16_18520540 publication-title: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology doi: 10.1097/00043426-200411000-00008 – volume: 67 start-page: 222 issn: 0031-4005 issue: 2 year: 1981 ident: 12_8403864 publication-title: Pediatrics doi: 10.1542/peds.67.2.222 – volume: 145 start-page: 887 issn: 0096-8994 issue: 8 year: 1991 ident: 13_20134096 publication-title: Archives of Pediatrics and Adolescent Medicine doi: 10.1001/archpedi.1991.02160080065022 – reference: 17278053 - Clin Infect Dis. 2007 Mar 1;44(5):643-5 |
SSID | ssj0011805 |
Score | 2.206805 |
Snippet | Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain... Background . After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain... After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain... |
SourceID | proquest pubmed crossref oup jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 635 |
SubjectTerms | Acute Disease Adolescent Antibodies Articles and Commentaries Bacterial Capsules Chemotherapy Child Child, Preschool Children Children & youth Diphtheria Toxoid - administration & dosage Diphtheria Toxoid - immunology Haemophilus Vaccines - administration & dosage Haemophilus Vaccines - immunology Humans Immunization Immunization Schedule Immunosuppressive Agents - therapeutic use Infant Leukemia Leukemia, Myeloid - drug therapy Leukemia, Myeloid - immunology Lymphocytic leukemia Measles Measles Vaccine - administration & dosage Measles Vaccine - immunology Meningococcal Vaccines - administration & dosage Meningococcal Vaccines - immunology Monoclonal antibodies Mumps Vaccine - administration & dosage Mumps Vaccine - immunology Myeloid leukemia Neisseria meningitidis Poliovirus Vaccines - administration & dosage Poliovirus Vaccines - immunology Polysaccharides, Bacterial - administration & dosage Polysaccharides, Bacterial - immunology Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy Precursor Cell Lymphoblastic Leukemia-Lymphoma - immunology Rubella Vaccine - administration & dosage Rubella Vaccine - immunology Tetanus Tetanus Toxoid - administration & dosage Tetanus Toxoid - immunology Vaccination Vaccines - immunology Vaccines, Acellular - administration & dosage Vaccines, Acellular - immunology |
Title | Revaccination of Children after Completion of Standard Chemotherapy for Acute Leukemia |
URI | https://api.istex.fr/ark:/67375/HXZ-BKD3VL5D-T/fulltext.pdf https://www.jstor.org/stable/4464063 https://www.ncbi.nlm.nih.gov/pubmed/17278052 https://www.proquest.com/docview/219958336 https://www.proquest.com/docview/68978388 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkJcEI8CaXn4AFyQI9vr3bWPTQIKbUEoTauIi7WvoqqQoDRBiF_BT2b2maThfbEi79pZ7cyOv535Zhahp5pxonRdp5yKOi2ZkqnAmqc5h29vpepaaMvyfUsHJ-XBmIxbre8rrKXFXHTkt5_mlfyPVOEeyNVkyf6DZONL4Qb8BvnCFSQM17-S8VB_4VKeTyLs64XUbHf0t1nspri2azwOXgNTJMAnXjm65r40bIEjvbjQn875Kl7thcTJQNpaXIaYTgTj7wCuWkfy8RQMhH4x7ETP7WxuA_F9z9D_sNCR0BHzQrrGIwmjOoiPdaehMOTQU3yCW4IteVmdkNj2Z2qJsbgZsR5NZ4R1sMIspcQd4xXMtCsT6dWRrNhc6uqd-M83dcW6Nr4MmQ1UAbyk-Erpbb8XWu9yDW0XDNCYgdmvD2NcKq8sKTYOeuW0KvfcGrzZNiv1a2C6Xkmh3NjJWEQzuoVu-q1Isu_06jZq6ckddP2NJ1vcRadr6pVMz5KgXolVr2SpXqYxqFeyql4JqFdi1SsJ6rWDTl69HPUGqT-GI5WAZucpLipJVc4UZUoTs7RxXrJMVjUx8TkuVa5KrAqV8ZqLvDxjsAvGWVkKwkUmGL6HtibTiX6AEkDTRUmUqwPJBRfYxLVhB8EEqbQUbfQszF4jfY16c1TKx8ZyJSrauFluoyex32dXlWWjx3M7-bGZzy4Mh5GRZjB-33QP-_j0iPSbURvtWOnEjmVJAeTiNtoFaf3y7XtBiI23B5dNYaodVNiOLraCsTYROD7RsEAbWhlPa1W10X0n-eX7YR9hThfZ_d3f7qEby6X2EG3NZwv9CDDxXDy2avoDUZ6y0Q |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revaccination+of+Children+after+Completion+of+Standard+Chemotherapy+for+Acute+Leukemia&rft.jtitle=Clinical+infectious+diseases&rft.au=Patel%2C+Soonie+R.&rft.au=Ort%C3%ADn%2C+Miguel&rft.au=Cohen%2C+Bernard+J.&rft.au=Borrow%2C+Ray&rft.date=2007-03-01&rft.pub=The+University+of+Chicago+Press&rft.issn=1058-4838&rft.eissn=1537-6591&rft.volume=44&rft.issue=5&rft.spage=635&rft.epage=642&rft_id=info:doi/10.1086%2F511636&rft.externalDocID=10.1086%2F511636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4838&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4838&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4838&client=summon |