Revaccination of Children after Completion of Standard Chemotherapy for Acute Leukemia

Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1–18 years) who had completed sta...

Full description

Saved in:
Bibliographic Details
Published inClinical infectious diseases Vol. 44; no. 5; pp. 635 - 642
Main Authors Patel, Soonie R., Ortín, Miguel, Cohen, Bernard J., Borrow, Ray, Irving, Diane, Sheldon, Joanne, Heath, Paul T.
Format Journal Article
LanguageEnglish
Published United States The University of Chicago Press 01.03.2007
University of Chicago Press
Oxford University Press
Subjects
Online AccessGet full text
ISSN1058-4838
1537-6591
1537-6591
DOI10.1086/511636

Cover

Abstract Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1–18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ⩾6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2–4 weeks and 12 months after vaccination. Results. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1–0.17 IU/mL), for 87% for Hib (GMC, 0.5 µg/mL; 95% CI, 0.37–0.74 µg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163–557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1 : 2.9; 95% CI, 1 : 2.2 to 1 : 3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1–2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 µg/mL; 6.5µg/mL; 95% CI, 5.1–8.2 µg/mL), 94% achieving optimal antibody concentrations to measles (defined as ⩾120 mIU/mL; 2720 mIU/mL; 95% CI, 1423–5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ⩾1 : 8; 1 : 1000; 95% CI, 1 : 483–1 : 2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ⩾1 : 8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.
AbstractList After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines > or = 6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 microg/mL; 95% CI, 0.37-0.74 microg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as > 0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as > 1.0 microg/mL; 6.5 microg/mL; 95% CI, 5.1-8.2 microg/mL), 94% achieving optimal antibody concentrations to measles (defined as > or = 120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as > or = 1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as > or = 1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.
Background . After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method . Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ⩾6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination. Results . Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 µg/mL; 95% CI, 0.37-0.74 µg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1 : 2.9; 95% CI, 1 : 2.2 to 1 : 3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 µg/mL; 6.5µg/mL; 95% CI, 5.1-8.2 µg/mL), 94% achieving optimal antibody concentrations to measles (defined as ⩾120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ⩾1 : 8; 1 : 1000; 95% CI, 1 : 483-1 : 2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ⩾1 : 8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion . Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.
After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ...6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 μg/mL; 95% CI, 0.37-0.74 μg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 μg/mL; 6.5 μg/mL; 95% CI, 5.1-8.2 μg/mL), 94% achieving optimal antibody concentrations to measles (defined as ...120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ...1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ...1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy. (ProQuest Information and Learning: ... denotes formulae/symbols omitted.)
Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1–18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ⩾6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2–4 weeks and 12 months after vaccination. Results. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1–0.17 IU/mL), for 87% for Hib (GMC, 0.5 µg/mL; 95% CI, 0.37–0.74 µg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163–557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1 : 2.9; 95% CI, 1 : 2.2 to 1 : 3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1–2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 µg/mL; 6.5µg/mL; 95% CI, 5.1–8.2 µg/mL), 94% achieving optimal antibody concentrations to measles (defined as ⩾120 mIU/mL; 2720 mIU/mL; 95% CI, 1423–5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ⩾1 : 8; 1 : 1000; 95% CI, 1 : 483–1 : 2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ⩾1 : 8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.
After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted.BACKGROUNDAfter the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted.Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines > or = 6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination.METHODFifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines > or = 6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination.Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 microg/mL; 95% CI, 0.37-0.74 microg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as > 0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as > 1.0 microg/mL; 6.5 microg/mL; 95% CI, 5.1-8.2 microg/mL), 94% achieving optimal antibody concentrations to measles (defined as > or = 120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as > or = 1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as > or = 1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination.RESULTSPrevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 microg/mL; 95% CI, 0.37-0.74 microg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as > 0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as > 1.0 microg/mL; 6.5 microg/mL; 95% CI, 5.1-8.2 microg/mL), 94% achieving optimal antibody concentrations to measles (defined as > or = 120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as > or = 1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as > or = 1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination.Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.CONCLUSIONRevaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.
Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain vaccine-preventable diseases. A simple revaccination schedule is warranted. Method. Fifty-nine children (age, 1-18 years) who had completed standard chemotherapy in accordance with Medical Research Council of United Kingdom protocols were recruited. All children received a single dose of Haemophilus influenzae type b (Hib), tetanus, diphtheria, acellular pertussis, meningococcus C, polio, measles, mumps, and rubella vaccines ≥6 months after completion of treatment. Antibody concentrations were measured before vaccination and 2-4 weeks and 12 months after vaccination. Results. Prevaccination antibody levels were protective for all patients for tetanus (geometric mean concentration [GMC], 0.13 IU/mL; 95% CI, 0.1-0.17 IU/mL), for 87% for Hib (GMC, 0.5 μg/mL; 95% CI, 0.37-0.74 μg/mL), for 71% for measles (GMC, 301 mIU/mL; 95% CI, 163-557 mIU/mL), for 12% for meningococcus C (geometric mean titer [GMT], 1:2.9; 95% CI, 1:2.2 to 1:3.9), and for 11% for all 3 poliovirus serotypes. Revaccination resulted in a significant increase in levels of antibody to each vaccine antigen, with 100% of patients achieving optimal antitetanus antibody concentrations (defined as >0.1 IU/mL; 1.5 IU/mL; 95% CI, 1.1-2.1 IU/mL), 93% achieving optimal antibody concentrations to Hib (defined as >1.0 μg/mL; 6.5 μg/mL; 95% CI, 5.1-8.2 μg/mL), 94% achieving optimal antibody concentrations to measles (defined as ≥120 mIU/mL; 2720 mIU/mL; 95% CI, 1423-5198 mIU/mL), 96% achieving optimal antibody concentrations to meningococcus C (defined as ≥1:8; 1:1000; 95% CI, 1:483-1:2064), and 85% achieving optimal antibody concentrations to all the 3 poliovirus serotypes (defined as ≥1:8). For the majority of subjects, protection persisted for at least 12 months after vaccination. Conclusion. Revaccination of children after standard chemotherapy is important, and protection can be achieved in the majority of these children using a simple schedule of 1 vaccine dose at 6 months after completion of leukemia therapy.
Author Irving, Diane
Sheldon, Joanne
Cohen, Bernard J.
Heath, Paul T.
Borrow, Ray
Patel, Soonie R.
Ortín, Miguel
Author_xml – sequence: 1
  givenname: Soonie R.
  surname: Patel
  fullname: Patel, Soonie R.
  email: soonier@doctors.org.uk
  organization: Pediatric Oncology Department, Royal Marsden Hospital, Sutton
– sequence: 2
  givenname: Miguel
  surname: Ortín
  fullname: Ortín, Miguel
  organization: Pediatric Oncology Department, Royal Marsden Hospital, Sutton
– sequence: 3
  givenname: Bernard J.
  surname: Cohen
  fullname: Cohen, Bernard J.
  organization: Virus Reference Department, Center for Infections, Health Protection Agency, London
– sequence: 4
  givenname: Ray
  surname: Borrow
  fullname: Borrow, Ray
  organization: Meningococcal Reference Unit, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, United Kingdom
– sequence: 5
  givenname: Diane
  surname: Irving
  fullname: Irving, Diane
  organization: Protein Reference Unit, St. Georges Hospital, London
– sequence: 6
  givenname: Joanne
  surname: Sheldon
  fullname: Sheldon, Joanne
  organization: Protein Reference Unit, St. Georges Hospital, London
– sequence: 7
  givenname: Paul T.
  surname: Heath
  fullname: Heath, Paul T.
  organization: Vaccine Institute and Child Health, St. George's University of London, London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17278052$$D View this record in MEDLINE/PubMed
BookMark eNp10V1r1jAUB_AgE_eifgKRuguvrCbNay-3Z86JDwg6h3gT0uSU9Vnb1CQd27dftHuBiVc58P9xknOyi7ZGPwJCLwl-T7ASHzghgoonaIdwKkvBa7KVa8xVyRRV22g3xg3GhCjMn6FtIiuZq2oHnX2DS2NtN5rU-bHwbbE673oXYCxMmyAUKz9MPdyF35MZnQkuKxh8Oodgpuui9aE4sHOCYg3zBQydeY6etqaP8OL23EM_jj-erk7K9ddPn1cH69JSVaeSVsoKR6QT0gE33AElTGKrao4pro11xDHqKodNbRrCWsnzOJixhpsGN5LuobdL3yn43zPEpIcuWuh7M4Kfoxaqlnl-leH-I7jxcxjz23RF6porSkVGr2_R3Azg9BS6wYRrfbeuh-ts8DEGaB8I1n_-QS__kOG7R9B26e-KUzBd_y9_s3A_T_9v-Woxm5h8uFeMCYYFzXG5xF1McHUfm3ChhaSS65Ofv_ThlyN6tuZH-pTeAIrdqP8
CitedBy_id crossref_primary_10_1002_pbc_22135
crossref_primary_10_1002_pbc_22256
crossref_primary_10_1080_21645515_2015_1039208
crossref_primary_10_51523_2708_6011_2021_18_2_1
crossref_primary_10_3109_08880011003621752
crossref_primary_10_1016_j_blre_2015_10_001
crossref_primary_10_1016_j_vaccine_2010_02_096
crossref_primary_10_1002_pbc_22130
crossref_primary_10_1155_2014_707691
crossref_primary_10_1080_21645515_2020_1797367
crossref_primary_10_3390_vaccines9060653
crossref_primary_10_3389_fped_2021_705179
crossref_primary_10_1016_j_bulcan_2024_10_013
crossref_primary_10_1016_j_leukres_2010_10_005
crossref_primary_10_1111_apa_17070
crossref_primary_10_3346_jkms_2012_27_1_78
crossref_primary_10_1080_21645515_2015_1062189
crossref_primary_10_1097_MPH_0000000000002774
crossref_primary_10_1086_518982
crossref_primary_10_1002_jha2_27
crossref_primary_10_1086_518980
crossref_primary_10_1111_j_1365_2141_2010_08522_x
crossref_primary_10_1002_pbc_26187
crossref_primary_10_1002_pbc_28565
crossref_primary_10_1200_JCO_22_00230
crossref_primary_10_1586_ehm_10_58
crossref_primary_10_1016_j_vaccine_2021_10_040
crossref_primary_10_1002_pbc_22221
crossref_primary_10_1016_j_vaccine_2018_01_061
crossref_primary_10_1016_j_yapd_2012_04_017
crossref_primary_10_1111_bjh_14685
crossref_primary_10_1007_s00520_009_0804_2
crossref_primary_10_1097_MPH_0000000000001293
crossref_primary_10_1093_cid_ciz965
crossref_primary_10_3109_10428194_2013_816423
crossref_primary_10_1080_15513815_2021_1953653
crossref_primary_10_1016_j_blre_2017_08_009
crossref_primary_10_1016_j_pedneo_2016_04_003
crossref_primary_10_1002_pbc_25086
crossref_primary_10_1016_S1473_3099_18_30601_7
crossref_primary_10_3947_ic_2019_51_2_183
crossref_primary_10_1007_s00112_013_2884_9
crossref_primary_10_1097_INF_0000000000000502
crossref_primary_10_1002_pbc_25685
crossref_primary_10_1002_cnr2_1907
crossref_primary_10_1002_pbc_22415
crossref_primary_10_3109_08880011003767720
crossref_primary_10_1016_j_bbmt_2020_05_006
crossref_primary_10_1586_erv_10_157
crossref_primary_10_1371_journal_pone_0191804
crossref_primary_10_1007_s11764_020_00890_y
crossref_primary_10_1097_MPH_0000000000000697
crossref_primary_10_1016_j_uct_2007_07_002
crossref_primary_10_1007_s13312_019_1678_0
crossref_primary_10_1586_14760584_2014_897615
crossref_primary_10_3389_fragi_2021_708788
crossref_primary_10_1200_JCO_2017_76_1643
crossref_primary_10_1002_pbc_26047
crossref_primary_10_1111_j_1440_1754_2007_01162_x
crossref_primary_10_1016_j_pcl_2007_10_012
crossref_primary_10_1111_tid_12359
crossref_primary_10_1002_pbc_23258
crossref_primary_10_1097_INF_0000000000001850
crossref_primary_10_1111_j_1365_2141_2010_08478_x
crossref_primary_10_1002_pbc_21792
crossref_primary_10_1002_pbc_23333
crossref_primary_10_1016_j_paed_2023_05_004
crossref_primary_10_1093_cid_ciaa163
crossref_primary_10_1080_10245332_2018_1460035
crossref_primary_10_1002_pbc_30321
crossref_primary_10_1016_j_phoj_2020_06_004
crossref_primary_10_1093_cid_cit684
crossref_primary_10_1002_pbc_31611
crossref_primary_10_1177_1043454220958675
crossref_primary_10_2217_imt_12_23
crossref_primary_10_1016_j_pepo_2017_03_004
crossref_primary_10_1002_pbc_21864
crossref_primary_10_1016_S2352_4642_20_30312_6
Cites_doi 10.1086/314753
10.1002/cncr.20384
10.1093/ije/22.5.936
10.1128/IAI.69.3.1568-1573.2001
10.1111/j.1365-2141.1995.tb03313.x
10.1136/adc.63.6.612
10.1542/peds.74.1.86
10.3109/10428199409114144
10.1111/j.1600-0609.2004.00340.x
10.1016/0140-6736(93)90693-B
10.1038/sj.leu.2400970
10.1007/s005200050196
10.1016/S0022-3476(95)70259-8
10.1001/jama.284.18.2334
10.1080/08880010151114741
10.1157/13055208
10.1038/sj.leu.2404326
10.1542/peds.109.1.1
10.1128/CDLI.10.5.780-786.2003
10.1111/j.1651-2227.1995.tb13605.x
10.1056/NEJM199003013220903
10.1097/01.mph.0000163214.37147.5a
10.1002/1097-0142(19920315)69:6<1481::AID-CNCR2820690628>3.0.CO;2-L
10.1093/clinids/6.Supplement_2.S540
10.1093/infdis/161.5.926
10.1001/jama.1992.03480090085032
10.1128/CDLI.4.2.156-167.1997
10.1097/00006454-200101000-00013
10.1046/j.1365-2141.1999.01684.x
10.3109/08880019409141671
10.1097/00043426-199809000-00008
10.1093/infdis/147.6.1100
10.1097/00043426-200411000-00008
10.1542/peds.67.2.222
10.1001/archpedi.1991.02160080065022
ContentType Journal Article
Copyright Copyright 2007 The Infectious Diseases Society of America
2007 by the Infectious Diseases Society of America 2007
Copyright University of Chicago, acting through its Press Mar 1, 2007
Copyright_xml – notice: Copyright 2007 The Infectious Diseases Society of America
– notice: 2007 by the Infectious Diseases Society of America 2007
– notice: Copyright University of Chicago, acting through its Press Mar 1, 2007
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T2
7T7
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
DOI 10.1086/511636
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Safety Science Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

Virology and AIDS Abstracts

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-6591
EndPage 642
ExternalDocumentID 1212697141
17278052
10_1086_511636
10.1086/511636
4464063
ark_67375_HXZ_BKD3VL5D_T
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
..I
.2P
.I3
.ZR
08P
0R~
1TH
29B
2AX
2WC
36B
4.4
48X
53G
5GY
5RE
5VS
5WD
6J9
AABZA
AACGO
AACZT
AAJKP
AAJQQ
AAMVS
AANCE
AAOGV
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
ABBHK
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNGD
ABNHQ
ABOCM
ABPLY
ABPQP
ABPTD
ABQLI
ABQNK
ABTLG
ABVGC
ABWST
ABXSQ
ABXVV
ACGFO
ACGFS
ACHIC
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACYHN
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADQBN
ADQXQ
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AFXAL
AGINJ
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIAGR
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
AQKUS
AQVQM
ASPBG
ATGXG
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BSCLL
BTRTY
BVRKM
C1A
C45
CDBKE
CS3
CZ4
DAKXR
DCCCD
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H5~
HAR
HQ3
HTVGU
HVGLF
HW0
HZ~
IOX
IPSME
J21
J5H
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
L7B
MHKGH
MJL
ML0
N4W
N9A
NGC
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
ODZKP
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TMA
TR2
W8F
X7H
YAYTL
YKOAZ
YXANX
~91
~S-
AAYOK
AASNB
ADACV
ADJQC
ADRIX
AFXEN
DOOOF
ESX
JSODD
M49
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T2
7T7
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c389t-328c6d17d67de5a5de31470c8950309acd1d43d2d0a9ab14f75483044b5ab0b73
ISSN 1058-4838
1537-6591
IngestDate Fri Sep 05 06:22:31 EDT 2025
Fri Jul 25 06:51:27 EDT 2025
Wed Feb 19 01:42:36 EST 2025
Thu Apr 24 22:55:43 EDT 2025
Tue Jul 01 04:28:51 EDT 2025
Wed Sep 11 04:50:58 EDT 2024
Thu Jun 19 15:26:22 EDT 2025
Sat Sep 20 11:02:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-328c6d17d67de5a5de31470c8950309acd1d43d2d0a9ab14f75483044b5ab0b73
Notes ark:/67375/HXZ-BKD3VL5D-T
istex:EBAC80D4D258D79054D9EAA07B2FE57118B62181
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 17278052
PQID 219958336
PQPubID 48300
PageCount 8
ParticipantIDs proquest_miscellaneous_68978388
proquest_journals_219958336
pubmed_primary_17278052
crossref_primary_10_1086_511636
crossref_citationtrail_10_1086_511636
oup_primary_10_1086_511636
jstor_primary_4464063
istex_primary_ark_67375_HXZ_BKD3VL5D_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-03-01
20070301
2007-Mar-01
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Clinical infectious diseases
PublicationTitleAbbrev Clinical Infectious Diseases
PublicationTitleAlternate Clinical Infectious Diseases
PublicationYear 2007
Publisher The University of Chicago Press
University of Chicago Press
Oxford University Press
Publisher_xml – name: The University of Chicago Press
– name: University of Chicago Press
– name: Oxford University Press
References Abrahamsson (5_15882330) 1995; 84
Robertson (37_4953408) 1988; 63
Smith (14_15937789) 1995; 127
Fioredda (18_18584403) 2005; 74
Markowitz (25_5546858) 1990; 322
Kristinsson (11_11102439) 2001; 18
Moriniere (40_10260570) 1993; 341
Fleisher (15_11463174) 2002; 109
(30_28005868) 2003; 10
Caver (8_5971032) 1998; 12
Ercan (20_18892692) 2005; 27
(35_38579231) 1999; 179
van Tilburg (19_22814513) 2006; 20
(10_38278272) 2003; 31
Borrow (29_11049332) 2001; 69
SUTTER (38_14562525) 1993; 22
(32_38733324) 1990; 161
Plotkin (28_11015250) 2001; 20
Ridgway (13_20134096) 1991; 145
Kung (21_13255016) 1984; 74
(27_38730923) 1983; 147
(24_24347920) 1984; 6
(6_37900107) 1992; 69
Mustafa (9_6201025) 1998; 20
Ljungman (39_9481662) 1991; 7
Alanko (7_15578900) 1994; 11
Chessells (2_15785767) 1995; 89
Heath (34_10539948) 2000; 284
Kaplan (36_9741335) 1992; 267
(26_28005869) 1997; 4
Wheatley (3_10996977) 1999; 107
(22_10206807) 1993; 42
Spickermann (4_15817860) 1994; 16
(17_38278273) 2004; 101
Ek (16_18520540) 2004; 26
van der Does-van den Berg (12_8403864) 1981; 67
Hamarstr  m (31_6185072) 1998; 6
(33_38278275) 2004; 12
17278053 - Clin Infect Dis. 2007 Mar 1;44(5):643-5
References_xml – volume: 179
  start-page: 1569
  issn: 0022-1899
  issue: 6
  year: 1999
  ident: 35_38579231
  publication-title: Journal of Infectious Diseases
  doi: 10.1086/314753
– volume: 101
  start-page: 635
  issn: 1097-0142
  year: 2004
  ident: 17_38278273
  doi: 10.1002/cncr.20384
– volume: 22
  start-page: 936
  issn: 0300-5771
  issue: 5
  year: 1993
  ident: 38_14562525
  publication-title: International Journal of Epidemiology
  doi: 10.1093/ije/22.5.936
– volume: 69
  start-page: 1568
  issn: 0019-9567
  issue: 3
  year: 2001
  ident: 29_11049332
  publication-title: Infection and Immunity
  doi: 10.1128/IAI.69.3.1568-1573.2001
– volume: 89
  start-page: 364
  issn: 0007-1048
  issue: 2
  year: 1995
  ident: 2_15785767
  publication-title: British journal of haematology
  doi: 10.1111/j.1365-2141.1995.tb03313.x
– volume: 63
  start-page: 612
  issn: 0003-9888
  issue: 6
  year: 1988
  ident: 37_4953408
  publication-title: Archives of Disease in Childhood
  doi: 10.1136/adc.63.6.612
– volume: 74
  start-page: 86
  issn: 0031-4005
  issue: 1
  year: 1984
  ident: 21_13255016
  publication-title: Pediatrics
  doi: 10.1542/peds.74.1.86
– volume: 16
  start-page: 89
  issn: 1042-8194
  issue: 1-2
  year: 1994
  ident: 4_15817860
  publication-title: Leukemia & lymphoma
  doi: 10.3109/10428199409114144
– volume: 74
  start-page: 20
  issn: 0902-4441
  issue: 1
  year: 2005
  ident: 18_18584403
  publication-title: European journal of haematology
  doi: 10.1111/j.1600-0609.2004.00340.x
– volume: 341
  start-page: 1545
  issn: 0140-6736
  issue: 8860
  year: 1993
  ident: 40_10260570
  publication-title: Lancet
  doi: 10.1016/0140-6736(93)90693-B
– volume: 12
  start-page: 619
  issn: 0887-6924
  issue: 4
  year: 1998
  ident: 8_5971032
  publication-title: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K
  doi: 10.1038/sj.leu.2400970
– volume: 6
  start-page: 469
  issn: 0941-4355
  issue: 5
  year: 1998
  ident: 31_6185072
  publication-title: Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
  doi: 10.1007/s005200050196
– volume: 127
  start-page: 68
  issn: 0022-3476
  issue: 1
  year: 1995
  ident: 14_15937789
  publication-title: The Journal of pediatrics
  doi: 10.1016/S0022-3476(95)70259-8
– volume: 284
  start-page: 2334
  issn: 0098-7484
  issue: 18
  year: 2000
  ident: 34_10539948
  publication-title: JAMA
  doi: 10.1001/jama.284.18.2334
– volume: 18
  start-page: 167
  issn: 0888-0018
  issue: 3
  year: 2001
  ident: 11_11102439
  publication-title: Pediatric hematology and oncology
  doi: 10.1080/08880010151114741
– volume: 31
  start-page: 303
  year: 2003
  ident: 10_38278272
  publication-title: ALLERGOL IMMUNOLPATHOL
  doi: 10.1157/13055208
– volume: 20
  start-page: 1717
  issn: 0887-6924
  issue: 10
  year: 2006
  ident: 19_22814513
  publication-title: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K
  doi: 10.1038/sj.leu.2404326
– volume: 109
  start-page: 1
  issn: 0031-4005
  issue: 1
  year: 2002
  ident: 15_11463174
  publication-title: Pediatrics
  doi: 10.1542/peds.109.1.1
– volume: 10
  start-page: 780
  year: 2003
  ident: 30_28005868
  publication-title: CLIN DIAGN LAB IMMUNOL
  doi: 10.1128/CDLI.10.5.780-786.2003
– volume: 7
  start-page: 89
  issn: 0268-3369
  issue: 2
  year: 1991
  ident: 39_9481662
  publication-title: Bone marrow transplantation
– volume: 84
  start-page: 177
  issn: 0803-5253
  issue: 2
  year: 1995
  ident: 5_15882330
  publication-title: Acta paediatrica (Oslo, Norway : 1992)
  doi: 10.1111/j.1651-2227.1995.tb13605.x
– volume: 322
  start-page: 580
  issn: 0028-4793
  issue: 9
  year: 1990
  ident: 25_5546858
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM199003013220903
– volume: 27
  start-page: 273
  issn: 1077-4114
  issue: 5
  year: 2005
  ident: 20_18892692
  publication-title: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology
  doi: 10.1097/01.mph.0000163214.37147.5a
– volume: 69
  start-page: 1481
  issn: 1097-0142
  year: 1992
  ident: 6_37900107
  doi: 10.1002/1097-0142(19920315)69:6<1481::AID-CNCR2820690628>3.0.CO;2-L
– volume: 42
  start-page: 1
  issn: 1057-5987
  issue: RR-4
  year: 1993
  ident: 22_10206807
  publication-title: MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports / Centers for Disease Control
– volume: 12
  start-page: 937
  issn: 1080-6040
  year: 2004
  ident: 33_38278275
  publication-title: Emerging infectious diseases
– volume: 6
  start-page: 540
  issn: 0162-0886
  year: 1984
  ident: 24_24347920
  publication-title: Reviews of infectious diseases
  doi: 10.1093/clinids/6.Supplement_2.S540
– volume: 161
  start-page: 926
  issn: 0022-1899
  issue: 5
  year: 1990
  ident: 32_38733324
  publication-title: Journal of Infectious Diseases
  doi: 10.1093/infdis/161.5.926
– volume: 267
  start-page: 1237
  issn: 0098-7484
  issue: 9
  year: 1992
  ident: 36_9741335
  publication-title: JAMA
  doi: 10.1001/jama.1992.03480090085032
– volume: 4
  start-page: 156
  year: 1997
  ident: 26_28005869
  publication-title: CLIN DIAGN LAB IMMUNOL
  doi: 10.1128/CDLI.4.2.156-167.1997
– volume: 20
  start-page: 63
  issn: 0891-3668
  issue: 1
  year: 2001
  ident: 28_11015250
  publication-title: The Pediatric infectious disease journal
  doi: 10.1097/00006454-200101000-00013
– volume: 107
  start-page: 69
  issn: 0007-1048
  issue: 1
  year: 1999
  ident: 3_10996977
  publication-title: British journal of haematology
  doi: 10.1046/j.1365-2141.1999.01684.x
– volume: 11
  start-page: 281
  issn: 0888-0018
  issue: 3
  year: 1994
  ident: 7_15578900
  publication-title: Pediatric hematology and oncology
  doi: 10.3109/08880019409141671
– volume: 20
  start-page: 451
  issn: 1077-4114
  issue: 5
  year: 1998
  ident: 9_6201025
  publication-title: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology
  doi: 10.1097/00043426-199809000-00008
– volume: 147
  start-page: 1100
  issn: 0022-1899
  issue: 6
  year: 1983
  ident: 27_38730923
  publication-title: Journal of Infectious Diseases
  doi: 10.1093/infdis/147.6.1100
– volume: 26
  start-page: 727
  issn: 1077-4114
  issue: 11
  year: 2004
  ident: 16_18520540
  publication-title: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology
  doi: 10.1097/00043426-200411000-00008
– volume: 67
  start-page: 222
  issn: 0031-4005
  issue: 2
  year: 1981
  ident: 12_8403864
  publication-title: Pediatrics
  doi: 10.1542/peds.67.2.222
– volume: 145
  start-page: 887
  issn: 0096-8994
  issue: 8
  year: 1991
  ident: 13_20134096
  publication-title: Archives of Pediatrics and Adolescent Medicine
  doi: 10.1001/archpedi.1991.02160080065022
– reference: 17278053 - Clin Infect Dis. 2007 Mar 1;44(5):643-5
SSID ssj0011805
Score 2.206805
Snippet Background. After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain...
Background . After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain...
After the treatment of patients with acute leukemia, there is a decrease in vaccine-specific antibody and an increased susceptibility to certain...
SourceID proquest
pubmed
crossref
oup
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 635
SubjectTerms Acute Disease
Adolescent
Antibodies
Articles and Commentaries
Bacterial Capsules
Chemotherapy
Child
Child, Preschool
Children
Children & youth
Diphtheria Toxoid - administration & dosage
Diphtheria Toxoid - immunology
Haemophilus Vaccines - administration & dosage
Haemophilus Vaccines - immunology
Humans
Immunization
Immunization Schedule
Immunosuppressive Agents - therapeutic use
Infant
Leukemia
Leukemia, Myeloid - drug therapy
Leukemia, Myeloid - immunology
Lymphocytic leukemia
Measles
Measles Vaccine - administration & dosage
Measles Vaccine - immunology
Meningococcal Vaccines - administration & dosage
Meningococcal Vaccines - immunology
Monoclonal antibodies
Mumps Vaccine - administration & dosage
Mumps Vaccine - immunology
Myeloid leukemia
Neisseria meningitidis
Poliovirus Vaccines - administration & dosage
Poliovirus Vaccines - immunology
Polysaccharides, Bacterial - administration & dosage
Polysaccharides, Bacterial - immunology
Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy
Precursor Cell Lymphoblastic Leukemia-Lymphoma - immunology
Rubella Vaccine - administration & dosage
Rubella Vaccine - immunology
Tetanus
Tetanus Toxoid - administration & dosage
Tetanus Toxoid - immunology
Vaccination
Vaccines - immunology
Vaccines, Acellular - administration & dosage
Vaccines, Acellular - immunology
Title Revaccination of Children after Completion of Standard Chemotherapy for Acute Leukemia
URI https://api.istex.fr/ark:/67375/HXZ-BKD3VL5D-T/fulltext.pdf
https://www.jstor.org/stable/4464063
https://www.ncbi.nlm.nih.gov/pubmed/17278052
https://www.proquest.com/docview/219958336
https://www.proquest.com/docview/68978388
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkJcEI8CaXn4AFyQI9vr3bWPTQIKbUEoTauIi7WvoqqQoDRBiF_BT2b2maThfbEi79pZ7cyOv535Zhahp5pxonRdp5yKOi2ZkqnAmqc5h29vpepaaMvyfUsHJ-XBmIxbre8rrKXFXHTkt5_mlfyPVOEeyNVkyf6DZONL4Qb8BvnCFSQM17-S8VB_4VKeTyLs64XUbHf0t1nspri2azwOXgNTJMAnXjm65r40bIEjvbjQn875Kl7thcTJQNpaXIaYTgTj7wCuWkfy8RQMhH4x7ETP7WxuA_F9z9D_sNCR0BHzQrrGIwmjOoiPdaehMOTQU3yCW4IteVmdkNj2Z2qJsbgZsR5NZ4R1sMIspcQd4xXMtCsT6dWRrNhc6uqd-M83dcW6Nr4MmQ1UAbyk-Erpbb8XWu9yDW0XDNCYgdmvD2NcKq8sKTYOeuW0KvfcGrzZNiv1a2C6Xkmh3NjJWEQzuoVu-q1Isu_06jZq6ckddP2NJ1vcRadr6pVMz5KgXolVr2SpXqYxqFeyql4JqFdi1SsJ6rWDTl69HPUGqT-GI5WAZucpLipJVc4UZUoTs7RxXrJMVjUx8TkuVa5KrAqV8ZqLvDxjsAvGWVkKwkUmGL6HtibTiX6AEkDTRUmUqwPJBRfYxLVhB8EEqbQUbfQszF4jfY16c1TKx8ZyJSrauFluoyex32dXlWWjx3M7-bGZzy4Mh5GRZjB-33QP-_j0iPSbURvtWOnEjmVJAeTiNtoFaf3y7XtBiI23B5dNYaodVNiOLraCsTYROD7RsEAbWhlPa1W10X0n-eX7YR9hThfZ_d3f7qEby6X2EG3NZwv9CDDxXDy2avoDUZ6y0Q
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revaccination+of+Children+after+Completion+of+Standard+Chemotherapy+for+Acute+Leukemia&rft.jtitle=Clinical+infectious+diseases&rft.au=Patel%2C+Soonie+R.&rft.au=Ort%C3%ADn%2C+Miguel&rft.au=Cohen%2C+Bernard+J.&rft.au=Borrow%2C+Ray&rft.date=2007-03-01&rft.pub=The+University+of+Chicago+Press&rft.issn=1058-4838&rft.eissn=1537-6591&rft.volume=44&rft.issue=5&rft.spage=635&rft.epage=642&rft_id=info:doi/10.1086%2F511636&rft.externalDocID=10.1086%2F511636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4838&client=summon