Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications

Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD app...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 17; p. 2634
Main Authors Singh, Manisha, Pujar, Gurubasavaraj Veeranna, Kumar, Sethu Arun, Bhagyalalitha, Meduri, Akshatha, Handattu Shankaranarayana, Abuhaija, Belal, Alsoud, Anas Ratib, Abualigah, Laith, Beeraka, Narasimha M., Gandomi, Amir H.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11172634

Cover

Abstract Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD approaches using machine learning have been applied for TB diagnosis, specific to the artificial intelligence (AI) domain, which has led to the resurgence of AI in the medical field. Deep learning (DL), a major branch of AI, provides bigger room for diagnosing deadly TB disease. This review is focused on the limitations of conventional TB diagnostics and a broad description of various machine learning algorithms and their applications in TB diagnosis. Furthermore, various deep learning methods integrated with other systems such as neuro-fuzzy logic, genetic algorithm, and artificial immune systems are discussed. Finally, multiple state-of-the-art tools such as CAD4TB, Lunit INSIGHT, qXR, and InferRead DR Chest are summarized to view AI-assisted future aspects in TB diagnosis.
AbstractList Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD approaches using machine learning have been applied for TB diagnosis, specific to the artificial intelligence (AI) domain, which has led to the resurgence of AI in the medical field. Deep learning (DL), a major branch of AI, provides bigger room for diagnosing deadly TB disease. This review is focused on the limitations of conventional TB diagnostics and a broad description of various machine learning algorithms and their applications in TB diagnosis. Furthermore, various deep learning methods integrated with other systems such as neuro-fuzzy logic, genetic algorithm, and artificial immune systems are discussed. Finally, multiple state-of-the-art tools such as CAD4TB, Lunit INSIGHT, qXR, and InferRead DR Chest are summarized to view AI-assisted future aspects in TB diagnosis.
Audience Academic
Author Pujar, Gurubasavaraj Veeranna
Gandomi, Amir H.
Singh, Manisha
Bhagyalalitha, Meduri
Abuhaija, Belal
Kumar, Sethu Arun
Alsoud, Anas Ratib
Akshatha, Handattu Shankaranarayana
Abualigah, Laith
Beeraka, Narasimha M.
Author_xml – sequence: 1
  givenname: Manisha
  surname: Singh
  fullname: Singh, Manisha
– sequence: 2
  givenname: Gurubasavaraj Veeranna
  orcidid: 0000-0002-0658-3636
  surname: Pujar
  fullname: Pujar, Gurubasavaraj Veeranna
– sequence: 3
  givenname: Sethu Arun
  surname: Kumar
  fullname: Kumar, Sethu Arun
– sequence: 4
  givenname: Meduri
  surname: Bhagyalalitha
  fullname: Bhagyalalitha, Meduri
– sequence: 5
  givenname: Handattu Shankaranarayana
  surname: Akshatha
  fullname: Akshatha, Handattu Shankaranarayana
– sequence: 6
  givenname: Belal
  orcidid: 0000-0002-7964-6327
  surname: Abuhaija
  fullname: Abuhaija, Belal
– sequence: 7
  givenname: Anas Ratib
  orcidid: 0000-0002-1410-8843
  surname: Alsoud
  fullname: Alsoud, Anas Ratib
– sequence: 8
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
– sequence: 9
  givenname: Narasimha M.
  surname: Beeraka
  fullname: Beeraka, Narasimha M.
– sequence: 10
  givenname: Amir H.
  orcidid: 0000-0002-2798-0104
  surname: Gandomi
  fullname: Gandomi, Amir H.
BookMark eNqNkUlLBDEQhYMouP4CLwHPrVl6mXgbd2EGQcZzk05XxkgmaZNuxX9vxhE3REwOeYT3Vb1UttG68w4Q2qfkkHNBjsCC6oN3RkVKacVKnq-hLUYqkQkm2PoXvYn2YnwgaQnKR5xsocX5k7dDb7zDXuOpVPfGAZ6ADM64OTYOz4YGghqsjybiMyPnbqmO8RjfwpOB5yV3BtB9QNmJjNDiKbRGSYvHXWeTWLaIu2hDSxth7_3cQXcX57PTq2xyc3l9Op5kio9En7FRU-ZN3moCVBIp0qMqCqqguc5JUY4q1hBVQFORMq8aBpLokgpNWSMLRlnLd1C-qju4Tr48S2vrLpiFDC81JfVyavUvU0vYwQrrgn8cIPb1gx-CS0nrFIAykYz00zWXFmrjtO-DVAsTVT2u8qIkPMVKrsNfXGm3sDAq_aA26f4bwFeACj7GAPqfkcUPSpn-bdipnbF_sq-ZS7HW
CitedBy_id crossref_primary_10_1007_s11277_024_11587_1
crossref_primary_10_1007_s40846_023_00783_2
crossref_primary_10_1016_j_imed_2023_06_001
crossref_primary_10_1109_ACCESS_2024_3505608
crossref_primary_10_1016_j_jksuci_2023_101568
crossref_primary_10_1186_s12880_024_01192_w
crossref_primary_10_2196_69068
crossref_primary_10_1186_s40779_023_00490_8
crossref_primary_10_1186_s12864_024_10066_y
crossref_primary_10_1038_s41598_024_65703_z
crossref_primary_10_2196_43154
crossref_primary_10_1109_ACCESS_2024_3386208
crossref_primary_10_1080_07391102_2024_2436552
crossref_primary_10_3390_electronics12040957
crossref_primary_10_3390_s23052582
crossref_primary_10_1109_JBHI_2024_3367736
crossref_primary_10_1007_s00521_023_09381_4
crossref_primary_10_3390_diagnostics13203244
crossref_primary_10_1016_j_heliyon_2024_e32270
crossref_primary_10_3390_bioengineering10091076
crossref_primary_10_61186_ijbc_15_3_68
crossref_primary_10_29121_shodhkosh_v3_i2_2022_3181
crossref_primary_10_1016_j_eswa_2022_119287
crossref_primary_10_2196_54388
crossref_primary_10_1016_j_bspc_2024_106981
crossref_primary_10_1038_s41573_024_00933_4
crossref_primary_10_3233_JIFS_230528
crossref_primary_10_47495_okufbed_1342465
crossref_primary_10_1038_s41598_024_78247_z
crossref_primary_10_1155_2023_9161763
crossref_primary_10_3389_fgene_2023_1094099
crossref_primary_10_1371_journal_pone_0309151
crossref_primary_10_3390_s23156781
crossref_primary_10_1186_s12880_025_01630_3
crossref_primary_10_18632_aging_204765
crossref_primary_10_1007_s11831_023_09901_4
crossref_primary_10_1016_j_heliyon_2023_e16807
crossref_primary_10_1016_j_ibmed_2024_100196
crossref_primary_10_3390_microorganisms13040722
crossref_primary_10_1155_2022_3861161
crossref_primary_10_29121_shodhkosh_v5_i3_2024_3181
crossref_primary_10_3390_diagnostics14010084
Cites_doi 10.1038/s41598-019-42557-4
10.1002/bms.1200030402
10.1016/S0140-6736(19)30024-8
10.4103/ijo.IJO_1989_18
10.1371/journal.pmed.1002754
10.1007/s11517-016-1465-1
10.1109/5254.708428
10.9734/ajrcos/2018/v2i124763
10.1016/bs.armc.2019.05.004
10.1109/ISDA.2010.5687018
10.1016/0045-7949(91)90458-X
10.1155/2011/193963
10.1016/j.neunet.2014.09.003
10.1007/s11892-018-1076-3
10.1109/TMI.2015.2505672
10.1148/radiol.2017162326
10.1038/s41746-019-0138-5
10.4155/fmc-2016-0197
10.4103/ijmy.ijmy_61_17
10.1016/j.mib.2011.07.022
10.1016/j.asoc.2010.08.024
10.18653/v1/2020.acl-main.491
10.1007/s11227-020-03152-x
10.3201/eid2505.181823
10.1146/annurev-neuro-080317-061948
10.1164/ajrccm.155.5.9154881
10.1016/j.cmpb.2018.04.013
10.17485/ijst/2014/v7i4.19
10.1109/ICSCCC.2018.8703316
10.1016/j.eswa.2013.09.004
10.1109/TMI.2016.2528162
10.1145/3287560.3287574
10.1109/ICCES.2018.8639200
10.1109/EIT.2019.8833768
10.1136/bmjopen-2014-004818
10.1111/resp.13393
10.1109/ACCESS.2020.3031384
10.1109/SERA.2011.30
10.1080/17460441.2018.1465407
10.1016/j.inffus.2019.12.012
10.1371/journal.pone.0236112
10.1002/ima.22427
10.1117/12.2216198
10.1007/s11517-015-1323-6
10.5465/amr.2019.0178
10.1109/ACPR.2015.7486599
10.1016/j.heliyon.2020.e04614
10.1164/rccm.200509-1516PP
10.1021/acs.molpharmaceut.7b00875
10.1016/j.smhl.2017.04.003
10.3348/kjr.2022.0193
10.1016/S0926-5805(02)00091-2
10.1007/s12652-020-02612-9
10.1016/j.cmpb.2018.01.009
10.1016/j.tube.2020.102049
10.1016/S0140-6736(15)60570-0
10.1016/j.inffus.2021.05.009
10.1007/s10916-018-0991-9
10.1117/1.JMI.4.2.027503
10.1038/nature14539
10.1148/radiology.177.3.2244001
10.1073/pnas.140102797
10.1038/s41598-020-62960-6
10.7150/ijms.8249
10.1007/978-981-15-0947-6_31
10.1016/S0031-3203(99)00137-5
10.1109/FUZZ-IEEE.2019.8859010
10.1109/TFUZZ.2020.2966163
10.21037/jtd.2019.08.34
10.1371/journal.pone.0112980
10.1109/ICIP.2017.8296695
10.1016/S2589-7500(20)30221-1
10.18280/ts.370620
10.1128/JCM.42.5.2321-2325.2004
10.1183/09031936.00061808
10.1007/978-1-4471-1599-1
10.1007/978-3-030-50423-6_42
10.1016/j.bios.2018.05.017
10.1007/978-3-662-43631-8_3
10.1007/s10103-019-02947-6
10.1007/s13246-020-00966-0
10.1038/srep25265
10.1109/CHASE.2016.18
10.1371/journal.pone.0212094
10.1109/CIPECH.2018.8724255
10.12785/ijcds/0906017
10.1016/j.neucom.2018.09.038
10.1016/j.eswa.2011.08.064
10.1109/CIBEC.2018.8641816
10.1186/1687-5281-2013-3
10.1016/S1473-3099(06)70578-3
10.1111/j.1468-0394.1986.tb00192.x
10.1016/j.aci.2015.06.001
10.7150/thno.38065
10.3389/fcimb.2020.594030
10.1002/bmc.1130050406
10.1007/s00521-022-07258-6
10.1037/h0042519
10.1378/chest.116.4.968
10.1109/BIBM.2018.8621355
10.1016/S2589-7500(21)00116-3
10.1109/CVPR42600.2020.00272
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics11172634
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics11172634
A745603064
10_3390_electronics11172634
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c389t-28b64b4df0e1a0a917271ec514f4056872b0c5eb70647b2ea0f619f12ba5212d3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 04:12:51 EDT 2025
Fri Jul 25 02:43:34 EDT 2025
Mon Oct 20 22:57:28 EDT 2025
Mon Oct 20 17:07:35 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Thu Oct 16 04:44:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-28b64b4df0e1a0a917271ec514f4056872b0c5eb70647b2ea0f619f12ba5212d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0658-3636
0000-0002-7964-6327
0000-0002-1410-8843
0000-0002-2798-0104
0000-0002-2203-4549
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/17/2634/pdf?version=1661252358
PQID 2711291171
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics11172634
proquest_journals_2711291171
gale_infotracmisc_A745603064
gale_infotracacademiconefile_A745603064
crossref_primary_10_3390_electronics11172634
crossref_citationtrail_10_3390_electronics11172634
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dye (ref_5) 2000; 97
Andika (ref_88) 2020; 1490
ref_136
ref_92
Er (ref_118) 2012; 39
ref_91
Abe (ref_35) 1976; 3
Miotto (ref_21) 2018; 23
ref_12
Asada (ref_37) 1990; 177
ref_131
ref_11
ref_130
ref_133
ref_97
ref_132
ref_135
Saybani (ref_121) 2016; 54
ref_134
Gao (ref_45) 2018; 15
Lakhani (ref_69) 2017; 284
Maliwan (ref_36) 1991; 5
ref_15
Buchanan (ref_58) 1986; 3
Maulik (ref_111) 2000; 33
Rahman (ref_59) 2020; 8
Berthel (ref_13) 2019; Volume 52
Mylotte (ref_41) 1997; 155
Karmani (ref_50) 2020; 9
Brabazon (ref_110) 2015; 28
ref_126
Khan (ref_139) 2020; 2
Steingart (ref_23) 2006; 6
ref_128
Gupta (ref_33) 2018; 115
ref_127
ref_129
Greensmith (ref_116) 2010; 3
Raymond (ref_46) 2018; 41
Hartigan (ref_143) 2017; 28
ref_22
ref_122
ref_124
ref_123
Shin (ref_84) 2016; 35
Saybani (ref_120) 2015; 17
ref_29
Goni (ref_108) 2018; 2
Rohilla (ref_93) 2017; 6
Vathana (ref_115) 2018; 13
Cole (ref_2) 2011; 14
Mbuagbaw (ref_19) 2019; 25
Sharma (ref_18) 2017; 5
ref_70
Kumar (ref_53) 2019; 67
Ojha (ref_24) 2020; 35
Jaeger (ref_72) 2014; 4
Melendez (ref_4) 2016; 6
Omisore (ref_114) 2017; 13
Kim (ref_55) 2020; 12
ref_76
ref_75
ref_74
Virenfeldt (ref_31) 2014; 4
Ko (ref_63) 2003; 12
Shrivastava (ref_106) 2016; 4
Melendez (ref_57) 2015; 35
Uplekar (ref_26) 2015; 385
ref_89
ref_141
Hoos (ref_54) 2019; 109
ref_87
ref_86
ref_85
Geetha (ref_112) 2014; 7
Xu (ref_62) 2019; 9
Qin (ref_138) 2021; 3
Richeldi (ref_14) 2006; 174
Chithra (ref_99) 2020; 30
Lee (ref_137) 2022; 23
Chang (ref_100) 2020; 76
Reker (ref_56) 2017; 9
Noubissi (ref_17) 2018; 18
Steingart (ref_27) 2013; 1
Gentili (ref_71) 2018; 2125
Srivastava (ref_78) 2014; 15
Msonda (ref_90) 2020; 37
Mendoza (ref_51) 2018; 157
Filho (ref_73) 2020; Volume 12140
Jasmer (ref_16) 2015; 30
ref_61
ref_60
ref_68
ref_67
ref_66
Vajda (ref_10) 2018; 42
Shamshirband (ref_119) 2014; 11
Aguiar (ref_52) 2016; 54
Hsiao (ref_39) 1999; 116
Ahmadi (ref_103) 2018; 161
Zhou (ref_32) 2011; 2011
Pasa (ref_102) 2019; 9
Asay (ref_98) 2020; 10
Oreski (ref_109) 2014; 41
Dasgupta (ref_117) 2011; 11
LeCun (ref_81) 2015; 521
Bhirud (ref_20) 2017; 6
Ayaz (ref_47) 2021; 44
Gawehn (ref_140) 2018; 13
Xu (ref_6) 2013; 2013
Meier (ref_49) 2021; 10
Sathitratanacheewin (ref_9) 2020; 6
Ling (ref_28) 2008; 32
Qin (ref_125) 2021; 127
ref_30
Miller (ref_65) 2019; 2
Reid (ref_3) 2019; 393
Adadi (ref_95) 2020; Volume 1076
Vilone (ref_94) 2021; 76
ref_38
Weber (ref_48) 2000; Volume 1842
Rosenblatt (ref_34) 1958; 65
ref_104
Zhang (ref_83) 2018; 323
Bennetot (ref_96) 2020; 58
Vally (ref_113) 2015; 5
ref_107
ref_44
Cruciani (ref_25) 2004; 42
ref_43
Denil (ref_79) 2013; 26
ref_42
Riad (ref_64) 1991; 40
Schmidhuber (ref_82) 2015; 61
ref_101
ref_1
Gregory (ref_80) 2021; 46
Alcantara (ref_142) 2017; 1
Hearst (ref_40) 1998; 13
Kang (ref_105) 2021; 29
ref_8
Shah (ref_77) 2017; 4
ref_7
References_xml – volume: 9
  start-page: 6268
  year: 2019
  ident: ref_102
  article-title: Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42557-4
– volume: 3
  start-page: 151
  year: 1976
  ident: ref_35
  article-title: Applications of computerized pattern recognition: A survey of correlations between pharmacological activities and mass spectra
  publication-title: Biol. Mass Spectrom.
  doi: 10.1002/bms.1200030402
– volume: 393
  start-page: 1331
  year: 2019
  ident: ref_3
  article-title: Building a tuberculosis-free world: The Lancet Commission on tuberculosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)30024-8
– ident: ref_74
– volume: 67
  start-page: 1004
  year: 2019
  ident: ref_53
  article-title: Artificial intelligence in diabetic retinopathy: A natural step to the future
  publication-title: Indian J. Ophthalmol.
  doi: 10.4103/ijo.IJO_1989_18
– ident: ref_15
  doi: 10.1371/journal.pmed.1002754
– volume: 54
  start-page: 1751
  year: 2016
  ident: ref_52
  article-title: Development of two artificial neural network models to support the diagnosis of pulmonary tuberculosis in hospitalized patients in Rio de Janeiro, Brazil
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1465-1
– volume: 13
  start-page: 18
  year: 1998
  ident: ref_40
  article-title: Support Vector Machines
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.708428
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_108
  article-title: Intelligent System for Diagnosing Tuberculosis Using Adaptive Neuro-Fuzzy
  publication-title: Asian J. Res. Comput. Sci.
  doi: 10.9734/ajrcos/2018/v2i124763
– volume: Volume 52
  start-page: 1
  year: 2019
  ident: ref_13
  article-title: Chapter One—Tuberculosis
  publication-title: Medicinal Chemistry Approaches to Tuberculosis and Trypanosomiasis
  doi: 10.1016/bs.armc.2019.05.004
– ident: ref_43
  doi: 10.1109/ISDA.2010.5687018
– volume: 40
  start-page: 67
  year: 1991
  ident: ref_64
  article-title: A conceptual model for claim management in construction: An ai approach
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(91)90458-X
– volume: 2011
  start-page: 1
  year: 2011
  ident: ref_32
  article-title: Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments
  publication-title: Clin. Dev. Immunol.
  doi: 10.1155/2011/193963
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_78
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_82
  article-title: Deep Learning in Neural Networks: An Overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref_132
– volume: 18
  start-page: 125
  year: 2018
  ident: ref_17
  article-title: Diabetes and HIV
  publication-title: Curr. Diabetes Rep.
  doi: 10.1007/s11892-018-1076-3
– ident: ref_42
– volume: 35
  start-page: 1013
  year: 2015
  ident: ref_57
  article-title: On Combining Multiple-Instance Learning and Active Learning for Computer-Aided Detection of Tuberculosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2505672
– ident: ref_1
– volume: 284
  start-page: 574
  year: 2017
  ident: ref_69
  article-title: Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– ident: ref_123
– volume: 2
  start-page: 62
  year: 2019
  ident: ref_65
  article-title: The medical AI insurgency: What physicians must know about data to practice with intelligent machines
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0138-5
– volume: 9
  start-page: 381
  year: 2017
  ident: ref_56
  article-title: Active learning for computational chemogenomics
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2016-0197
– volume: 5
  start-page: 491
  year: 2017
  ident: ref_18
  article-title: Miliary Tuberculosis
  publication-title: ASM J. Microbiol. Spectr.
– volume: 6
  start-page: 296
  year: 2017
  ident: ref_20
  article-title: Rapid Laboratory Diagnosis of Pulmonary Tuberculosis
  publication-title: Int. J. Mycobacteriol.
  doi: 10.4103/ijmy.ijmy_61_17
– ident: ref_141
– volume: 14
  start-page: 570
  year: 2011
  ident: ref_2
  article-title: New tuberculosis drugs on the horizon
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2011.07.022
– volume: 11
  start-page: 1574
  year: 2011
  ident: ref_117
  article-title: Recent advances in artificial immune systems: Models and applications
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2010.08.024
– ident: ref_67
  doi: 10.18653/v1/2020.acl-main.491
– volume: 76
  start-page: 8641
  year: 2020
  ident: ref_100
  article-title: Two-stage classification of tuberculosis culture diagnosis using convolutional neural network with transfer learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03152-x
– volume: 25
  start-page: 936
  year: 2019
  ident: ref_19
  article-title: Outcomes of bedaquiline treatment in patients with multidrug-resistant tuberculosis
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2505.181823
– ident: ref_135
– volume: 41
  start-page: 233
  year: 2018
  ident: ref_46
  article-title: Computational Principles of Supervised Learning in the Cerebellum
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-080317-061948
– volume: 26
  start-page: 1
  year: 2013
  ident: ref_79
  article-title: Predicting parameters in deep learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 155
  start-page: 1711
  year: 1997
  ident: ref_41
  article-title: Validity of a decision tree for predicting active pulmonary tuberculosis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.155.5.9154881
– volume: 161
  start-page: 145
  year: 2018
  ident: ref_103
  article-title: Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.013
– ident: ref_128
– volume: 7
  start-page: 421
  year: 2014
  ident: ref_112
  article-title: Tuberculosis Disease Classification using Genetic-neuro Expert System
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2014/v7i4.19
– ident: ref_85
  doi: 10.1109/ICSCCC.2018.8703316
– volume: 41
  start-page: 2052
  year: 2014
  ident: ref_109
  article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.004
– volume: 35
  start-page: 1285
  year: 2016
  ident: ref_84
  article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: ref_97
– ident: ref_30
– ident: ref_66
  doi: 10.1145/3287560.3287574
– ident: ref_134
– ident: ref_86
  doi: 10.1109/ICCES.2018.8639200
– volume: 6
  start-page: 1073
  year: 2017
  ident: ref_93
  article-title: TB Detection in Chest Radiograph Using Deep Learning Architecture
  publication-title: Int. J. Adv. Res. Sci. Eng.
– ident: ref_87
  doi: 10.1109/EIT.2019.8833768
– volume: 4
  start-page: e004818
  year: 2014
  ident: ref_31
  article-title: Treatment delay affects clinical severity of tuberculosis: A longitudinal cohort study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2014-004818
– volume: 23
  start-page: 1098
  year: 2018
  ident: ref_21
  article-title: Drug resistance mechanisms and drug susceptibility testing for tuberculosis
  publication-title: Respirology
  doi: 10.1111/resp.13393
– ident: ref_129
– volume: 8
  start-page: 191586
  year: 2020
  ident: ref_59
  article-title: Reliable Tuberculosis Detection Using Chest X-ray with Deep Learning, Segmentation and Visualization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031384
– ident: ref_44
  doi: 10.1109/SERA.2011.30
– volume: 13
  start-page: 579
  year: 2018
  ident: ref_140
  article-title: Advancing drug discovery via GPU-based deep learning. Expert Opinion on Drug Discovery
  publication-title: Expert Opin. Drug Discov.
  doi: 10.1080/17460441.2018.1465407
– volume: 58
  start-page: 82
  year: 2020
  ident: ref_96
  article-title: Explainable Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and chal-lenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– ident: ref_61
  doi: 10.1371/journal.pone.0236112
– volume: 30
  start-page: 994
  year: 2020
  ident: ref_99
  article-title: Severity detection and infection level identification of tuberculosis using deep learning
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22427
– ident: ref_12
  doi: 10.1117/12.2216198
– volume: 54
  start-page: 385
  year: 2016
  ident: ref_121
  article-title: RAIRS2 a new expert system for diagnosing tuberculosis with real-world tournament selection mechanism inside artificial immune recognition system
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1323-6
– volume: 46
  start-page: 534
  year: 2021
  ident: ref_80
  article-title: The Role of Artificial Intelligence and Data Network Effects for Creating User Value
  publication-title: Acad. Manag. Rev.
  doi: 10.5465/amr.2019.0178
– ident: ref_68
  doi: 10.1109/ACPR.2015.7486599
– volume: 6
  start-page: e04614
  year: 2020
  ident: ref_9
  article-title: Deep learning for automated classification of tuberculosis-related chest X-Ray: Dataset distribution shift limits diagnostic performance generalizability
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04614
– volume: 174
  start-page: 736
  year: 2006
  ident: ref_14
  article-title: An Update on the Diagnosis of Tuberculosis Infection
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200509-1516PP
– volume: 15
  start-page: 4326
  year: 2018
  ident: ref_45
  article-title: Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00875
– volume: 4
  start-page: 475
  year: 2014
  ident: ref_72
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant. Imaging Med. Surg.
– volume: 1
  start-page: 66
  year: 2017
  ident: ref_142
  article-title: Improving Tuberculosis Diagnostics using Deep Learning and Mobile Health Technologies among Resource-poor Communities in Perú
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2017.04.003
– volume: 23
  start-page: e52
  year: 2022
  ident: ref_137
  article-title: Successful Implementation of an Artificial Intelligence-Based Computer-Aided Detection System for Chest Radiography in Daily Clinical Practice
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2022.0193
– volume: 12
  start-page: 271
  year: 2003
  ident: ref_63
  article-title: Hybrid use of AI techniques in developing construction management tools
  publication-title: Autom. Constr.
  doi: 10.1016/S0926-5805(02)00091-2
– ident: ref_91
  doi: 10.1007/s12652-020-02612-9
– ident: ref_126
– volume: 157
  start-page: 11
  year: 2018
  ident: ref_51
  article-title: Tuberculosis diagnosis support analysis for precarious health information systems
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.009
– ident: ref_70
– volume: 127
  start-page: 102049
  year: 2021
  ident: ref_125
  article-title: A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2020.102049
– volume: 385
  start-page: 1799
  year: 2015
  ident: ref_26
  article-title: WHO’s new End TB Strategy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)60570-0
– volume: 76
  start-page: 89
  year: 2021
  ident: ref_94
  article-title: Notions of explainability and evaluation approaches for explainable artificial intelligence
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.009
– ident: ref_22
– volume: 42
  start-page: 146
  year: 2018
  ident: ref_10
  article-title: Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0991-9
– volume: 4
  start-page: 027503
  year: 2017
  ident: ref_77
  article-title: Ziehl–Neelsen sputum smear microscopy image database: A resource to facilitate automated bacilli detection for tuberculosis diagnosis
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.2.027503
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_81
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 177
  start-page: 857
  year: 1990
  ident: ref_37
  article-title: Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung diseases: Pilot study
  publication-title: Radiology
  doi: 10.1148/radiology.177.3.2244001
– ident: ref_136
– volume: 97
  start-page: 8180
  year: 2000
  ident: ref_5
  article-title: Criteria for the control of drug-resistant tuberculosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.140102797
– volume: 10
  start-page: 6047
  year: 2020
  ident: ref_98
  article-title: Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models using Deep Convolutional Neural Networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62960-6
– volume: 11
  start-page: 508
  year: 2014
  ident: ref_119
  article-title: Tuberculosis disease diagnosis using artificial immune recognition system
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.8249
– volume: Volume 1076
  start-page: 327
  year: 2020
  ident: ref_95
  article-title: Explainable AI for Healthcare: From Black Box to Interpretable Models
  publication-title: Advances in Intelligent Systems and Computing
  doi: 10.1007/978-981-15-0947-6_31
– volume: 33
  start-page: 1455
  year: 2000
  ident: ref_111
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00137-5
– ident: ref_104
  doi: 10.1109/FUZZ-IEEE.2019.8859010
– volume: 29
  start-page: 34
  year: 2021
  ident: ref_105
  article-title: A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2966163
– ident: ref_127
– volume: 2125
  start-page: 6
  year: 2018
  ident: ref_71
  article-title: ImageCLEF2018: Transfer learning for deep learning with CNN for tuberculosis classification
  publication-title: CEUR Workshop Proc.
– volume: 12
  start-page: 5078
  year: 2020
  ident: ref_55
  article-title: Refining dataset curation methods for deep learning-based automated tuberculosis screening
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2019.08.34
– ident: ref_76
  doi: 10.1371/journal.pone.0112980
– ident: ref_92
  doi: 10.1109/ICIP.2017.8296695
– volume: 30
  start-page: 13
  year: 2015
  ident: ref_16
  article-title: Latent Tuberculosis Infection
  publication-title: J. Gastroenterol. Hepatol.
– volume: 2
  start-page: e573
  year: 2020
  ident: ref_139
  article-title: Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: A prospective study of diagnostic accuracy for culture-confirmed disease
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30221-1
– volume: 37
  start-page: 1075
  year: 2020
  ident: ref_90
  article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Automatic Tuberculosis Diagnosis
  publication-title: Trait. Du Signal
  doi: 10.18280/ts.370620
– volume: 42
  start-page: 2321
  year: 2004
  ident: ref_25
  article-title: Meta-Analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without Solid Media, for Detection of Mycobacteria
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.42.5.2321-2325.2004
– volume: 32
  start-page: 1165
  year: 2008
  ident: ref_28
  article-title: GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: A meta-analysis
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00061808
– ident: ref_8
– ident: ref_38
  doi: 10.1007/978-1-4471-1599-1
– volume: Volume 12140
  start-page: 563
  year: 2020
  ident: ref_73
  article-title: Preliminary Results on Pulmonary Tuberculosis Detection in Chest X-Ray Using Convolutional Neural Networks
  publication-title: Computational Science—ICCS 2020. ICCS 2020
  doi: 10.1007/978-3-030-50423-6_42
– volume: 28
  start-page: 100
  year: 2017
  ident: ref_143
  article-title: Algorithm AS 136: A k-Means Clustering Algorithm
  publication-title: J. R. Stat. Soc. C Appl.
– volume: 115
  start-page: 14
  year: 2018
  ident: ref_33
  article-title: Recent technological advancements in tuberculosis diagnostics—A review
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.05.017
– volume: 28
  start-page: 21
  year: 2015
  ident: ref_110
  article-title: Genetic algorithm
  publication-title: Nat. Comput. Algorithms
  doi: 10.1007/978-3-662-43631-8_3
– volume: 35
  start-page: 1431
  year: 2020
  ident: ref_24
  article-title: Light emitting diode (LED) based fluorescence microscopy for tuberculosis detection: A review
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s10103-019-02947-6
– volume: 44
  start-page: 183
  year: 2021
  ident: ref_47
  article-title: Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00966-0
– volume: 6
  start-page: 25265
  year: 2016
  ident: ref_4
  article-title: An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information
  publication-title: Sci. Rep.
  doi: 10.1038/srep25265
– ident: ref_131
– ident: ref_11
  doi: 10.1109/CHASE.2016.18
– ident: ref_124
– volume: 1
  start-page: CD009593
  year: 2013
  ident: ref_27
  article-title: Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults
  publication-title: Cochrane Database Syst. Rev.
– ident: ref_89
  doi: 10.1371/journal.pone.0212094
– ident: ref_7
– volume: 4
  start-page: 24
  year: 2016
  ident: ref_106
  article-title: Modeling Pulmonary Tuberculosis using Adaptive Neuro Fuzzy Inference System
  publication-title: Int. J. Innov. Res. Comput. Sci. Technol.
– ident: ref_107
  doi: 10.1109/CIPECH.2018.8724255
– volume: 9
  start-page: 1199
  year: 2020
  ident: ref_50
  article-title: Taxonomy on Healthcare System Based on Machine Learning Approaches: Tuberculosis Disease Diagnosis
  publication-title: Int. J. Comput. Digit. Syst.
  doi: 10.12785/ijcds/0906017
– volume: 323
  start-page: 37
  year: 2018
  ident: ref_83
  article-title: Recent advances in convolutional neural network acceleration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.038
– volume: 39
  start-page: 1862
  year: 2012
  ident: ref_118
  article-title: Diagnosis of chest diseases using artificial immune system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.064
– ident: ref_60
  doi: 10.1109/CIBEC.2018.8641816
– volume: 2013
  start-page: 3
  year: 2013
  ident: ref_6
  article-title: Novel coarse-to-fine dual scale technique for tuberculosis cavity detection in chest radiographs
  publication-title: Eurasip J. Image Video Process.
  doi: 10.1186/1687-5281-2013-3
– volume: 6
  start-page: 570
  year: 2006
  ident: ref_23
  article-title: Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(06)70578-3
– volume: 3
  start-page: 32
  year: 1986
  ident: ref_58
  article-title: Expert systems: Working systems and the research literature
  publication-title: Expert Syst.
  doi: 10.1111/j.1468-0394.1986.tb00192.x
– volume: 13
  start-page: 27
  year: 2017
  ident: ref_114
  article-title: A Genetic-Neuro-Fuzzy inferential model for diagnosis of tuberculosis
  publication-title: Appl. Comput. Informatics.
  doi: 10.1016/j.aci.2015.06.001
– volume: 13
  start-page: 13308
  year: 2018
  ident: ref_115
  article-title: Genetic-Neuro-Fuzzy Inferential Model for Tuberculosis Detection
  publication-title: Int. J. Appl. Eng. Res.
– ident: ref_130
– volume: 9
  start-page: 7556
  year: 2019
  ident: ref_62
  article-title: Current status and future trends of clinical diagnoses via image-based deep learning
  publication-title: Theranostics
  doi: 10.7150/thno.38065
– volume: 10
  start-page: 594030
  year: 2021
  ident: ref_49
  article-title: Machine Learning Algorithms Evaluate Immune Response to Novel Mycobacterium tuberculosis Antigens for Diagnosis of Tuberculosis
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2020.594030
– volume: 3
  start-page: 21
  year: 2010
  ident: ref_116
  article-title: Aickelin Artificial Immune Systems
  publication-title: Int. J. Recent Res. Appl. Stud.
– volume: 5
  start-page: 165
  year: 1991
  ident: ref_36
  article-title: Direct diagnosis of tuberculosis by computer assisted pattern recognition gas chromatographic analysis of sputum
  publication-title: Biomed. Chromatogr.
  doi: 10.1002/bmc.1130050406
– ident: ref_101
  doi: 10.1007/s00521-022-07258-6
– volume: 65
  start-page: 386
  year: 1958
  ident: ref_34
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– ident: ref_29
– volume: 116
  start-page: 968
  year: 1999
  ident: ref_39
  article-title: Predicting Active Pulmonary Tuberculosis Using an Artificial Neural Network
  publication-title: Chest
  doi: 10.1378/chest.116.4.968
– volume: 1490
  start-page: 012020
  year: 2020
  ident: ref_88
  article-title: Convolutional neural network modeling for classification of pulmonary tuberculosis disease
  publication-title: J. Physics: Conf. Ser.
– volume: 17
  start-page: e24557
  year: 2015
  ident: ref_120
  article-title: Diagnosing tuberculosis with a novel support vector machine-based artificial immune recognition system, Iran
  publication-title: Red Crescent Med. J.
– volume: 109
  start-page: 373
  year: 2019
  ident: ref_54
  article-title: A survey on semi-supervised learning
  publication-title: Mach. Learn.
– volume: 5
  start-page: 20
  year: 2015
  ident: ref_113
  article-title: Diagnosis Chest Diseases Using Neural Network and Genetic Hybrid Algorithm
  publication-title: Int. J. Eng. Res. Appl.
– volume: Volume 1842
  start-page: 18
  year: 2000
  ident: ref_48
  article-title: Unsupervised learning of models for recognition
  publication-title: Computer Vision—ECCV 2000. ECCV 2000. Lecture Notes in Computer Science
– ident: ref_122
  doi: 10.1109/BIBM.2018.8621355
– ident: ref_133
– volume: 3
  start-page: e543
  year: 2021
  ident: ref_138
  article-title: Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: An evaluation of five artificial intelligence algorithms
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00116-3
– ident: ref_75
  doi: 10.1109/CVPR42600.2020.00272
SSID ssj0000913830
Score 2.4796724
SecondaryResourceType review_article
Snippet Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2634
SubjectTerms Algorithms
Artificial intelligence
Automation
Bacteria
Bacterial infections
Computer-aided medical diagnosis
Data mining
Deep learning
Developing countries
Diagnosis
Diagnostic imaging
Drug resistance
Fuzzy logic
Genetic algorithms
Immune system
Infectious diseases
LDCs
Light emitting diodes
Lung diseases
Lungs
Machine learning
Methods
Microscopy
Neural networks
Patients
Pattern recognition
Tuberculosis
X-rays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_q9UH7IH7iaZU8CL4YmmQ_siuIXO2VIvQQaaFvS5JNysG5d3bvFP97Z26z1zuR4vMmIewv85XM_AbgLdp0b2RmuRfO89T5EvVgKHiS5dqHxIrSUe3w-SQ_u0y_XGVXezDpa2EorbLXiWtFXc8d3ZEfKU2egZRaflr84NQ1il5X-xYaJrZWqD-uKcbuwb4iZqwB7B-PJ1-_bW5diAWzSERHP5RgvH90222mRbHXKk_SHRP1t6I-gPurZmF-_zKz2ZYlOn0ED6MLyUYd5o9hzzdP4GCLWPApfB__jEeKzQM7XydMeha5VK_ZtGEXK-tv3Go2b6ctO-ny7abtBzZi3WsBzTvxfrGZxI_R3tUsPuyw0dbD9zO4PB1ffD7jsbECd-ifLLkqbJ7atA7CSyNMSU6M9A59p4D-W15oZYXLvNVUiWoRTBEwzgpSWUOlvnXyHAbNvPEvgDkbSi1UKLTF2KeUhdC2sKmXCLbJghyC6v9l5SLrODW_mFUYfRAA1T8AGML7zaRFR7px9_B3BFJFIolrOxMrC3CHRG5VjTR6iRQb4cjDnZEoSm73cw9zFUW5rW4P3hD4Bvr_2dfLu5d7BQ8U1VKsE9YOYbC8WfnX6OEs7Zt4bP8AFPX8qw
  priority: 102
  providerName: ProQuest
Title Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications
URI https://www.proquest.com/docview/2711291171
https://www.mdpi.com/2079-9292/11/17/2634/pdf?version=1661252358
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9i7QF24BttY1Q-IHEhi50vJ7ugjLZMiFYTrNI4RbZro2pdWi3N0PjreW7c0k4IgTjlEL_Ejt_H78XvA-A12nQtWCw9TZX2IqUz1IMm9cI44dqEkmbK5g4PhsnpKPp4EV9sZPHbsEp0xSdLJR1QnnlovwOfMZ9xP0jCyJ-Pzbsb9y-JJdZA22zPHWgnMaLxFrRHw7P8q-0pt6Juig2F6N37v3rLVCjk3D5wyyDdVcu7cL8u5-L2u5hON-xO_xGI1YybcJPLo3ohj9SPO8Uc_2dJj-GhA6Ukb7joCdzT5VPY3ShV-AyuejeOScnMkMEyBFMTV531G5mU5LyW-lrV01k1qUi3ieCbVMckJ835g6Xraj1fE3knaEHHxB0VkXzjKP05jPq98_ennmvV4ClEPAsvSGUSyWhsqGaCiszCIqYVojGDiDBJeSCpirXkNrdVIntQg56bYYEUNnl4HL6AVjkr9R4QJU3GaWBSLtGbylhKuUxlpBmyj4gN24dgtV-FcnXMbTuNaYH-jN3k4jebvA9v10TzpozHn4e_sYxQWCHHZyvhchVwhrZcVpFzxJ3W28KRh1sjUTjV9u0VKxVOOVQFfhpEWfgqXIu3Zq-_mdfBP45_CQ8Cm66xjIk7hNbiutavEEQtZAd20v6HDrTz7uDTF7ye9IZnnztOen4C_DIcNA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDzVlAI-gLiwqu19eBepQilJldImQiiVeltsr40ihU3aTaj65_htjLPeNEGo4tLz2pbXM56HZ-YbgLeo041ksQoM1SaItMlQDto0CONEGBsqmmlXO9wfJL3z6MtFfLEBv5taGJdW2cjEhaAuJtq9kR9w4SwDxgT7NL0MXNcoF11tWmhI31qhOFxAjPnCjlNzc40uXHV40kF6v-P8uDv83At8l4FAo7KeBTxVSaSiwlLDJJWZ0-jMaDQkLBozSSq4ojo2SriyTIV_Ri06HZZxJV3daxHiug9gKwqjDJ2_raPu4Ou35SuPQ91MQ1rDHYVhRg9uu9tUKGYET8JoTSX-rRh2YHteTuXNtRyPVzTf8WN45E1W0q557AlsmPIp7KwAGT6Dn91fnoXJxJL-IkHTEI_d-oOMSjKcK3Ol5-NJNapIp87vG1UfSZvU0Qk3r2PMdDkpOEL9WhAfSCLtlUD7czi_lyN-AZvlpDS7QLSymaDcpkKhr5WxlAqVqsgwZC4ZW9YC3pxlrj3KuWu2Mc7R23EEyP9BgBZ8WE6a1iAfdw9_74iUOxGAa2vpKxlwhw5MK28LtEqdL4Yj99dG4tXV658bMudedFT5LaO3IFiS_n_2tXf3cm9guzfsn-VnJ4PTl_CQuzqORbLcPmzOrubmFVpXM_XaszCB7_d9a_4AYHo4hg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgE9IJ4iUMAHEBes2N6Hd5EQCqShpbTi0Eq9bdeOjSKFTegmVP1r_Dpmst40Qaji0vPaltcznodn5huAV6jTXSkTw52wjsfW5SgHfcajJNXOR0bklmqHDw7T3eP4y0lysgG_21oYSqtsZeJCUA8nlt7Iu0qTZSClll0f0iK-9Qcfpj85dZCiSGvbTqNhkX13cY7uW_1-r4-0fq3UYOfo0y4PHQa4RUU94yozaWzioRdOlqLMSZtLZ9GI8GjIpJlWRtjEGU0lmQb_Snh0OLxUpqSa12GE696Am5pQ3KlKffB5-b5DeJtZJBqgoyjKRfeyr02NAkarNIrXlOHfKmELbs-raXlxXo7HKzpvcA_uBmOV9Rruug8brnoAWysQhg_hx86vwLxs4tnBIjXTsYDa-p2NKnY0N-7MzseTelSzfpPZN6rfsR5r4hI0r-_cdDmJf0TNOmQhhMR6KyH2R3B8LQf8GDarSeWeALPG51oon2mDXlYuM6FNZmInka3KxMsOqPYsCxvwzanNxrhAP4cIUPyDAB14u5w0beA9rh7-hohU0OXHtW0ZahhwhwSjVfQ02qPkheHI7bWReGnt-ueWzEUQGnVxyeId4EvS_8--nl693Eu4hXel-Lp3uP8M7igq4FhkyW3D5uxs7p6jWTUzLxb8y-D0ui_MH9dENiA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8a5TA4APvS2Njkw6RdZmI7H052mcIAoUmgHajETpHt2qiiSyvSMI2_fs-NW1qE0Kad8-zY8fv4vfh9AHxAm24VTzW1zFiaGFugHnQ5jdNMWhdrVhifO3x6lp30k28X6cVSFr8Pq0RXfDhT0oLJgqL9FhHnEZeRyOIkmgzcl5vwL4ln3kD7bM81WM9SROM9WO-ffS9_-J5y89FdsaEYvfvorrdMg0Iu_YQrBum-Wt6Ep209Ub9_qdFoye4cb4Oar7gLN7nab6d639zeK-b4P1vaga0ASknZcdEzeGLr57C5VKrwBfw8uglMSsaOnM5CMC0J1VkvybAm562216YdjZthQw67CL5h85mUpLt_8OMOrZ0sBtEDtKADEq6KSLl0lf4S-sdH519PaGjVQA0inikVuc4SnQwcs1wxVXhYxK1BNOYQEWa5FJqZ1Grpc1s1sgdz6Lk5LrTyycOD-BX06nFtXwMx2hWSCZdLjd5UwXMmda4Ty5F9VOr4Loj5eVUm1DH37TRGFfoz_pCrBw55Fz4tBk26Mh6Pk3_0jFB5Ice5jQq5CrhCXy6rKiXiTu9tIeXeCiUKp1l9PGelKiiHpsJPgygLX4V7oQv2-pt1vflH-rewIXy6xiwmbg960-vWvkMQNdXvg5z8AcYcGCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Machine+Learning+in+Tuberculosis+Diagnosis%3A+A+Review+of+Deep+Learning-Based+Medical+Applications&rft.jtitle=Electronics+%28Basel%29&rft.au=Singh%2C+Manisha&rft.au=Pujar%2C+Gurubasavaraj+Veeranna&rft.au=Kumar%2C+Sethu+Arun&rft.au=Bhagyalalitha%2C+Meduri&rft.date=2022-09-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=17&rft.spage=2634&rft_id=info:doi/10.3390%2Felectronics11172634&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11172634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon