Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications
Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD app...
Saved in:
| Published in | Electronics (Basel) Vol. 11; no. 17; p. 2634 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics11172634 |
Cover
| Abstract | Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD approaches using machine learning have been applied for TB diagnosis, specific to the artificial intelligence (AI) domain, which has led to the resurgence of AI in the medical field. Deep learning (DL), a major branch of AI, provides bigger room for diagnosing deadly TB disease. This review is focused on the limitations of conventional TB diagnostics and a broad description of various machine learning algorithms and their applications in TB diagnosis. Furthermore, various deep learning methods integrated with other systems such as neuro-fuzzy logic, genetic algorithm, and artificial immune systems are discussed. Finally, multiple state-of-the-art tools such as CAD4TB, Lunit INSIGHT, qXR, and InferRead DR Chest are summarized to view AI-assisted future aspects in TB diagnosis. |
|---|---|
| AbstractList | Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD approaches using machine learning have been applied for TB diagnosis, specific to the artificial intelligence (AI) domain, which has led to the resurgence of AI in the medical field. Deep learning (DL), a major branch of AI, provides bigger room for diagnosing deadly TB disease. This review is focused on the limitations of conventional TB diagnostics and a broad description of various machine learning algorithms and their applications in TB diagnosis. Furthermore, various deep learning methods integrated with other systems such as neuro-fuzzy logic, genetic algorithm, and artificial immune systems are discussed. Finally, multiple state-of-the-art tools such as CAD4TB, Lunit INSIGHT, qXR, and InferRead DR Chest are summarized to view AI-assisted future aspects in TB diagnosis. |
| Audience | Academic |
| Author | Pujar, Gurubasavaraj Veeranna Gandomi, Amir H. Singh, Manisha Bhagyalalitha, Meduri Abuhaija, Belal Kumar, Sethu Arun Alsoud, Anas Ratib Akshatha, Handattu Shankaranarayana Abualigah, Laith Beeraka, Narasimha M. |
| Author_xml | – sequence: 1 givenname: Manisha surname: Singh fullname: Singh, Manisha – sequence: 2 givenname: Gurubasavaraj Veeranna orcidid: 0000-0002-0658-3636 surname: Pujar fullname: Pujar, Gurubasavaraj Veeranna – sequence: 3 givenname: Sethu Arun surname: Kumar fullname: Kumar, Sethu Arun – sequence: 4 givenname: Meduri surname: Bhagyalalitha fullname: Bhagyalalitha, Meduri – sequence: 5 givenname: Handattu Shankaranarayana surname: Akshatha fullname: Akshatha, Handattu Shankaranarayana – sequence: 6 givenname: Belal orcidid: 0000-0002-7964-6327 surname: Abuhaija fullname: Abuhaija, Belal – sequence: 7 givenname: Anas Ratib orcidid: 0000-0002-1410-8843 surname: Alsoud fullname: Alsoud, Anas Ratib – sequence: 8 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith – sequence: 9 givenname: Narasimha M. surname: Beeraka fullname: Beeraka, Narasimha M. – sequence: 10 givenname: Amir H. orcidid: 0000-0002-2798-0104 surname: Gandomi fullname: Gandomi, Amir H. |
| BookMark | eNqNkUlLBDEQhYMouP4CLwHPrVl6mXgbd2EGQcZzk05XxkgmaZNuxX9vxhE3REwOeYT3Vb1UttG68w4Q2qfkkHNBjsCC6oN3RkVKacVKnq-hLUYqkQkm2PoXvYn2YnwgaQnKR5xsocX5k7dDb7zDXuOpVPfGAZ6ADM64OTYOz4YGghqsjybiMyPnbqmO8RjfwpOB5yV3BtB9QNmJjNDiKbRGSYvHXWeTWLaIu2hDSxth7_3cQXcX57PTq2xyc3l9Op5kio9En7FRU-ZN3moCVBIp0qMqCqqguc5JUY4q1hBVQFORMq8aBpLokgpNWSMLRlnLd1C-qju4Tr48S2vrLpiFDC81JfVyavUvU0vYwQrrgn8cIPb1gx-CS0nrFIAykYz00zWXFmrjtO-DVAsTVT2u8qIkPMVKrsNfXGm3sDAq_aA26f4bwFeACj7GAPqfkcUPSpn-bdipnbF_sq-ZS7HW |
| CitedBy_id | crossref_primary_10_1007_s11277_024_11587_1 crossref_primary_10_1007_s40846_023_00783_2 crossref_primary_10_1016_j_imed_2023_06_001 crossref_primary_10_1109_ACCESS_2024_3505608 crossref_primary_10_1016_j_jksuci_2023_101568 crossref_primary_10_1186_s12880_024_01192_w crossref_primary_10_2196_69068 crossref_primary_10_1186_s40779_023_00490_8 crossref_primary_10_1186_s12864_024_10066_y crossref_primary_10_1038_s41598_024_65703_z crossref_primary_10_2196_43154 crossref_primary_10_1109_ACCESS_2024_3386208 crossref_primary_10_1080_07391102_2024_2436552 crossref_primary_10_3390_electronics12040957 crossref_primary_10_3390_s23052582 crossref_primary_10_1109_JBHI_2024_3367736 crossref_primary_10_1007_s00521_023_09381_4 crossref_primary_10_3390_diagnostics13203244 crossref_primary_10_1016_j_heliyon_2024_e32270 crossref_primary_10_3390_bioengineering10091076 crossref_primary_10_61186_ijbc_15_3_68 crossref_primary_10_29121_shodhkosh_v3_i2_2022_3181 crossref_primary_10_1016_j_eswa_2022_119287 crossref_primary_10_2196_54388 crossref_primary_10_1016_j_bspc_2024_106981 crossref_primary_10_1038_s41573_024_00933_4 crossref_primary_10_3233_JIFS_230528 crossref_primary_10_47495_okufbed_1342465 crossref_primary_10_1038_s41598_024_78247_z crossref_primary_10_1155_2023_9161763 crossref_primary_10_3389_fgene_2023_1094099 crossref_primary_10_1371_journal_pone_0309151 crossref_primary_10_3390_s23156781 crossref_primary_10_1186_s12880_025_01630_3 crossref_primary_10_18632_aging_204765 crossref_primary_10_1007_s11831_023_09901_4 crossref_primary_10_1016_j_heliyon_2023_e16807 crossref_primary_10_1016_j_ibmed_2024_100196 crossref_primary_10_3390_microorganisms13040722 crossref_primary_10_1155_2022_3861161 crossref_primary_10_29121_shodhkosh_v5_i3_2024_3181 crossref_primary_10_3390_diagnostics14010084 |
| Cites_doi | 10.1038/s41598-019-42557-4 10.1002/bms.1200030402 10.1016/S0140-6736(19)30024-8 10.4103/ijo.IJO_1989_18 10.1371/journal.pmed.1002754 10.1007/s11517-016-1465-1 10.1109/5254.708428 10.9734/ajrcos/2018/v2i124763 10.1016/bs.armc.2019.05.004 10.1109/ISDA.2010.5687018 10.1016/0045-7949(91)90458-X 10.1155/2011/193963 10.1016/j.neunet.2014.09.003 10.1007/s11892-018-1076-3 10.1109/TMI.2015.2505672 10.1148/radiol.2017162326 10.1038/s41746-019-0138-5 10.4155/fmc-2016-0197 10.4103/ijmy.ijmy_61_17 10.1016/j.mib.2011.07.022 10.1016/j.asoc.2010.08.024 10.18653/v1/2020.acl-main.491 10.1007/s11227-020-03152-x 10.3201/eid2505.181823 10.1146/annurev-neuro-080317-061948 10.1164/ajrccm.155.5.9154881 10.1016/j.cmpb.2018.04.013 10.17485/ijst/2014/v7i4.19 10.1109/ICSCCC.2018.8703316 10.1016/j.eswa.2013.09.004 10.1109/TMI.2016.2528162 10.1145/3287560.3287574 10.1109/ICCES.2018.8639200 10.1109/EIT.2019.8833768 10.1136/bmjopen-2014-004818 10.1111/resp.13393 10.1109/ACCESS.2020.3031384 10.1109/SERA.2011.30 10.1080/17460441.2018.1465407 10.1016/j.inffus.2019.12.012 10.1371/journal.pone.0236112 10.1002/ima.22427 10.1117/12.2216198 10.1007/s11517-015-1323-6 10.5465/amr.2019.0178 10.1109/ACPR.2015.7486599 10.1016/j.heliyon.2020.e04614 10.1164/rccm.200509-1516PP 10.1021/acs.molpharmaceut.7b00875 10.1016/j.smhl.2017.04.003 10.3348/kjr.2022.0193 10.1016/S0926-5805(02)00091-2 10.1007/s12652-020-02612-9 10.1016/j.cmpb.2018.01.009 10.1016/j.tube.2020.102049 10.1016/S0140-6736(15)60570-0 10.1016/j.inffus.2021.05.009 10.1007/s10916-018-0991-9 10.1117/1.JMI.4.2.027503 10.1038/nature14539 10.1148/radiology.177.3.2244001 10.1073/pnas.140102797 10.1038/s41598-020-62960-6 10.7150/ijms.8249 10.1007/978-981-15-0947-6_31 10.1016/S0031-3203(99)00137-5 10.1109/FUZZ-IEEE.2019.8859010 10.1109/TFUZZ.2020.2966163 10.21037/jtd.2019.08.34 10.1371/journal.pone.0112980 10.1109/ICIP.2017.8296695 10.1016/S2589-7500(20)30221-1 10.18280/ts.370620 10.1128/JCM.42.5.2321-2325.2004 10.1183/09031936.00061808 10.1007/978-1-4471-1599-1 10.1007/978-3-030-50423-6_42 10.1016/j.bios.2018.05.017 10.1007/978-3-662-43631-8_3 10.1007/s10103-019-02947-6 10.1007/s13246-020-00966-0 10.1038/srep25265 10.1109/CHASE.2016.18 10.1371/journal.pone.0212094 10.1109/CIPECH.2018.8724255 10.12785/ijcds/0906017 10.1016/j.neucom.2018.09.038 10.1016/j.eswa.2011.08.064 10.1109/CIBEC.2018.8641816 10.1186/1687-5281-2013-3 10.1016/S1473-3099(06)70578-3 10.1111/j.1468-0394.1986.tb00192.x 10.1016/j.aci.2015.06.001 10.7150/thno.38065 10.3389/fcimb.2020.594030 10.1002/bmc.1130050406 10.1007/s00521-022-07258-6 10.1037/h0042519 10.1378/chest.116.4.968 10.1109/BIBM.2018.8621355 10.1016/S2589-7500(21)00116-3 10.1109/CVPR42600.2020.00272 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics11172634 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics11172634 A745603064 10_3390_electronics11172634 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c389t-28b64b4df0e1a0a917271ec514f4056872b0c5eb70647b2ea0f619f12ba5212d3 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 04:12:51 EDT 2025 Fri Jul 25 02:43:34 EDT 2025 Mon Oct 20 22:57:28 EDT 2025 Mon Oct 20 17:07:35 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Thu Oct 16 04:44:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-28b64b4df0e1a0a917271ec514f4056872b0c5eb70647b2ea0f619f12ba5212d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0658-3636 0000-0002-7964-6327 0000-0002-1410-8843 0000-0002-2798-0104 0000-0002-2203-4549 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/17/2634/pdf?version=1661252358 |
| PQID | 2711291171 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics11172634 proquest_journals_2711291171 gale_infotracmisc_A745603064 gale_infotracacademiconefile_A745603064 crossref_primary_10_3390_electronics11172634 crossref_citationtrail_10_3390_electronics11172634 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Dye (ref_5) 2000; 97 Andika (ref_88) 2020; 1490 ref_136 ref_92 Er (ref_118) 2012; 39 ref_91 Abe (ref_35) 1976; 3 Miotto (ref_21) 2018; 23 ref_12 Asada (ref_37) 1990; 177 ref_131 ref_11 ref_130 ref_133 ref_97 ref_132 ref_135 Saybani (ref_121) 2016; 54 ref_134 Gao (ref_45) 2018; 15 Lakhani (ref_69) 2017; 284 Maliwan (ref_36) 1991; 5 ref_15 Buchanan (ref_58) 1986; 3 Maulik (ref_111) 2000; 33 Rahman (ref_59) 2020; 8 Berthel (ref_13) 2019; Volume 52 Mylotte (ref_41) 1997; 155 Karmani (ref_50) 2020; 9 Brabazon (ref_110) 2015; 28 ref_126 Khan (ref_139) 2020; 2 Steingart (ref_23) 2006; 6 ref_128 Gupta (ref_33) 2018; 115 ref_127 ref_129 Greensmith (ref_116) 2010; 3 Raymond (ref_46) 2018; 41 Hartigan (ref_143) 2017; 28 ref_22 ref_122 ref_124 ref_123 Shin (ref_84) 2016; 35 Saybani (ref_120) 2015; 17 ref_29 Goni (ref_108) 2018; 2 Rohilla (ref_93) 2017; 6 Vathana (ref_115) 2018; 13 Cole (ref_2) 2011; 14 Mbuagbaw (ref_19) 2019; 25 Sharma (ref_18) 2017; 5 ref_70 Kumar (ref_53) 2019; 67 Ojha (ref_24) 2020; 35 Jaeger (ref_72) 2014; 4 Melendez (ref_4) 2016; 6 Omisore (ref_114) 2017; 13 Kim (ref_55) 2020; 12 ref_76 ref_75 ref_74 Virenfeldt (ref_31) 2014; 4 Ko (ref_63) 2003; 12 Shrivastava (ref_106) 2016; 4 Melendez (ref_57) 2015; 35 Uplekar (ref_26) 2015; 385 ref_89 ref_141 Hoos (ref_54) 2019; 109 ref_87 ref_86 ref_85 Geetha (ref_112) 2014; 7 Xu (ref_62) 2019; 9 Qin (ref_138) 2021; 3 Richeldi (ref_14) 2006; 174 Chithra (ref_99) 2020; 30 Lee (ref_137) 2022; 23 Chang (ref_100) 2020; 76 Reker (ref_56) 2017; 9 Noubissi (ref_17) 2018; 18 Steingart (ref_27) 2013; 1 Gentili (ref_71) 2018; 2125 Srivastava (ref_78) 2014; 15 Msonda (ref_90) 2020; 37 Mendoza (ref_51) 2018; 157 Filho (ref_73) 2020; Volume 12140 Jasmer (ref_16) 2015; 30 ref_61 ref_60 ref_68 ref_67 ref_66 Vajda (ref_10) 2018; 42 Shamshirband (ref_119) 2014; 11 Aguiar (ref_52) 2016; 54 Hsiao (ref_39) 1999; 116 Ahmadi (ref_103) 2018; 161 Zhou (ref_32) 2011; 2011 Pasa (ref_102) 2019; 9 Asay (ref_98) 2020; 10 Oreski (ref_109) 2014; 41 Dasgupta (ref_117) 2011; 11 LeCun (ref_81) 2015; 521 Bhirud (ref_20) 2017; 6 Ayaz (ref_47) 2021; 44 Gawehn (ref_140) 2018; 13 Xu (ref_6) 2013; 2013 Meier (ref_49) 2021; 10 Sathitratanacheewin (ref_9) 2020; 6 Ling (ref_28) 2008; 32 Qin (ref_125) 2021; 127 ref_30 Miller (ref_65) 2019; 2 Reid (ref_3) 2019; 393 Adadi (ref_95) 2020; Volume 1076 Vilone (ref_94) 2021; 76 ref_38 Weber (ref_48) 2000; Volume 1842 Rosenblatt (ref_34) 1958; 65 ref_104 Zhang (ref_83) 2018; 323 Bennetot (ref_96) 2020; 58 Vally (ref_113) 2015; 5 ref_107 ref_44 Cruciani (ref_25) 2004; 42 ref_43 Denil (ref_79) 2013; 26 ref_42 Riad (ref_64) 1991; 40 Schmidhuber (ref_82) 2015; 61 ref_101 ref_1 Gregory (ref_80) 2021; 46 Alcantara (ref_142) 2017; 1 Hearst (ref_40) 1998; 13 Kang (ref_105) 2021; 29 ref_8 Shah (ref_77) 2017; 4 ref_7 |
| References_xml | – volume: 9 start-page: 6268 year: 2019 ident: ref_102 article-title: Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization publication-title: Sci. Rep. doi: 10.1038/s41598-019-42557-4 – volume: 3 start-page: 151 year: 1976 ident: ref_35 article-title: Applications of computerized pattern recognition: A survey of correlations between pharmacological activities and mass spectra publication-title: Biol. Mass Spectrom. doi: 10.1002/bms.1200030402 – volume: 393 start-page: 1331 year: 2019 ident: ref_3 article-title: Building a tuberculosis-free world: The Lancet Commission on tuberculosis publication-title: Lancet doi: 10.1016/S0140-6736(19)30024-8 – ident: ref_74 – volume: 67 start-page: 1004 year: 2019 ident: ref_53 article-title: Artificial intelligence in diabetic retinopathy: A natural step to the future publication-title: Indian J. Ophthalmol. doi: 10.4103/ijo.IJO_1989_18 – ident: ref_15 doi: 10.1371/journal.pmed.1002754 – volume: 54 start-page: 1751 year: 2016 ident: ref_52 article-title: Development of two artificial neural network models to support the diagnosis of pulmonary tuberculosis in hospitalized patients in Rio de Janeiro, Brazil publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-016-1465-1 – volume: 13 start-page: 18 year: 1998 ident: ref_40 article-title: Support Vector Machines publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.708428 – volume: 2 start-page: 1 year: 2018 ident: ref_108 article-title: Intelligent System for Diagnosing Tuberculosis Using Adaptive Neuro-Fuzzy publication-title: Asian J. Res. Comput. Sci. doi: 10.9734/ajrcos/2018/v2i124763 – volume: Volume 52 start-page: 1 year: 2019 ident: ref_13 article-title: Chapter One—Tuberculosis publication-title: Medicinal Chemistry Approaches to Tuberculosis and Trypanosomiasis doi: 10.1016/bs.armc.2019.05.004 – ident: ref_43 doi: 10.1109/ISDA.2010.5687018 – volume: 40 start-page: 67 year: 1991 ident: ref_64 article-title: A conceptual model for claim management in construction: An ai approach publication-title: Comput. Struct. doi: 10.1016/0045-7949(91)90458-X – volume: 2011 start-page: 1 year: 2011 ident: ref_32 article-title: Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments publication-title: Clin. Dev. Immunol. doi: 10.1155/2011/193963 – volume: 15 start-page: 1929 year: 2014 ident: ref_78 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 85 year: 2015 ident: ref_82 article-title: Deep Learning in Neural Networks: An Overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – ident: ref_132 – volume: 18 start-page: 125 year: 2018 ident: ref_17 article-title: Diabetes and HIV publication-title: Curr. Diabetes Rep. doi: 10.1007/s11892-018-1076-3 – ident: ref_42 – volume: 35 start-page: 1013 year: 2015 ident: ref_57 article-title: On Combining Multiple-Instance Learning and Active Learning for Computer-Aided Detection of Tuberculosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2505672 – ident: ref_1 – volume: 284 start-page: 574 year: 2017 ident: ref_69 article-title: Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – ident: ref_123 – volume: 2 start-page: 62 year: 2019 ident: ref_65 article-title: The medical AI insurgency: What physicians must know about data to practice with intelligent machines publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0138-5 – volume: 9 start-page: 381 year: 2017 ident: ref_56 article-title: Active learning for computational chemogenomics publication-title: Future Med. Chem. doi: 10.4155/fmc-2016-0197 – volume: 5 start-page: 491 year: 2017 ident: ref_18 article-title: Miliary Tuberculosis publication-title: ASM J. Microbiol. Spectr. – volume: 6 start-page: 296 year: 2017 ident: ref_20 article-title: Rapid Laboratory Diagnosis of Pulmonary Tuberculosis publication-title: Int. J. Mycobacteriol. doi: 10.4103/ijmy.ijmy_61_17 – ident: ref_141 – volume: 14 start-page: 570 year: 2011 ident: ref_2 article-title: New tuberculosis drugs on the horizon publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2011.07.022 – volume: 11 start-page: 1574 year: 2011 ident: ref_117 article-title: Recent advances in artificial immune systems: Models and applications publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2010.08.024 – ident: ref_67 doi: 10.18653/v1/2020.acl-main.491 – volume: 76 start-page: 8641 year: 2020 ident: ref_100 article-title: Two-stage classification of tuberculosis culture diagnosis using convolutional neural network with transfer learning publication-title: J. Supercomput. doi: 10.1007/s11227-020-03152-x – volume: 25 start-page: 936 year: 2019 ident: ref_19 article-title: Outcomes of bedaquiline treatment in patients with multidrug-resistant tuberculosis publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2505.181823 – ident: ref_135 – volume: 41 start-page: 233 year: 2018 ident: ref_46 article-title: Computational Principles of Supervised Learning in the Cerebellum publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-080317-061948 – volume: 26 start-page: 1 year: 2013 ident: ref_79 article-title: Predicting parameters in deep learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 155 start-page: 1711 year: 1997 ident: ref_41 article-title: Validity of a decision tree for predicting active pulmonary tuberculosis publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.155.5.9154881 – volume: 161 start-page: 145 year: 2018 ident: ref_103 article-title: Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.013 – ident: ref_128 – volume: 7 start-page: 421 year: 2014 ident: ref_112 article-title: Tuberculosis Disease Classification using Genetic-neuro Expert System publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2014/v7i4.19 – ident: ref_85 doi: 10.1109/ICSCCC.2018.8703316 – volume: 41 start-page: 2052 year: 2014 ident: ref_109 article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.004 – volume: 35 start-page: 1285 year: 2016 ident: ref_84 article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: ref_97 – ident: ref_30 – ident: ref_66 doi: 10.1145/3287560.3287574 – ident: ref_134 – ident: ref_86 doi: 10.1109/ICCES.2018.8639200 – volume: 6 start-page: 1073 year: 2017 ident: ref_93 article-title: TB Detection in Chest Radiograph Using Deep Learning Architecture publication-title: Int. J. Adv. Res. Sci. Eng. – ident: ref_87 doi: 10.1109/EIT.2019.8833768 – volume: 4 start-page: e004818 year: 2014 ident: ref_31 article-title: Treatment delay affects clinical severity of tuberculosis: A longitudinal cohort study publication-title: BMJ Open doi: 10.1136/bmjopen-2014-004818 – volume: 23 start-page: 1098 year: 2018 ident: ref_21 article-title: Drug resistance mechanisms and drug susceptibility testing for tuberculosis publication-title: Respirology doi: 10.1111/resp.13393 – ident: ref_129 – volume: 8 start-page: 191586 year: 2020 ident: ref_59 article-title: Reliable Tuberculosis Detection Using Chest X-ray with Deep Learning, Segmentation and Visualization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031384 – ident: ref_44 doi: 10.1109/SERA.2011.30 – volume: 13 start-page: 579 year: 2018 ident: ref_140 article-title: Advancing drug discovery via GPU-based deep learning. Expert Opinion on Drug Discovery publication-title: Expert Opin. Drug Discov. doi: 10.1080/17460441.2018.1465407 – volume: 58 start-page: 82 year: 2020 ident: ref_96 article-title: Explainable Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and chal-lenges toward responsible AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: ref_61 doi: 10.1371/journal.pone.0236112 – volume: 30 start-page: 994 year: 2020 ident: ref_99 article-title: Severity detection and infection level identification of tuberculosis using deep learning publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22427 – ident: ref_12 doi: 10.1117/12.2216198 – volume: 54 start-page: 385 year: 2016 ident: ref_121 article-title: RAIRS2 a new expert system for diagnosing tuberculosis with real-world tournament selection mechanism inside artificial immune recognition system publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1323-6 – volume: 46 start-page: 534 year: 2021 ident: ref_80 article-title: The Role of Artificial Intelligence and Data Network Effects for Creating User Value publication-title: Acad. Manag. Rev. doi: 10.5465/amr.2019.0178 – ident: ref_68 doi: 10.1109/ACPR.2015.7486599 – volume: 6 start-page: e04614 year: 2020 ident: ref_9 article-title: Deep learning for automated classification of tuberculosis-related chest X-Ray: Dataset distribution shift limits diagnostic performance generalizability publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04614 – volume: 174 start-page: 736 year: 2006 ident: ref_14 article-title: An Update on the Diagnosis of Tuberculosis Infection publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200509-1516PP – volume: 15 start-page: 4326 year: 2018 ident: ref_45 article-title: Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00875 – volume: 4 start-page: 475 year: 2014 ident: ref_72 article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quant. Imaging Med. Surg. – volume: 1 start-page: 66 year: 2017 ident: ref_142 article-title: Improving Tuberculosis Diagnostics using Deep Learning and Mobile Health Technologies among Resource-poor Communities in Perú publication-title: Smart Health doi: 10.1016/j.smhl.2017.04.003 – volume: 23 start-page: e52 year: 2022 ident: ref_137 article-title: Successful Implementation of an Artificial Intelligence-Based Computer-Aided Detection System for Chest Radiography in Daily Clinical Practice publication-title: Korean J. Radiol. doi: 10.3348/kjr.2022.0193 – volume: 12 start-page: 271 year: 2003 ident: ref_63 article-title: Hybrid use of AI techniques in developing construction management tools publication-title: Autom. Constr. doi: 10.1016/S0926-5805(02)00091-2 – ident: ref_91 doi: 10.1007/s12652-020-02612-9 – ident: ref_126 – volume: 157 start-page: 11 year: 2018 ident: ref_51 article-title: Tuberculosis diagnosis support analysis for precarious health information systems publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.01.009 – ident: ref_70 – volume: 127 start-page: 102049 year: 2021 ident: ref_125 article-title: A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers publication-title: Tuberculosis doi: 10.1016/j.tube.2020.102049 – volume: 385 start-page: 1799 year: 2015 ident: ref_26 article-title: WHO’s new End TB Strategy publication-title: Lancet doi: 10.1016/S0140-6736(15)60570-0 – volume: 76 start-page: 89 year: 2021 ident: ref_94 article-title: Notions of explainability and evaluation approaches for explainable artificial intelligence publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.05.009 – ident: ref_22 – volume: 42 start-page: 146 year: 2018 ident: ref_10 article-title: Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0991-9 – volume: 4 start-page: 027503 year: 2017 ident: ref_77 article-title: Ziehl–Neelsen sputum smear microscopy image database: A resource to facilitate automated bacilli detection for tuberculosis diagnosis publication-title: J. Med. Imaging doi: 10.1117/1.JMI.4.2.027503 – volume: 521 start-page: 436 year: 2015 ident: ref_81 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 177 start-page: 857 year: 1990 ident: ref_37 article-title: Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung diseases: Pilot study publication-title: Radiology doi: 10.1148/radiology.177.3.2244001 – ident: ref_136 – volume: 97 start-page: 8180 year: 2000 ident: ref_5 article-title: Criteria for the control of drug-resistant tuberculosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.140102797 – volume: 10 start-page: 6047 year: 2020 ident: ref_98 article-title: Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models using Deep Convolutional Neural Networks publication-title: Sci. Rep. doi: 10.1038/s41598-020-62960-6 – volume: 11 start-page: 508 year: 2014 ident: ref_119 article-title: Tuberculosis disease diagnosis using artificial immune recognition system publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.8249 – volume: Volume 1076 start-page: 327 year: 2020 ident: ref_95 article-title: Explainable AI for Healthcare: From Black Box to Interpretable Models publication-title: Advances in Intelligent Systems and Computing doi: 10.1007/978-981-15-0947-6_31 – volume: 33 start-page: 1455 year: 2000 ident: ref_111 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00137-5 – ident: ref_104 doi: 10.1109/FUZZ-IEEE.2019.8859010 – volume: 29 start-page: 34 year: 2021 ident: ref_105 article-title: A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2966163 – ident: ref_127 – volume: 2125 start-page: 6 year: 2018 ident: ref_71 article-title: ImageCLEF2018: Transfer learning for deep learning with CNN for tuberculosis classification publication-title: CEUR Workshop Proc. – volume: 12 start-page: 5078 year: 2020 ident: ref_55 article-title: Refining dataset curation methods for deep learning-based automated tuberculosis screening publication-title: J. Thorac. Dis. doi: 10.21037/jtd.2019.08.34 – ident: ref_76 doi: 10.1371/journal.pone.0112980 – ident: ref_92 doi: 10.1109/ICIP.2017.8296695 – volume: 30 start-page: 13 year: 2015 ident: ref_16 article-title: Latent Tuberculosis Infection publication-title: J. Gastroenterol. Hepatol. – volume: 2 start-page: e573 year: 2020 ident: ref_139 article-title: Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: A prospective study of diagnostic accuracy for culture-confirmed disease publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30221-1 – volume: 37 start-page: 1075 year: 2020 ident: ref_90 article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Automatic Tuberculosis Diagnosis publication-title: Trait. Du Signal doi: 10.18280/ts.370620 – volume: 42 start-page: 2321 year: 2004 ident: ref_25 article-title: Meta-Analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without Solid Media, for Detection of Mycobacteria publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.42.5.2321-2325.2004 – volume: 32 start-page: 1165 year: 2008 ident: ref_28 article-title: GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: A meta-analysis publication-title: Eur. Respir. J. doi: 10.1183/09031936.00061808 – ident: ref_8 – ident: ref_38 doi: 10.1007/978-1-4471-1599-1 – volume: Volume 12140 start-page: 563 year: 2020 ident: ref_73 article-title: Preliminary Results on Pulmonary Tuberculosis Detection in Chest X-Ray Using Convolutional Neural Networks publication-title: Computational Science—ICCS 2020. ICCS 2020 doi: 10.1007/978-3-030-50423-6_42 – volume: 28 start-page: 100 year: 2017 ident: ref_143 article-title: Algorithm AS 136: A k-Means Clustering Algorithm publication-title: J. R. Stat. Soc. C Appl. – volume: 115 start-page: 14 year: 2018 ident: ref_33 article-title: Recent technological advancements in tuberculosis diagnostics—A review publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.05.017 – volume: 28 start-page: 21 year: 2015 ident: ref_110 article-title: Genetic algorithm publication-title: Nat. Comput. Algorithms doi: 10.1007/978-3-662-43631-8_3 – volume: 35 start-page: 1431 year: 2020 ident: ref_24 article-title: Light emitting diode (LED) based fluorescence microscopy for tuberculosis detection: A review publication-title: Lasers Med. Sci. doi: 10.1007/s10103-019-02947-6 – volume: 44 start-page: 183 year: 2021 ident: ref_47 article-title: Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00966-0 – volume: 6 start-page: 25265 year: 2016 ident: ref_4 article-title: An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information publication-title: Sci. Rep. doi: 10.1038/srep25265 – ident: ref_131 – ident: ref_11 doi: 10.1109/CHASE.2016.18 – ident: ref_124 – volume: 1 start-page: CD009593 year: 2013 ident: ref_27 article-title: Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults publication-title: Cochrane Database Syst. Rev. – ident: ref_89 doi: 10.1371/journal.pone.0212094 – ident: ref_7 – volume: 4 start-page: 24 year: 2016 ident: ref_106 article-title: Modeling Pulmonary Tuberculosis using Adaptive Neuro Fuzzy Inference System publication-title: Int. J. Innov. Res. Comput. Sci. Technol. – ident: ref_107 doi: 10.1109/CIPECH.2018.8724255 – volume: 9 start-page: 1199 year: 2020 ident: ref_50 article-title: Taxonomy on Healthcare System Based on Machine Learning Approaches: Tuberculosis Disease Diagnosis publication-title: Int. J. Comput. Digit. Syst. doi: 10.12785/ijcds/0906017 – volume: 323 start-page: 37 year: 2018 ident: ref_83 article-title: Recent advances in convolutional neural network acceleration publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.038 – volume: 39 start-page: 1862 year: 2012 ident: ref_118 article-title: Diagnosis of chest diseases using artificial immune system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.064 – ident: ref_60 doi: 10.1109/CIBEC.2018.8641816 – volume: 2013 start-page: 3 year: 2013 ident: ref_6 article-title: Novel coarse-to-fine dual scale technique for tuberculosis cavity detection in chest radiographs publication-title: Eurasip J. Image Video Process. doi: 10.1186/1687-5281-2013-3 – volume: 6 start-page: 570 year: 2006 ident: ref_23 article-title: Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(06)70578-3 – volume: 3 start-page: 32 year: 1986 ident: ref_58 article-title: Expert systems: Working systems and the research literature publication-title: Expert Syst. doi: 10.1111/j.1468-0394.1986.tb00192.x – volume: 13 start-page: 27 year: 2017 ident: ref_114 article-title: A Genetic-Neuro-Fuzzy inferential model for diagnosis of tuberculosis publication-title: Appl. Comput. Informatics. doi: 10.1016/j.aci.2015.06.001 – volume: 13 start-page: 13308 year: 2018 ident: ref_115 article-title: Genetic-Neuro-Fuzzy Inferential Model for Tuberculosis Detection publication-title: Int. J. Appl. Eng. Res. – ident: ref_130 – volume: 9 start-page: 7556 year: 2019 ident: ref_62 article-title: Current status and future trends of clinical diagnoses via image-based deep learning publication-title: Theranostics doi: 10.7150/thno.38065 – volume: 10 start-page: 594030 year: 2021 ident: ref_49 article-title: Machine Learning Algorithms Evaluate Immune Response to Novel Mycobacterium tuberculosis Antigens for Diagnosis of Tuberculosis publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2020.594030 – volume: 3 start-page: 21 year: 2010 ident: ref_116 article-title: Aickelin Artificial Immune Systems publication-title: Int. J. Recent Res. Appl. Stud. – volume: 5 start-page: 165 year: 1991 ident: ref_36 article-title: Direct diagnosis of tuberculosis by computer assisted pattern recognition gas chromatographic analysis of sputum publication-title: Biomed. Chromatogr. doi: 10.1002/bmc.1130050406 – ident: ref_101 doi: 10.1007/s00521-022-07258-6 – volume: 65 start-page: 386 year: 1958 ident: ref_34 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – ident: ref_29 – volume: 116 start-page: 968 year: 1999 ident: ref_39 article-title: Predicting Active Pulmonary Tuberculosis Using an Artificial Neural Network publication-title: Chest doi: 10.1378/chest.116.4.968 – volume: 1490 start-page: 012020 year: 2020 ident: ref_88 article-title: Convolutional neural network modeling for classification of pulmonary tuberculosis disease publication-title: J. Physics: Conf. Ser. – volume: 17 start-page: e24557 year: 2015 ident: ref_120 article-title: Diagnosing tuberculosis with a novel support vector machine-based artificial immune recognition system, Iran publication-title: Red Crescent Med. J. – volume: 109 start-page: 373 year: 2019 ident: ref_54 article-title: A survey on semi-supervised learning publication-title: Mach. Learn. – volume: 5 start-page: 20 year: 2015 ident: ref_113 article-title: Diagnosis Chest Diseases Using Neural Network and Genetic Hybrid Algorithm publication-title: Int. J. Eng. Res. Appl. – volume: Volume 1842 start-page: 18 year: 2000 ident: ref_48 article-title: Unsupervised learning of models for recognition publication-title: Computer Vision—ECCV 2000. ECCV 2000. Lecture Notes in Computer Science – ident: ref_122 doi: 10.1109/BIBM.2018.8621355 – ident: ref_133 – volume: 3 start-page: e543 year: 2021 ident: ref_138 article-title: Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: An evaluation of five artificial intelligence algorithms publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(21)00116-3 – ident: ref_75 doi: 10.1109/CVPR42600.2020.00272 |
| SSID | ssj0000913830 |
| Score | 2.4796724 |
| SecondaryResourceType | review_article |
| Snippet | Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2634 |
| SubjectTerms | Algorithms Artificial intelligence Automation Bacteria Bacterial infections Computer-aided medical diagnosis Data mining Deep learning Developing countries Diagnosis Diagnostic imaging Drug resistance Fuzzy logic Genetic algorithms Immune system Infectious diseases LDCs Light emitting diodes Lung diseases Lungs Machine learning Methods Microscopy Neural networks Patients Pattern recognition Tuberculosis X-rays |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_q9UH7IH7iaZU8CL4YmmQ_siuIXO2VIvQQaaFvS5JNysG5d3bvFP97Z26z1zuR4vMmIewv85XM_AbgLdp0b2RmuRfO89T5EvVgKHiS5dqHxIrSUe3w-SQ_u0y_XGVXezDpa2EorbLXiWtFXc8d3ZEfKU2egZRaflr84NQ1il5X-xYaJrZWqD-uKcbuwb4iZqwB7B-PJ1-_bW5diAWzSERHP5RgvH90222mRbHXKk_SHRP1t6I-gPurZmF-_zKz2ZYlOn0ED6MLyUYd5o9hzzdP4GCLWPApfB__jEeKzQM7XydMeha5VK_ZtGEXK-tv3Go2b6ctO-ny7abtBzZi3WsBzTvxfrGZxI_R3tUsPuyw0dbD9zO4PB1ffD7jsbECd-ifLLkqbJ7atA7CSyNMSU6M9A59p4D-W15oZYXLvNVUiWoRTBEwzgpSWUOlvnXyHAbNvPEvgDkbSi1UKLTF2KeUhdC2sKmXCLbJghyC6v9l5SLrODW_mFUYfRAA1T8AGML7zaRFR7px9_B3BFJFIolrOxMrC3CHRG5VjTR6iRQb4cjDnZEoSm73cw9zFUW5rW4P3hD4Bvr_2dfLu5d7BQ8U1VKsE9YOYbC8WfnX6OEs7Zt4bP8AFPX8qw priority: 102 providerName: ProQuest |
| Title | Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications |
| URI | https://www.proquest.com/docview/2711291171 https://www.mdpi.com/2079-9292/11/17/2634/pdf?version=1661252358 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9i7QF24BttY1Q-IHEhi50vJ7ugjLZMiFYTrNI4RbZro2pdWi3N0PjreW7c0k4IgTjlEL_Ejt_H78XvA-A12nQtWCw9TZX2IqUz1IMm9cI44dqEkmbK5g4PhsnpKPp4EV9sZPHbsEp0xSdLJR1QnnlovwOfMZ9xP0jCyJ-Pzbsb9y-JJdZA22zPHWgnMaLxFrRHw7P8q-0pt6Juig2F6N37v3rLVCjk3D5wyyDdVcu7cL8u5-L2u5hON-xO_xGI1YybcJPLo3ohj9SPO8Uc_2dJj-GhA6Ukb7joCdzT5VPY3ShV-AyuejeOScnMkMEyBFMTV531G5mU5LyW-lrV01k1qUi3ieCbVMckJ835g6Xraj1fE3knaEHHxB0VkXzjKP05jPq98_ennmvV4ClEPAsvSGUSyWhsqGaCiszCIqYVojGDiDBJeSCpirXkNrdVIntQg56bYYEUNnl4HL6AVjkr9R4QJU3GaWBSLtGbylhKuUxlpBmyj4gN24dgtV-FcnXMbTuNaYH-jN3k4jebvA9v10TzpozHn4e_sYxQWCHHZyvhchVwhrZcVpFzxJ3W28KRh1sjUTjV9u0VKxVOOVQFfhpEWfgqXIu3Zq-_mdfBP45_CQ8Cm66xjIk7hNbiutavEEQtZAd20v6HDrTz7uDTF7ye9IZnnztOen4C_DIcNA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDzVlAI-gLiwqu19eBepQilJldImQiiVeltsr40ihU3aTaj65_htjLPeNEGo4tLz2pbXM56HZ-YbgLeo041ksQoM1SaItMlQDto0CONEGBsqmmlXO9wfJL3z6MtFfLEBv5taGJdW2cjEhaAuJtq9kR9w4SwDxgT7NL0MXNcoF11tWmhI31qhOFxAjPnCjlNzc40uXHV40kF6v-P8uDv83At8l4FAo7KeBTxVSaSiwlLDJJWZ0-jMaDQkLBozSSq4ojo2SriyTIV_Ri06HZZxJV3daxHiug9gKwqjDJ2_raPu4Ou35SuPQ91MQ1rDHYVhRg9uu9tUKGYET8JoTSX-rRh2YHteTuXNtRyPVzTf8WN45E1W0q557AlsmPIp7KwAGT6Dn91fnoXJxJL-IkHTEI_d-oOMSjKcK3Ol5-NJNapIp87vG1UfSZvU0Qk3r2PMdDkpOEL9WhAfSCLtlUD7czi_lyN-AZvlpDS7QLSymaDcpkKhr5WxlAqVqsgwZC4ZW9YC3pxlrj3KuWu2Mc7R23EEyP9BgBZ8WE6a1iAfdw9_74iUOxGAa2vpKxlwhw5MK28LtEqdL4Yj99dG4tXV658bMudedFT5LaO3IFiS_n_2tXf3cm9guzfsn-VnJ4PTl_CQuzqORbLcPmzOrubmFVpXM_XaszCB7_d9a_4AYHo4hg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgE9IJ4iUMAHEBes2N6Hd5EQCqShpbTi0Eq9bdeOjSKFTegmVP1r_Dpmst40Qaji0vPaltcznodn5huAV6jTXSkTw52wjsfW5SgHfcajJNXOR0bklmqHDw7T3eP4y0lysgG_21oYSqtsZeJCUA8nlt7Iu0qTZSClll0f0iK-9Qcfpj85dZCiSGvbTqNhkX13cY7uW_1-r4-0fq3UYOfo0y4PHQa4RUU94yozaWzioRdOlqLMSZtLZ9GI8GjIpJlWRtjEGU0lmQb_Snh0OLxUpqSa12GE696Am5pQ3KlKffB5-b5DeJtZJBqgoyjKRfeyr02NAkarNIrXlOHfKmELbs-raXlxXo7HKzpvcA_uBmOV9Rruug8brnoAWysQhg_hx86vwLxs4tnBIjXTsYDa-p2NKnY0N-7MzseTelSzfpPZN6rfsR5r4hI0r-_cdDmJf0TNOmQhhMR6KyH2R3B8LQf8GDarSeWeALPG51oon2mDXlYuM6FNZmInka3KxMsOqPYsCxvwzanNxrhAP4cIUPyDAB14u5w0beA9rh7-hohU0OXHtW0ZahhwhwSjVfQ02qPkheHI7bWReGnt-ueWzEUQGnVxyeId4EvS_8--nl693Eu4hXel-Lp3uP8M7igq4FhkyW3D5uxs7p6jWTUzLxb8y-D0ui_MH9dENiA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8a5TA4APvS2Njkw6RdZmI7H052mcIAoUmgHajETpHt2qiiSyvSMI2_fs-NW1qE0Kad8-zY8fv4vfh9AHxAm24VTzW1zFiaGFugHnQ5jdNMWhdrVhifO3x6lp30k28X6cVSFr8Pq0RXfDhT0oLJgqL9FhHnEZeRyOIkmgzcl5vwL4ln3kD7bM81WM9SROM9WO-ffS9_-J5y89FdsaEYvfvorrdMg0Iu_YQrBum-Wt6Ep209Ub9_qdFoye4cb4Oar7gLN7nab6d639zeK-b4P1vaga0ASknZcdEzeGLr57C5VKrwBfw8uglMSsaOnM5CMC0J1VkvybAm562216YdjZthQw67CL5h85mUpLt_8OMOrZ0sBtEDtKADEq6KSLl0lf4S-sdH519PaGjVQA0inikVuc4SnQwcs1wxVXhYxK1BNOYQEWa5FJqZ1Grpc1s1sgdz6Lk5LrTyycOD-BX06nFtXwMx2hWSCZdLjd5UwXMmda4Ty5F9VOr4Loj5eVUm1DH37TRGFfoz_pCrBw55Fz4tBk26Mh6Pk3_0jFB5Ice5jQq5CrhCXy6rKiXiTu9tIeXeCiUKp1l9PGelKiiHpsJPgygLX4V7oQv2-pt1vflH-rewIXy6xiwmbg960-vWvkMQNdXvg5z8AcYcGCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Machine+Learning+in+Tuberculosis+Diagnosis%3A+A+Review+of+Deep+Learning-Based+Medical+Applications&rft.jtitle=Electronics+%28Basel%29&rft.au=Singh%2C+Manisha&rft.au=Pujar%2C+Gurubasavaraj+Veeranna&rft.au=Kumar%2C+Sethu+Arun&rft.au=Bhagyalalitha%2C+Meduri&rft.date=2022-09-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=17&rft.spage=2634&rft_id=info:doi/10.3390%2Felectronics11172634&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11172634 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |