Single-Cycle Pulse Signal Recognition Based on One-Dimensional Deep Convolutional Neural Network

Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess cardiovascular health status in blood pressure monitoring. The blood pressure measurement method based on the pulse signal needs to extract t...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 3; p. 511
Main Authors Chen, Jingna, Geng, Xingguang, Yao, Fei, Liao, Xiwen, Zhang, Yitao, Wang, Yunfeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics13030511

Cover

Abstract Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess cardiovascular health status in blood pressure monitoring. The blood pressure measurement method based on the pulse signal needs to extract the features of the single-cycle pulse signal, while the pulse signal pertains to the weak physiological signal of body surface. The acquisition process is susceptible to various factors leading to abnormal cycles, especially adjacent channel interference, affecting the subsequent feature extraction. To address this problem, this paper conducts an analysis of the formation mechanism of adjacent channel interference and proposes a single-cycle pulse signal recognition algorithm based on a one-dimensional deep convolutional neural network (1D-CNN) model. Radial pulse signals were collected from 150 subjects by pulse bracelet, and a dataset comprising 3446 single-cycle signals was extracted in total after denoising, single-cycle segmentation, and standardized preprocessing. The 1D-CNN model is trained to classify input signals into three categories: effective pulse signals, distortion, and interference signals. This classification is achieved by evaluating the waveform morphology of the signals within a single cycle. The results show that the overall classification accuracy of the algorithm on the test set is 98.26%, in which the classification accuracy of pulse waves is 99.8%, indicating that it can effectively recognize single-cycle pulse waves, which lays the foundation for subsequent continuous blood pressure measurement.
AbstractList Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess cardiovascular health status in blood pressure monitoring. The blood pressure measurement method based on the pulse signal needs to extract the features of the single-cycle pulse signal, while the pulse signal pertains to the weak physiological signal of body surface. The acquisition process is susceptible to various factors leading to abnormal cycles, especially adjacent channel interference, affecting the subsequent feature extraction. To address this problem, this paper conducts an analysis of the formation mechanism of adjacent channel interference and proposes a single-cycle pulse signal recognition algorithm based on a one-dimensional deep convolutional neural network (1D-CNN) model. Radial pulse signals were collected from 150 subjects by pulse bracelet, and a dataset comprising 3446 single-cycle signals was extracted in total after denoising, single-cycle segmentation, and standardized preprocessing. The 1D-CNN model is trained to classify input signals into three categories: effective pulse signals, distortion, and interference signals. This classification is achieved by evaluating the waveform morphology of the signals within a single cycle. The results show that the overall classification accuracy of the algorithm on the test set is 98.26%, in which the classification accuracy of pulse waves is 99.8%, indicating that it can effectively recognize single-cycle pulse waves, which lays the foundation for subsequent continuous blood pressure measurement.
Audience Academic
Author Chen, Jingna
Wang, Yunfeng
Liao, Xiwen
Zhang, Yitao
Geng, Xingguang
Yao, Fei
Author_xml – sequence: 1
  givenname: Jingna
  orcidid: 0009-0007-3717-8557
  surname: Chen
  fullname: Chen, Jingna
– sequence: 2
  givenname: Xingguang
  surname: Geng
  fullname: Geng, Xingguang
– sequence: 3
  givenname: Fei
  surname: Yao
  fullname: Yao, Fei
– sequence: 4
  givenname: Xiwen
  surname: Liao
  fullname: Liao, Xiwen
– sequence: 5
  givenname: Yitao
  orcidid: 0000-0002-6022-7720
  surname: Zhang
  fullname: Zhang, Yitao
– sequence: 6
  givenname: Yunfeng
  surname: Wang
  fullname: Wang, Yunfeng
BookMark eNqNkV1PwyAUhonRRJ3-Am-aeF2Fso5yqfMzWZzx47pSerowGUxoXfbvPXPGqDFGuDgnb97nAC-7ZNN5B4QcMHrEuaTHYEG3wTujI-OU05yxDbKTUSFTmcls80u_TfZjnFJckvGC0x3ydG_cxEI6XGoLyW1nIyT3ZuKUTe5A-4kzrfEuOVUR6gSbsYP0zMzARZTRdAYwT4bevXrbtWvpBrrwXtqFD897ZKtROHX_o_bI48X5w_AqHY0vr4cno1TzQrYpU5rVuRRKVP0BZ01Ty0oWkg_6RUZRoXU9EHlV1Y2mCmvONK-YyBRVtJZM8B7pr-d2bq6WC2VtOQ9mpsKyZLRcBVX-EhRih2tsHvxLB7Etp74L-IxYYl5ICYHWT9dEWSiNa3wblJ6ZqMsTgRcsZM5WrqNfXLhrmBmNn9YY1L8BfA3o4GMM0PzzyvIHpU2rVuHjccb-yb4Bff6t1Q
CitedBy_id crossref_primary_10_1109_TSMC_2024_3417394
Cites_doi 10.1016/S2095-4964(16)60233-9
10.22489/CinC.2017.143-140
10.1186/2193-1801-2-406
10.3390/s22134874
10.3390/info14020070
10.1016/j.patrec.2005.10.010
10.1002/j.1538-7305.1948.tb01338.x
10.1111/j.1469-8986.1976.tb00866.x
10.1253/circj.70.1231
10.3390/s20010011
10.1097/HJH.0000000000002075
10.1109/EMBC.2019.8856706
10.1111/j.1469-8986.1981.tb01545.x
10.3390/diagnostics13010111
10.1155/2018/1976041
10.1109/BMEI.2008.140
10.3390/electronics10222867
10.3390/s22072514
10.1093/ajh/hpz004
10.1109/TIM.2022.3214492
10.1161/01.RES.5.6.594
10.1109/ICDSP.2018.8631690
10.1109/TBME.2005.869784
10.3390/math11030562
10.3390/app8091531
10.1038/s41598-019-51334-2
10.3390/a13090213
10.3390/bioengineering3040021
10.1109/TBME.2016.2580904
10.1016/j.jams.2015.06.012
10.1007/s00421-011-1983-3
10.1088/2057-1976/aa5b40
10.1109/I2MTC.2013.6555424
10.1109/IREP.2007.4410516
10.1109/BioCAS.2016.7833763
10.1002/adfm.201806388
10.2196/11959
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/electronics13030511
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics13030511
A782089510
10_3390_electronics13030511
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c389t-1ac1d597a7b4631ffd9b9893648204630dd675bbdfc0a5bb51c3b172a0a0d9173
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Tue Aug 19 23:21:40 EDT 2025
Sat Jul 26 00:27:44 EDT 2025
Mon Oct 20 22:56:28 EDT 2025
Mon Oct 20 17:05:15 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Thu Oct 16 04:32:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-1ac1d597a7b4631ffd9b9893648204630dd675bbdfc0a5bb51c3b172a0a0d9173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6022-7720
0009-0007-3717-8557
OpenAccessLink https://www.proquest.com/docview/2923907730?pq-origsite=%requestingapplication%&accountid=15518
PQID 2923907730
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics13030511
proquest_journals_2923907730
gale_infotracmisc_A782089510
gale_infotracacademiconefile_A782089510
crossref_primary_10_3390_electronics13030511
crossref_citationtrail_10_3390_electronics13030511
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Moura (ref_11) 2016; 9
ref_36
Hao (ref_10) 2019; 7
ref_33
Hirata (ref_3) 2006; 70
ref_32
ref_31
ref_30
Hu (ref_34) 2018; 2018
Shannon (ref_39) 1948; 27
ref_19
ref_18
Wang (ref_27) 2012; 25
Gesche (ref_14) 2012; 112
ref_16
ref_38
ref_37
Fawcett (ref_40) 2006; 27
Cinaud (ref_5) 2019; 37
Steptoe (ref_13) 1976; 13
Xue (ref_23) 2022; 71
Geddes (ref_15) 1981; 18
Meng (ref_2) 2019; 29
ref_25
ref_24
Petruescu (ref_6) 2019; 32
ref_22
ref_44
Kachuee (ref_17) 2017; 64
ref_21
ref_43
ref_20
ref_42
Yoo (ref_9) 2013; 2
ref_41
Kim (ref_29) 2006; 53
Li (ref_35) 2019; 9
Landowne (ref_1) 1957; 5
ref_28
ref_26
ref_8
ref_4
ref_7
Cordovil (ref_12) 2016; 14
References_xml – ident: ref_7
– volume: 14
  start-page: 100
  year: 2016
  ident: ref_12
  article-title: Traditional Chinese medicine wrist pulse-taking is associated with pulse waveform analysis and hemodynamics in hypertension
  publication-title: J. Integr. Med.-JIM
  doi: 10.1016/S2095-4964(16)60233-9
– ident: ref_26
  doi: 10.22489/CinC.2017.143-140
– volume: 2
  start-page: 406
  year: 2013
  ident: ref_9
  article-title: New pulse wave measurement method using different hold-down wrist pressures according to individual patient characteristics
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-2-406
– ident: ref_32
– ident: ref_44
  doi: 10.3390/s22134874
– ident: ref_24
– ident: ref_37
  doi: 10.3390/info14020070
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_40
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 27
  start-page: 379
  year: 1948
  ident: ref_39
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Techn. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 13
  start-page: 488
  year: 1976
  ident: ref_13
  article-title: Pulse-wave velocity and blood-pressure change—Calibration and applications
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1976.tb00866.x
– volume: 70
  start-page: 1231
  year: 2006
  ident: ref_3
  article-title: Pulse wave analysis and pulse wave velocity—A review of blood pressure interpretation 100 years after Korotkov
  publication-title: Circ. J.
  doi: 10.1253/circj.70.1231
– volume: 25
  start-page: 733
  year: 2012
  ident: ref_27
  article-title: The design of multi-channel pulse detection system based on flexible array sensor
  publication-title: Chin. J. Sens. Actuators
– ident: ref_8
  doi: 10.3390/s20010011
– volume: 37
  start-page: 1682
  year: 2019
  ident: ref_5
  article-title: Coronary heart disease diagnosis by artificial neural networks including aortic pulse wave velocity index and clinical parameters
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000002075
– ident: ref_22
  doi: 10.1109/EMBC.2019.8856706
– volume: 18
  start-page: 71
  year: 1981
  ident: ref_15
  article-title: Pulse Transit-Time as An Indicator of Arterial Blood-Pressure
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1981.tb01545.x
– ident: ref_42
– ident: ref_4
  doi: 10.3390/diagnostics13010111
– volume: 2018
  start-page: 1976041
  year: 2018
  ident: ref_34
  article-title: Pulse Wave Cycle Features Analysis of Different Blood Pressure Grades in the Elderly
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2018/1976041
– ident: ref_31
  doi: 10.1109/BMEI.2008.140
– ident: ref_33
  doi: 10.3390/electronics10222867
– ident: ref_43
  doi: 10.3390/s22072514
– volume: 32
  start-page: 375
  year: 2019
  ident: ref_6
  article-title: Added Value of Aortic Pulse Wave Velocity Index in a Predictive Diagnosis Decision Tree of Coronary Heart Disease
  publication-title: Am. J. Hypertens.
  doi: 10.1093/ajh/hpz004
– volume: 71
  start-page: 13
  year: 2022
  ident: ref_23
  article-title: A Synchronous Detection Algorithm for Quasi-Periodic Signal Components and Its Application in Photoplethysmographic Imaging
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3214492
– volume: 5
  start-page: 594
  year: 1957
  ident: ref_1
  article-title: A Method Using Induced Waves to Study Pressure Propagation in Human Arteries
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.5.6.594
– ident: ref_21
  doi: 10.1109/ICDSP.2018.8631690
– volume: 53
  start-page: 566
  year: 2006
  ident: ref_29
  article-title: Motion artifact reduction in photoplethysmography using independent component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.869784
– ident: ref_25
  doi: 10.3390/math11030562
– ident: ref_28
  doi: 10.3390/app8091531
– volume: 9
  start-page: 14930
  year: 2019
  ident: ref_35
  article-title: Pulse-Wave-Pattern Classification with a Convolutional Neural Network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51334-2
– ident: ref_36
  doi: 10.3390/a13090213
– ident: ref_41
  doi: 10.3390/bioengineering3040021
– volume: 64
  start-page: 859
  year: 2017
  ident: ref_17
  article-title: Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2580904
– volume: 9
  start-page: 93
  year: 2016
  ident: ref_11
  article-title: Pulse Waveform Analysis of Chinese Pulse Images and Its Association with Disability in Hypertension
  publication-title: J. Acupunct. Meridian Stud.
  doi: 10.1016/j.jams.2015.06.012
– volume: 112
  start-page: 309
  year: 2012
  ident: ref_14
  article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-011-1983-3
– ident: ref_16
  doi: 10.1088/2057-1976/aa5b40
– ident: ref_38
– ident: ref_19
– ident: ref_20
  doi: 10.1109/I2MTC.2013.6555424
– ident: ref_30
  doi: 10.1109/IREP.2007.4410516
– ident: ref_18
  doi: 10.1109/BioCAS.2016.7833763
– volume: 29
  start-page: 10
  year: 2019
  ident: ref_2
  article-title: Flexible Weaving Constructed Self-Powered Pressure Sensor Enabling Continuous Diagnosis of Cardiovascular Disease and Measurement of Cuffless Blood Pressure
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806388
– volume: 7
  start-page: 11
  year: 2019
  ident: ref_10
  article-title: A Noninvasive, Economical, and Instant-Result Method to Diagnose and Monitor Type 2 Diabetes Using Pulse Wave: Case-Control Study
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/11959
SSID ssj0000913830
Score 2.2944763
Snippet Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 511
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Blood pressure
Cardiovascular disease
Feature extraction
Heart
Interference
Machine learning
Measurement
Measurement methods
Measurement techniques
Methods
Morphology
Neural networks
Physiology
Pressure measurement
Recognition
Sensors
Signal classification
Signal processing
Time series
Vibration
Waveforms
Wavelet transforms
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF6gJaHWChVDki94CaO8zyhZUtVIdFWLSuVU_ArqGKVXbG7ReXX83njlG6FUOHkyLETRzOe-WbkfEP0urYmU4IrJpSoWaJVzcpUp6yIS5MgGNNWujzkx6PscJR8OE_PfcJt5o9VIhS_WBrpOMpLBv8dh1yEIgQ2CKemfnvpM0mO-QUeu0iSe7SepcDiPVofHZ0MPruKct3clmpIILYPf1eWmTnTDX3kK-7otlHeoPuLZiqvfsjx-IbXOXhEVbfe9rDJt73FXO3pn7eoHP__gzbpoQekwaDVoC1as81j2rhBU_iEvpyhGVs2vMKI4GQBbxqcXXx1006780eTJngHh2gCXBw3lu27qgEt40ewb-00GE6aS6_m6HKcIMtmeQj9KY0O3n8aHjJfmYFpAJw541Jzg1BE5irJBK9rU6oSyCdLACjQExmDQEQpU-tIok25FgpQSUYyMggQxTPqNZPGPqdA5mWRlbnlqZJJXkjJszrFBFGkuZai7FPcCajSnrbcVc8YVwhfnFSrP0i1T2-uJ01b1o6_D991kq_cnsaztfS_JmCFjh2rGjhSwcJh0T5tr4zEXtSrtzvdqbwtmFUQN96bw5T2iV3r013W9eIfx7-kBzEwV5sh2qbe_PvCvgJmmqsdvzF-AfdTE3Y
  priority: 102
  providerName: Unpaywall
Title Single-Cycle Pulse Signal Recognition Based on One-Dimensional Deep Convolutional Neural Network
URI https://www.proquest.com/docview/2923907730
https://www.mdpi.com/2079-9292/13/3/511/pdf?version=1706256844
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSD-MT6Yg-CF4O7m30eRGptFcFa1IKe1rxWhLKt2ipe_O3OdHerFRFP2c0mISSTmW-yyTcAu6nRgeSOZFzylHlKpiz2lc8iN9YeOmPKCNqHvGgFZx3v_Na_nYJWeReGjlWWOnGkqHVP0R75gYtIBOuiQB71nxhFjaK_q2UIDVGEVtCHI4qxaZhxiRmrAjPHjVb7arzrQiyYEbdz-iGODR58RZt5IXWOMupMmKifinoeZodZX7y_iW73myVqLsJCASGtWj7nSzBlsmWY_0YsuAL315h0Dau_YwmrPUT7Z10_PlC1q_LEUC-zjtGEaQsfLjPDTojnP-fosE6M6Vv1XvZaCCZmEYvHKBkdG1-FTrNxUz9jRSwFphCSDJgjlKPReRCh9ALupKmOZYxYJfAQAmCOrTW6DlLqVNkCU99RXCK4EbawNbp0fA0qWS8z62CJMI6CODSOL4UXRkI4QepjBR75oRI8roJbDl-iCqJxinfRTdDhoDFPfhnzKuyPK_Vzno2_i-_RvCS0CrFtJYrLBNhD4rNKakQDGBF6rMLWRElcPWryczmzSbF6X5IvWasCG8_2f_q18XdzmzDnIijKt3C2oDJ4HpptBDUDuQPTUfN0p5BXfLv4aOBbp9Wu3X0Ca2j8uQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOACHqqUg0tLWh6JesNhd7_OAECSgUCAgHhK3xa9FlaJN2iRF-XP9bcxkvYFUFeqFk1de2_KOPf5mvPY3AF8La2IlfMWFEgUPtSp4FumIp0FmQnTGtJW0D3nWids34ffb6HYO_tR3YehYZb0mThZq09O0R74ToCWCdXFC7vV_cooaRX9X6xAa0oVWMLsTijF3sePEjh_QhRvsHrdwvLeC4OjwutnmLsoA1wjWQ-5L7Rs0q2Wiwlj4RWEylSGKxyGCI-Z4xqBRrZQptCcxjXwtFMK-9KRn0NkR2O48LIYizND5Wzw47FxcTnd5iHUzFV5FdyTwA3aeotsMCD5QJ_wZSPwbGFZgaVT25fhBdrvPkO_oLbxxJivbr-bYO5iz5SqsPCMyfA93V5h0LW-OsQS7GCHesqsf91Ttsj6h1CvZAUKmYfhwXlreorgCFScIa1nbZ81e-dspAmYRa8gkmRxTX4ObV5HqOiyUvdJuAJNJlsZZYv1IyTBJpfTjIsIKIo0SLUXWgKAWX64dsTnF1-jm6OCQzPN_yLwB29NK_YrX4-Xi32hcctJ6bFtLd3kBe0j8Wfk-0Q6mZK02YHOmJGqrnn1dj2zuVotB_jS3G8Cno_0__frwcnNfYKl9fXaanx53Tj7CcoAGWbV9tAkLw18j-wkNqqH67GYtg7vXVpRHiX41rQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkAocUGlBpIWyB6peWMX2-nmoECSEZykqIHEz-zJCipy0SYry1_h1zMR2IAghLpzWsndWq9mZ_WbXu98AbGbWhEq4igslMu5rlfEk0AGPvcT4uBjTVtI-5K_T8ODSP7oKrqbgvroLQ8cqqzlxNFGbjqY98rqHkQjKokHWs_JYxFmztd39yymDFP1prdJpFCZybId3uHzr_Txs4lh_97zW3kXjgJcZBrhGoO5zV2rXYEgtI-WHws0yk6gEETz0ERjxjWMMBtRKmUw7EsvA1UIh5EtHOgYXOgLbnYbZiFjc6ZZ6a3-8v0N8m7FwCqIjgV2vP-a16RFwoDe4E2D4HBIWYG6Qd-XwTrbbTzCv9REWy2CV7RTWtQRTNv8EC08oDD_D9TkWbcsbQ6zBzgaItOz89obE_lRnkzo520WwNAwffueWNymjQMEGwprWdlmjk_8vXQBfEV_IqBgdUF-Gy3fR6QrM5J3crgKTURKHSWTdQEk_iqV0wyxAAREHkZYiqYFXqS_VJaU5ZdZop7i0IZ2nL-i8BltjoW7B6PF69R80Lin5O7atZXltAXtIzFnpDhEOxhSn1mBtoib6qZ78XI1sWs4TvfTRqmvAx6P9ln59eb25DfiA7pGeHJ4ef4V5DyOxYt9oDWb6_wZ2HSOpvvo2MlkG1-_tIw8ZKjNH
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF6gJaHWChVDki94CaO8zyhZUtVIdFWLSuVU_ArqGKVXbG7ReXX83njlG6FUOHkyLETRzOe-WbkfEP0urYmU4IrJpSoWaJVzcpUp6yIS5MgGNNWujzkx6PscJR8OE_PfcJt5o9VIhS_WBrpOMpLBv8dh1yEIgQ2CKemfnvpM0mO-QUeu0iSe7SepcDiPVofHZ0MPruKct3clmpIILYPf1eWmTnTDX3kK-7otlHeoPuLZiqvfsjx-IbXOXhEVbfe9rDJt73FXO3pn7eoHP__gzbpoQekwaDVoC1as81j2rhBU_iEvpyhGVs2vMKI4GQBbxqcXXx1006780eTJngHh2gCXBw3lu27qgEt40ewb-00GE6aS6_m6HKcIMtmeQj9KY0O3n8aHjJfmYFpAJw541Jzg1BE5irJBK9rU6oSyCdLACjQExmDQEQpU-tIok25FgpQSUYyMggQxTPqNZPGPqdA5mWRlbnlqZJJXkjJszrFBFGkuZai7FPcCajSnrbcVc8YVwhfnFSrP0i1T2-uJ01b1o6_D991kq_cnsaztfS_JmCFjh2rGjhSwcJh0T5tr4zEXtSrtzvdqbwtmFUQN96bw5T2iV3r013W9eIfx7-kBzEwV5sh2qbe_PvCvgJmmqsdvzF-AfdTE3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Cycle+Pulse+Signal+Recognition+Based+on+One-Dimensional+Deep+Convolutional+Neural+Network&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Jingna&rft.au=Geng%2C+Xingguang&rft.au=Yao%2C+Fei&rft.au=Liao%2C+Xiwen&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Felectronics13030511&rft.externalDocID=A782089510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon