Single-Cycle Pulse Signal Recognition Based on One-Dimensional Deep Convolutional Neural Network
Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess cardiovascular health status in blood pressure monitoring. The blood pressure measurement method based on the pulse signal needs to extract t...
Saved in:
| Published in | Electronics (Basel) Vol. 13; no. 3; p. 511 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics13030511 |
Cover
| Abstract | Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess cardiovascular health status in blood pressure monitoring. The blood pressure measurement method based on the pulse signal needs to extract the features of the single-cycle pulse signal, while the pulse signal pertains to the weak physiological signal of body surface. The acquisition process is susceptible to various factors leading to abnormal cycles, especially adjacent channel interference, affecting the subsequent feature extraction. To address this problem, this paper conducts an analysis of the formation mechanism of adjacent channel interference and proposes a single-cycle pulse signal recognition algorithm based on a one-dimensional deep convolutional neural network (1D-CNN) model. Radial pulse signals were collected from 150 subjects by pulse bracelet, and a dataset comprising 3446 single-cycle signals was extracted in total after denoising, single-cycle segmentation, and standardized preprocessing. The 1D-CNN model is trained to classify input signals into three categories: effective pulse signals, distortion, and interference signals. This classification is achieved by evaluating the waveform morphology of the signals within a single cycle. The results show that the overall classification accuracy of the algorithm on the test set is 98.26%, in which the classification accuracy of pulse waves is 99.8%, indicating that it can effectively recognize single-cycle pulse waves, which lays the foundation for subsequent continuous blood pressure measurement. |
|---|---|
| AbstractList | Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess cardiovascular health status in blood pressure monitoring. The blood pressure measurement method based on the pulse signal needs to extract the features of the single-cycle pulse signal, while the pulse signal pertains to the weak physiological signal of body surface. The acquisition process is susceptible to various factors leading to abnormal cycles, especially adjacent channel interference, affecting the subsequent feature extraction. To address this problem, this paper conducts an analysis of the formation mechanism of adjacent channel interference and proposes a single-cycle pulse signal recognition algorithm based on a one-dimensional deep convolutional neural network (1D-CNN) model. Radial pulse signals were collected from 150 subjects by pulse bracelet, and a dataset comprising 3446 single-cycle signals was extracted in total after denoising, single-cycle segmentation, and standardized preprocessing. The 1D-CNN model is trained to classify input signals into three categories: effective pulse signals, distortion, and interference signals. This classification is achieved by evaluating the waveform morphology of the signals within a single cycle. The results show that the overall classification accuracy of the algorithm on the test set is 98.26%, in which the classification accuracy of pulse waves is 99.8%, indicating that it can effectively recognize single-cycle pulse waves, which lays the foundation for subsequent continuous blood pressure measurement. |
| Audience | Academic |
| Author | Chen, Jingna Wang, Yunfeng Liao, Xiwen Zhang, Yitao Geng, Xingguang Yao, Fei |
| Author_xml | – sequence: 1 givenname: Jingna orcidid: 0009-0007-3717-8557 surname: Chen fullname: Chen, Jingna – sequence: 2 givenname: Xingguang surname: Geng fullname: Geng, Xingguang – sequence: 3 givenname: Fei surname: Yao fullname: Yao, Fei – sequence: 4 givenname: Xiwen surname: Liao fullname: Liao, Xiwen – sequence: 5 givenname: Yitao orcidid: 0000-0002-6022-7720 surname: Zhang fullname: Zhang, Yitao – sequence: 6 givenname: Yunfeng surname: Wang fullname: Wang, Yunfeng |
| BookMark | eNqNkV1PwyAUhonRRJ3-Am-aeF2Fso5yqfMzWZzx47pSerowGUxoXfbvPXPGqDFGuDgnb97nAC-7ZNN5B4QcMHrEuaTHYEG3wTujI-OU05yxDbKTUSFTmcls80u_TfZjnFJckvGC0x3ydG_cxEI6XGoLyW1nIyT3ZuKUTe5A-4kzrfEuOVUR6gSbsYP0zMzARZTRdAYwT4bevXrbtWvpBrrwXtqFD897ZKtROHX_o_bI48X5w_AqHY0vr4cno1TzQrYpU5rVuRRKVP0BZ01Ty0oWkg_6RUZRoXU9EHlV1Y2mCmvONK-YyBRVtJZM8B7pr-d2bq6WC2VtOQ9mpsKyZLRcBVX-EhRih2tsHvxLB7Etp74L-IxYYl5ICYHWT9dEWSiNa3wblJ6ZqMsTgRcsZM5WrqNfXLhrmBmNn9YY1L8BfA3o4GMM0PzzyvIHpU2rVuHjccb-yb4Bff6t1Q |
| CitedBy_id | crossref_primary_10_1109_TSMC_2024_3417394 |
| Cites_doi | 10.1016/S2095-4964(16)60233-9 10.22489/CinC.2017.143-140 10.1186/2193-1801-2-406 10.3390/s22134874 10.3390/info14020070 10.1016/j.patrec.2005.10.010 10.1002/j.1538-7305.1948.tb01338.x 10.1111/j.1469-8986.1976.tb00866.x 10.1253/circj.70.1231 10.3390/s20010011 10.1097/HJH.0000000000002075 10.1109/EMBC.2019.8856706 10.1111/j.1469-8986.1981.tb01545.x 10.3390/diagnostics13010111 10.1155/2018/1976041 10.1109/BMEI.2008.140 10.3390/electronics10222867 10.3390/s22072514 10.1093/ajh/hpz004 10.1109/TIM.2022.3214492 10.1161/01.RES.5.6.594 10.1109/ICDSP.2018.8631690 10.1109/TBME.2005.869784 10.3390/math11030562 10.3390/app8091531 10.1038/s41598-019-51334-2 10.3390/a13090213 10.3390/bioengineering3040021 10.1109/TBME.2016.2580904 10.1016/j.jams.2015.06.012 10.1007/s00421-011-1983-3 10.1088/2057-1976/aa5b40 10.1109/I2MTC.2013.6555424 10.1109/IREP.2007.4410516 10.1109/BioCAS.2016.7833763 10.1002/adfm.201806388 10.2196/11959 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.3390/electronics13030511 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics13030511 A782089510 10_3390_electronics13030511 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c389t-1ac1d597a7b4631ffd9b9893648204630dd675bbdfc0a5bb51c3b172a0a0d9173 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Tue Aug 19 23:21:40 EDT 2025 Sat Jul 26 00:27:44 EDT 2025 Mon Oct 20 22:56:28 EDT 2025 Mon Oct 20 17:05:15 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Thu Oct 16 04:32:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-1ac1d597a7b4631ffd9b9893648204630dd675bbdfc0a5bb51c3b172a0a0d9173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6022-7720 0009-0007-3717-8557 |
| OpenAccessLink | https://www.proquest.com/docview/2923907730?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2923907730 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics13030511 proquest_journals_2923907730 gale_infotracmisc_A782089510 gale_infotracacademiconefile_A782089510 crossref_primary_10_3390_electronics13030511 crossref_citationtrail_10_3390_electronics13030511 |
| PublicationCentury | 2000 |
| PublicationDate | 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Moura (ref_11) 2016; 9 ref_36 Hao (ref_10) 2019; 7 ref_33 Hirata (ref_3) 2006; 70 ref_32 ref_31 ref_30 Hu (ref_34) 2018; 2018 Shannon (ref_39) 1948; 27 ref_19 ref_18 Wang (ref_27) 2012; 25 Gesche (ref_14) 2012; 112 ref_16 ref_38 ref_37 Fawcett (ref_40) 2006; 27 Cinaud (ref_5) 2019; 37 Steptoe (ref_13) 1976; 13 Xue (ref_23) 2022; 71 Geddes (ref_15) 1981; 18 Meng (ref_2) 2019; 29 ref_25 ref_24 Petruescu (ref_6) 2019; 32 ref_22 ref_44 Kachuee (ref_17) 2017; 64 ref_21 ref_43 ref_20 ref_42 Yoo (ref_9) 2013; 2 ref_41 Kim (ref_29) 2006; 53 Li (ref_35) 2019; 9 Landowne (ref_1) 1957; 5 ref_28 ref_26 ref_8 ref_4 ref_7 Cordovil (ref_12) 2016; 14 |
| References_xml | – ident: ref_7 – volume: 14 start-page: 100 year: 2016 ident: ref_12 article-title: Traditional Chinese medicine wrist pulse-taking is associated with pulse waveform analysis and hemodynamics in hypertension publication-title: J. Integr. Med.-JIM doi: 10.1016/S2095-4964(16)60233-9 – ident: ref_26 doi: 10.22489/CinC.2017.143-140 – volume: 2 start-page: 406 year: 2013 ident: ref_9 article-title: New pulse wave measurement method using different hold-down wrist pressures according to individual patient characteristics publication-title: SpringerPlus doi: 10.1186/2193-1801-2-406 – ident: ref_32 – ident: ref_44 doi: 10.3390/s22134874 – ident: ref_24 – ident: ref_37 doi: 10.3390/info14020070 – volume: 27 start-page: 861 year: 2006 ident: ref_40 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 27 start-page: 379 year: 1948 ident: ref_39 article-title: A mathematical theory of communication publication-title: Bell Syst. Techn. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 13 start-page: 488 year: 1976 ident: ref_13 article-title: Pulse-wave velocity and blood-pressure change—Calibration and applications publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1976.tb00866.x – volume: 70 start-page: 1231 year: 2006 ident: ref_3 article-title: Pulse wave analysis and pulse wave velocity—A review of blood pressure interpretation 100 years after Korotkov publication-title: Circ. J. doi: 10.1253/circj.70.1231 – volume: 25 start-page: 733 year: 2012 ident: ref_27 article-title: The design of multi-channel pulse detection system based on flexible array sensor publication-title: Chin. J. Sens. Actuators – ident: ref_8 doi: 10.3390/s20010011 – volume: 37 start-page: 1682 year: 2019 ident: ref_5 article-title: Coronary heart disease diagnosis by artificial neural networks including aortic pulse wave velocity index and clinical parameters publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000002075 – ident: ref_22 doi: 10.1109/EMBC.2019.8856706 – volume: 18 start-page: 71 year: 1981 ident: ref_15 article-title: Pulse Transit-Time as An Indicator of Arterial Blood-Pressure publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1981.tb01545.x – ident: ref_42 – ident: ref_4 doi: 10.3390/diagnostics13010111 – volume: 2018 start-page: 1976041 year: 2018 ident: ref_34 article-title: Pulse Wave Cycle Features Analysis of Different Blood Pressure Grades in the Elderly publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2018/1976041 – ident: ref_31 doi: 10.1109/BMEI.2008.140 – ident: ref_33 doi: 10.3390/electronics10222867 – ident: ref_43 doi: 10.3390/s22072514 – volume: 32 start-page: 375 year: 2019 ident: ref_6 article-title: Added Value of Aortic Pulse Wave Velocity Index in a Predictive Diagnosis Decision Tree of Coronary Heart Disease publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpz004 – volume: 71 start-page: 13 year: 2022 ident: ref_23 article-title: A Synchronous Detection Algorithm for Quasi-Periodic Signal Components and Its Application in Photoplethysmographic Imaging publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3214492 – volume: 5 start-page: 594 year: 1957 ident: ref_1 article-title: A Method Using Induced Waves to Study Pressure Propagation in Human Arteries publication-title: Circ. Res. doi: 10.1161/01.RES.5.6.594 – ident: ref_21 doi: 10.1109/ICDSP.2018.8631690 – volume: 53 start-page: 566 year: 2006 ident: ref_29 article-title: Motion artifact reduction in photoplethysmography using independent component analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.869784 – ident: ref_25 doi: 10.3390/math11030562 – ident: ref_28 doi: 10.3390/app8091531 – volume: 9 start-page: 14930 year: 2019 ident: ref_35 article-title: Pulse-Wave-Pattern Classification with a Convolutional Neural Network publication-title: Sci. Rep. doi: 10.1038/s41598-019-51334-2 – ident: ref_36 doi: 10.3390/a13090213 – ident: ref_41 doi: 10.3390/bioengineering3040021 – volume: 64 start-page: 859 year: 2017 ident: ref_17 article-title: Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2580904 – volume: 9 start-page: 93 year: 2016 ident: ref_11 article-title: Pulse Waveform Analysis of Chinese Pulse Images and Its Association with Disability in Hypertension publication-title: J. Acupunct. Meridian Stud. doi: 10.1016/j.jams.2015.06.012 – volume: 112 start-page: 309 year: 2012 ident: ref_14 article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-011-1983-3 – ident: ref_16 doi: 10.1088/2057-1976/aa5b40 – ident: ref_38 – ident: ref_19 – ident: ref_20 doi: 10.1109/I2MTC.2013.6555424 – ident: ref_30 doi: 10.1109/IREP.2007.4410516 – ident: ref_18 doi: 10.1109/BioCAS.2016.7833763 – volume: 29 start-page: 10 year: 2019 ident: ref_2 article-title: Flexible Weaving Constructed Self-Powered Pressure Sensor Enabling Continuous Diagnosis of Cardiovascular Disease and Measurement of Cuffless Blood Pressure publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806388 – volume: 7 start-page: 11 year: 2019 ident: ref_10 article-title: A Noninvasive, Economical, and Instant-Result Method to Diagnose and Monitor Type 2 Diabetes Using Pulse Wave: Case-Control Study publication-title: JMIR mHealth uHealth doi: 10.2196/11959 |
| SSID | ssj0000913830 |
| Score | 2.2944763 |
| Snippet | Pulse signals carry comprehensive information regarding human cardiovascular physiology and pathology, providing a noninvasive and continuous method to assess... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 511 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Blood pressure Cardiovascular disease Feature extraction Heart Interference Machine learning Measurement Measurement methods Measurement techniques Methods Morphology Neural networks Physiology Pressure measurement Recognition Sensors Signal classification Signal processing Time series Vibration Waveforms Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF6gJaHWChVDki94CaO8zyhZUtVIdFWLSuVU_ArqGKVXbG7ReXX83njlG6FUOHkyLETRzOe-WbkfEP0urYmU4IrJpSoWaJVzcpUp6yIS5MgGNNWujzkx6PscJR8OE_PfcJt5o9VIhS_WBrpOMpLBv8dh1yEIgQ2CKemfnvpM0mO-QUeu0iSe7SepcDiPVofHZ0MPruKct3clmpIILYPf1eWmTnTDX3kK-7otlHeoPuLZiqvfsjx-IbXOXhEVbfe9rDJt73FXO3pn7eoHP__gzbpoQekwaDVoC1as81j2rhBU_iEvpyhGVs2vMKI4GQBbxqcXXx1006780eTJngHh2gCXBw3lu27qgEt40ewb-00GE6aS6_m6HKcIMtmeQj9KY0O3n8aHjJfmYFpAJw541Jzg1BE5irJBK9rU6oSyCdLACjQExmDQEQpU-tIok25FgpQSUYyMggQxTPqNZPGPqdA5mWRlbnlqZJJXkjJszrFBFGkuZai7FPcCajSnrbcVc8YVwhfnFSrP0i1T2-uJ01b1o6_D991kq_cnsaztfS_JmCFjh2rGjhSwcJh0T5tr4zEXtSrtzvdqbwtmFUQN96bw5T2iV3r013W9eIfx7-kBzEwV5sh2qbe_PvCvgJmmqsdvzF-AfdTE3Y priority: 102 providerName: Unpaywall |
| Title | Single-Cycle Pulse Signal Recognition Based on One-Dimensional Deep Convolutional Neural Network |
| URI | https://www.proquest.com/docview/2923907730 https://www.mdpi.com/2079-9292/13/3/511/pdf?version=1706256844 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSD-MT6Yg-CF4O7m30eRGptFcFa1IKe1rxWhLKt2ipe_O3OdHerFRFP2c0mISSTmW-yyTcAu6nRgeSOZFzylHlKpiz2lc8iN9YeOmPKCNqHvGgFZx3v_Na_nYJWeReGjlWWOnGkqHVP0R75gYtIBOuiQB71nxhFjaK_q2UIDVGEVtCHI4qxaZhxiRmrAjPHjVb7arzrQiyYEbdz-iGODR58RZt5IXWOMupMmKifinoeZodZX7y_iW73myVqLsJCASGtWj7nSzBlsmWY_0YsuAL315h0Dau_YwmrPUT7Z10_PlC1q_LEUC-zjtGEaQsfLjPDTojnP-fosE6M6Vv1XvZaCCZmEYvHKBkdG1-FTrNxUz9jRSwFphCSDJgjlKPReRCh9ALupKmOZYxYJfAQAmCOrTW6DlLqVNkCU99RXCK4EbawNbp0fA0qWS8z62CJMI6CODSOL4UXRkI4QepjBR75oRI8roJbDl-iCqJxinfRTdDhoDFPfhnzKuyPK_Vzno2_i-_RvCS0CrFtJYrLBNhD4rNKakQDGBF6rMLWRElcPWryczmzSbF6X5IvWasCG8_2f_q18XdzmzDnIijKt3C2oDJ4HpptBDUDuQPTUfN0p5BXfLv4aOBbp9Wu3X0Ca2j8uQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOACHqqUg0tLWh6JesNhd7_OAECSgUCAgHhK3xa9FlaJN2iRF-XP9bcxkvYFUFeqFk1de2_KOPf5mvPY3AF8La2IlfMWFEgUPtSp4FumIp0FmQnTGtJW0D3nWids34ffb6HYO_tR3YehYZb0mThZq09O0R74ToCWCdXFC7vV_cooaRX9X6xAa0oVWMLsTijF3sePEjh_QhRvsHrdwvLeC4OjwutnmLsoA1wjWQ-5L7Rs0q2Wiwlj4RWEylSGKxyGCI-Z4xqBRrZQptCcxjXwtFMK-9KRn0NkR2O48LIYizND5Wzw47FxcTnd5iHUzFV5FdyTwA3aeotsMCD5QJ_wZSPwbGFZgaVT25fhBdrvPkO_oLbxxJivbr-bYO5iz5SqsPCMyfA93V5h0LW-OsQS7GCHesqsf91Ttsj6h1CvZAUKmYfhwXlreorgCFScIa1nbZ81e-dspAmYRa8gkmRxTX4ObV5HqOiyUvdJuAJNJlsZZYv1IyTBJpfTjIsIKIo0SLUXWgKAWX64dsTnF1-jm6OCQzPN_yLwB29NK_YrX4-Xi32hcctJ6bFtLd3kBe0j8Wfk-0Q6mZK02YHOmJGqrnn1dj2zuVotB_jS3G8Cno_0__frwcnNfYKl9fXaanx53Tj7CcoAGWbV9tAkLw18j-wkNqqH67GYtg7vXVpRHiX41rQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkAocUGlBpIWyB6peWMX2-nmoECSEZykqIHEz-zJCipy0SYry1_h1zMR2IAghLpzWsndWq9mZ_WbXu98AbGbWhEq4igslMu5rlfEk0AGPvcT4uBjTVtI-5K_T8ODSP7oKrqbgvroLQ8cqqzlxNFGbjqY98rqHkQjKokHWs_JYxFmztd39yymDFP1prdJpFCZybId3uHzr_Txs4lh_97zW3kXjgJcZBrhGoO5zV2rXYEgtI-WHws0yk6gEETz0ERjxjWMMBtRKmUw7EsvA1UIh5EtHOgYXOgLbnYbZiFjc6ZZ6a3-8v0N8m7FwCqIjgV2vP-a16RFwoDe4E2D4HBIWYG6Qd-XwTrbbTzCv9REWy2CV7RTWtQRTNv8EC08oDD_D9TkWbcsbQ6zBzgaItOz89obE_lRnkzo520WwNAwffueWNymjQMEGwprWdlmjk_8vXQBfEV_IqBgdUF-Gy3fR6QrM5J3crgKTURKHSWTdQEk_iqV0wyxAAREHkZYiqYFXqS_VJaU5ZdZop7i0IZ2nL-i8BltjoW7B6PF69R80Lin5O7atZXltAXtIzFnpDhEOxhSn1mBtoib6qZ78XI1sWs4TvfTRqmvAx6P9ln59eb25DfiA7pGeHJ4ef4V5DyOxYt9oDWb6_wZ2HSOpvvo2MlkG1-_tIw8ZKjNH |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF6gJaHWChVDki94CaO8zyhZUtVIdFWLSuVU_ArqGKVXbG7ReXX83njlG6FUOHkyLETRzOe-WbkfEP0urYmU4IrJpSoWaJVzcpUp6yIS5MgGNNWujzkx6PscJR8OE_PfcJt5o9VIhS_WBrpOMpLBv8dh1yEIgQ2CKemfnvpM0mO-QUeu0iSe7SepcDiPVofHZ0MPruKct3clmpIILYPf1eWmTnTDX3kK-7otlHeoPuLZiqvfsjx-IbXOXhEVbfe9rDJt73FXO3pn7eoHP__gzbpoQekwaDVoC1as81j2rhBU_iEvpyhGVs2vMKI4GQBbxqcXXx1006780eTJngHh2gCXBw3lu27qgEt40ewb-00GE6aS6_m6HKcIMtmeQj9KY0O3n8aHjJfmYFpAJw541Jzg1BE5irJBK9rU6oSyCdLACjQExmDQEQpU-tIok25FgpQSUYyMggQxTPqNZPGPqdA5mWRlbnlqZJJXkjJszrFBFGkuZai7FPcCajSnrbcVc8YVwhfnFSrP0i1T2-uJ01b1o6_D991kq_cnsaztfS_JmCFjh2rGjhSwcJh0T5tr4zEXtSrtzvdqbwtmFUQN96bw5T2iV3r013W9eIfx7-kBzEwV5sh2qbe_PvCvgJmmqsdvzF-AfdTE3Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Cycle+Pulse+Signal+Recognition+Based+on+One-Dimensional+Deep+Convolutional+Neural+Network&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Jingna&rft.au=Geng%2C+Xingguang&rft.au=Yao%2C+Fei&rft.au=Liao%2C+Xiwen&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Felectronics13030511&rft.externalDocID=A782089510 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |