Grammatical Evolution of Complex Digital Circuits in SystemVerilog

The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 3; no. 3; p. 188
Main Authors Tetteh, Michael, Dias, Douglas Mota, Ryan, Conor
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-995X
2661-8907
2661-8907
DOI10.1007/s42979-022-01045-9

Cover

Abstract The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit × 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up–Down Counter circuits at a more abstract level other than gate level—register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit × 64-bit and 128-bit × 128-bit multipliers etc., can be instantiated from  a fully evolved functional and parameterized N-bit × N-bit multiplier. The Adder (6.4 × ), Multiplier (10.7 × ) and Selective Parity (6.7 × ) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.
AbstractList The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit × 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up–Down Counter circuits at a more abstract level other than gate level—register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit × 64-bit and 128-bit × 128-bit multipliers etc., can be instantiated from a fully evolved functional and parameterized N-bit × N-bit multiplier. The Adder (6.4×), Multiplier (10.7×) and Selective Parity (6.7×) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.
The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit $$\times$$ × 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up–Down Counter circuits at a more abstract level other than gate level—register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit $$\times$$ × 64-bit and 128-bit $$\times$$ × 128-bit multipliers etc., can be instantiated from  a fully evolved functional and parameterized N-bit $$\times$$ × N-bit multiplier. The Adder (6.4 $$\times$$ × ), Multiplier (10.7 $$\times$$ × ) and Selective Parity (6.7 $$\times$$ × ) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.
The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit × 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up-Down Counter circuits at a more abstract level other than gate level-register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit × 64-bit and 128-bit × 128-bit multipliers etc., can be instantiated from a fully evolved functional and parameterized N-bit × N-bit multiplier. The Adder (6.4 × ), Multiplier (10.7 × ) and Selective Parity (6.7 × ) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit × 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up-Down Counter circuits at a more abstract level other than gate level-register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit × 64-bit and 128-bit × 128-bit multipliers etc., can be instantiated from a fully evolved functional and parameterized N-bit × N-bit multiplier. The Adder (6.4 × ), Multiplier (10.7 × ) and Selective Parity (6.7 × ) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.
The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up-Down Counter circuits at a more abstract level other than gate level-register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit 64-bit and 128-bit 128-bit multipliers etc., can be instantiated from  a fully evolved functional and parameterized N-bit N-bit multiplier. The Adder (6.4 ), Multiplier (10.7 ) and Selective Parity (6.7 ) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.
The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit $$\times$$ × 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up–Down Counter circuits at a more abstract level other than gate level—register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit $$\times$$ × 64-bit and 128-bit $$\times$$ × 128-bit multipliers etc., can be instantiated from  a fully evolved functional and parameterized N-bit $$\times$$ × N-bit multiplier. The Adder (6.4 $$\times$$ ×), Multiplier (10.7 $$\times$$ ×) and Selective Parity (6.7 $$\times$$ ×) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.
The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing required and the low evolvability of representation structures to handle complex circuitry, at least partially due to the destructive effects of genetic operators. A 64-bit × 64-bit add-shift multiplier circuit modelled at register-transfer level in SystemVerilog would require approximately 33,200 gates when synthesized using Yosys Open SYnthesis Suite tool. This enormous gate count makes evolving such a circuit at the gate-level difficult. We use Grammatical Evolution (GE) and SystemVerilog, a hardware description language (HDL), to evolve fully functional parameterized Adder, Multiplier, Selective Parity and Up–Down Counter circuits at a more abstract level other than gate level—register transfer level. Parameterized modules have the additional benefit of not requiring a re-run of evolutionary experiments if multiple instances with different input sizes are required. For example, a 64-bit × 64-bit and 128-bit × 128-bit multipliers etc., can be instantiated from  a fully evolved functional and parameterized N-bit × N-bit multiplier. The Adder (6.4 × ), Multiplier (10.7 × ) and Selective Parity (6.7 × ) circuits are substantially larger than the current state of the art for evolutionary approaches. We are able to scale so dramatically because of the use of a HDL, which permits us to operate at a register-transfer level. Furthermore, we adopt a well known technique for reducing testing from digital circuit design known as corner case testing. Skilled circuit designers rely on this to avoid time-consuming exhaustive testing. We demonstrate a simple way to identify and use corner cases for evolutionary testing and show that it enables the generation of massively complex circuits. All circuits were successfully evolved without resorting to the use of any standard decomposition methods, due to our ability to use programming constructs and operators available in SystemVerilog.
ArticleNumber 188
Author Ryan, Conor
Tetteh, Michael
Dias, Douglas Mota
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-4351-0962
  surname: Tetteh
  fullname: Tetteh, Michael
  email: michael.tetteh@ul.ie
  organization: University of Limerick
– sequence: 2
  givenname: Douglas Mota
  orcidid: 0000-0002-1783-6352
  surname: Dias
  fullname: Dias, Douglas Mota
  organization: University of Limerick, Rio de Janeiro State University
– sequence: 3
  givenname: Conor
  orcidid: 0000-0002-7002-5815
  surname: Ryan
  fullname: Ryan, Conor
  organization: University of Limerick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35308804$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAUtFArWkr_AAcUiQuX0Oev2L4gwbaUSpU4UCFulpM4iyvHXuyksP--3u7SQg8VJz_pzYznzbxAeyEGi9ArDO8wgDjJjCihaiCkBgyM1-oZOiRNg2upQOzdzaRWin8_QMc5XwMA4cBYw5-jA8opSAnsEH08T2YczeQ646uzm-jnycVQxaFaxHHl7e_q1C3dVJYLl7rZTblyofq6zpMdv9nkfFy-RPuD8dke794jdPXp7Grxub78cn6x-HBZd1QqVdPecItbLo00fSukUB0RhAyWMWoGasC0g7ScMhBD0woLSjQ9g84IPGDR0yNEt7JzWJn1L-O9XiU3mrTWGPQmE73NRJdM9F0mWhXW-y1rNbej7TsbpmQemNE4_e8muB96GW-0VFhiuhF4uxNI8eds86RHlzvrvQk2zlmThmGOOUhWoG8eQa_jnELJRBNFCRGcNrSgXv_t6N7Kn04KgGwBXYo5Jzv8353yEakrrW26LFc5_zR1F2wu_4SlTQ-2n2DdAkZJwOU
CitedBy_id crossref_primary_10_3390_electronics12092058
crossref_primary_10_1162_evco_a_00345
Cites_doi 10.1007/978-3-319-67997-6_1
10.1109/ICES.2013.6613278
10.1109/EH.2000.869343
10.1007/s42835-020-00564-w
10.1109/DDECS.2010.5491755
10.1007/0-387-36495-1
10.1145/2576768.2598343
10.1007/978-3-030-13605-5
10.1109/ICEC.1997.592293
10.1007/978-3-642-17310-3
10.1145/3377930.3390188
10.1007/3-540-63173-9_38
10.1109/ISCAS.1996.541893
10.1007/BFb0057607
10.1109/TEVC.2014.2336175
10.1109/AHS.2006.36
10.1109/AHS.2006.64
10.1007/978-3-642-17310-3_5
10.1109/AHS.2006.47
10.1023/B:GENP.0000017009.11392.e2
10.1007/978-3-319-67997-6_2
10.5220/0010066600280039
10.1109/TSMCB.2006.872259
10.1162/isal_a_00448
10.1145/1102256.1102346
10.1109/AERO.2000.878523
10.1007/978-3-319-67997-6_3
10.1007/3-540-61723-X_970
10.1109/EH.2000.869353
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022.
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022.
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s42979-022-01045-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection
CrossRef
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10.1007/s42979-022-01045-9
PMC8918139
35308804
10_1007_s42979_022_01045_9
Genre Journal Article
GrantInformation_xml – fundername: science foundation ireland
  grantid: 16/IA/4605
– fundername: University of Limerick
– fundername: ;
– fundername: ;
  grantid: 16/IA/4605
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
BSONS
C6C
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c3899-3da5e1b58a8adb7879c2722fe443af3a0abf8e53407f6b7e0976d40ca71f17d3
IEDL.DBID UNPAY
ISSN 2662-995X
2661-8907
IngestDate Sun Oct 26 03:55:16 EDT 2025
Tue Sep 30 16:57:21 EDT 2025
Fri Sep 05 07:03:40 EDT 2025
Fri Jul 25 23:46:03 EDT 2025
Wed Feb 19 02:26:11 EST 2025
Wed Oct 01 03:59:09 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Fri Feb 21 02:47:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SystemVerilog
Grammatical evolution
Evolutionary design of conventional circuits
Verilog
Register transfer level (RTL)
Hardware description language (HDL)
Combinational circuits
Sequential circuits
Evolvable hardware
Corner case testing
Language English
License The Author(s) 2022.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3899-3da5e1b58a8adb7879c2722fe443af3a0abf8e53407f6b7e0976d40ca71f17d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7002-5815
0000-0002-4351-0962
0000-0002-1783-6352
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s42979-022-01045-9.pdf
PMID 35308804
PQID 2932275363
PQPubID 6623307
ParticipantIDs unpaywall_primary_10_1007_s42979_022_01045_9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8918139
proquest_miscellaneous_2641515084
proquest_journals_2932275363
pubmed_primary_35308804
crossref_primary_10_1007_s42979_022_01045_9
crossref_citationtrail_10_1007_s42979_022_01045_9
springer_journals_10_1007_s42979_022_01045_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationTitleAlternate SN Comput Sci
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Stomeo E, Kalganova T, Lambert C. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06) 2006;179–185. https://doi.org/10.1109/AHS.2006.47.
LaMeresBJIntroduction to logic circuits & logic design with Verilog2019BerlinSpringer International Publishing10.1007/978-3-030-13605-51412.68001
Resurrecting FPGA Intrinsic Analog Evolvable Hardware, ALIFE 2021: The 2021 Conference on Artificial Life, vol. ALIFE 2021: The 2021 Conference on Artificial Life, p 106. https://doi.org/10.1162/isal_a_00448.
SenthilkumarKKumarasamyKDhandapaniVJ Electric Eng Technol20201655910.1007/s42835-020-00564-w
Torresen J. In: Liu Y, Tanaka K, Iwata M, Higuchi T, Yasunaga M (eds) Evolvable systems: from biology to hardware. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 1–13.
RTL Modeling with SystemVerilog For Simulation and Synthesis. Using SystemVerilog for ASIC and FPGA Design. Tualatin, Oregon: Sutherland HDL Inc; 2017.
Kalganova T. In: Poli R, Banzhaf W, Langdon WB, Miller J, Nordin P, Fogarty TC (eds) Programming genetic. Springer Berlin, Heidelberg: Berlin Heidelberg; 2000, pp 60–75.
Lohn J, Haith G, Colombano S, Stassinopoulos D. 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), vol. 5 2000; pp. 473–486. https://doi.org/10.1109/AERO.2000.878523.
Henson B, Walker JA, Trefzer MA, Tyrrell AM. Designing digital systems using cartesian genetic programming and VHDL. Springer International Publishing, Cham, 2018, pp 57–86. https://doi.org/10.1007/978-3-319-67997-6_3.
Karpuzcu UR. Proceedings of the 7th Annual Workshop on Genetic and Evolutionary Computation. ACM, New York, NY, USA, 2005, GECCO ’05, pp. 394–397. https://doi.org/10.1145/1102256.1102346.
Higuchi T, Murakawa M, Iwata M, Kajitani I, Liu Weixin, Salami M. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97) 1997;187–192. https://doi.org/10.1109/ICEC.1997.592293
Stomeo E, Kalganova T, Lambert C. IEEE Trans Syst Man Cybern Part B (Cybern). 2006;36(5):1024.
MillerJFCartesian genetic programming2011Berlin, HeidelbergSpringer10.1007/978-3-642-17310-3
Yao XT. Higuchi. In: Higuchi T, Iwata M, Liu W, editors. Evolvable systems: from biology to hardware. Berlin Heidelberg, Berlin, Heidelberg: Springer; 1997, pp 55–78.
Vasicek Z, Sekanina L. 2014 IEEE International Conference on Evolvable Systems. 2014;133–140.
Zdenek V. Bridging the gap between evolvable hardware and industry using cartesian genetic programming. Springer International Publishing, Cham, 2018, pp. 39–55. https://doi.org/10.1007/978-3-319-67997-6_2.
Li Z, Luo W. X. Wang. In: Hornby GS, Sekanina L, Haddow PC. Evolvable systems: from biology to hardware. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2008, pp 47–58.
Kalganova T. Proceedings. The Second NASA/DoD Workshop on Evolvable Hardwar. 2000;65–74. https://doi.org/10.1109/EH.2000.869343.
LaMeres BJ. Introduction to Logic Circuits & Logic Design with Verilog, chap. Verilog (Part 1), p. 157. in [19] 2019. https://doi.org/10.1007/978-3-030-13605-5.
Wolf C. Yosys open synthesis suite. http://www.clifford.at/yosys/.
A Guide to Using SystemVerilog for Hardware Design and Modeling. Springer US. https://doi.org/10.1007/0-387-36495-1.
Vassilev V, Job D, Miller J. Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware (2000), pp. 151–60. https://doi.org/10.1109/EH.2000.869353.
Hodan D, Mrazek V, Vasicek Z. Proceedings of the 2020 genetic and evolutionary computation conference. association for computing machinery, New York, NY, USA, 2020, GECCO’20, pp 940–948. https://doi.org/10.1145/3377930.3390188.
Patten JV, Ryan C. In: Machado P, Heywood MI, McDermott J, Castelli M, García-Sánchez P, Burelli P, Risi R (eds) Programming genetic. Cham: Sim Springer International Publishing; 2015. pp 105–12.
Coffman K. Real World FPGA Design with Verilog. 1999.
Tetteh MKD, Mota D, Ryan. In: Hu T, Lourenço N, Medvet E (eds) Genetic programming. Cham: Springer International Publishing; 2021, pp 146–61.
Sekanina L, Walker JA, Kaufmann P, Platzner M. Evolution of Electronic Circuits. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 125–179. https://doi.org/10.1007/978-3-642-17310-3_5.
Cullen J. Simulated evolution and learning, ed. by Li X, Kirley M, Zhang M, Green D, Ciesielski V, Abbass H, Michalewicz Z, Hendtlass T, Deb K, Tan KC, Branke J, Shi S. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 514–523.
Coffman K. Real World FPGA Design with Verilog, chap. Chapter 1: Verilog Designs in the realword, pp. 137–206. 1999.
da Silva JEH, de Souza LAM. Bernardino HS. In: Nicosia G, Pardalos P, Umeton R, Giuffrida G, Sciacca V (eds) Machine learning, optimization, and data science. Cham: Springer International Publishing; 2019, pp 396–408.
Zebulum RS, Stoica AM, Keymeulen D, Sekanina L, Ramesham R, Guo X. ICES 2005.
Torresen J. In: Sipper M, Mange D, Pérez-Uribe A (eds) Evolvable systems: from biology to hardware. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 57–65.
Thompson A. In: ICES 1996.
Ryan C, Collins J, Neill MO. In: Banzhaf W, Poli R, Schoenauer M, Fogarty TC (eds) Programming genetic. Springer. Berlin, Heidelberg: Berlin Heidelberg; 1998, pp. 83–96.
Manfrini FAL, Bernardino HS. Barbosa HJC. In: Handl J, Hart E, Lewis PR, López-Ibáñez M, Ochoa G, Paechter B (eds) Parallel problem solving from nature—PPSN XIV. Cham: Springer International Publishing; 2016, pp 665–74.
Haddow PC, Tyrrell AM. Evolvable hardware challenges: past, present and the path to a promising future. Springer International Publishing, Cham, 2018, pp. 3–37. https://doi.org/10.1007/978-3-319-67997-6_1.
Murakawa M, Yoshizawa S, Kajitani I, Furuya T, Iwata M. T. Higuchi. In: Voigt HM, Ebeling W, Rechenberg I, Schwefel HP (eds) Parallel Problem Solving from Nature—PPSN IV. Berlin Heidelberg, Berlin, Heidelberg: Springer; 1996, pp 62–71.
Slaný K, Sekanina L. In: O’Neill EM, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Programming Genetic. Springer Berlin, Heidelberg: Berlin Heidelberg; 2007, pp 311–20.
Higuchi T, Iwata M, Kajitani I, Yamada H, Manderick B, Hirao Y, Murakawa M, Yoshizawa S, Furuya T. In: 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, vol. 4 1996;4, pp. 29–32. https://doi.org/10.1109/ISCAS.1996.541893
Ryan C, Tetteh MK, Dias DM. Proceedings of the 12th International Joint Conference on Computational Intelligence—Volume 1: ECTA. INSTICC (SciTePress, 2020), pp. 28–39. https://doi.org/10.5220/0010066600280039.
Sekanina L. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06) 2006, pp 171–178. https://doi.org/10.1109/AHS.2006.36.
Miller JF, Thomson P. In: Poli R, Banzhaf W, Langdon WB, Miller V, Nordin P, Fogarty TC (eds) Programming genetic. Springer Berlin, Heidelberg: Berlin Heidelberg; 2000, pp 121–32.
Mota D, Naredo E, Ryan C. Genetic Programming: 24th European Conference, EuroGP 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings, vol. 12691, Springer Nature, 2021, vol. 12691, pp. 66.
Fišer P, Schmidt J, Vašíček Z, Sekanina L. 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems 2010;346–351. https://doi.org/10.1109/DDECS.2010.5491755.
Vassilev VK, MillerJF. Proc. Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 2000.
Sekanina L, Vasicek Z. 2013 IEEE International Conference on Evolvable Systems (ICES). 2013;21–28. https://doi.org/10.1109/ICES.2013.6613278.
AliBAlmainiAEAKalganovaTGenet Program Evol Mach2004511110.1023/B:GENP.0000017009.11392.e2
Keymeulen D, Zebulum R, Rajeshuni R, Stoica A, Katkoori S, Graves S, Novak F, Antill C. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06) 2006, pp 296–300. https://doi.org/10.1109/AHS.2006.64.
Hrbacek R, Sekanina L. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. Association for Computing Machinery, New York, NY, USA, 2014, GECCO ’14, pp 1015-1022. https://doi.org/10.1145/2576768.2598343.
Stuart Sutherland PF, Davidmann S. A Guide to Using SystemVerilog for Hardware Design and Modeling, chap. Chapter 6: SystemVerilog Procedural Blocks, Tasks and Functions and Chapter 7: SystemVerilog Procedural Statements, pp. 137–206. in [39]. https://doi.org/10.1007/0-387-36495-1.
VasicekZSekaninaLIEEE Trans Evol Comput201519343210.1109/TEVC.2014.2336175
Anjum MS, Ryan C. In: Hu T, Lourenço N, Medvet E (eds) Programming Genetic. Cham: Divina Springer International Publishing; 2020, pp 18–34.
BJ LaMeres (1045_CR19) 2019
1045_CR20
1045_CR21
1045_CR22
1045_CR23
1045_CR24
1045_CR25
1045_CR26
1045_CR28
1045_CR29
1045_CR50
1045_CR51
1045_CR52
1045_CR10
Z Vasicek (1045_CR43) 2015; 19
1045_CR11
1045_CR12
1045_CR14
1045_CR15
1045_CR16
JF Miller (1045_CR27) 2011
1045_CR17
1045_CR18
1045_CR40
1045_CR41
1045_CR44
1045_CR45
1045_CR5
1045_CR46
1045_CR4
1045_CR47
1045_CR3
1045_CR48
1045_CR2
1045_CR49
1045_CR1
1045_CR9
1045_CR8
B Ali (1045_CR13) 2004; 5
1045_CR7
1045_CR6
1045_CR30
1045_CR31
1045_CR32
1045_CR33
1045_CR34
1045_CR35
1045_CR36
1045_CR37
1045_CR38
1045_CR39
K Senthilkumar (1045_CR42) 2020; 16
References_xml – reference: Lohn J, Haith G, Colombano S, Stassinopoulos D. 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), vol. 5 2000; pp. 473–486. https://doi.org/10.1109/AERO.2000.878523.
– reference: Li Z, Luo W. X. Wang. In: Hornby GS, Sekanina L, Haddow PC. Evolvable systems: from biology to hardware. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2008, pp 47–58.
– reference: Tetteh MKD, Mota D, Ryan. In: Hu T, Lourenço N, Medvet E (eds) Genetic programming. Cham: Springer International Publishing; 2021, pp 146–61.
– reference: Higuchi T, Iwata M, Kajitani I, Yamada H, Manderick B, Hirao Y, Murakawa M, Yoshizawa S, Furuya T. In: 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, vol. 4 1996;4, pp. 29–32. https://doi.org/10.1109/ISCAS.1996.541893
– reference: A Guide to Using SystemVerilog for Hardware Design and Modeling. Springer US. https://doi.org/10.1007/0-387-36495-1.
– reference: Sekanina L, Walker JA, Kaufmann P, Platzner M. Evolution of Electronic Circuits. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 125–179. https://doi.org/10.1007/978-3-642-17310-3_5.
– reference: Vasicek Z, Sekanina L. 2014 IEEE International Conference on Evolvable Systems. 2014;133–140.
– reference: Yao XT. Higuchi. In: Higuchi T, Iwata M, Liu W, editors. Evolvable systems: from biology to hardware. Berlin Heidelberg, Berlin, Heidelberg: Springer; 1997, pp 55–78.
– reference: Keymeulen D, Zebulum R, Rajeshuni R, Stoica A, Katkoori S, Graves S, Novak F, Antill C. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06) 2006, pp 296–300. https://doi.org/10.1109/AHS.2006.64.
– reference: Murakawa M, Yoshizawa S, Kajitani I, Furuya T, Iwata M. T. Higuchi. In: Voigt HM, Ebeling W, Rechenberg I, Schwefel HP (eds) Parallel Problem Solving from Nature—PPSN IV. Berlin Heidelberg, Berlin, Heidelberg: Springer; 1996, pp 62–71.
– reference: Patten JV, Ryan C. In: Machado P, Heywood MI, McDermott J, Castelli M, García-Sánchez P, Burelli P, Risi R (eds) Programming genetic. Cham: Sim Springer International Publishing; 2015. pp 105–12.
– reference: Torresen J. In: Liu Y, Tanaka K, Iwata M, Higuchi T, Yasunaga M (eds) Evolvable systems: from biology to hardware. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 1–13.
– reference: Haddow PC, Tyrrell AM. Evolvable hardware challenges: past, present and the path to a promising future. Springer International Publishing, Cham, 2018, pp. 3–37. https://doi.org/10.1007/978-3-319-67997-6_1.
– reference: Stomeo E, Kalganova T, Lambert C. IEEE Trans Syst Man Cybern Part B (Cybern). 2006;36(5):1024.
– reference: da Silva JEH, de Souza LAM. Bernardino HS. In: Nicosia G, Pardalos P, Umeton R, Giuffrida G, Sciacca V (eds) Machine learning, optimization, and data science. Cham: Springer International Publishing; 2019, pp 396–408.
– reference: Torresen J. In: Sipper M, Mange D, Pérez-Uribe A (eds) Evolvable systems: from biology to hardware. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 57–65.
– reference: Slaný K, Sekanina L. In: O’Neill EM, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Programming Genetic. Springer Berlin, Heidelberg: Berlin Heidelberg; 2007, pp 311–20.
– reference: LaMeresBJIntroduction to logic circuits & logic design with Verilog2019BerlinSpringer International Publishing10.1007/978-3-030-13605-51412.68001
– reference: Thompson A. In: ICES 1996.
– reference: AliBAlmainiAEAKalganovaTGenet Program Evol Mach2004511110.1023/B:GENP.0000017009.11392.e2
– reference: MillerJFCartesian genetic programming2011Berlin, HeidelbergSpringer10.1007/978-3-642-17310-3
– reference: RTL Modeling with SystemVerilog For Simulation and Synthesis. Using SystemVerilog for ASIC and FPGA Design. Tualatin, Oregon: Sutherland HDL Inc; 2017.
– reference: VasicekZSekaninaLIEEE Trans Evol Comput201519343210.1109/TEVC.2014.2336175
– reference: Resurrecting FPGA Intrinsic Analog Evolvable Hardware, ALIFE 2021: The 2021 Conference on Artificial Life, vol. ALIFE 2021: The 2021 Conference on Artificial Life, p 106. https://doi.org/10.1162/isal_a_00448.
– reference: Karpuzcu UR. Proceedings of the 7th Annual Workshop on Genetic and Evolutionary Computation. ACM, New York, NY, USA, 2005, GECCO ’05, pp. 394–397. https://doi.org/10.1145/1102256.1102346.
– reference: Anjum MS, Ryan C. In: Hu T, Lourenço N, Medvet E (eds) Programming Genetic. Cham: Divina Springer International Publishing; 2020, pp 18–34.
– reference: Cullen J. Simulated evolution and learning, ed. by Li X, Kirley M, Zhang M, Green D, Ciesielski V, Abbass H, Michalewicz Z, Hendtlass T, Deb K, Tan KC, Branke J, Shi S. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 514–523.
– reference: Stomeo E, Kalganova T, Lambert C. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06) 2006;179–185. https://doi.org/10.1109/AHS.2006.47.
– reference: Vassilev VK, MillerJF. Proc. Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 2000.
– reference: Vassilev V, Job D, Miller J. Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware (2000), pp. 151–60. https://doi.org/10.1109/EH.2000.869353.
– reference: SenthilkumarKKumarasamyKDhandapaniVJ Electric Eng Technol20201655910.1007/s42835-020-00564-w
– reference: Sekanina L, Vasicek Z. 2013 IEEE International Conference on Evolvable Systems (ICES). 2013;21–28. https://doi.org/10.1109/ICES.2013.6613278.
– reference: Zebulum RS, Stoica AM, Keymeulen D, Sekanina L, Ramesham R, Guo X. ICES 2005.
– reference: Hrbacek R, Sekanina L. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. Association for Computing Machinery, New York, NY, USA, 2014, GECCO ’14, pp 1015-1022. https://doi.org/10.1145/2576768.2598343.
– reference: Fišer P, Schmidt J, Vašíček Z, Sekanina L. 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems 2010;346–351. https://doi.org/10.1109/DDECS.2010.5491755.
– reference: Wolf C. Yosys open synthesis suite. http://www.clifford.at/yosys/.
– reference: Miller JF, Thomson P. In: Poli R, Banzhaf W, Langdon WB, Miller V, Nordin P, Fogarty TC (eds) Programming genetic. Springer Berlin, Heidelberg: Berlin Heidelberg; 2000, pp 121–32.
– reference: Sekanina L. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06) 2006, pp 171–178. https://doi.org/10.1109/AHS.2006.36.
– reference: Hodan D, Mrazek V, Vasicek Z. Proceedings of the 2020 genetic and evolutionary computation conference. association for computing machinery, New York, NY, USA, 2020, GECCO’20, pp 940–948. https://doi.org/10.1145/3377930.3390188.
– reference: Ryan C, Tetteh MK, Dias DM. Proceedings of the 12th International Joint Conference on Computational Intelligence—Volume 1: ECTA. INSTICC (SciTePress, 2020), pp. 28–39. https://doi.org/10.5220/0010066600280039.
– reference: Stuart Sutherland PF, Davidmann S. A Guide to Using SystemVerilog for Hardware Design and Modeling, chap. Chapter 6: SystemVerilog Procedural Blocks, Tasks and Functions and Chapter 7: SystemVerilog Procedural Statements, pp. 137–206. in [39]. https://doi.org/10.1007/0-387-36495-1.
– reference: Ryan C, Collins J, Neill MO. In: Banzhaf W, Poli R, Schoenauer M, Fogarty TC (eds) Programming genetic. Springer. Berlin, Heidelberg: Berlin Heidelberg; 1998, pp. 83–96.
– reference: Manfrini FAL, Bernardino HS. Barbosa HJC. In: Handl J, Hart E, Lewis PR, López-Ibáñez M, Ochoa G, Paechter B (eds) Parallel problem solving from nature—PPSN XIV. Cham: Springer International Publishing; 2016, pp 665–74.
– reference: Kalganova T. Proceedings. The Second NASA/DoD Workshop on Evolvable Hardwar. 2000;65–74. https://doi.org/10.1109/EH.2000.869343.
– reference: Kalganova T. In: Poli R, Banzhaf W, Langdon WB, Miller J, Nordin P, Fogarty TC (eds) Programming genetic. Springer Berlin, Heidelberg: Berlin Heidelberg; 2000, pp 60–75.
– reference: Higuchi T, Murakawa M, Iwata M, Kajitani I, Liu Weixin, Salami M. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97) 1997;187–192. https://doi.org/10.1109/ICEC.1997.592293
– reference: Coffman K. Real World FPGA Design with Verilog. 1999.
– reference: Zdenek V. Bridging the gap between evolvable hardware and industry using cartesian genetic programming. Springer International Publishing, Cham, 2018, pp. 39–55. https://doi.org/10.1007/978-3-319-67997-6_2.
– reference: LaMeres BJ. Introduction to Logic Circuits & Logic Design with Verilog, chap. Verilog (Part 1), p. 157. in [19] 2019. https://doi.org/10.1007/978-3-030-13605-5.
– reference: Henson B, Walker JA, Trefzer MA, Tyrrell AM. Designing digital systems using cartesian genetic programming and VHDL. Springer International Publishing, Cham, 2018, pp 57–86. https://doi.org/10.1007/978-3-319-67997-6_3.
– reference: Coffman K. Real World FPGA Design with Verilog, chap. Chapter 1: Verilog Designs in the realword, pp. 137–206. 1999.
– reference: Mota D, Naredo E, Ryan C. Genetic Programming: 24th European Conference, EuroGP 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings, vol. 12691, Springer Nature, 2021, vol. 12691, pp. 66.
– ident: 1045_CR37
– ident: 1045_CR7
  doi: 10.1007/978-3-319-67997-6_1
– ident: 1045_CR30
  doi: 10.1109/ICES.2013.6613278
– ident: 1045_CR33
– ident: 1045_CR50
  doi: 10.1109/EH.2000.869343
– volume: 16
  start-page: 559
  year: 2020
  ident: 1045_CR42
  publication-title: J Electric Eng Technol
  doi: 10.1007/s42835-020-00564-w
– ident: 1045_CR52
  doi: 10.1109/DDECS.2010.5491755
– ident: 1045_CR18
– ident: 1045_CR39
  doi: 10.1007/0-387-36495-1
– ident: 1045_CR47
  doi: 10.1145/2576768.2598343
– volume-title: Introduction to logic circuits & logic design with Verilog
  year: 2019
  ident: 1045_CR19
  doi: 10.1007/978-3-030-13605-5
– ident: 1045_CR4
  doi: 10.1109/ICEC.1997.592293
– ident: 1045_CR24
– volume-title: Cartesian genetic programming
  year: 2011
  ident: 1045_CR27
  doi: 10.1007/978-3-642-17310-3
– ident: 1045_CR28
– ident: 1045_CR20
– ident: 1045_CR22
  doi: 10.1145/3377930.3390188
– ident: 1045_CR34
– ident: 1045_CR40
– ident: 1045_CR6
  doi: 10.1007/3-540-63173-9_38
– ident: 1045_CR2
  doi: 10.1109/ISCAS.1996.541893
– ident: 1045_CR48
  doi: 10.1007/BFb0057607
– ident: 1045_CR23
– volume: 19
  start-page: 432
  issue: 3
  year: 2015
  ident: 1045_CR43
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2014.2336175
– ident: 1045_CR1
– ident: 1045_CR8
  doi: 10.1109/AHS.2006.36
– ident: 1045_CR44
– ident: 1045_CR5
– ident: 1045_CR16
– ident: 1045_CR41
– ident: 1045_CR35
– ident: 1045_CR31
– ident: 1045_CR10
  doi: 10.1109/AHS.2006.64
– ident: 1045_CR29
  doi: 10.1007/978-3-642-17310-3_5
– ident: 1045_CR49
– ident: 1045_CR51
  doi: 10.1109/AHS.2006.47
– volume: 5
  start-page: 11
  issue: 1
  year: 2004
  ident: 1045_CR13
  publication-title: Genet Program Evol Mach
  doi: 10.1023/B:GENP.0000017009.11392.e2
– ident: 1045_CR45
– ident: 1045_CR14
  doi: 10.1007/978-3-319-67997-6_2
– ident: 1045_CR11
– ident: 1045_CR32
  doi: 10.5220/0010066600280039
– ident: 1045_CR15
  doi: 10.1109/TSMCB.2006.872259
– ident: 1045_CR17
  doi: 10.1007/978-3-030-13605-5
– ident: 1045_CR21
  doi: 10.1162/isal_a_00448
– ident: 1045_CR25
– ident: 1045_CR36
  doi: 10.1145/1102256.1102346
– ident: 1045_CR9
  doi: 10.1109/AERO.2000.878523
– ident: 1045_CR46
– ident: 1045_CR38
  doi: 10.1007/0-387-36495-1
– ident: 1045_CR26
  doi: 10.1007/978-3-319-67997-6_3
– ident: 1045_CR3
  doi: 10.1007/3-540-61723-X_970
– ident: 1045_CR12
  doi: 10.1109/EH.2000.869353
SSID ssj0002504465
Score 2.21865
Snippet The evolution of complex circuits remains a challenge for the Evolvable Hardware field in spite much effort. There are two major issues: the amount of testing...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 188
SubjectTerms Adding circuits
Circuit design
Circuits
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Counting circuits
Data Structures and Information Theory
Design
Digital electronics
Evolution
Evolvable hardware
Field programmable gate arrays
Gate counting
Gates (circuits)
Genetic algorithms
Genetic Programming
Hardware description languages
Information Systems and Communication Service
Multipliers
Operators
Original Research
Parameterization
Parity
Pattern Recognition and Graphics
Software Engineering/Programming and Operating Systems
Vision
SummonAdditionalLinks – databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED6x8rDtAQ3tBwU2ZdLehrXEdmL7AU2DFdAeKoTY1LfIdhyI1KWltBv895zdJKxCqvZ8jmL7znef7fN3AJ90YYRKDCNGlpZwVTAinXNESiVcigiAupBtMczOfvIfo3S0AcP2LYxPq2x9YnDUxcT6M_IvGJYoRWydsa_TG-KrRvnb1baEhm5KKxSHgWLsGWxSz4zVg82jwfD8ojt18YRdPNSXxMBEiVLpqHlJE97ToXMWivgEd79NSYlajVZPIOjTTMruOvUlPF_UU33_V4_H_0Ssk1ew1UDN6NvSNrZhw9Wv4eh0pn8HmlYUDf40hhdNysh7hrG7i75XV76QSHRczeyimt9GVR0tec1_obWiq3wDlyeDy-Mz0tRRINaz5xFW6NQlJpVaetVIoSwVlJaOc6ZLpmNtSulShnu7MjPCxQhRCh5bLZIyEQV7C716UrsdiCTqu8xYbA21nEmnisRyrTL0mAaRVtKHpJ2u3DYc477UxTjv2JHDFOc4xXmY4lz14XP3zXTJsLG29X6rhbxZbbf5o2304WMnxnXiLz907SYLbJNxj91iyfvwbqm07ncsZehsY5SIFXV2DTwH96qkrq4DF7dUCJEYduugVfxjt9aN4qAzjv8Y9O76Qe_BCxps1qdh7kNvPlu49wiV5uZDY_8POesOGw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7Rcmg58CiFLhRkpN6o1cR2YvsIS5cVB05LtbfIdpw20jZb7YPCv2fszQaWolU5e-I4nvHM54z9DcCJKa3UqeXUqspRoUtOlfeeKqWlzxABMB9PW3zNh9_El3E2bmlywl2Yv_L3Z3P0l1LTcOY87BwyqnfgIQapPCZm8373PyVQcYlYORJDDqNaZ-P2jsy_u9mMQ3fA5d0zkl2i9BHsLZsb8_PWTCZ_xKLBU3jcgkjyYaX1Z_DANwfwZF2ggbTr9Tl8_Dwz15GTFaXPv7dWRqYVCbIT_4N8qi9D1RDSr2duWS_mpG7IisT8Ak0T_eIhjAbno_6QtkUTqAtUeZSXJvOpzZRRQQ9KasckY5UXgpuKm8TYSvmM40auyq30CeKRUiTOyLRKZclfwG4zbfwREIXKrXKeOMuc4MrrMnXC6Bzdo0VYlfYgXc9g4VpC8VDXYlJ0VMhx1guc9SLOeqF78L575mZFp7FV-nitmKJdWvMC8QljuMnKeQ_edc24KEKmwzR-ukSZXASglijRg5crPXav4xlHz5pgi9zQcCcQCLc3W5r6KhJvK414iOOwTte28HtY277itLOXe3z0q__r_TXss2jW4QzmMewuZkv_BnHSwr6NC-QX2z0GuQ
  priority: 102
  providerName: Springer Nature
Title Grammatical Evolution of Complex Digital Circuits in SystemVerilog
URI https://link.springer.com/article/10.1007/s42979-022-01045-9
https://www.ncbi.nlm.nih.gov/pubmed/35308804
https://www.proquest.com/docview/2932275363
https://www.proquest.com/docview/2641515084
https://pubmed.ncbi.nlm.nih.gov/PMC8918139
https://link.springer.com/content/pdf/10.1007/s42979-022-01045-9.pdf
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t7QPwwIf4KowqSLwxd0mcxPbj1rWbeKgmtKHyFNmOM6J1adUlsPHXc84XlKEJxFujc1KffT7_LN_9DuCdTBQTnqJE8VSTQCSUcGMM4VwwEyIC8E0VbTGLjs-CD_NwvgWHbS5MFe3eXknWOQ2WpSkv9lZJutclvqEXZYLYSHR7ngiJGKF4G_pRiIi8B_2z2cn-Z1tXDrcfwkWVNY2_fSJEOG9yZ_78oc396RbovB072V2gPoB7Zb6SN9_kYvHLHjV9BKbVrg5NuRiVhRrp778RP_6v-o_hYQNinf3a6p7AlsmfwsHRWl5WBLAomnxtTNpZpo71OQtz7Rxm57ZEiTPO1rrMiisny52aMf0TrgPs5jM4nU5Ox8ekqdBAtOXlIzSRofFUyCW3k86Z0D7z_dQEAZUpla5UKTchxVNjGilmXAQ_SeBqybzUYwl9Dr18mZuX4HC0pDSirla-Dig3IvF0IEWEvlghhvMG4LXTEuuGvdwW0VjEHe9yNSgxDkpcDUosBvC-e2dVc3fc2Xqnne24WcdXMYIh38cTXUQH8LYT4wq01yoyN8sS20SBRYUuDwbwojaO7u9oSNGNuyhhG2bTNbDs3puSPPtSsXxzgeCLYrd2W3v42a27tNjtjPAvlH71b81fw32_sjob8LkDvWJdmjcIygo1hG0-PRpC_2AyO_mIT-NoPGzW4Q9NTi_T
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a22FwQCC-OgYECU7MIrGdxD5MiG0dHRsVQgX1FtmOA5G6tPSDsT-O_41nN8moJlVcdraT2O_b8Xu_B_BK5TqVkWZEi8IQLnNGhLWWCCFTG2MEQK3Ptugnva_84zAebsCfphbGpVU2NtEb6nxs3D_yt-iWKMXYOmHvJj-J6xrlblebFhqqbq2Q73uIsbqw49ReXuARbrZ_coT8fk3pcXdw2CN1lwFiHLYcYbmKbaRjoYRbuEiloSmlheWcqYKpUOlC2JjhyadIdGpDdOA5D41KoyJKc4avvQVbnHGJZ7-tg27_85f2J4_DB-O-nSX6QUqkjId14Y4v30NfkEri8undqSgmctU5Xot4rydutre3d2B7UU3U5YUajf5xkMf34G4d2Qbvl6J4HzZs9QAOPkzVuUeFxaHur1rOg3EROEM0sr-Do_K761sSHJZTsyjns6CsgiWM-jdUDrTMD2FwEwR9BJvVuLJPIBAoXkXCQqOp4UxYmUeGK5mggdYY2EUdiBpyZaaGNHedNUZZC8bsSZwhiTNP4kx24E37zGQJ6LF29m7DhaxW7ll2JYodeNkOo1q6uxZV2fEC5yTchYqh4B14vGRa-zkWM7TtIY6kK-xsJzjI79WRqvzhob-FxIiM4bL2GsZfLWvdLvZa4fiPTe-s3_QL2O4NPp1lZyf906dwm3r5dRmgu7A5ny7sM4zS5vp5rQsBZDesfX8BL55KyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSFAOPFtYKGAkbtRqYjuxfYRtl_JQxaGgvUW2Y0OkJbva7vL494ydxHRVVMHZE8fxPPw5Hn-D0AtdG6Fyw4iR3hKuakakc45IqYQrAAFQF7MtTsrjT_zdtJieu8Ufs92HI8nuTkNgaWpXB4vaH6SLbxBFhSIhEz3sJwqirqJrHFa3UMNgXI7TX5ZA0MVjPUlYiChRqpj2N2f-3s3m6nQBcl7MnEzHpzfRjXW70L9-6Nns3Ao1uYNu9dASv-ps4S664tp76PZQtgH3XnwfvX6z1N8iUytIH33vbQ_PPQ6yM_cTHzZfQi0RPG6Wdt2sznDT4o7a_DMYLETLHXQ6OTodH5O-lAKxgUCPsFoXLjeF1DJoRwplqaDUO86Z9kxn2njpCgbbO18a4TJAKTXPrBa5z0XNdtFWO2_dQ4QlqNyXLLOGWs6kU3VuuVYlBE0DYCsfoXyYwcr2NOOh2sWsSgTJcdYrmPUqznqlRuhlembRkWxcKr03KKbqHe6sAtRCKWy9SjZCz1MzuEo4_9Ctm69BpuQBvmWSj9CDTo_pdaxgEG8zaBEbGk4CgYZ7s6VtvkY6bqkAJTEY1v5gC3-GddlX7Cd7-YePfvR_vT9D1z8eTqoPb0_eP0bbNFp4SNLcQ1ur5do9ASC1Mk-jr_wGFUYR7w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF6oCAeXWhRkLhRb5PYie1j6YOKQ8WhRcspsh27RCzZ1Tbh9esZ59UuRRWIW6RxEo89Y3-WZ74BeKVyzWWkKdHCGcJkTomw1hIhJLcJIoDYNtEWp-nJOXs3TaZrcNjnwjTR7v2VZJvT4Fmaympvkbu9IfENV1EuiY9E9-eJhMgJiu_AepogIh_B-vnp-_2Pvq4cbj9EyCZrGp9jImUy7XJn_vyh1f3pBui8GTs5XKBuwN26XKgf39Rsdm2POt4E22vXhqZ8ntSVnpifvxE__q_6D-B-B2KD_dbqHsKaLR_Bm7dL9aUhgEXR0dfOpIO5C_yaM7Pfg8PiwpcoCQ6KpamL6jIoyqBlTP-AfoDdfAxnx0dnByekq9BAjOflIzRXiY10IpTwky64NDGPY2cZo8pRFSrthE0onhpdqrkNEfzkLDSKRy7iOX0Co3Je2i0IBFqSS2lodGwYFVbmkWFKprgWa8Rw0Riifloy07GX-yIas2zgXW4GJcNByZpByeQYXg_vLFrujltbb_eznXV-fJkhGIpjPNGldAwvBzF6oL9WUaWd19gmZR4VhoKN4WlrHMPvaEJxGQ9RwlfMZmjg2b1XJWXxqWH5FhLBF8Vu7fb2cNWt27TYHYzwL5R-9m_Nn8O9uLE6H_C5DaNqWdsdBGWVftH53C-6xyx2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grammatical+Evolution+of+Complex+Digital+Circuits+in+SystemVerilog&rft.jtitle=SN+computer+science&rft.au=Tetteh%2C+Michael&rft.au=Dias%2C+Douglas+Mota&rft.au=Ryan%2C+Conor&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=3&rft.issue=3&rft.spage=188&rft_id=info:doi/10.1007%2Fs42979-022-01045-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon