Optimization Method for Conductance Modulation in Ferroelectric Transistor for Neuromorphic Computing

The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the dist...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 10; no. 5
Main Authors Kim, Cheol Jun, Lee, Jae Yeob, Ku, Minkyung, Kim, Tae Hoon, Noh, Taehee, Lee, Seung Won, Ahn, Ji‐Hoon, Kang, Bo Soo
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.05.2024
Subjects
Online AccessGet full text
ISSN2199-160X
2199-160X
DOI10.1002/aelm.202300698

Cover

Abstract The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern. For the neuromorphic computing, the behavior of the ferroelectric transistor is investigated in the view of the ferroelectric domain dynamics. The results inform that the domain nucleation is dominant than the domain growth for the operation of the transistor. Also, the suggested method of optimization allows to control the linearity of the potentiation and the depression finely.
AbstractList The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern.
The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern. For the neuromorphic computing, the behavior of the ferroelectric transistor is investigated in the view of the ferroelectric domain dynamics. The results inform that the domain nucleation is dominant than the domain growth for the operation of the transistor. Also, the suggested method of optimization allows to control the linearity of the potentiation and the depression finely.
Abstract The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern.
Author Kim, Cheol Jun
Kang, Bo Soo
Ku, Minkyung
Ahn, Ji‐Hoon
Noh, Taehee
Kim, Tae Hoon
Lee, Jae Yeob
Lee, Seung Won
Author_xml – sequence: 1
  givenname: Cheol Jun
  orcidid: 0000-0003-0973-8821
  surname: Kim
  fullname: Kim, Cheol Jun
  organization: Hanyang University
– sequence: 2
  givenname: Jae Yeob
  orcidid: 0000-0002-5584-832X
  surname: Lee
  fullname: Lee, Jae Yeob
  organization: Hanyang University
– sequence: 3
  givenname: Minkyung
  surname: Ku
  fullname: Ku, Minkyung
  organization: Hanyang University
– sequence: 4
  givenname: Tae Hoon
  surname: Kim
  fullname: Kim, Tae Hoon
  organization: Hanyang University
– sequence: 5
  givenname: Taehee
  surname: Noh
  fullname: Noh, Taehee
  organization: Hanyang University
– sequence: 6
  givenname: Seung Won
  orcidid: 0000-0001-6608-5623
  surname: Lee
  fullname: Lee, Seung Won
  organization: Hanyang University
– sequence: 7
  givenname: Ji‐Hoon
  orcidid: 0000-0001-6928-4038
  surname: Ahn
  fullname: Ahn, Ji‐Hoon
  organization: Hanyang University
– sequence: 8
  givenname: Bo Soo
  orcidid: 0000-0003-2970-3650
  surname: Kang
  fullname: Kang, Bo Soo
  email: bosookang@hanyang.ac.kr
  organization: Hanyang University
BookMark eNqFkEtLAzEUhYMoqNWt6_kDrXk1j6WUVoXWbhTchZjcqZGZScmkSP31plZFBHGVkHu-c0_OKTrsYgcIXRA8IhjTSwtNO6KYMoyFVgfohBKth0Tgx8Mf92N03vcvGGMiBeNjdoJguc6hDW82h9hVC8jP0Vd1TNUkdn7jsu0cVIvoN81eEbpqBilFaMDlFFx1n2zXhz4XZIfdwSbFNqb1c5lNYrve5NCtztBRbZsezj_PAXqYTe8nN8P58vp2cjUfOqa0HAoFhGvOMVVAOWHCs7Eu2cfKS0tk-RkH5ZiTWihLuNdSMUwYFEWRccsG6Hbv66N9MesUWpu2JtpgPh5iWhmbcnANGCEVloJrR8sqDvqJUbC-HhczXnPsixffe7kU-z5BbVzIHyXkZENjCDa75s2uefPdfMFGv7CvGH8CbA-8hga2_6jN1XS-EFSydysWl3g
CitedBy_id crossref_primary_10_1063_5_0248629
crossref_primary_10_1016_j_cap_2024_07_018
Cites_doi 10.1038/nmat3415
10.1021/acsaelm.0c00832
10.1063/5.0035741
10.1002/adfm.201703273
10.1021/acsnano.0c03869
10.1109/TCAD.2018.2789723
10.1002/adma.201905764
10.1109/TED.2021.3049761
10.1021/acsami.5b05773
10.1021/acs.nanolett.9b00180
10.1016/j.jallcom.2020.153777
10.1063/1.5030072
10.1063/5.0131087
10.1038/s42254-020-0208-2
10.1109/LED.2017.2731343
10.1103/PhysRevB.66.214109
10.1103/RevModPhys.45.574
10.1038/s41928-020-00492-7
10.1103/PhysRevLett.99.267602
10.1103/PhysRevB.18.2185
10.1103/PhysRevLett.27.1719
10.1002/aelm.201800795
10.1021/acs.nanolett.7b04008
10.1063/5.0039446
10.1021/acsami.1c12735
ContentType Journal Article
Copyright 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/aelm.202300698
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_67807649c2e244e9b32eadf5e994f40d
10_1002_aelm_202300698
AELM627
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Korean Government
  funderid: 2021R1F1A1064104
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
CITATION
M~E
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3897-68e14944028e24136d35919958d7a170694e8c3c7968a14d9783013e9959194a3
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:28:49 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 00:35:25 EDT 2025
Wed Jan 22 17:20:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3897-68e14944028e24136d35919958d7a170694e8c3c7968a14d9783013e9959194a3
ORCID 0000-0001-6608-5623
0000-0003-2970-3650
0000-0002-5584-832X
0000-0003-0973-8821
0000-0001-6928-4038
OpenAccessLink https://doaj.org/article/67807649c2e244e9b32eadf5e994f40d
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_67807649c2e244e9b32eadf5e994f40d
crossref_citationtrail_10_1002_aelm_202300698
crossref_primary_10_1002_aelm_202300698
wiley_primary_10_1002_aelm_202300698_AELM627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2024
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2021; 68
2018; 28
2019; 5
1971; 27
2018; 123
2023; 122
2021; 129
2019; 19
2020; 14
1994
2020; 32
2007; 99
2012; 11
2015; 7
2020; 823
2021; 13
2020; 3
2020; 2
2017; 17
2021
2017; 38
1973; 45
2021; 118
2002; 66
2019
2017
2018; 37
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_16_1
Müller F. (e_1_2_8_15_1) 2021
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 2
  start-page: 4023
  year: 2020
  publication-title: ACS Appl. Electron. Mater.
– volume: 66
  year: 2002
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 860
  year: 2012
  publication-title: Nat. Mater.
– volume: 17
  start-page: 7796
  year: 2017
  publication-title: Nano Lett.
– volume: 19
  start-page: 2044
  year: 2019
  publication-title: Nano Lett.
– volume: 823
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 68
  start-page: 2107
  year: 2021
  publication-title: IEEE Trans. Electron Devices
– volume: 38
  start-page: 1328
  year: 2017
  publication-title: IEEE Electron Device Lett.
– year: 2021
  publication-title: VLSI‐TSA 2021 –2021 Int. Symp. VLSI Technol. Syst. Appl. Proc.
– year: 1994
– volume: 122
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 45
  start-page: 574
  year: 1973
  publication-title: Rev. Mod. Phys.
– volume: 123
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 499
  year: 2020
  publication-title: Nat. Rev. Phys.
– volume: 14
  start-page: 7628
  year: 2020
  publication-title: ACS Nano
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1719
  year: 1971
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– year: 2017
– year: 2019
– volume: 129
  year: 2021
  publication-title: J. Appl. Phys.
– volume: 37
  start-page: 3067
  year: 2018
  publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst.
– volume: 3
  start-page: 588
  year: 2020
  publication-title: Nat. Electron.
– ident: e_1_2_8_7_1
  doi: 10.1038/nmat3415
– ident: e_1_2_8_4_1
  doi: 10.1021/acsaelm.0c00832
– ident: e_1_2_8_5_1
  doi: 10.1063/5.0035741
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201703273
– ident: e_1_2_8_10_1
  doi: 10.1021/acsnano.0c03869
– ident: e_1_2_8_11_1
  doi: 10.1109/TCAD.2018.2789723
– year: 2021
  ident: e_1_2_8_15_1
  publication-title: VLSI‐TSA 2021 –2021 Int. Symp. VLSI Technol. Syst. Appl. Proc.
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201905764
– ident: e_1_2_8_16_1
  doi: 10.1109/TED.2021.3049761
– ident: e_1_2_8_20_1
  doi: 10.1021/acsami.5b05773
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.nanolett.9b00180
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jallcom.2020.153777
– ident: e_1_2_8_18_1
  doi: 10.1063/1.5030072
– ident: e_1_2_8_17_1
  doi: 10.1063/5.0131087
– ident: e_1_2_8_1_1
  doi: 10.1038/s42254-020-0208-2
– ident: e_1_2_8_19_1
  doi: 10.1109/LED.2017.2731343
– ident: e_1_2_8_24_1
– ident: e_1_2_8_12_1
  doi: 10.1103/PhysRevB.66.214109
– ident: e_1_2_8_21_1
  doi: 10.1103/RevModPhys.45.574
– ident: e_1_2_8_22_1
  doi: 10.1038/s41928-020-00492-7
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevLett.99.267602
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevB.18.2185
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevLett.27.1719
– ident: e_1_2_8_8_1
  doi: 10.1002/aelm.201800795
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.nanolett.7b04008
– ident: e_1_2_8_23_1
– ident: e_1_2_8_28_1
  doi: 10.1063/5.0039446
– ident: e_1_2_8_3_1
  doi: 10.1021/acsami.1c12735
– ident: e_1_2_8_29_1
SSID ssj0001763453
Score 2.2975216
Snippet The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial...
Abstract The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms conductance modulation
ferroelectric transistor
learning accuracy
neuromorphic computing
polarization switching
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT4MwFMcbnRcvRqPG-Ss9mHiRjB-P0h7nsmUxoh5cshuBUsySCQbn_-97hTF3MMZrKSW88njfPujnMXajiS-EQt6RgdYOZL50ZCpQyGntBpnWXphRHjJ-EtMZPMzD-Y9d_A0foku4kWfY9zU5eJp9DjbQ0NQsaSc5SmhXKLnL9jwK_cR2hpdNlgXdByyKEj1TOZ5w52tyo-sPtofYikwW4L8tWG3EmRyyg1Yq8mEzt0dsx5THzDyjj7-3myd5bOs_cxSefFSVhG6lSeRxlbdVufii5BNT11VT7mahuQ1Olg1iT7NwjvcKrY3HmhIPGMxO2Gwyfh1NnbZUgqNRcUSOkAaXOoCLQWnoS5nIg1DR7muZRykRchQYqQMdKSFTD3JK-FAClGhjnoI0OGW9sirNGeOhUKYAHAGlCBhcEPlhnlKFoQJwKaKLPnPWZkp0yxGnchbLpCEg-wmZNenM2me3Xf-PhqDxa897snrXi8jXtqGq35LWkRIMrm4kQGkfbxSMygIfnaEI8VagADfvszs7Z39cKxmOH2PhR-f_637B9rENmj8eL1lvVX-ZK1Qlq-zaPnjfnTHZPQ
  priority: 102
  providerName: Wiley-Blackwell
Title Optimization Method for Conductance Modulation in Ferroelectric Transistor for Neuromorphic Computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202300698
https://doaj.org/article/67807649c2e244e9b32eadf5e994f40d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: ADMLS
  dateStart: 20151101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: AVUZU
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB6QWIiaOhfHHkvVqkIEGKjULUocR6rUJqgq_587O63aAbGwJo6T3MW-dxf7PcYeDPELIZAPVGRMAIVQgcolAjljwqgwZhAXVIdM3-R0Bi_zeL4n9UVrwjw9sDdcHydTTLVBG2ExElldRAJfvoqt1lBBWNLsi2FsL5ly1RUcNhBHW5bGUPRzu6SN54i4Q6nVQRRyZP2H4NRFl8kZO21hIR_6xzlnR7a-YPYdx_Oq3SjJU6f1zBFk8lFTE00rOYynTdkqcPFFzSd2vW68tM3CcBeIHA-Iu8wRcawatCye83IOGLgu2Wwy_hxNg1YWITCILpJAKotpDWDipyz9FZNlFGvaaa3KJCc2HA1WmcgkWqp8ACUVd6jYScxiAw15dMU6dVPba8ZjqW0F2APCDrCY_Ii4zElNqAJMO0zVZcHWTJlpOcNJumKZebZjkZFZs51Zu-xx1_7Ls2X82vKZrL5rRSzX7gD6Pmt9n_3l-y57cj77417ZcPyaSpHc_Mc9b9kJdgx-zeMd62zW3_Yeccmm6LFjAR899yH-AFcX3i4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gHOCCQIAYnzkgcaFal7ppcoRp04AVOGzSblWbpmjS1qIJ_j922g3tgBDXxk1VJ66f3fiZsRtD_EII5D0VGONBJpSnUolAzhg_yIzphhnlIeMXOZzA0zRcnSakWpiaH2KdcCPLcN9rMnBKSHd-WENTO6dScsTQvtRqm-2AFD5tbAFvP2kWtB9wXJRomtrrSn-6om70RWdzig3X5Bj8NxGrczmDA7bfYEV-Xy_uIduy5RGzr2jki6Z6kseuATRH5Ml7VUncrbSKPK7ypi0Xn5V8YJfLqu53MzPceSdHDuJuc-wciwrVjWN1jwf0ZsdsMuiPe0Ov6ZXgGYQckSeVxVgHMBpUln6VyTwINZVfqzxKiSJHg1UmMJGWKu1CThkfyoAS3VhXQxqcsFZZlfaU8VBqWwDOgFgELEZEIsxTajFUAMYipmgzb6WmxDRE4tTPYp7UFMgiIbUma7W22e1a_qOm0PhV8oG0vpYi6mt3oVq-J40lJehd_UiCNgJfFKzOAoHWUIT4KlCAn7fZnVuzP56V3PdHsRTR2f_Er9nucByPktHjy_M528NxqI8_XrDW5_LLXiJE-cyu3Cb8Bm453Kw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcbxcT4YjRqxJ99MPHFhbHduvYREYIKyIMkvC1b1xkS2AjB_9-7bqA8GOPr2nXZdbf79rZ-jrE7TXwhFPKO9LV2IPGkI2OBQk5r10-0bgYJ5SEHQ9Ebw8skmPzYxV_yITYJN_IM-74mB1-kWeMbGhqbGe0kRwntCiV32R4Qt4XYzjD6zrKg-4BFUaJnKqcp3Mma3Oh6je0htiKTBfhvC1YbcbpH7LCSirxVzu0x2zH5CTNv6OPzavMkH9j6zxyFJ28XOaFbaRL5oEirqlx8mvOuWS6LstzNVHMbnCwbxJ5m4RzzAq2NbWWJBwxmp2zc7by3e05VKsHRqDhCR0iDSx3AxaA09KVMpH6gaPe1TMOYCDkKjNS-DpWQcRNSSvhQApRoY00FsX_GanmRm3PGA6FMBjgCShEwuCDygjSmCkMZ4FJEZ3XmrM0U6YojTuUsZlFJQPYiMmu0MWud3W_6L0qCxq89H8nqm15EvrYHiuVHVDlShMHVDQUo7eGNglGJ76EzZAHeCmTgpnX2YOfsj2tFrU5_ILzw4n_db9n-6Kkb9Z-Hr5fsAJuh_PnxitVWy09zjQJlldzYZ_ALPqPb3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Method+for+Conductance+Modulation+in+Ferroelectric+Transistor+for+Neuromorphic+Computing&rft.jtitle=Advanced+electronic+materials&rft.au=Cheol+Jun+Kim&rft.au=Jae+Yeob+Lee&rft.au=Minkyung+Ku&rft.au=Tae+Hoon+Kim&rft.date=2024-05-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=10&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202300698&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_67807649c2e244e9b32eadf5e994f40d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon