Optimization Method for Conductance Modulation in Ferroelectric Transistor for Neuromorphic Computing
The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the dist...
Saved in:
Published in | Advanced electronic materials Vol. 10; no. 5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2199-160X 2199-160X |
DOI | 10.1002/aelm.202300698 |
Cover
Abstract | The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern.
For the neuromorphic computing, the behavior of the ferroelectric transistor is investigated in the view of the ferroelectric domain dynamics. The results inform that the domain nucleation is dominant than the domain growth for the operation of the transistor. Also, the suggested method of optimization allows to control the linearity of the potentiation and the depression finely. |
---|---|
AbstractList | The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern. The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern. For the neuromorphic computing, the behavior of the ferroelectric transistor is investigated in the view of the ferroelectric domain dynamics. The results inform that the domain nucleation is dominant than the domain growth for the operation of the transistor. Also, the suggested method of optimization allows to control the linearity of the potentiation and the depression finely. Abstract The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial synapse. In ferroelectric‐based devices, these characteristics are implemented using a distribution of polarization values. Therefore, the distribution in a ferroelectric thin film with various external voltage signals is investigate. As polarization switching proceeds with voltage pulse, the domains of the switched polarization become larger. In ferroelectric‐gate field effect transistors, the channel layer assumed to lie beneath the ferroelectrics experiences a local conductance change, according to the polarization distribution of the ferroelectric layer. It is found that small clusters with high conductivity become large clusters in the channel layer as the polarization switching proceeds. When the additional pulses are applied, the high conductive regions eventually connect (i.e., percolate) in the channel layer and the conductance of the layer is greatly increased. Adjusting the height of the applied voltage can slow down or speed up this phenomenon. Also, the nanosecond voltage pulses are employed and the width of the conductive pathway is adjusted. It enables to fine‐tune the conductance of the channel layer. It demonstrates that conductance modulation is optimized with an appropriate voltage pulse train pattern. |
Author | Kim, Cheol Jun Kang, Bo Soo Ku, Minkyung Ahn, Ji‐Hoon Noh, Taehee Kim, Tae Hoon Lee, Jae Yeob Lee, Seung Won |
Author_xml | – sequence: 1 givenname: Cheol Jun orcidid: 0000-0003-0973-8821 surname: Kim fullname: Kim, Cheol Jun organization: Hanyang University – sequence: 2 givenname: Jae Yeob orcidid: 0000-0002-5584-832X surname: Lee fullname: Lee, Jae Yeob organization: Hanyang University – sequence: 3 givenname: Minkyung surname: Ku fullname: Ku, Minkyung organization: Hanyang University – sequence: 4 givenname: Tae Hoon surname: Kim fullname: Kim, Tae Hoon organization: Hanyang University – sequence: 5 givenname: Taehee surname: Noh fullname: Noh, Taehee organization: Hanyang University – sequence: 6 givenname: Seung Won orcidid: 0000-0001-6608-5623 surname: Lee fullname: Lee, Seung Won organization: Hanyang University – sequence: 7 givenname: Ji‐Hoon orcidid: 0000-0001-6928-4038 surname: Ahn fullname: Ahn, Ji‐Hoon organization: Hanyang University – sequence: 8 givenname: Bo Soo orcidid: 0000-0003-2970-3650 surname: Kang fullname: Kang, Bo Soo email: bosookang@hanyang.ac.kr organization: Hanyang University |
BookMark | eNqFkEtLAzEUhYMoqNWt6_kDrXk1j6WUVoXWbhTchZjcqZGZScmkSP31plZFBHGVkHu-c0_OKTrsYgcIXRA8IhjTSwtNO6KYMoyFVgfohBKth0Tgx8Mf92N03vcvGGMiBeNjdoJguc6hDW82h9hVC8jP0Vd1TNUkdn7jsu0cVIvoN81eEbpqBilFaMDlFFx1n2zXhz4XZIfdwSbFNqb1c5lNYrve5NCtztBRbZsezj_PAXqYTe8nN8P58vp2cjUfOqa0HAoFhGvOMVVAOWHCs7Eu2cfKS0tk-RkH5ZiTWihLuNdSMUwYFEWRccsG6Hbv66N9MesUWpu2JtpgPh5iWhmbcnANGCEVloJrR8sqDvqJUbC-HhczXnPsixffe7kU-z5BbVzIHyXkZENjCDa75s2uefPdfMFGv7CvGH8CbA-8hga2_6jN1XS-EFSydysWl3g |
CitedBy_id | crossref_primary_10_1063_5_0248629 crossref_primary_10_1016_j_cap_2024_07_018 |
Cites_doi | 10.1038/nmat3415 10.1021/acsaelm.0c00832 10.1063/5.0035741 10.1002/adfm.201703273 10.1021/acsnano.0c03869 10.1109/TCAD.2018.2789723 10.1002/adma.201905764 10.1109/TED.2021.3049761 10.1021/acsami.5b05773 10.1021/acs.nanolett.9b00180 10.1016/j.jallcom.2020.153777 10.1063/1.5030072 10.1063/5.0131087 10.1038/s42254-020-0208-2 10.1109/LED.2017.2731343 10.1103/PhysRevB.66.214109 10.1103/RevModPhys.45.574 10.1038/s41928-020-00492-7 10.1103/PhysRevLett.99.267602 10.1103/PhysRevB.18.2185 10.1103/PhysRevLett.27.1719 10.1002/aelm.201800795 10.1021/acs.nanolett.7b04008 10.1063/5.0039446 10.1021/acsami.1c12735 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/aelm.202300698 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_67807649c2e244e9b32eadf5e994f40d 10_1002_aelm_202300698 AELM627 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Korean Government funderid: 2021R1F1A1064104 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN CITATION M~E AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3897-68e14944028e24136d35919958d7a170694e8c3c7968a14d9783013e9959194a3 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:28:49 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 00:35:25 EDT 2025 Wed Jan 22 17:20:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3897-68e14944028e24136d35919958d7a170694e8c3c7968a14d9783013e9959194a3 |
ORCID | 0000-0001-6608-5623 0000-0003-2970-3650 0000-0002-5584-832X 0000-0003-0973-8821 0000-0001-6928-4038 |
OpenAccessLink | https://doaj.org/article/67807649c2e244e9b32eadf5e994f40d |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_67807649c2e244e9b32eadf5e994f40d crossref_citationtrail_10_1002_aelm_202300698 crossref_primary_10_1002_aelm_202300698 wiley_primary_10_1002_aelm_202300698_AELM627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2024 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2021; 68 2018; 28 2019; 5 1971; 27 2018; 123 2023; 122 2021; 129 2019; 19 2020; 14 1994 2020; 32 2007; 99 2012; 11 2015; 7 2020; 823 2021; 13 2020; 3 2020; 2 2017; 17 2021 2017; 38 1973; 45 2021; 118 2002; 66 2019 2017 2018; 37 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_16_1 Müller F. (e_1_2_8_15_1) 2021 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – volume: 2 start-page: 4023 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 66 year: 2002 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 860 year: 2012 publication-title: Nat. Mater. – volume: 17 start-page: 7796 year: 2017 publication-title: Nano Lett. – volume: 19 start-page: 2044 year: 2019 publication-title: Nano Lett. – volume: 823 year: 2020 publication-title: J. Alloys Compd. – volume: 68 start-page: 2107 year: 2021 publication-title: IEEE Trans. Electron Devices – volume: 38 start-page: 1328 year: 2017 publication-title: IEEE Electron Device Lett. – year: 2021 publication-title: VLSI‐TSA 2021 –2021 Int. Symp. VLSI Technol. Syst. Appl. Proc. – year: 1994 – volume: 122 year: 2023 publication-title: Appl. Phys. Lett. – volume: 45 start-page: 574 year: 1973 publication-title: Rev. Mod. Phys. – volume: 123 year: 2018 publication-title: J. Appl. Phys. – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 499 year: 2020 publication-title: Nat. Rev. Phys. – volume: 14 start-page: 7628 year: 2020 publication-title: ACS Nano – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 27 start-page: 1719 year: 1971 publication-title: Phys. Rev. Lett. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – year: 2017 – year: 2019 – volume: 129 year: 2021 publication-title: J. Appl. Phys. – volume: 37 start-page: 3067 year: 2018 publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst. – volume: 3 start-page: 588 year: 2020 publication-title: Nat. Electron. – ident: e_1_2_8_7_1 doi: 10.1038/nmat3415 – ident: e_1_2_8_4_1 doi: 10.1021/acsaelm.0c00832 – ident: e_1_2_8_5_1 doi: 10.1063/5.0035741 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201703273 – ident: e_1_2_8_10_1 doi: 10.1021/acsnano.0c03869 – ident: e_1_2_8_11_1 doi: 10.1109/TCAD.2018.2789723 – year: 2021 ident: e_1_2_8_15_1 publication-title: VLSI‐TSA 2021 –2021 Int. Symp. VLSI Technol. Syst. Appl. Proc. – ident: e_1_2_8_6_1 doi: 10.1002/adma.201905764 – ident: e_1_2_8_16_1 doi: 10.1109/TED.2021.3049761 – ident: e_1_2_8_20_1 doi: 10.1021/acsami.5b05773 – ident: e_1_2_8_2_1 doi: 10.1021/acs.nanolett.9b00180 – ident: e_1_2_8_27_1 doi: 10.1016/j.jallcom.2020.153777 – ident: e_1_2_8_18_1 doi: 10.1063/1.5030072 – ident: e_1_2_8_17_1 doi: 10.1063/5.0131087 – ident: e_1_2_8_1_1 doi: 10.1038/s42254-020-0208-2 – ident: e_1_2_8_19_1 doi: 10.1109/LED.2017.2731343 – ident: e_1_2_8_24_1 – ident: e_1_2_8_12_1 doi: 10.1103/PhysRevB.66.214109 – ident: e_1_2_8_21_1 doi: 10.1103/RevModPhys.45.574 – ident: e_1_2_8_22_1 doi: 10.1038/s41928-020-00492-7 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevLett.99.267602 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevB.18.2185 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevLett.27.1719 – ident: e_1_2_8_8_1 doi: 10.1002/aelm.201800795 – ident: e_1_2_8_14_1 doi: 10.1021/acs.nanolett.7b04008 – ident: e_1_2_8_23_1 – ident: e_1_2_8_28_1 doi: 10.1063/5.0039446 – ident: e_1_2_8_3_1 doi: 10.1021/acsami.1c12735 – ident: e_1_2_8_29_1 |
SSID | ssj0001763453 |
Score | 2.2975216 |
Snippet | The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an artificial... Abstract The learning accuracy of neuromorphic computing that mimics the biological brain, is affected by the conductance‐modulation characteristics of an... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | conductance modulation ferroelectric transistor learning accuracy neuromorphic computing polarization switching |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT4MwFMcbnRcvRqPG-Ss9mHiRjB-P0h7nsmUxoh5cshuBUsySCQbn_-97hTF3MMZrKSW88njfPujnMXajiS-EQt6RgdYOZL50ZCpQyGntBpnWXphRHjJ-EtMZPMzD-Y9d_A0foku4kWfY9zU5eJp9DjbQ0NQsaSc5SmhXKLnL9jwK_cR2hpdNlgXdByyKEj1TOZ5w52tyo-sPtofYikwW4L8tWG3EmRyyg1Yq8mEzt0dsx5THzDyjj7-3myd5bOs_cxSefFSVhG6lSeRxlbdVufii5BNT11VT7mahuQ1Olg1iT7NwjvcKrY3HmhIPGMxO2Gwyfh1NnbZUgqNRcUSOkAaXOoCLQWnoS5nIg1DR7muZRykRchQYqQMdKSFTD3JK-FAClGhjnoI0OGW9sirNGeOhUKYAHAGlCBhcEPlhnlKFoQJwKaKLPnPWZkp0yxGnchbLpCEg-wmZNenM2me3Xf-PhqDxa897snrXi8jXtqGq35LWkRIMrm4kQGkfbxSMygIfnaEI8VagADfvszs7Z39cKxmOH2PhR-f_637B9rENmj8eL1lvVX-ZK1Qlq-zaPnjfnTHZPQ priority: 102 providerName: Wiley-Blackwell |
Title | Optimization Method for Conductance Modulation in Ferroelectric Transistor for Neuromorphic Computing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202300698 https://doaj.org/article/67807649c2e244e9b32eadf5e994f40d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2199-160X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763453 issn: 2199-160X databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2199-160X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001763453 issn: 2199-160X databaseCode: ADMLS dateStart: 20151101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2199-160X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763453 issn: 2199-160X databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2199-160X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763453 issn: 2199-160X databaseCode: AVUZU dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2199-160X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763453 issn: 2199-160X databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB6QWIiaOhfHHkvVqkIEGKjULUocR6rUJqgq_587O63aAbGwJo6T3MW-dxf7PcYeDPELIZAPVGRMAIVQgcolAjljwqgwZhAXVIdM3-R0Bi_zeL4n9UVrwjw9sDdcHydTTLVBG2ExElldRAJfvoqt1lBBWNLsi2FsL5ly1RUcNhBHW5bGUPRzu6SN54i4Q6nVQRRyZP2H4NRFl8kZO21hIR_6xzlnR7a-YPYdx_Oq3SjJU6f1zBFk8lFTE00rOYynTdkqcPFFzSd2vW68tM3CcBeIHA-Iu8wRcawatCye83IOGLgu2Wwy_hxNg1YWITCILpJAKotpDWDipyz9FZNlFGvaaa3KJCc2HA1WmcgkWqp8ACUVd6jYScxiAw15dMU6dVPba8ZjqW0F2APCDrCY_Ii4zElNqAJMO0zVZcHWTJlpOcNJumKZebZjkZFZs51Zu-xx1_7Ls2X82vKZrL5rRSzX7gD6Pmt9n_3l-y57cj77417ZcPyaSpHc_Mc9b9kJdgx-zeMd62zW3_Yeccmm6LFjAR899yH-AFcX3i4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gHOCCQIAYnzkgcaFal7ppcoRp04AVOGzSblWbpmjS1qIJ_j922g3tgBDXxk1VJ66f3fiZsRtD_EII5D0VGONBJpSnUolAzhg_yIzphhnlIeMXOZzA0zRcnSakWpiaH2KdcCPLcN9rMnBKSHd-WENTO6dScsTQvtRqm-2AFD5tbAFvP2kWtB9wXJRomtrrSn-6om70RWdzig3X5Bj8NxGrczmDA7bfYEV-Xy_uIduy5RGzr2jki6Z6kseuATRH5Ml7VUncrbSKPK7ypi0Xn5V8YJfLqu53MzPceSdHDuJuc-wciwrVjWN1jwf0ZsdsMuiPe0Ov6ZXgGYQckSeVxVgHMBpUln6VyTwINZVfqzxKiSJHg1UmMJGWKu1CThkfyoAS3VhXQxqcsFZZlfaU8VBqWwDOgFgELEZEIsxTajFUAMYipmgzb6WmxDRE4tTPYp7UFMgiIbUma7W22e1a_qOm0PhV8oG0vpYi6mt3oVq-J40lJehd_UiCNgJfFKzOAoHWUIT4KlCAn7fZnVuzP56V3PdHsRTR2f_Er9nucByPktHjy_M528NxqI8_XrDW5_LLXiJE-cyu3Cb8Bm453Kw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcbxcT4YjRqxJ99MPHFhbHduvYREYIKyIMkvC1b1xkS2AjB_9-7bqA8GOPr2nXZdbf79rZ-jrE7TXwhFPKO9LV2IPGkI2OBQk5r10-0bgYJ5SEHQ9Ebw8skmPzYxV_yITYJN_IM-74mB1-kWeMbGhqbGe0kRwntCiV32R4Qt4XYzjD6zrKg-4BFUaJnKqcp3Mma3Oh6je0htiKTBfhvC1YbcbpH7LCSirxVzu0x2zH5CTNv6OPzavMkH9j6zxyFJ28XOaFbaRL5oEirqlx8mvOuWS6LstzNVHMbnCwbxJ5m4RzzAq2NbWWJBwxmp2zc7by3e05VKsHRqDhCR0iDSx3AxaA09KVMpH6gaPe1TMOYCDkKjNS-DpWQcRNSSvhQApRoY00FsX_GanmRm3PGA6FMBjgCShEwuCDygjSmCkMZ4FJEZ3XmrM0U6YojTuUsZlFJQPYiMmu0MWud3W_6L0qCxq89H8nqm15EvrYHiuVHVDlShMHVDQUo7eGNglGJ76EzZAHeCmTgpnX2YOfsj2tFrU5_ILzw4n_db9n-6Kkb9Z-Hr5fsAJuh_PnxitVWy09zjQJlldzYZ_ALPqPb3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Method+for+Conductance+Modulation+in+Ferroelectric+Transistor+for+Neuromorphic+Computing&rft.jtitle=Advanced+electronic+materials&rft.au=Cheol+Jun+Kim&rft.au=Jae+Yeob+Lee&rft.au=Minkyung+Ku&rft.au=Tae+Hoon+Kim&rft.date=2024-05-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=10&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202300698&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_67807649c2e244e9b32eadf5e994f40d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |