Quasi-Bayes properties of a procedure for sequential learning in mixture models
Bayesian methods are often optimal, yet increasing pressure for fast computations, especially with streaming data, brings renewed interest in faster, possibly suboptimal, solutions. The extent to which these algorithms approximate Bayesian solutions is a question of interest, but often unanswered. W...
        Saved in:
      
    
          | Published in | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 82; no. 4; pp. 1087 - 1114 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Wiley
    
        01.09.2020
     Oxford University Press  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1369-7412 1467-9868  | 
| DOI | 10.1111/rssb.12385 | 
Cover
| Abstract | Bayesian methods are often optimal, yet increasing pressure for fast computations, especially with streaming data, brings renewed interest in faster, possibly suboptimal, solutions. The extent to which these algorithms approximate Bayesian solutions is a question of interest, but often unanswered. We propose a methodology to address this question in predictive settings, when the algorithm can be reinterpreted as a probabilistic predictive rule. We specifically develop the proposed methodology for a recursive procedure for on-line learning in non-parametric mixture models, which is often referred to as Newton’s algorithm. This algorithm is simple and fast; however, its approximation properties are unclear. By reinterpreting it as a predictive rule, we can show that it underlies a statistical model which is, asymptotically, a Bayesian, exchangeable mixture model. In this sense, the recursive rule provides a quasi-Bayes solution. Although the algorithm offers only a point estimate, our clean statistical formulation enables us to provide the asymptotic posterior distribution and asymptotic credible intervals for the mixing distribution. Moreover, it gives insights for tuning the parameters, as we illustrate in simulation studies, and paves the way to extensions in various directions. Beyond mixture models, our approach can be applied to other predictive algorithms. | 
    
|---|---|
| AbstractList | Summary
Bayesian methods are often optimal, yet increasing pressure for fast computations, especially with streaming data, brings renewed interest in faster, possibly suboptimal, solutions. The extent to which these algorithms approximate Bayesian solutions is a question of interest, but often unanswered. We propose a methodology to address this question in predictive settings, when the algorithm can be reinterpreted as a probabilistic predictive rule. We specifically develop the proposed methodology for a recursive procedure for on‐line learning in non‐parametric mixture models, which is often referred to as Newton's algorithm. This algorithm is simple and fast; however, its approximation properties are unclear. By reinterpreting it as a predictive rule, we can show that it underlies a statistical model which is, asymptotically, a Bayesian, exchangeable mixture model. In this sense, the recursive rule provides a quasi‐Bayes solution. Although the algorithm offers only a point estimate, our clean statistical formulation enables us to provide the asymptotic posterior distribution and asymptotic credible intervals for the mixing distribution. Moreover, it gives insights for tuning the parameters, as we illustrate in simulation studies, and paves the way to extensions in various directions. Beyond mixture models, our approach can be applied to other predictive algorithms. Bayesian methods are often optimal, yet increasing pressure for fast computations, especially with streaming data, brings renewed interest in faster, possibly suboptimal, solutions. The extent to which these algorithms approximate Bayesian solutions is a question of interest, but often unanswered. We propose a methodology to address this question in predictive settings, when the algorithm can be reinterpreted as a probabilistic predictive rule. We specifically develop the proposed methodology for a recursive procedure for on‐line learning in non‐parametric mixture models, which is often referred to as Newton's algorithm. This algorithm is simple and fast; however, its approximation properties are unclear. By reinterpreting it as a predictive rule, we can show that it underlies a statistical model which is, asymptotically, a Bayesian, exchangeable mixture model. In this sense, the recursive rule provides a quasi‐Bayes solution. Although the algorithm offers only a point estimate, our clean statistical formulation enables us to provide the asymptotic posterior distribution and asymptotic credible intervals for the mixing distribution. Moreover, it gives insights for tuning the parameters, as we illustrate in simulation studies, and paves the way to extensions in various directions. Beyond mixture models, our approach can be applied to other predictive algorithms.  | 
    
| Author | Fortini, Sandra Petrone, Sonia  | 
    
| Author_xml | – sequence: 1 givenname: Sandra surname: Fortini fullname: Fortini, Sandra – sequence: 2 givenname: Sonia surname: Petrone fullname: Petrone, Sonia  | 
    
| BookMark | eNp9kEtLxDAURoMo-Ny4FwpuROiYNEmTLHXwBQPiax3S5lYydJIxadH597aOuhDxbnID51w-vl206YMHhA4JnpBhzmJK1YQUVPINtENYKXIlS7k57LRUuWCk2Ea7Kc3xMKWgO-juvjfJ5RdmBSlbxrCE2LlhDU1mxn8Nto-QNSFmCV578J0zbdaCid75l8z5bOHeuxFZBAtt2kdbjWkTHHy9e-j56vJpepPP7q5vp-ezvKZS8by2spYFlxxTSxVpKlsJgQ0zVlleGaNKAWArW1NeMVwyLqgUDaGGAzRcMrqHTtZ3h4xDrNTphUs1tK3xEPqkC86JEpjSET3-hc5DH_2QTheMElYwhkfqdE3VMaQUodHL6BYmrjTBeuxWj93qz24HGP-Ca9eZzgXfRePavxWyVt5cC6t_juuHx8eLb-do7cxTF-KPU5SKCoUF_QAqfJhe | 
    
| CitedBy_id | crossref_primary_10_1111_sjos_12765 crossref_primary_10_1093_jrsssb_qkad005 crossref_primary_10_1098_rsta_2022_0142 crossref_primary_10_3150_21_BEJ1452 crossref_primary_10_3390_math9222845 crossref_primary_10_1080_10618600_2020_1807995 crossref_primary_10_1007_s11222_023_10242_2 crossref_primary_10_1214_23_STS884 crossref_primary_10_1214_24_STS965 crossref_primary_10_1214_24_BA1498 crossref_primary_10_3390_math9243211  | 
    
| Cites_doi | 10.1080/01621459.2017.1285773 10.1007/s11009-017-9587-y 10.1080/10618600.2000.10474909 10.1214/17-EJP47 10.1007/978-3-319-18329-9 10.1214/aop/1176991771 10.2307/3315637 10.1214/009117904000000676 10.1214/aos/1176342372 10.1142/9781860948886_0019 10.1214/11-BJPS176 10.1007/BF02511443 10.1214/aos/1176342871 10.1111/j.2517-6161.1978.tb01654.x 10.1214/12-AOP786 10.1093/biomet/asr030 10.1239/aap/1275055237 10.1016/j.spa.2017.06.008 10.1093/biomet/86.1.15 10.1214/08-AOS639 10.3150/16-BEJ844 10.1007/BFb0099421 10.1214/08-STS265 10.1080/01621459.2014.950735 10.1214/18-EJS1479 10.1007/s11222-018-9803-9 10.3150/11-BEJ356 10.1080/01621459.2017.1304219 10.1002/9780470316658 10.1214/09-EJS458  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Royal Statistical Society Copyright © 2020 The Royal Statistical Society and Blackwell Publishing Ltd  | 
    
| Copyright_xml | – notice: 2020 Royal Statistical Society – notice: Copyright © 2020 The Royal Statistical Society and Blackwell Publishing Ltd  | 
    
| DBID | AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6  | 
    
| DOI | 10.1111/rssb.12385 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics | 
    
| EISSN | 1467-9868 | 
    
| EndPage | 1114 | 
    
| ExternalDocumentID | 10_1111_rssb_12385 RSSB12385 26937907  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .4S .DC .GA 05W 10A 1OC 29L 2AX 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHBH AAONW AAPXW AASGY AAUAY AAXRX AAZKR ABBHK ABCQN ABCUV ABDFA ABEHJ ABEML ABFAN ABIVO ABLJU ABPFR ABPQP ABPTD ABPVW ABWST ABYWD ABZEH ACAHQ ACCZN ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACUBG ACXBN ACXQS ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADODI ADOZA ADRDM ADVEK ADZMN AEGXH AEIMD AEMOZ AEUPB AFBPY AFEBI AFGKR AFVYC AFXHP AFZJQ AHQJS AIURR AJAOE AJNCP AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMVHM AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EMK F00 F5P G-S G.N GODZA H.T H.X HQ6 HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NU- O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZL0 ZZTAW ~02 ~IA ~KM ~WT .Y3 3-9 31~ AAHHS AANHP AARHZ ABPQH ABXSQ ABYAD ACBWZ ACCFJ ACFRR ACRPL ACTWD ACYXJ ADNMO ADQBN ADULT AEEZP AELPN AEQDE AEUQT AFPWT AIWBW AJBDE ANFBD AS~ ATGXG AZFZN COF EJD FEDTE FVMVE H13 HF~ HGD HVGLF H~9 JSODD NHB RJQFR ZGI AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c3895-cd8c8258503d391fbdb770a4ad9d5baa967eedbdc35b406457387f13a5eef5843 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1369-7412 | 
    
| IngestDate | Fri Oct 03 00:13:19 EDT 2025 Fri Jul 25 09:40:53 EDT 2025 Wed Oct 01 04:23:54 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Wed Jan 22 16:34:25 EST 2025 Thu Jul 03 21:28:59 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3895-cd8c8258503d391fbdb770a4ad9d5baa967eedbdc35b406457387f13a5eef5843 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2431424404 | 
    
| PQPubID | 39359 | 
    
| PageCount | 28 | 
    
| ParticipantIDs | proquest_miscellaneous_2551970334 proquest_journals_2431424404 crossref_primary_10_1111_rssb_12385 crossref_citationtrail_10_1111_rssb_12385 wiley_primary_10_1111_rssb_12385_RSSB12385 jstor_primary_26937907  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2020 | 
    
| PublicationDateYYYYMMDD | 2020-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology | 
    
| PublicationYear | 2020 | 
    
| Publisher | Wiley Oxford University Press  | 
    
| Publisher_xml | – name: Wiley – name: Oxford University Press  | 
    
| References | 2009; 23 1963; 25 2017; 22 1999; 27 2000; 9 1988; 16 2017; 23 2013; 41 2002; 11 1998 2006 2011; 98 2012; 18 1999; 86 2017; 112 2018; 20 1974; 2 2004; 32 1986; 1 2010; 42 2014; 109 2002; 64 2018; 113 2019; 24 1978; 40 2015; 43 2019 1986 1985 2008; 23 2018 2019; 29 2015 2013 2012; 26 2018; 12 2009; 3 1973; 1 2009; 37 2017; 128 Martin (2023022408365275700_) 2009; 3 Berti (2023022408365275700_) 2004; 32 Dixit (2023022408365275700_) 2019 Blei (2023022408365275700_) 2017; 112 Ethier (2023022408365275700_) 1986 Fortini (2023022408365275700_) 2012; 26 Ghosh (2023022408365275700_) 2006 Martin (2023022408365275700_) 2008; 23 Bassetti (2023022408365275700_) 2010; 42 Janson (2023022408365275700_) 2019; 24 Zuanetti (2023022408365275700_) 2019; 29 Quintana (2023022408365275700_) 2000; 9 George (2023022408365275700_) 1986; 1 Naesseth (2023022408365275700_) 2018 Berti (2023022408365275700_) 2013; 41 Martin (2023022408365275700_) 2019 Fortini (2023022408365275700_) 2017; 128 Szabó (2023022408365275700_) 2015; 43 Häusler (2023022408365275700_) 2015 Mailler (2023022408365275700_) 2017; 22 Hahn (2023022408365275700_) 2018; 113 Smith (2023022408365275700_) 1978; 40 Petrone (2023022408365275700_) 2002; 11 Blackwell (2023022408365275700_) 1973; 1 Cappello (2023022408365275700_) 2018; 20 Antoniak (2023022408365275700_) 1974; 2 Broderick (2023022408365275700_) 2013 Newton (2023022408365275700_) 1999; 86 Favaro (2023022408365275700_) 2012; 18 Bandyopadhyay (2023022408365275700_) 2017; 23 Crimaldi (2023022408365275700_) 2009; 23 Kallenberg (2023022408365275700_) 1988; 16 Newton (2023022408365275700_) 1998 Aldous (2023022408365275700_) 1985 Li (2023022408365275700_) 2018; 12 Newton (2023022408365275700_) 2002; 64 Renyi (2023022408365275700_) 1963; 25 Tokdar (2023022408365275700_) 2009; 37 Airoldi (2023022408365275700_) 2014; 109 Martin (2023022408365275700_) 2011; 98 MacEachern (2023022408365275700_) 1999; 27 Lin (2023022408365275700_) 2013  | 
    
| References_xml | – year: 1985 – volume: 22 start-page: 1 year: 2017 end-page: 33 article-title: Measure‐valued Pólya urn processes publication-title: Electron. J. Probab. – start-page: 968 year: 2018 end-page: 977 – volume: 86 start-page: 15 year: 1999 end-page: 26 article-title: A recursive algorithm for nonparametric analysis with missing data publication-title: Biometrika – volume: 42 start-page: 433 year: 2010 end-page: 459 article-title: Conditionally identically distributed species sampling sequences publication-title: Adv. Appl. Probab. – volume: 16 start-page: 508 year: 1988 end-page: 534 article-title: Spreading and predictable sampling in exchangeable sequences and processes publication-title: Ann. Probab. – volume: 32 start-page: 2029 year: 2004 end-page: 2052 article-title: Limit theorems for a class of identically distributed random variables publication-title: Ann. Probab. – volume: 41 start-page: 2090 year: 2013 end-page: 2102 article-title: Exchangeable sequences driven by absolutely continuous random measures publication-title: Ann. Probab. – volume: 1 start-page: 353 year: 1973 end-page: 355 article-title: Ferguson distributions via Pólya urn schemes publication-title: Ann. Statist. – volume: 2 start-page: 1152 year: 1974 end-page: 1174 article-title: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems publication-title: Ann. Statist. – volume: 11 start-page: 1 year: 2002 end-page: 20 article-title: Non parametric mixture priors based on an exponential random scheme publication-title: Statist. Meth. Appl. – year: 2019 article-title: A survey of nonparametric mixing density estimation via the predictive recursion algorithm publication-title: Sankhya – volume: 109 start-page: 1466 year: 2014 end-page: 1480 article-title: Generalized species sampling priors with latent Beta reinforcements publication-title: J. Am. Statist. Ass. – volume: 26 start-page: 423 year: 2012 end-page: 449 article-title: Predictive construction of priors in Bayesian nonparametrics publication-title: Braz. J. Probab. Statist. – volume: 1 start-page: 188 year: 1986 end-page: 205 article-title: Minimax multiple shrinkage estimation publication-title: Ann. Statist. – volume: 24 start-page: 1 year: 2019 end-page: 11 article-title: Random replacements in Pólya urns with infinitely many colours publication-title: Electron. Communs Probab. – volume: 18 start-page: 1002 year: 2012 end-page: 1030 article-title: A class of measure‐valued Markov chains and Bayesian nonparametrics publication-title: Bernoulli – volume: 113 start-page: 1085 year: 2018 end-page: 1093 article-title: On recursive Bayesian predictive distributions publication-title: J. Am. Statist. Ass. – volume: 23 start-page: 3243 year: 2017 end-page: 3267 article-title: Pólya urn schemes with infinitely many colors publication-title: Bernoulli – volume: 23 start-page: 365 year: 2008 end-page: 382 article-title: Stochastic approximation and Newtons estimate of a mixing distribution publication-title: Statist. Sci. – year: 1998 – volume: 29 start-page: 203 year: 2019 end-page: 215 article-title: Bayesian nonparametric clustering for large data sets publication-title: Statist. Comput. – start-page: 1727 year: 2013 end-page: 1735 – year: 1986 – start-page: 429 year: 2006 end-page: 443 – volume: 23 start-page: 1139 year: 2009 end-page: 1156 article-title: An almost sure conditional convergence result and an application to a generalized Pólya urn publication-title: Int. Math. Forum – volume: 37 start-page: 2502 year: 2009 end-page: 2522 article-title: Consistency of a recursive estimate of mixing distributions publication-title: Ann. Statist. – volume: 128 start-page: 819 year: 2017 end-page: 846 article-title: On a notion of partially conditionally identically distributed sequences publication-title: Stoch. Processes. Appl. – volume: 9 start-page: 711 year: 2000 end-page: 737 article-title: Computational aspects of nonparametric Bayesian analysis with applications to the modeling of multiple binary sequences publication-title: J. Computnl Graph. Statist. – volume: 112 start-page: 859 year: 2017 end-page: 877 article-title: Variational inference: a review for statisticians publication-title: J. Am. Statist. Ass. – start-page: 395 year: 2013 end-page: 403 – volume: 43 start-page: 1391 year: 2015 end-page: 1428 article-title: Frequentist coverage of adaptive nonparametric Bayesian credible sets publication-title: Ann. Statist. – volume: 20 start-page: 777 year: 2018 end-page: 797 article-title: A Bayesian motivated Laplace inversion for multivariate probability distributions publication-title: Methodol. Comp. Appl. Probab. – volume: 25 start-page: 293 year: 1963 end-page: 302 article-title: On stable sequences of events publication-title: Sankhya – volume: 98 start-page: 567 year: 2011 end-page: 582 article-title: Semiparametric inference in mixture models with predictive recursion marginal likelihood publication-title: Biometrika – volume: 64 start-page: 306 year: 2002 end-page: 322 article-title: On a nonparametric recursive estimator of the mixing distribution publication-title: Sankhya – volume: 3 start-page: 1455 year: 2009 end-page: 1472 article-title: Asymptotic properties of predictive recursion: robustness and rate of convergence publication-title: Electron. J. Statist. – volume: 27 start-page: 251 year: 1999 end-page: 267 article-title: Importance sampling for nonparametric Bayes models: the next generation publication-title: Can. J. Statist. – year: 2019 – volume: 40 start-page: 106 year: 1978 end-page: 112 article-title: A quasi‐Bayes sequential procedure for mixtures publication-title: J. R. Statist. Soc. – year: 2015 – volume: 12 start-page: 3071 year: 2018 end-page: 3113 article-title: A quasi‐Bayesian perspective to online clustering publication-title: Electron. J. Statist. – volume: 112 start-page: 859 year: 2017 ident: 2023022408365275700_ article-title: Variational inference: a review for statisticians publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.2017.1285773 – volume: 20 start-page: 777 year: 2018 ident: 2023022408365275700_ article-title: A Bayesian motivated Laplace inversion for multivariate probability distributions publication-title: Methodol. Comp. Appl. Probab. doi: 10.1007/s11009-017-9587-y – volume: 9 start-page: 711 year: 2000 ident: 2023022408365275700_ article-title: Computational aspects of nonparametric Bayesian analysis with applications to the modeling of multiple binary sequences publication-title: J. Computnl Graph. Statist. doi: 10.1080/10618600.2000.10474909 – volume: 22 start-page: 1 year: 2017 ident: 2023022408365275700_ article-title: Measure-valued Pólya urn processes publication-title: Electron. J. Probab. doi: 10.1214/17-EJP47 – volume-title: Stable Convergence and Stable Limit Theorems year: 2015 ident: 2023022408365275700_ doi: 10.1007/978-3-319-18329-9 – volume: 16 start-page: 508 year: 1988 ident: 2023022408365275700_ article-title: Spreading and predictable sampling in exchangeable sequences and processes publication-title: Ann. Probab. doi: 10.1214/aop/1176991771 – volume: 25 start-page: 293 year: 1963 ident: 2023022408365275700_ article-title: On stable sequences of events publication-title: Sankhya – volume: 27 start-page: 251 year: 1999 ident: 2023022408365275700_ article-title: Importance sampling for nonparametric Bayes models: the next generation publication-title: Can. J. Statist. doi: 10.2307/3315637 – volume: 32 start-page: 2029 year: 2004 ident: 2023022408365275700_ article-title: Limit theorems for a class of identically distributed random variables publication-title: Ann. Probab. doi: 10.1214/009117904000000676 – volume: 1 start-page: 353 year: 1973 ident: 2023022408365275700_ article-title: Ferguson distributions via Pólya urn schemes publication-title: Ann. Statist. doi: 10.1214/aos/1176342372 – start-page: 429 volume-title: In Frontiers in Statistics year: 2006 ident: 2023022408365275700_ doi: 10.1142/9781860948886_0019 – volume: 26 start-page: 423 year: 2012 ident: 2023022408365275700_ article-title: Predictive construction of priors in Bayesian nonparametrics publication-title: Braz. J. Probab. Statist. doi: 10.1214/11-BJPS176 – volume: 11 start-page: 1 year: 2002 ident: 2023022408365275700_ article-title: Non parametric mixture priors based on an exponential random scheme publication-title: Statist. Meth. Appl. doi: 10.1007/BF02511443 – volume: 2 start-page: 1152 year: 1974 ident: 2023022408365275700_ article-title: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems publication-title: Ann. Statist. doi: 10.1214/aos/1176342871 – start-page: 968 volume-title: In Proc. 21st Int. Conf. Artificial Intelligence and Statistics year: 2018 ident: 2023022408365275700_ – volume: 40 start-page: 106 year: 1978 ident: 2023022408365275700_ article-title: A quasi-Bayes sequential procedure for mixtures publication-title: J. R. Statist. Soc. doi: 10.1111/j.2517-6161.1978.tb01654.x – volume: 43 start-page: 1391 year: 2015 ident: 2023022408365275700_ article-title: Frequentist coverage of adaptive nonparametric Bayesian credible sets publication-title: Ann. Statist. – volume-title: In Practical Nonparametric and Semiparametric Bayesian Statistics year: 1998 ident: 2023022408365275700_ – volume: 64 start-page: 306 year: 2002 ident: 2023022408365275700_ article-title: On a nonparametric recursive estimator of the mixing distribution publication-title: Sankhya – volume: 41 start-page: 2090 year: 2013 ident: 2023022408365275700_ article-title: Exchangeable sequences driven by absolutely continuous random measures publication-title: Ann. Probab. doi: 10.1214/12-AOP786 – volume: 98 start-page: 567 year: 2011 ident: 2023022408365275700_ article-title: Semiparametric inference in mixture models with predictive recursion marginal likelihood publication-title: Biometrika doi: 10.1093/biomet/asr030 – volume: 42 start-page: 433 year: 2010 ident: 2023022408365275700_ article-title: Conditionally identically distributed species sampling sequences publication-title: Adv. Appl. Probab. doi: 10.1239/aap/1275055237 – volume: 128 start-page: 819 year: 2017 ident: 2023022408365275700_ article-title: On a notion of partially conditionally identically distributed sequences publication-title: Stoch. Processes. Appl. doi: 10.1016/j.spa.2017.06.008 – volume: 86 start-page: 15 year: 1999 ident: 2023022408365275700_ article-title: A recursive algorithm for nonparametric analysis with missing data publication-title: Biometrika doi: 10.1093/biomet/86.1.15 – start-page: 1727 volume-title: In Proc. 26th Int. Conf. Neural Information Processing Systems year: 2013 ident: 2023022408365275700_ – volume: 37 start-page: 2502 year: 2009 ident: 2023022408365275700_ article-title: Consistency of a recursive estimate of mixing distributions publication-title: Ann. Statist. doi: 10.1214/08-AOS639 – volume: 23 start-page: 3243 year: 2017 ident: 2023022408365275700_ article-title: Pólya urn schemes with infinitely many colors publication-title: Bernoulli doi: 10.3150/16-BEJ844 – volume: 1 start-page: 188 year: 1986 ident: 2023022408365275700_ article-title: Minimax multiple shrinkage estimation publication-title: Ann. Statist. – volume: 23 start-page: 1139 year: 2009 ident: 2023022408365275700_ article-title: An almost sure conditional convergence result and an application to a generalized Pólya urn publication-title: Int. Math. Forum – volume-title: In École d’Été de Probabilités de Saint-Fleur XIII 1983 year: 1985 ident: 2023022408365275700_ article-title: Exchangeability and related topics. doi: 10.1007/BFb0099421 – volume: 23 start-page: 365 year: 2008 ident: 2023022408365275700_ article-title: Stochastic approximation and Newtons estimate of a mixing distribution publication-title: Statist. Sci. doi: 10.1214/08-STS265 – volume: 109 start-page: 1466 year: 2014 ident: 2023022408365275700_ article-title: Generalized species sampling priors with latent Beta reinforcements publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.2014.950735 – volume: 24 start-page: 1 year: 2019 ident: 2023022408365275700_ article-title: Random replacements in Pólya urns with infinitely many colours publication-title: Electron. Communs Probab. – volume: 12 start-page: 3071 year: 2018 ident: 2023022408365275700_ article-title: A quasi-Bayesian perspective to online clustering publication-title: Electron. J. Statist. doi: 10.1214/18-EJS1479 – volume: 29 start-page: 203 year: 2019 ident: 2023022408365275700_ article-title: Bayesian nonparametric clustering for large data sets publication-title: Statist. Comput. doi: 10.1007/s11222-018-9803-9 – volume: 18 start-page: 1002 year: 2012 ident: 2023022408365275700_ article-title: A class of measure-valued Markov chains and Bayesian nonparametrics publication-title: Bernoulli doi: 10.3150/11-BEJ356 – year: 2019 ident: 2023022408365275700_ article-title: A survey of nonparametric mixing density estimation via the predictive recursion algorithm publication-title: Sankhya B – volume: 113 start-page: 1085 year: 2018 ident: 2023022408365275700_ article-title: On recursive Bayesian predictive distributions publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.2017.1304219 – volume-title: Markov Processes: Characterization and Convergence year: 1986 ident: 2023022408365275700_ doi: 10.1002/9780470316658 – year: 2019 ident: 2023022408365275700_ article-title: Permutation-based uncertainty quantification about a mixing distribution – start-page: 395 volume-title: In Proc. 26th Int. Conf. Neural Information Processing Systems year: 2013 ident: 2023022408365275700_ – volume: 3 start-page: 1455 year: 2009 ident: 2023022408365275700_ article-title: Asymptotic properties of predictive recursion: robustness and rate of convergence publication-title: Electron. J. Statist. doi: 10.1214/09-EJS458  | 
    
| SSID | ssj0000673 | 
    
| Score | 2.4421473 | 
    
| Snippet | Bayesian methods are often optimal, yet increasing pressure for fast computations, especially with streaming data, brings renewed interest in faster, possibly... Summary Bayesian methods are often optimal, yet increasing pressure for fast computations, especially with streaming data, brings renewed interest in faster,...  | 
    
| SourceID | proquest crossref wiley jstor  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1087 | 
    
| SubjectTerms | Algorithms Asymptotic exchangeability Asymptotic properties Bayesian analysis Bayesian non‐parametrics Bayesian theory Computer simulation Conditionally identically distributed sequences Dirichlet process Learning Machine learning Original Articles Predictive distributions Probabilistic models Questions Recursive learning Recursive methods Regression analysis Simulation Statistical analysis Statistical methods Statistical models Statistics  | 
    
| Title | Quasi-Bayes properties of a procedure for sequential learning in mixture models | 
    
| URI | https://www.jstor.org/stable/26937907 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12385 https://www.proquest.com/docview/2431424404 https://www.proquest.com/docview/2551970334  | 
    
| Volume | 82 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1467-9868 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0000673 issn: 1369-7412 databaseCode: AMVHM dateStart: 19980301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1369-7412 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-9868 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000673 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEB7EUy_-i9UqK3pRSEmySZOAFyuWIijUH-hFwm6ykaKm0jSgnnwEn9EncWaT1FZE0FsgE5Ls7Mx8szvzLcA-N81YmUliEJeK4bhCGJhG-IYnEcv6PuYtES3on1-0ujfOWd_tz8FR1QtT8ENMFtzIMrS_JgMXMpsy8lGWySb6XZ86zC3e0vnUpT3thnnRdBUYGDbtkpuUyni-Hp2JRkVB4gzUnAasOuJ0FuG2-tai0OS-mY9lM3r9RuP4359ZgoUSirLjYu4sw5xKV6BG6LMgb16FXi8X2eDj7b0tXlTGnmjhfkQMrGyYMMF08IvzkWKIfFlRlI0O44GVR1HcsUHKHgfPtEnB9JE72RrcdE6vT7pGeQaDESGUcQ2iDsAk0ndNHvPASmQsPc8UjoiD2JVCBC0Po6yMI-5Kh7jvPO57icWFq1SC4Iavw3w6TNUGMEvZkiMcU1xR6IyEL5LISqwIU0yBrqAOB5UuwqgkKKdzMh7CKlGhUQr1KNVhbyL7VNBy_Ci1rlU6EbFbiMYC06tDo9JxWNpsFtqIpajtz3TqsDu5jdZGWygiVcMcZVxq9DU5R5lDrdBfXh9eXl219dXmX4S3oGZTUq8L2RowPx7lahuRz1ju6Bn-CdIyABY | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADA4-DnrxLa7PEb0odGk7nW17VFHWJ_gCb2WmncqidmW7BfXkT_A3-ktMpt11FRH0VmhKaTNJvswkXwA2uW0n2k5Ti7hULE9IaWEaEVi-QiwbBJi3xLShf3rWaF57RzfipqrNoV6Ykh-iv-FGlmH8NRk4bUgPWHknz1UdHW8ghmHUa2CiQpjowh10xLxsuwotDJxuxU5KhTyfz36JR2VJ4hewOQhZTcw5mCwHq-aGqpBKTe7qRVfV45dvRI7__pwpmKjQKNspl880DOlsBsYJgJb8zbNwfl7IvPX--rYrn3XOHmnvvkMkrKydMslM_EuKjmYIfllZl40-455V0yhuWStjD60nOqdgZupOPgfXB_tXe02rGsNgxYhmhEXsAZhHBsLmCQ-dVCXK923pySRMhJIybPgYaFUSc6E8or_zeeCnDpdC6xTxDZ-Hkayd6QVgjnYVR0SmuaboGctAprGTOjEqT6I3qMFWTxlRXHGU06iM-6iXq9BfisxfqsFGX_axZOb4UWre6LQv4jYQkIW2X4PlnpKjymzzyEU4RZ1_tleD9f5tNDg6RZGZbhcoI6jX1-YcZbaNRn95fXRxeblrrhb_IrwGY82r05Po5PDseAnGXcrxTV3bMox0O4VeQSDUVatmuX8A08UENw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9NADLagSKgvG7BNZCtwiL0wKVWSyzXJI2NUA7aKblTaW3SX3KFqW1o1jbTxxE_gN-6XzL6kpUNo0niLFEdR4rP9-c7-DLDLPS_XnjEucam4oZDSxTQidiOFWDaOMW_JaEP_eNA7HIVfzsRZU5tDvTA1P8Ryw40sw_prMnA9zc2Klc_KUnXR8cbiMTwJRRJTRd_BSbDqiHnddpW4GDiDhp2UCnn-PHsnHtUliXfA5ipktTGnv14PVi0tVSGVmpx3q7nqZj__InL87895BmsNGmUf6uXzHB7p4gW0CYDW_M0bMBxWshzf_Pq9L691yaa0dz8jElY2MUwyG__yaqYZgl9W12Wjz7hgzTSKH2xcsMvxFZ1TMDt1p9yEUf_T94-HbjOGwc0QzQiX2AMwj4yFx3Oe-EblKoo8Gco8yYWSMulFGGhVnnGhQqK_i3gcGZ9LobVBfMO3oFVMCv0SmK8DxRGRaa4pemYylibzjZ9hlinRGzjwfqGMNGs4ymlUxkW6yFXoL6X2Lznwbik7rZk5_im1ZXW6FAl6CMgSL3Kgs1By2phtmQYIp6jzzwsdeLu8jQZHpyiy0JMKZQT1-nqco8ye1eg9r09PTk_37dX2Q4TfwNNvB_306PPg6w60A0rxbVlbB1rzWaVfIQ6aq9d2td8CduYDuw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi%E2%80%90Bayes+properties+of+a+procedure+for+sequential+learning+in+mixture+models&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=tini%2C+Sandra&rft.au=Petrone%2C+Sonia&rft.date=2020-09-01&rft.pub=Oxford+University+Press&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=82&rft.issue=4&rft.spage=1087&rft.epage=1114&rft_id=info:doi/10.1111%2Frssb.12385&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |