An EM algorithm for shape classification based on level sets

In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as t...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 9; no. 5; pp. 491 - 502
Main Authors Tsai, Andy, Wells, William M., Warfield, Simon K., Willsky, Alan S.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2005
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
DOI10.1016/j.media.2005.05.001

Cover

Abstract In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class’s unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications.
AbstractList In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class's unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications.In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class's unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications.
In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class's unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications.
Author Tsai, Andy
Warfield, Simon K.
Willsky, Alan S.
Wells, William M.
Author_xml – sequence: 1
  givenname: Andy
  surname: Tsai
  fullname: Tsai, Andy
  email: atsai@mit.edu
  organization: Department of Radiology at Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
– sequence: 2
  givenname: William M.
  surname: Wells
  fullname: Wells, William M.
  organization: Department of Radiology at Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
– sequence: 3
  givenname: Simon K.
  surname: Warfield
  fullname: Warfield, Simon K.
  organization: Department of Radiology at Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
– sequence: 4
  givenname: Alan S.
  surname: Willsky
  fullname: Willsky, Alan S.
  organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 32-D, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16046181$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUhoNU7EWfQJBZuWvNmUnmAroopV6g4kbXIcmcsSlzqcm04NubaauCCws_nLP4_sPhG5Je3dRIyCXQCVCIb1aTCnMjJyGlfNKFwgkZQBTDOGVh1PvZgffJ0LkVpTRhjJ6RPsSUxZDCgNxO62D-HMjyvbGmXVZB0djALeUaA11K50xhtGxNUwdKOswDv5S4xTJw2LpzclrI0uHFYY7I2_38dfY4Xrw8PM2mi7GO0rQdI9DuIVVEccrzJOIplxCHTMuk4CzTsYp1qhTz3ykEzhkqrWSYQRFyHkIRjcj1_u7aNh8bdK2ojNNYlrLGZuOEPwsJhewoCBkLE6_Bg1cHcKO8RbG2ppL2U3yL8UC0B7RtnLNY_CJUdPrFSuz0i06_6EK7VvanpU2709daacoj3bt9F73JrUErnDZYaw9a1K3IG_Nv_wumup7r
CitedBy_id crossref_primary_10_1002_ima_22074
crossref_primary_10_1016_j_acra_2010_04_006
crossref_primary_10_1109_TMI_2006_881378
crossref_primary_10_1016_j_sigpro_2013_09_009
crossref_primary_10_1007_s10334_017_0664_6
crossref_primary_10_1016_j_patrec_2008_12_001
crossref_primary_10_1109_TIP_2014_2380178
crossref_primary_10_1186_1742_4682_7_28
crossref_primary_10_1109_JSTSP_2015_2505402
crossref_primary_10_1007_s00138_010_0261_4
crossref_primary_10_1016_j_sigpro_2011_06_007
crossref_primary_10_1016_j_sigpro_2007_05_026
crossref_primary_10_1007_s11548_007_0138_9
crossref_primary_10_1109_TMI_2009_2017942
crossref_primary_10_1016_j_jfoodeng_2011_08_011
Cites_doi 10.1007/3-540-47967-8_6
10.1016/0021-9991(88)90002-2
10.14209/its.2002.532
10.1109/34.166621
10.1109/42.511747
10.1145/364338.364343
10.1109/23.708321
10.1109/34.817410
10.1117/1.1385168
10.1016/0031-3203(96)00007-6
10.1111/j.2517-6161.1977.tb01600.x
10.1109/SMA.1999.749322
10.1109/PBMCV.1995.514678
10.1109/34.574790
10.1109/TMI.2002.808355
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1016/j.media.2005.05.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 502
ExternalDocumentID 16046181
10_1016_j_media_2005_05_001
S1361841505000666
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: 5 P41 RR13218
– fundername: NCRR NIH HHS
  grantid: P41 RR13218
– fundername: NIMH NIH HHS
  grantid: R21 MH67054
– fundername: NLM NIH HHS
  grantid: R01 LM007861
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c388t-e108423bf3685d73585a1624ca7f549c6b6c8bb4074be1554ebcba291f25521f3
IEDL.DBID AIKHN
ISSN 1361-8415
IngestDate Tue Oct 21 13:53:50 EDT 2025
Mon Oct 06 18:05:39 EDT 2025
Wed Feb 19 01:53:40 EST 2025
Wed Oct 01 03:29:44 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Fri Feb 23 02:28:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Shape estimation
Shape classification
Level set methods
EM algorithm
Computer-aided diagnosis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-e108423bf3685d73585a1624ca7f549c6b6c8bb4074be1554ebcba291f25521f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 16046181
PQID 19427000
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_68517019
proquest_miscellaneous_19427000
pubmed_primary_16046181
crossref_primary_10_1016_j_media_2005_05_001
crossref_citationtrail_10_1016_j_media_2005_05_001
elsevier_sciencedirect_doi_10_1016_j_media_2005_05_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-10-01
PublicationDateYYYYMMDD 2005-10-01
PublicationDate_xml – month: 10
  year: 2005
  text: 2005-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2005
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Basri, R., Costa, L., Geiger, D., Jacobs, D., 1995. Determining the similarity of deformable shapes. IEEE Workshop: Phys Based Modeling in Comput Vis. pp. 135–143.
Cesar, Costa (bib3) 1996; 29
Staib, Duncan (bib16) 1992; 14
Wells, Grimson, Kikinis, Jolesz (bib20) 1996; 15
Golland, Grimson, Kikinis (bib9) 1999
Li, X., Woom, T., Tan, T., Huang, Z. Decomposing polygon meshes for interactive applications. ACM Symposium on Interactive 3D Graphics 3/2001.
Gdalyahu, Weinshall (bib8) 1999; 21
Tsai, Wells, Warfield, Willsky (bib19) 2004
Cohen, Ayache, Sulger (bib4) 1992
MacQueen, J., 1965. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1.
Tsai, Zhang, Willsky (bib17) 2001; 40
Paragios, N., Rousson, M., 2002. Shape priors for level set representations, ECCV June 02, Copenhagen, Denmark.
Bloomenthal, J., Lim, C., 1999. Skeletal methods of shape manipulation. In: IEEE Proceedings of the Shape Modeling and Applications. pp. 44–47.
Osher, Sethian (bib14) 1988; 79
Dionisio, C., Kim, H., 2002. A supervised shape classification technique invariant under rotation and scaling. International Telecommunications Symposium.
Leventon, Grimson, Faugeras (bib12) 2000; 1
Kawata, Niki, Ohmatsu, Kakinuma, Eguchi, Kaneko, Moriyama (bib10) 1998; 45
Tsai, Yezzi, Wells, Tempany, Tucker, Fan, Grimson, Willsky (bib18) 2003; 22
Dempster, Laird, Rubin (bib6) 1977; 39
Del Bimbo, Pala (bib5) 1997; 19
Staib (10.1016/j.media.2005.05.001_bib16) 1992; 14
Golland (10.1016/j.media.2005.05.001_bib9) 1999
Tsai (10.1016/j.media.2005.05.001_bib19) 2004
10.1016/j.media.2005.05.001_bib2
10.1016/j.media.2005.05.001_bib1
Cesar (10.1016/j.media.2005.05.001_bib3) 1996; 29
Del Bimbo (10.1016/j.media.2005.05.001_bib5) 1997; 19
Cohen (10.1016/j.media.2005.05.001_bib4) 1992
Dempster (10.1016/j.media.2005.05.001_bib6) 1977; 39
10.1016/j.media.2005.05.001_bib11
Leventon (10.1016/j.media.2005.05.001_bib12) 2000; 1
Gdalyahu (10.1016/j.media.2005.05.001_bib8) 1999; 21
Tsai (10.1016/j.media.2005.05.001_bib18) 2003; 22
10.1016/j.media.2005.05.001_bib13
Tsai (10.1016/j.media.2005.05.001_bib17) 2001; 40
10.1016/j.media.2005.05.001_bib7
10.1016/j.media.2005.05.001_bib15
Wells (10.1016/j.media.2005.05.001_bib20) 1996; 15
Osher (10.1016/j.media.2005.05.001_bib14) 1988; 79
Kawata (10.1016/j.media.2005.05.001_bib10) 1998; 45
References_xml – volume: 29
  start-page: 1559
  year: 1996
  end-page: 1569
  ident: bib3
  article-title: Towards effective planar shape representation with multiscale digital curvature analysis based on signal processing techniques
  publication-title: Pattern Recogn
– start-page: 382
  year: 1999
  end-page: 387
  ident: bib9
  article-title: Statistical shape analysis using fixed topology skeletons: corpus callosum study
  publication-title: IPMI
– reference: Basri, R., Costa, L., Geiger, D., Jacobs, D., 1995. Determining the similarity of deformable shapes. IEEE Workshop: Phys Based Modeling in Comput Vis. pp. 135–143.
– start-page: 458
  year: 1992
  end-page: 466
  ident: bib4
  article-title: Tracking points on deformable objects using curvature information
  publication-title: ECCV
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib6
  article-title: Maximum-likelihood from incomplete data via the EM algorithm
  publication-title: J. Royal Stat. Soc. Ser. B
– reference: Bloomenthal, J., Lim, C., 1999. Skeletal methods of shape manipulation. In: IEEE Proceedings of the Shape Modeling and Applications. pp. 44–47.
– reference: Paragios, N., Rousson, M., 2002. Shape priors for level set representations, ECCV June 02, Copenhagen, Denmark.
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: bib14
  article-title: Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 316
  year: 2000
  end-page: 323
  ident: bib12
  article-title: Statistical shape influence in geodesic active contours
  publication-title: IEEE Conf. Comp. Vision Patt. Recog.
– reference: Li, X., Woom, T., Tan, T., Huang, Z. Decomposing polygon meshes for interactive applications. ACM Symposium on Interactive 3D Graphics 3/2001.
– volume: 14
  start-page: 1061
  year: 1992
  end-page: 1075
  ident: bib16
  article-title: Boundary finding with parametrically deformable contour models
  publication-title: IEEE Trans. Patt. Anal. Mach. Intell.
– reference: MacQueen, J., 1965. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1.
– volume: 22
  start-page: 137
  year: 2003
  end-page: 154
  ident: bib18
  article-title: A shaped-based approach to segmentation of medical imagery using level sets
  publication-title: IEEE Trans. Med. Imaging
– reference: Dionisio, C., Kim, H., 2002. A supervised shape classification technique invariant under rotation and scaling. International Telecommunications Symposium.
– volume: 21
  start-page: 1312
  year: 1999
  end-page: 1328
  ident: bib8
  article-title: Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes
  publication-title: IEEE Trans. PAMI
– volume: 19
  start-page: 121
  year: 1997
  end-page: 132
  ident: bib5
  article-title: Visual image retrieval by elastic matching of user sketches
  publication-title: IEEE Trans. PAMI
– volume: 40
  start-page: 1287
  year: 2001
  end-page: 1301
  ident: bib17
  article-title: EM algorithms for image processing using multiscale models and mean field theory, with applications to laser radar range profiling and segmentation
  publication-title: Opt. Eng.
– volume: 15
  start-page: 429
  year: 1996
  end-page: 442
  ident: bib20
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 45
  start-page: 3075
  year: 1998
  end-page: 3082
  ident: bib10
  article-title: Classification of pulmonary nodules in thin-section CT images based on shape characteristics
  publication-title: IEEE Trans. Nucl. Sci.
– start-page: 1
  year: 2004
  end-page: 9
  ident: bib19
  article-title: Level set methods in an EM framework for shape classification and estimation
  publication-title: MICCAI
– ident: 10.1016/j.media.2005.05.001_bib15
  doi: 10.1007/3-540-47967-8_6
– volume: 1
  start-page: 316
  year: 2000
  ident: 10.1016/j.media.2005.05.001_bib12
  article-title: Statistical shape influence in geodesic active contours
  publication-title: IEEE Conf. Comp. Vision Patt. Recog.
– ident: 10.1016/j.media.2005.05.001_bib11
– volume: 79
  start-page: 12
  year: 1988
  ident: 10.1016/j.media.2005.05.001_bib14
  article-title: Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– ident: 10.1016/j.media.2005.05.001_bib7
  doi: 10.14209/its.2002.532
– volume: 14
  start-page: 1061
  year: 1992
  ident: 10.1016/j.media.2005.05.001_bib16
  article-title: Boundary finding with parametrically deformable contour models
  publication-title: IEEE Trans. Patt. Anal. Mach. Intell.
  doi: 10.1109/34.166621
– volume: 15
  start-page: 429
  year: 1996
  ident: 10.1016/j.media.2005.05.001_bib20
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.511747
– ident: 10.1016/j.media.2005.05.001_bib13
  doi: 10.1145/364338.364343
– volume: 45
  start-page: 3075
  year: 1998
  ident: 10.1016/j.media.2005.05.001_bib10
  article-title: Classification of pulmonary nodules in thin-section CT images based on shape characteristics
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.708321
– volume: 21
  start-page: 1312
  year: 1999
  ident: 10.1016/j.media.2005.05.001_bib8
  article-title: Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes
  publication-title: IEEE Trans. PAMI
  doi: 10.1109/34.817410
– start-page: 458
  year: 1992
  ident: 10.1016/j.media.2005.05.001_bib4
  article-title: Tracking points on deformable objects using curvature information
  publication-title: ECCV
– volume: 40
  start-page: 1287
  year: 2001
  ident: 10.1016/j.media.2005.05.001_bib17
  article-title: EM algorithms for image processing using multiscale models and mean field theory, with applications to laser radar range profiling and segmentation
  publication-title: Opt. Eng.
  doi: 10.1117/1.1385168
– volume: 29
  start-page: 1559
  issue: 9
  year: 1996
  ident: 10.1016/j.media.2005.05.001_bib3
  article-title: Towards effective planar shape representation with multiscale digital curvature analysis based on signal processing techniques
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(96)00007-6
– start-page: 1
  year: 2004
  ident: 10.1016/j.media.2005.05.001_bib19
  article-title: Level set methods in an EM framework for shape classification and estimation
  publication-title: MICCAI
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.media.2005.05.001_bib6
  article-title: Maximum-likelihood from incomplete data via the EM algorithm
  publication-title: J. Royal Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.media.2005.05.001_bib2
  doi: 10.1109/SMA.1999.749322
– ident: 10.1016/j.media.2005.05.001_bib1
  doi: 10.1109/PBMCV.1995.514678
– volume: 19
  start-page: 121
  year: 1997
  ident: 10.1016/j.media.2005.05.001_bib5
  article-title: Visual image retrieval by elastic matching of user sketches
  publication-title: IEEE Trans. PAMI
  doi: 10.1109/34.574790
– start-page: 382
  year: 1999
  ident: 10.1016/j.media.2005.05.001_bib9
  article-title: Statistical shape analysis using fixed topology skeletons: corpus callosum study
  publication-title: IPMI
– volume: 22
  start-page: 137
  year: 2003
  ident: 10.1016/j.media.2005.05.001_bib18
  article-title: A shaped-based approach to segmentation of medical imagery using level sets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.808355
SSID ssj0007440
Score 1.9351221
Snippet In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 491
SubjectTerms Algorithms
Artificial Intelligence
Cluster Analysis
Computer Simulation
Computer-aided diagnosis
EM algorithm
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Level set methods
Likelihood Functions
Models, Biological
Models, Statistical
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Shape classification
Shape estimation
Subtraction Technique
Title An EM algorithm for shape classification based on level sets
URI https://dx.doi.org/10.1016/j.media.2005.05.001
https://www.ncbi.nlm.nih.gov/pubmed/16046181
https://www.proquest.com/docview/19427000
https://www.proquest.com/docview/68517019
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 20160831
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 20160831
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6VIiE4oOVddhd84EionTppKnGpUFEXBBdA4hb5VVpU0oqGK7-dGcdh2UM5rJRDFI0lZ2zPfGOPvwE4waDCmm6SREZlSSTRCkdaJC6yXFrOlXTc-Czf23T4IK8ek8cGXNR3YSitMtj-yqZ7ax2-tIM22_PJpH0nOlSsBAFN4h1nugKr6H-yrAmr_T_Xw9tPg0wceNX1KxFRg5p8yKd5-QsaYW-FtlfEMge1DIB6R3T5AzYDgmT9qpNb0HDFNmx84RXchrWbcGK-A-f9gg1umJo-zV4n5fiFIUhli7GaO2YIOFOmkB8cRv7MMnyZUh4RW7hysQsPl4P7i2EUKiZEBv-8jJzgGeIjPSJaedvtYCygRBpLo7ojDARNqlOTaY1BnNSOkITTRqu4J0YYWcRi1NmDZjEr3AEwF1sem1h3U4fCoqeEjVVHGiOsRGnbgrhWU24CnThVtZjmdd7Yc-51S4Uuk5weLlpw-tloXrFpfC-e1vrP_5kUOdr77xse16OV43KhMxBVuNnbIhc9SUftfLkEas5z1Ldgvxrmvz1NiZ0-E4f_262fsF4zv3LxC5rl65v7jZim1EewcvYujsLM_QAHVvM1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxoxEB7RVOrjELX0EdIHPvTYLbbX-0DKBSEi2gKXgsTN8ouGiCwobK757fV4d0tzIIdKe1itxpI19s584xl_A_DFBxXWZEkSGZUnkfBWONIscZGlwlKqhKMmVPnO0vFC_FgmyxYMm7swWFZZ2_7KpgdrXX_p1drs7dbr3i8WY7MSD2iS4DjTJ_BUJDzDCOzb_aHOAxnwqstXLELxhnooFHmF6xn1yQoerrBj7ukY_Axu6PIVnNb4kQyqKb6Gliva8PIfVsE2PJvW-fI3cDEoyGhK1Ob39nZdXt0QD1HJ_krtHDEIm7FOKCwNQW9miX_ZYBUR2bty_xYWl6P5cBzV_RIiE-d5GTlGc4-O9ApJ5W0W-0hAsZQLo7KVDwNNqlOTa-1DOKEd4ginjVa8z1Y-ruBsFb-Dk2JbuDMgjlvKDddZ6rww6ytmuYqFMcwKL207wBs1SVOTiWNPi41sqsauZdAttrlMJD6UdeDr30G7ikvjcfG00b98sCWkt_aPD-w2qyX9z4IZEFW47d1esr7ARDs9LuE1FxjqO_C-WubDTFPkps_Z-f9OqwvPx_PpRE6-z35-gBcNByxlH-GkvL1znzy6KfXnsHv_AAhy8_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EM+algorithm+for+shape+classification+based+on+level+sets&rft.jtitle=Medical+image+analysis&rft.au=Tsai%2C+Andy&rft.au=Wells%2C+William+M&rft.au=Warfield%2C+Simon+K&rft.au=Willsky%2C+Alan+S&rft.date=2005-10-01&rft.issn=1361-8415&rft.volume=9&rft.issue=5&rft.spage=491&rft.epage=502&rft_id=info:doi/10.1016%2Fj.media.2005.05.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon