An EM algorithm for shape classification based on level sets
In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as t...
        Saved in:
      
    
          | Published in | Medical image analysis Vol. 9; no. 5; pp. 491 - 502 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.10.2005
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1361-8415 1361-8423  | 
| DOI | 10.1016/j.media.2005.05.001 | 
Cover
| Abstract | In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class’s unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications. | 
    
|---|---|
| AbstractList | In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class's unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications.In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class's unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications. In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class's unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications.  | 
    
| Author | Tsai, Andy Warfield, Simon K. Willsky, Alan S. Wells, William M.  | 
    
| Author_xml | – sequence: 1 givenname: Andy surname: Tsai fullname: Tsai, Andy email: atsai@mit.edu organization: Department of Radiology at Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA – sequence: 2 givenname: William M. surname: Wells fullname: Wells, William M. organization: Department of Radiology at Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA – sequence: 3 givenname: Simon K. surname: Warfield fullname: Warfield, Simon K. organization: Department of Radiology at Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA – sequence: 4 givenname: Alan S. surname: Willsky fullname: Willsky, Alan S. organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 32-D, Cambridge, MA 02139, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16046181$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkMtKAzEUhoNU7EWfQJBZuWvNmUnmAroopV6g4kbXIcmcsSlzqcm04NubaauCCws_nLP4_sPhG5Je3dRIyCXQCVCIb1aTCnMjJyGlfNKFwgkZQBTDOGVh1PvZgffJ0LkVpTRhjJ6RPsSUxZDCgNxO62D-HMjyvbGmXVZB0djALeUaA11K50xhtGxNUwdKOswDv5S4xTJw2LpzclrI0uHFYY7I2_38dfY4Xrw8PM2mi7GO0rQdI9DuIVVEccrzJOIplxCHTMuk4CzTsYp1qhTz3ykEzhkqrWSYQRFyHkIRjcj1_u7aNh8bdK2ojNNYlrLGZuOEPwsJhewoCBkLE6_Bg1cHcKO8RbG2ppL2U3yL8UC0B7RtnLNY_CJUdPrFSuz0i06_6EK7VvanpU2709daacoj3bt9F73JrUErnDZYaw9a1K3IG_Nv_wumup7r | 
    
| CitedBy_id | crossref_primary_10_1002_ima_22074 crossref_primary_10_1016_j_acra_2010_04_006 crossref_primary_10_1109_TMI_2006_881378 crossref_primary_10_1016_j_sigpro_2013_09_009 crossref_primary_10_1007_s10334_017_0664_6 crossref_primary_10_1016_j_patrec_2008_12_001 crossref_primary_10_1109_TIP_2014_2380178 crossref_primary_10_1186_1742_4682_7_28 crossref_primary_10_1109_JSTSP_2015_2505402 crossref_primary_10_1007_s00138_010_0261_4 crossref_primary_10_1016_j_sigpro_2011_06_007 crossref_primary_10_1016_j_sigpro_2007_05_026 crossref_primary_10_1007_s11548_007_0138_9 crossref_primary_10_1109_TMI_2009_2017942 crossref_primary_10_1016_j_jfoodeng_2011_08_011  | 
    
| Cites_doi | 10.1007/3-540-47967-8_6 10.1016/0021-9991(88)90002-2 10.14209/its.2002.532 10.1109/34.166621 10.1109/42.511747 10.1145/364338.364343 10.1109/23.708321 10.1109/34.817410 10.1117/1.1385168 10.1016/0031-3203(96)00007-6 10.1111/j.2517-6161.1977.tb01600.x 10.1109/SMA.1999.749322 10.1109/PBMCV.1995.514678 10.1109/34.574790 10.1109/TMI.2002.808355  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2005 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2005 Elsevier B.V. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8  | 
    
| DOI | 10.1016/j.media.2005.05.001 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1361-8423 | 
    
| EndPage | 502 | 
    
| ExternalDocumentID | 16046181 10_1016_j_media_2005_05_001 S1361841505000666  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Evaluation Studies Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NCRR NIH HHS grantid: 5 P41 RR13218 – fundername: NCRR NIH HHS grantid: P41 RR13218 – fundername: NIMH NIH HHS grantid: R21 MH67054 – fundername: NLM NIH HHS grantid: R01 LM007861  | 
    
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8  | 
    
| ID | FETCH-LOGICAL-c388t-e108423bf3685d73585a1624ca7f549c6b6c8bb4074be1554ebcba291f25521f3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 1361-8415 | 
    
| IngestDate | Tue Oct 21 13:53:50 EDT 2025 Mon Oct 06 18:05:39 EDT 2025 Wed Feb 19 01:53:40 EST 2025 Wed Oct 01 03:29:44 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Fri Feb 23 02:28:18 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Shape estimation Shape classification Level set methods EM algorithm Computer-aided diagnosis  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c388t-e108423bf3685d73585a1624ca7f549c6b6c8bb4074be1554ebcba291f25521f3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3  | 
    
| PMID | 16046181 | 
    
| PQID | 19427000 | 
    
| PQPubID | 23462 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_68517019 proquest_miscellaneous_19427000 pubmed_primary_16046181 crossref_primary_10_1016_j_media_2005_05_001 crossref_citationtrail_10_1016_j_media_2005_05_001 elsevier_sciencedirect_doi_10_1016_j_media_2005_05_001  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2005-10-01 | 
    
| PublicationDateYYYYMMDD | 2005-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Medical image analysis | 
    
| PublicationTitleAlternate | Med Image Anal | 
    
| PublicationYear | 2005 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Basri, R., Costa, L., Geiger, D., Jacobs, D., 1995. Determining the similarity of deformable shapes. IEEE Workshop: Phys Based Modeling in Comput Vis. pp. 135–143. Cesar, Costa (bib3) 1996; 29 Staib, Duncan (bib16) 1992; 14 Wells, Grimson, Kikinis, Jolesz (bib20) 1996; 15 Golland, Grimson, Kikinis (bib9) 1999 Li, X., Woom, T., Tan, T., Huang, Z. Decomposing polygon meshes for interactive applications. ACM Symposium on Interactive 3D Graphics 3/2001. Gdalyahu, Weinshall (bib8) 1999; 21 Tsai, Wells, Warfield, Willsky (bib19) 2004 Cohen, Ayache, Sulger (bib4) 1992 MacQueen, J., 1965. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. Tsai, Zhang, Willsky (bib17) 2001; 40 Paragios, N., Rousson, M., 2002. Shape priors for level set representations, ECCV June 02, Copenhagen, Denmark. Bloomenthal, J., Lim, C., 1999. Skeletal methods of shape manipulation. In: IEEE Proceedings of the Shape Modeling and Applications. pp. 44–47. Osher, Sethian (bib14) 1988; 79 Dionisio, C., Kim, H., 2002. A supervised shape classification technique invariant under rotation and scaling. International Telecommunications Symposium. Leventon, Grimson, Faugeras (bib12) 2000; 1 Kawata, Niki, Ohmatsu, Kakinuma, Eguchi, Kaneko, Moriyama (bib10) 1998; 45 Tsai, Yezzi, Wells, Tempany, Tucker, Fan, Grimson, Willsky (bib18) 2003; 22 Dempster, Laird, Rubin (bib6) 1977; 39 Del Bimbo, Pala (bib5) 1997; 19 Staib (10.1016/j.media.2005.05.001_bib16) 1992; 14 Golland (10.1016/j.media.2005.05.001_bib9) 1999 Tsai (10.1016/j.media.2005.05.001_bib19) 2004 10.1016/j.media.2005.05.001_bib2 10.1016/j.media.2005.05.001_bib1 Cesar (10.1016/j.media.2005.05.001_bib3) 1996; 29 Del Bimbo (10.1016/j.media.2005.05.001_bib5) 1997; 19 Cohen (10.1016/j.media.2005.05.001_bib4) 1992 Dempster (10.1016/j.media.2005.05.001_bib6) 1977; 39 10.1016/j.media.2005.05.001_bib11 Leventon (10.1016/j.media.2005.05.001_bib12) 2000; 1 Gdalyahu (10.1016/j.media.2005.05.001_bib8) 1999; 21 Tsai (10.1016/j.media.2005.05.001_bib18) 2003; 22 10.1016/j.media.2005.05.001_bib13 Tsai (10.1016/j.media.2005.05.001_bib17) 2001; 40 10.1016/j.media.2005.05.001_bib7 10.1016/j.media.2005.05.001_bib15 Wells (10.1016/j.media.2005.05.001_bib20) 1996; 15 Osher (10.1016/j.media.2005.05.001_bib14) 1988; 79 Kawata (10.1016/j.media.2005.05.001_bib10) 1998; 45  | 
    
| References_xml | – volume: 29 start-page: 1559 year: 1996 end-page: 1569 ident: bib3 article-title: Towards effective planar shape representation with multiscale digital curvature analysis based on signal processing techniques publication-title: Pattern Recogn – start-page: 382 year: 1999 end-page: 387 ident: bib9 article-title: Statistical shape analysis using fixed topology skeletons: corpus callosum study publication-title: IPMI – reference: Basri, R., Costa, L., Geiger, D., Jacobs, D., 1995. Determining the similarity of deformable shapes. IEEE Workshop: Phys Based Modeling in Comput Vis. pp. 135–143. – start-page: 458 year: 1992 end-page: 466 ident: bib4 article-title: Tracking points on deformable objects using curvature information publication-title: ECCV – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib6 article-title: Maximum-likelihood from incomplete data via the EM algorithm publication-title: J. Royal Stat. Soc. Ser. B – reference: Bloomenthal, J., Lim, C., 1999. Skeletal methods of shape manipulation. In: IEEE Proceedings of the Shape Modeling and Applications. pp. 44–47. – reference: Paragios, N., Rousson, M., 2002. Shape priors for level set representations, ECCV June 02, Copenhagen, Denmark. – volume: 79 start-page: 12 year: 1988 end-page: 49 ident: bib14 article-title: Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. – volume: 1 start-page: 316 year: 2000 end-page: 323 ident: bib12 article-title: Statistical shape influence in geodesic active contours publication-title: IEEE Conf. Comp. Vision Patt. Recog. – reference: Li, X., Woom, T., Tan, T., Huang, Z. Decomposing polygon meshes for interactive applications. ACM Symposium on Interactive 3D Graphics 3/2001. – volume: 14 start-page: 1061 year: 1992 end-page: 1075 ident: bib16 article-title: Boundary finding with parametrically deformable contour models publication-title: IEEE Trans. Patt. Anal. Mach. Intell. – reference: MacQueen, J., 1965. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. – volume: 22 start-page: 137 year: 2003 end-page: 154 ident: bib18 article-title: A shaped-based approach to segmentation of medical imagery using level sets publication-title: IEEE Trans. Med. Imaging – reference: Dionisio, C., Kim, H., 2002. A supervised shape classification technique invariant under rotation and scaling. International Telecommunications Symposium. – volume: 21 start-page: 1312 year: 1999 end-page: 1328 ident: bib8 article-title: Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes publication-title: IEEE Trans. PAMI – volume: 19 start-page: 121 year: 1997 end-page: 132 ident: bib5 article-title: Visual image retrieval by elastic matching of user sketches publication-title: IEEE Trans. PAMI – volume: 40 start-page: 1287 year: 2001 end-page: 1301 ident: bib17 article-title: EM algorithms for image processing using multiscale models and mean field theory, with applications to laser radar range profiling and segmentation publication-title: Opt. Eng. – volume: 15 start-page: 429 year: 1996 end-page: 442 ident: bib20 article-title: Adaptive segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 45 start-page: 3075 year: 1998 end-page: 3082 ident: bib10 article-title: Classification of pulmonary nodules in thin-section CT images based on shape characteristics publication-title: IEEE Trans. Nucl. Sci. – start-page: 1 year: 2004 end-page: 9 ident: bib19 article-title: Level set methods in an EM framework for shape classification and estimation publication-title: MICCAI – ident: 10.1016/j.media.2005.05.001_bib15 doi: 10.1007/3-540-47967-8_6 – volume: 1 start-page: 316 year: 2000 ident: 10.1016/j.media.2005.05.001_bib12 article-title: Statistical shape influence in geodesic active contours publication-title: IEEE Conf. Comp. Vision Patt. Recog. – ident: 10.1016/j.media.2005.05.001_bib11 – volume: 79 start-page: 12 year: 1988 ident: 10.1016/j.media.2005.05.001_bib14 article-title: Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 – ident: 10.1016/j.media.2005.05.001_bib7 doi: 10.14209/its.2002.532 – volume: 14 start-page: 1061 year: 1992 ident: 10.1016/j.media.2005.05.001_bib16 article-title: Boundary finding with parametrically deformable contour models publication-title: IEEE Trans. Patt. Anal. Mach. Intell. doi: 10.1109/34.166621 – volume: 15 start-page: 429 year: 1996 ident: 10.1016/j.media.2005.05.001_bib20 article-title: Adaptive segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.511747 – ident: 10.1016/j.media.2005.05.001_bib13 doi: 10.1145/364338.364343 – volume: 45 start-page: 3075 year: 1998 ident: 10.1016/j.media.2005.05.001_bib10 article-title: Classification of pulmonary nodules in thin-section CT images based on shape characteristics publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.708321 – volume: 21 start-page: 1312 year: 1999 ident: 10.1016/j.media.2005.05.001_bib8 article-title: Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes publication-title: IEEE Trans. PAMI doi: 10.1109/34.817410 – start-page: 458 year: 1992 ident: 10.1016/j.media.2005.05.001_bib4 article-title: Tracking points on deformable objects using curvature information publication-title: ECCV – volume: 40 start-page: 1287 year: 2001 ident: 10.1016/j.media.2005.05.001_bib17 article-title: EM algorithms for image processing using multiscale models and mean field theory, with applications to laser radar range profiling and segmentation publication-title: Opt. Eng. doi: 10.1117/1.1385168 – volume: 29 start-page: 1559 issue: 9 year: 1996 ident: 10.1016/j.media.2005.05.001_bib3 article-title: Towards effective planar shape representation with multiscale digital curvature analysis based on signal processing techniques publication-title: Pattern Recogn doi: 10.1016/0031-3203(96)00007-6 – start-page: 1 year: 2004 ident: 10.1016/j.media.2005.05.001_bib19 article-title: Level set methods in an EM framework for shape classification and estimation publication-title: MICCAI – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.media.2005.05.001_bib6 article-title: Maximum-likelihood from incomplete data via the EM algorithm publication-title: J. Royal Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 10.1016/j.media.2005.05.001_bib2 doi: 10.1109/SMA.1999.749322 – ident: 10.1016/j.media.2005.05.001_bib1 doi: 10.1109/PBMCV.1995.514678 – volume: 19 start-page: 121 year: 1997 ident: 10.1016/j.media.2005.05.001_bib5 article-title: Visual image retrieval by elastic matching of user sketches publication-title: IEEE Trans. PAMI doi: 10.1109/34.574790 – start-page: 382 year: 1999 ident: 10.1016/j.media.2005.05.001_bib9 article-title: Statistical shape analysis using fixed topology skeletons: corpus callosum study publication-title: IPMI – volume: 22 start-page: 137 year: 2003 ident: 10.1016/j.media.2005.05.001_bib18 article-title: A shaped-based approach to segmentation of medical imagery using level sets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.808355  | 
    
| SSID | ssj0007440 | 
    
| Score | 1.9351221 | 
    
| Snippet | In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 491 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Cluster Analysis Computer Simulation Computer-aided diagnosis EM algorithm Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Level set methods Likelihood Functions Models, Biological Models, Statistical Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Shape classification Shape estimation Subtraction Technique  | 
    
| Title | An EM algorithm for shape classification based on level sets | 
    
| URI | https://dx.doi.org/10.1016/j.media.2005.05.001 https://www.ncbi.nlm.nih.gov/pubmed/16046181 https://www.proquest.com/docview/19427000 https://www.proquest.com/docview/68517019  | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 20160831 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 20160831 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6VIiE4oOVddhd84EionTppKnGpUFEXBBdA4hb5VVpU0oqGK7-dGcdh2UM5rJRDFI0lZ2zPfGOPvwE4waDCmm6SREZlSSTRCkdaJC6yXFrOlXTc-Czf23T4IK8ek8cGXNR3YSitMtj-yqZ7ax2-tIM22_PJpH0nOlSsBAFN4h1nugKr6H-yrAmr_T_Xw9tPg0wceNX1KxFRg5p8yKd5-QsaYW-FtlfEMge1DIB6R3T5AzYDgmT9qpNb0HDFNmx84RXchrWbcGK-A-f9gg1umJo-zV4n5fiFIUhli7GaO2YIOFOmkB8cRv7MMnyZUh4RW7hysQsPl4P7i2EUKiZEBv-8jJzgGeIjPSJaedvtYCygRBpLo7ojDARNqlOTaY1BnNSOkITTRqu4J0YYWcRi1NmDZjEr3AEwF1sem1h3U4fCoqeEjVVHGiOsRGnbgrhWU24CnThVtZjmdd7Yc-51S4Uuk5weLlpw-tloXrFpfC-e1vrP_5kUOdr77xse16OV43KhMxBVuNnbIhc9SUftfLkEas5z1Ldgvxrmvz1NiZ0-E4f_262fsF4zv3LxC5rl65v7jZim1EewcvYujsLM_QAHVvM1 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxoxEB7RVOrjELX0EdIHPvTYLbbX-0DKBSEi2gKXgsTN8ouGiCwobK757fV4d0tzIIdKe1itxpI19s584xl_A_DFBxXWZEkSGZUnkfBWONIscZGlwlKqhKMmVPnO0vFC_FgmyxYMm7swWFZZ2_7KpgdrXX_p1drs7dbr3i8WY7MSD2iS4DjTJ_BUJDzDCOzb_aHOAxnwqstXLELxhnooFHmF6xn1yQoerrBj7ukY_Axu6PIVnNb4kQyqKb6Gliva8PIfVsE2PJvW-fI3cDEoyGhK1Ob39nZdXt0QD1HJ_krtHDEIm7FOKCwNQW9miX_ZYBUR2bty_xYWl6P5cBzV_RIiE-d5GTlGc4-O9ApJ5W0W-0hAsZQLo7KVDwNNqlOTa-1DOKEd4ginjVa8z1Y-ruBsFb-Dk2JbuDMgjlvKDddZ6rww6ytmuYqFMcwKL207wBs1SVOTiWNPi41sqsauZdAttrlMJD6UdeDr30G7ikvjcfG00b98sCWkt_aPD-w2qyX9z4IZEFW47d1esr7ARDs9LuE1FxjqO_C-WubDTFPkps_Z-f9OqwvPx_PpRE6-z35-gBcNByxlH-GkvL1znzy6KfXnsHv_AAhy8_0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EM+algorithm+for+shape+classification+based+on+level+sets&rft.jtitle=Medical+image+analysis&rft.au=Tsai%2C+Andy&rft.au=Wells%2C+William+M&rft.au=Warfield%2C+Simon+K&rft.au=Willsky%2C+Alan+S&rft.date=2005-10-01&rft.issn=1361-8415&rft.volume=9&rft.issue=5&rft.spage=491&rft.epage=502&rft_id=info:doi/10.1016%2Fj.media.2005.05.001&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |