Robust identification of air traffic flow patterns in Metroplex terminal areas under demand uncertainty

•The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a robust framework for characterizing dynamic traffic demand in Metroplex.•Distributionally robust optimization is employed to account for dema...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 75; pp. 212 - 227
Main Authors Sidiropoulos, Stavros, Han, Ke, Majumdar, Arnab, Ochieng, Washington Y.
Format Journal Article
LanguageEnglish
Published Elsevier India Pvt Ltd 01.02.2017
Subjects
Online AccessGet full text
ISSN0968-090X
1879-2359
1879-2359
DOI10.1016/j.trc.2016.12.011

Cover

Abstract •The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a robust framework for characterizing dynamic traffic demand in Metroplex.•Distributionally robust optimization is employed to account for demand uncertainties.•A case study in the New York Metroplex is conducted and validated by SMEs. Multi-Airport Systems (MAS), or Metroplexes, serve air traffic demand in cities with two or more airports. Due to the spatial proximity and operational interdependency of the airports, Metroplex airspaces are characterized by high complexity, and current system structures fail to provide satisfactory utilization of the available airspace resources. In order to support system-level design and management towards increased operational efficiency in such systems, an accurate depiction of major demand patterns is a prerequisite. This paper proposes a framework for the robust identification of significant air traffic flow patterns in Metroplex systems, which is aligned with the dynamic route service policy for the effective management of Metroplex operations. We first characterize deterministic demand through a spatio-temporal clustering algorithm that takes into account changes in the traffic flows over the planning horizon. Then, in order to handle uncertainties in the demand, a Distributionally Robust Optimization (DRO) approach is proposed, which takes into account demand variations and prediction errors in a robust way to ensure the reliability of the demand identification. The DRO-based approach is applied on pre-tactical (i.e. one-day planning) as well as operational levels (i.e. 2-h rolling horizon). The framework is applied to Time Based Flow Management (TBFM) data from the New York Metroplex. The framework and results are validated by Subject Matter Experts (SMEs).
AbstractList •The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a robust framework for characterizing dynamic traffic demand in Metroplex.•Distributionally robust optimization is employed to account for demand uncertainties.•A case study in the New York Metroplex is conducted and validated by SMEs. Multi-Airport Systems (MAS), or Metroplexes, serve air traffic demand in cities with two or more airports. Due to the spatial proximity and operational interdependency of the airports, Metroplex airspaces are characterized by high complexity, and current system structures fail to provide satisfactory utilization of the available airspace resources. In order to support system-level design and management towards increased operational efficiency in such systems, an accurate depiction of major demand patterns is a prerequisite. This paper proposes a framework for the robust identification of significant air traffic flow patterns in Metroplex systems, which is aligned with the dynamic route service policy for the effective management of Metroplex operations. We first characterize deterministic demand through a spatio-temporal clustering algorithm that takes into account changes in the traffic flows over the planning horizon. Then, in order to handle uncertainties in the demand, a Distributionally Robust Optimization (DRO) approach is proposed, which takes into account demand variations and prediction errors in a robust way to ensure the reliability of the demand identification. The DRO-based approach is applied on pre-tactical (i.e. one-day planning) as well as operational levels (i.e. 2-h rolling horizon). The framework is applied to Time Based Flow Management (TBFM) data from the New York Metroplex. The framework and results are validated by Subject Matter Experts (SMEs).
Author Sidiropoulos, Stavros
Han, Ke
Ochieng, Washington Y.
Majumdar, Arnab
Author_xml – sequence: 1
  givenname: Stavros
  surname: Sidiropoulos
  fullname: Sidiropoulos, Stavros
  email: stavros.sidiropoulos10@imperial.ac.uk
– sequence: 2
  givenname: Ke
  surname: Han
  fullname: Han, Ke
  email: k.han@imperial.ac.uk
– sequence: 3
  givenname: Arnab
  surname: Majumdar
  fullname: Majumdar, Arnab
  email: a.majumdar@imperial.ac.uk
– sequence: 4
  givenname: Washington Y.
  surname: Ochieng
  fullname: Ochieng, Washington Y.
  email: w.ochieng@imperial.ac.uk
BookMark eNqNkE1rGzEQhkVJoHaSH5Cb_sBuRx-2tfRUTJsEXAqlhdzErDRbZNZaI8l1_O-jxDn1EHqaeV94ZuCZs4s4RWLsVkArQCw_bduSXCvr2grZghAf2EyYVddItegu2Ay6pWmgg8ePbJ7zFgBEt1jN2J-fU3_IhQdPsYQhOCxhinwaOIbES8KhdnwYpyPfYymUYuYh8u9U0rQf6YnXahcijhwTYeaH6ClxTzuMvgZHqWCI5XTNLgccM928zSv2-9vXX-v7ZvPj7mH9ZdM4ZUxpvAQPSitUWq8kaRhcJ3pNC0e-QyS9VEbXjNo40FJLI6A3vTO9WiiQoK6YPN89xD2ejjiOdp_CDtPJCrAvquzWVlX2RZUV0lZVFVqdIZemnBMN1oXyKqIKCOO7pPiH_J9vn88MVQ9_AyWbXaCqyodErlg_hXfoZyVcl_8
CitedBy_id crossref_primary_10_1016_j_trc_2020_102735
crossref_primary_10_1016_j_trc_2021_103546
crossref_primary_10_1007_s43621_024_00781_7
crossref_primary_10_1016_j_trc_2022_103765
crossref_primary_10_3390_su12145512
crossref_primary_10_1016_j_jairtraman_2020_102013
crossref_primary_10_1016_j_jairtraman_2024_102667
crossref_primary_10_1016_j_trb_2018_02_010
crossref_primary_10_3390_su14020845
crossref_primary_10_1109_TITS_2018_2833452
crossref_primary_10_1016_j_jairtraman_2018_12_004
crossref_primary_10_1016_j_jairtraman_2024_102573
crossref_primary_10_1155_2018_7591932
crossref_primary_10_1016_j_trd_2018_06_018
crossref_primary_10_1109_TITS_2024_3396627
crossref_primary_10_1016_j_trc_2018_10_021
crossref_primary_10_1109_MITS_2023_3307130
crossref_primary_10_3390_aerospace11060457
crossref_primary_10_2478_amns_2024_0328
crossref_primary_10_1016_j_eswa_2025_127024
crossref_primary_10_3141_2658_05
Cites_doi 10.1109/DASC.2011.6096042
10.1109/DASC.2012.6382301
10.2514/6.2009-7134
10.23919/ACC.1990.4790788
10.2514/6.2008-7226
10.2514/6.2011-6535
10.1287/opre.1090.0741
10.1109/DASC.2010.5655500
10.2514/6.2015-3031
10.1111/1467-9868.00293
10.2514/6.2003-5708
10.2514/6.2002-4766
10.2514/6.2004-5230
10.2514/6.2009-6194
10.2514/6.2007-6451
10.1016/j.trc.2015.05.016
10.1080/01621459.1974.10480196
10.2514/1.C031227
10.2514/6.2010-7611
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.trc.2016.12.011
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 227
ExternalDocumentID oai:spiral.imperial.ac.uk:10044/1/43272
10_1016_j_trc_2016_12_011
S0968090X16302650
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c388t-d20d0343a34472e40fc91b4e5ced9aae46384b4ea48c04242810b8bc8b3530203
IEDL.DBID UNPAY
ISSN 0968-090X
1879-2359
IngestDate Sun Oct 26 04:14:06 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Wed Oct 01 02:27:18 EDT 2025
Fri Feb 23 02:16:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Air traffic demand
Multi-airport system
Terminal area operation
Air traffic management
Distributionally robust optimization
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-d20d0343a34472e40fc91b4e5ced9aae46384b4ea48c04242810b8bc8b3530203
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10044/1/43272
PageCount 16
ParticipantIDs unpaywall_primary_10_1016_j_trc_2016_12_011
crossref_citationtrail_10_1016_j_trc_2016_12_011
crossref_primary_10_1016_j_trc_2016_12_011
elsevier_sciencedirect_doi_10_1016_j_trc_2016_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2017
Publisher Elsevier India Pvt Ltd
Publisher_xml – name: Elsevier India Pvt Ltd
References Timar, S., Schleicher, D., Saraf, A., Griffin, K., Clarke, J., Ren, L., McClain, E., 2010. Metroplex Demand Analysis and Applications. In: AIAA Modeling and Simulation Technologies Conference, pp. 7611.
Sidiropoulos, S., Majumdar, A., Ochieng, W.Y., Schuster, W., 2015b. Levels of Organization in Multi-Airport Systems. Transportation Research Board 94th Annual Meeting. Washington, DC.
FAA (b0065) 2013
Meyn, L.A., 2002. Probabilistic methods for air traffic demand forecasting. AIAA Guidance. 4766.
Gilbo, E., Smith, S., 2009. Probabilistic prediction of aggregate traffic demand using uncertainty in individual flight predictions. Paper Number AIAA. 6494.
Krozel, J., Prete, J., Mitchell, J., Kim, J., Zou, J., 2008. Capacity estimation for super-dense operations. In: AIAA Guidance, Navigation, and Control Conf., Honolulu, HI, August 2008.
Thas (b0150) 2010
Clarke, Ren, McClain, Schleicher, Timar, Saraf, Crisp, Gutterud, Laroza, Thompson, Cross (b0030) 2012; 49
Delage, Ye (b0045) 2010; 58
Wanke, C., Mulgund, S., Greenbaum, D., Song, L., 2004. Modeling traffic prediction uncertainty for traffic management decision support. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, pp. 16–19.
Stephens (b0145) 1974; 69
Saturn project, 2015. Future demand management for Europe: Meeting the airspace challenges. A workshop organised by the SESAR Workpackage E Saturn project.
Basseville, Nikiforov (b0005) 1993
Choi, S., Robinson, J.E., Mulfinger, D.G., Capozzi, B.J., 2010. Design of an optimal route structure using heuristics-based stochastic schedulers. In: Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th. IEEE conference proceedings, Salt Lake City, Utah. pp. 2. A. 5-1-2. A. 5–17.
FAA, 2015. Time Based Flow Management. FAA. Report number: N JO 7210.890.
Zou (b0185) 2010
Li, L., Park, J.W., Clarke, J.P., 2011. A simulation-based method for estimating metroplex efficiency. In: Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th. IEEE, pp. 2E4-1.
Wanke, C., Callaham, M.B., Greenbaum, D.P., Masalonis, A.J., 2003. Measuring uncertainty in airspace demand predictions for traffic flow management applications. In: AIAA Guidance, Navigation and Control Conference. Austin, TX.
Pfeil, D.M., 2011. Optimisation of Airport Terminal-Area Air Traffic Operations under Uncertain Weather Conditions. PhD Thesis. MIT.
Bertsimas, D., Gupta, V., Kallus, N., 2013. Data-driven robust optimization. ArXiv Preprint Available from
Liu, Han, Gayah, Friesz, Yao (b0100) 2015; 59
McClain (b0105) 2013
Zingale, Truitt, McAnulty (b9000) 2008
.
Sidiropoulos, S., Majumdar, A., Han, K., Schuster, W., Ochieng, W., 2015a. A framework for the classification and prioritization of arrival and departure routes in Multi-Airport Systems Terminal Manoeuvring Areas. In: 15th AIAA Aviation Technology, Integration, and Operations Conference. Dallas, TX.
Chen, J., Yousefi, A., Krishna, S., Sliney, B., Smith, P., 2012. Weather avoidance optimal routing for extended terminal airspace in support of Dynamic Airspace Configuration. In: Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st. IEEE conference proceedings, Williamsburg, Virginia. pp. 3A1-1-3A1-16.
Nedell, W., Erzberger, H., Neuman, F., 1990. The traffic management advisor. In: American Control Conference. IEEE, pp. 514–520.
Ren, L., Clarke, J.P., Scheicher, D., Timar, S., Saraf, A., Crisp, D., Gutterud, R., Lewis, T., Thompson, T., 2009. Contrast and Comparison of Metroplex Operations. An Air Traffic Management Study of Atlanta, Los Angeles, New York and Miami. In: 9th AIAA Aviation Technology, Integration and Operation Conference (ATIO). 21–23 September 2009, South Carolina. The American Institute of Aeronautics and Astronautics.
Timar, S.D., Nagle, G., Saraf, A., Yu, P., Hunter, P., Trapani, A., Johnson, N., 2011. Super density operations airspace modeling for the Southern California Metroplex. Portland, OR. In: AIAA Modeling and Simulation Technology Conference.
Eurocontrol, 2008. SESAR CONOPS. Eurocontrol.
Interview, 2015. Series of interviews with nine SMEs from the Port Authority of New York and New Jersey (PANYNJ) and the JFK, LGA, EWR and TEB airport towers. 15 September 2015–05 December 2015.
Krozel, J., Mitchell, J.S., Polishchuk, V., Prete, J., 2007. Maximum flow rates for capacity estimation in level flight with convective weather constraints. Air Traffic Control Quarterly, Fall, 2007.
Tibshirani, Walther, Hastie (b0155) 2001; 63
Engelland, S.A., Capps, R., Day, K.B., Kistler, M.S., Gaither, F., Juro, G., 2013. Precision Departure Release Capability (PDRC) Final Report.
10.1016/j.trc.2016.12.011_b0125
Clarke (10.1016/j.trc.2016.12.011_b0030) 2012; 49
10.1016/j.trc.2016.12.011_b0165
10.1016/j.trc.2016.12.011_b0025
10.1016/j.trc.2016.12.011_b0085
10.1016/j.trc.2016.12.011_b0140
Delage (10.1016/j.trc.2016.12.011_b0045) 2010; 58
Liu (10.1016/j.trc.2016.12.011_b0100) 2015; 59
10.1016/j.trc.2016.12.011_b0120
10.1016/j.trc.2016.12.011_b0020
10.1016/j.trc.2016.12.011_b0180
10.1016/j.trc.2016.12.011_b0080
10.1016/j.trc.2016.12.011_b0160
10.1016/j.trc.2016.12.011_b0060
10.1016/j.trc.2016.12.011_b0090
FAA (10.1016/j.trc.2016.12.011_b0065) 2013
Zingale (10.1016/j.trc.2016.12.011_b9000) 2008
McClain (10.1016/j.trc.2016.12.011_b0105) 2013
10.1016/j.trc.2016.12.011_b0115
Zou (10.1016/j.trc.2016.12.011_b0185) 2010
Basseville (10.1016/j.trc.2016.12.011_b0005) 1993
10.1016/j.trc.2016.12.011_b0055
10.1016/j.trc.2016.12.011_b0110
10.1016/j.trc.2016.12.011_b0135
10.1016/j.trc.2016.12.011_b0095
10.1016/j.trc.2016.12.011_b0010
10.1016/j.trc.2016.12.011_b0175
10.1016/j.trc.2016.12.011_b0130
10.1016/j.trc.2016.12.011_b0070
10.1016/j.trc.2016.12.011_b0050
Tibshirani (10.1016/j.trc.2016.12.011_b0155) 2001; 63
Thas (10.1016/j.trc.2016.12.011_b0150) 2010
Stephens (10.1016/j.trc.2016.12.011_b0145) 1974; 69
References_xml – reference: Gilbo, E., Smith, S., 2009. Probabilistic prediction of aggregate traffic demand using uncertainty in individual flight predictions. Paper Number AIAA. 6494.
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: b0155
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– reference: Krozel, J., Mitchell, J.S., Polishchuk, V., Prete, J., 2007. Maximum flow rates for capacity estimation in level flight with convective weather constraints. Air Traffic Control Quarterly, Fall, 2007.
– reference: Krozel, J., Prete, J., Mitchell, J., Kim, J., Zou, J., 2008. Capacity estimation for super-dense operations. In: AIAA Guidance, Navigation, and Control Conf., Honolulu, HI, August 2008.
– reference: Sidiropoulos, S., Majumdar, A., Ochieng, W.Y., Schuster, W., 2015b. Levels of Organization in Multi-Airport Systems. Transportation Research Board 94th Annual Meeting. Washington, DC.
– year: 2010
  ident: b0150
  article-title: Comparing Distributions
– year: 2008
  ident: b9000
  article-title: Human-in-the-loop Evaluation of an Integrated Arrival/Departure Air Traffic Control Service for Major Metropolitan Airspaces (DOT/FAA/TC-08/04)
– reference: Wanke, C., Callaham, M.B., Greenbaum, D.P., Masalonis, A.J., 2003. Measuring uncertainty in airspace demand predictions for traffic flow management applications. In: AIAA Guidance, Navigation and Control Conference. Austin, TX.
– year: 2013
  ident: b0105
  article-title: Metroplex identification, evaluation, and optimization
– year: 2010
  ident: b0185
  article-title: Geometric algorithms for capacity estimation and routing in air traffic management
– volume: 49
  start-page: 758
  year: 2012
  end-page: 773
  ident: b0030
  article-title: Evaluating concepts for operations in metroplex terminal area airspace
  publication-title: J. Aircraft
– volume: 69
  start-page: 730
  year: 1974
  end-page: 737
  ident: b0145
  article-title: Edf statistics for goodness of fit and some comparisons
  publication-title: J. Am. Stat. Assoc.
– reference: Interview, 2015. Series of interviews with nine SMEs from the Port Authority of New York and New Jersey (PANYNJ) and the JFK, LGA, EWR and TEB airport towers. 15 September 2015–05 December 2015.
– reference: Li, L., Park, J.W., Clarke, J.P., 2011. A simulation-based method for estimating metroplex efficiency. In: Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th. IEEE, pp. 2E4-1.
– reference: Nedell, W., Erzberger, H., Neuman, F., 1990. The traffic management advisor. In: American Control Conference. IEEE, pp. 514–520.
– reference: Meyn, L.A., 2002. Probabilistic methods for air traffic demand forecasting. AIAA Guidance. 4766.
– reference: Timar, S.D., Nagle, G., Saraf, A., Yu, P., Hunter, P., Trapani, A., Johnson, N., 2011. Super density operations airspace modeling for the Southern California Metroplex. Portland, OR. In: AIAA Modeling and Simulation Technology Conference.
– reference: Saturn project, 2015. Future demand management for Europe: Meeting the airspace challenges. A workshop organised by the SESAR Workpackage E Saturn project.
– reference: Ren, L., Clarke, J.P., Scheicher, D., Timar, S., Saraf, A., Crisp, D., Gutterud, R., Lewis, T., Thompson, T., 2009. Contrast and Comparison of Metroplex Operations. An Air Traffic Management Study of Atlanta, Los Angeles, New York and Miami. In: 9th AIAA Aviation Technology, Integration and Operation Conference (ATIO). 21–23 September 2009, South Carolina. The American Institute of Aeronautics and Astronautics.
– reference: Sidiropoulos, S., Majumdar, A., Han, K., Schuster, W., Ochieng, W., 2015a. A framework for the classification and prioritization of arrival and departure routes in Multi-Airport Systems Terminal Manoeuvring Areas. In: 15th AIAA Aviation Technology, Integration, and Operations Conference. Dallas, TX.
– reference: Choi, S., Robinson, J.E., Mulfinger, D.G., Capozzi, B.J., 2010. Design of an optimal route structure using heuristics-based stochastic schedulers. In: Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th. IEEE conference proceedings, Salt Lake City, Utah. pp. 2. A. 5-1-2. A. 5–17.
– reference: Chen, J., Yousefi, A., Krishna, S., Sliney, B., Smith, P., 2012. Weather avoidance optimal routing for extended terminal airspace in support of Dynamic Airspace Configuration. In: Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st. IEEE conference proceedings, Williamsburg, Virginia. pp. 3A1-1-3A1-16.
– volume: 59
  start-page: 260
  year: 2015
  end-page: 277
  ident: b0100
  article-title: Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control
  publication-title: Transp. Res. Part C: Emerging Technol.
– reference: >.
– reference: .
– reference: Engelland, S.A., Capps, R., Day, K.B., Kistler, M.S., Gaither, F., Juro, G., 2013. Precision Departure Release Capability (PDRC) Final Report.
– reference: Pfeil, D.M., 2011. Optimisation of Airport Terminal-Area Air Traffic Operations under Uncertain Weather Conditions. PhD Thesis. MIT.
– year: 1993
  ident: b0005
  article-title: Detection of Abrupt Changes: Theory and Application
– reference: Bertsimas, D., Gupta, V., Kallus, N., 2013. Data-driven robust optimization. ArXiv Preprint Available from: <
– volume: 58
  start-page: 595
  year: 2010
  end-page: 612
  ident: b0045
  article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems
  publication-title: Oper. Res.
– reference: Wanke, C., Mulgund, S., Greenbaum, D., Song, L., 2004. Modeling traffic prediction uncertainty for traffic management decision support. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, pp. 16–19.
– reference: Timar, S., Schleicher, D., Saraf, A., Griffin, K., Clarke, J., Ren, L., McClain, E., 2010. Metroplex Demand Analysis and Applications. In: AIAA Modeling and Simulation Technologies Conference, pp. 7611.
– year: 2013
  ident: b0065
  article-title: NextGen Implementation Plan
– reference: FAA, 2015. Time Based Flow Management. FAA. Report number: N JO 7210.890.
– reference: Eurocontrol, 2008. SESAR CONOPS. Eurocontrol.
– ident: 10.1016/j.trc.2016.12.011_b0095
  doi: 10.1109/DASC.2011.6096042
– year: 1993
  ident: 10.1016/j.trc.2016.12.011_b0005
– ident: 10.1016/j.trc.2016.12.011_b0020
  doi: 10.1109/DASC.2012.6382301
– ident: 10.1016/j.trc.2016.12.011_b0125
  doi: 10.2514/6.2009-7134
– ident: 10.1016/j.trc.2016.12.011_b0120
– ident: 10.1016/j.trc.2016.12.011_b0115
  doi: 10.23919/ACC.1990.4790788
– ident: 10.1016/j.trc.2016.12.011_b0090
  doi: 10.2514/6.2008-7226
– ident: 10.1016/j.trc.2016.12.011_b0160
  doi: 10.2514/6.2011-6535
– ident: 10.1016/j.trc.2016.12.011_b0055
– volume: 58
  start-page: 595
  issue: 3
  year: 2010
  ident: 10.1016/j.trc.2016.12.011_b0045
  article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0741
– ident: 10.1016/j.trc.2016.12.011_b0050
– ident: 10.1016/j.trc.2016.12.011_b0025
  doi: 10.1109/DASC.2010.5655500
– ident: 10.1016/j.trc.2016.12.011_b0135
  doi: 10.2514/6.2015-3031
– ident: 10.1016/j.trc.2016.12.011_b0130
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  ident: 10.1016/j.trc.2016.12.011_b0155
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/1467-9868.00293
– ident: 10.1016/j.trc.2016.12.011_b0175
  doi: 10.2514/6.2003-5708
– ident: 10.1016/j.trc.2016.12.011_b0080
– year: 2010
  ident: 10.1016/j.trc.2016.12.011_b0185
– ident: 10.1016/j.trc.2016.12.011_b0110
  doi: 10.2514/6.2002-4766
– ident: 10.1016/j.trc.2016.12.011_b0180
  doi: 10.2514/6.2004-5230
– ident: 10.1016/j.trc.2016.12.011_b0070
  doi: 10.2514/6.2009-6194
– ident: 10.1016/j.trc.2016.12.011_b0010
– year: 2013
  ident: 10.1016/j.trc.2016.12.011_b0065
– ident: 10.1016/j.trc.2016.12.011_b0085
  doi: 10.2514/6.2007-6451
– year: 2008
  ident: 10.1016/j.trc.2016.12.011_b9000
– volume: 59
  start-page: 260
  year: 2015
  ident: 10.1016/j.trc.2016.12.011_b0100
  article-title: Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control
  publication-title: Transp. Res. Part C: Emerging Technol.
  doi: 10.1016/j.trc.2015.05.016
– ident: 10.1016/j.trc.2016.12.011_b0140
– volume: 69
  start-page: 730
  issue: 347
  year: 1974
  ident: 10.1016/j.trc.2016.12.011_b0145
  article-title: Edf statistics for goodness of fit and some comparisons
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1974.10480196
– volume: 49
  start-page: 758
  issue: 3
  year: 2012
  ident: 10.1016/j.trc.2016.12.011_b0030
  article-title: Evaluating concepts for operations in metroplex terminal area airspace
  publication-title: J. Aircraft
  doi: 10.2514/1.C031227
– year: 2010
  ident: 10.1016/j.trc.2016.12.011_b0150
– year: 2013
  ident: 10.1016/j.trc.2016.12.011_b0105
– ident: 10.1016/j.trc.2016.12.011_b0165
  doi: 10.2514/6.2010-7611
– ident: 10.1016/j.trc.2016.12.011_b0060
SSID ssj0001957
Score 2.3466578
Snippet •The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 212
SubjectTerms Air traffic demand
Air traffic management
Distributionally robust optimization
Multi-airport system
Terminal area operation
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jl-lBdCrOL3LwpNQlTdqmRxmOIcyDOuitJG0qldqWrmPu4m836cecByd4TElIefLxvkme93kBuJJ2ZIrQjYxAIEtf3WCDOxY3iOVGDrVDZjEdjTx9tCcz-uBZXgeM2lgYTats9v56T6926-bLsEFzmMfx8Fk53wy5yFMehTpIVOd2Sh2dxeD285vmgd1a7VNV1ncSXvuyWXG8ykKrGGK7uhHE-Dfb1FukOV8teZJs2J7xPthrnEZ4V__XAejItA96bUzxvA92N2QFD8HrUyYW8xLGYUMFqtCHWQR5XMCy4Fo2AkZJtoR5Ja-ZzmGcwqksC00n_4ANQyaBXFPWoY4zK2Ao33kaqkJQswjK1RGYje9fRhOjSahgBISx0ghNFCJCCdcyf6akKApcLKi0FNgu55KqxUhVmVMW6CdRk2EkmAiYIDq5ECLHoJtmqTwB0GEhE0giIpWDoLwoIURkk0C6yiK6EccDgFoo_aBRG9dJLxK_pZW9-Qp9X6PvY9NX6A_A9bpJXkttbKtM2_Hxf8wXX5mCbc1u1mP5dyen_-vkDOyY2vhX3O5z0C2LhbxQrkspLqu5-QV0l-xL
  priority: 102
  providerName: Elsevier
Title Robust identification of air traffic flow patterns in Metroplex terminal areas under demand uncertainty
URI https://dx.doi.org/10.1016/j.trc.2016.12.011
http://hdl.handle.net/10044/1/43272
UnpaywallVersion submittedVersion
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH50yaHrod26jf5a0GGnDaeSJdvyMbQN2UbDGAtkJyPJcsnqOsFRaNND__ZK_lHKxjJ2FEhI8J78Put973sAH3SY-TKNM09JHLinG-KJKBAeDeIsYmHKA-6qkS_H4WjCvkyD6Ra0De9-kxeo5MxOySmjfmS_s90wsIC7A93J-NvgZ6WiF7rkPZ663yoexZ5v92hzlxWLy5ROp5CE1ZsfIX-LPturYiHWtyLPn0WX4R6ctzU6Nankur8ysq_u_5Rs3HTwV7DboEs0qN3hNWzpYh-22-Lj5T7sPNMffANX3-dytTRoljacocpMaJ4hMSuRKYXTl0BZPr9Fi0qHs1iiWYEutSkd7_wONVSaHAnHbUeuIK1Eqb6xR7QDVdMNzPotTIYXP85GXtN5wVOUc-OlPk4xZVQ4PUBfM5ypmEimA6XTWAjN7K1ldiwYVy536nOCJZeKS-q6EGH6DjrFvNAHgCKecok1ptoiCQu3pJRZSJWObeiMM0EOAbcWSVQjS-66Y-RJyz_7lVgjJs6ICfETa8RD-Pi0ZFFrcmyazFozJw2oqMFCYmPGpmWfnlzi35sc_dfsY3jpO3BQcb9PoGPKlX5voY2RPXjRfyA96A4-fx2Ne42jPwK88_a4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUqGAoD4inK0wMTKNROnNQZUQUq0DLwkLpZduKgoJBWaarShW_HN48CAyAxJrLl6NjxPbbPPUboRHuRrUI_sgJFXNi6oZbsuNJyXD_qMC_kLods5MGd13tiN0N32EDdOhcGZJXV3F_O6cVsXb1pV2i2x3HcfjDkmxOfDA2jMAsJWLcvM9fuwArs_P1T50H90u7TlIZNiWF9tFmIvPIMbAypV2wJUvpTcGpO07Gcz2SSfAk-V-torWKN-KL8sA3U0OkmatZJxZNNtPrFV3ALPd-P1HSS4zistEAF_HgUYRlnOM8k-EbgKBnN8Ljw10wnOE7xQOcZ6MnfcCWRSbAEzTqGRLMMh_pVpqF5CEoZQT7fRk9Xl4_dnlXdqGAFDue5FdokJA5zJPj82ZqRKPCpYto1aPtSamb-RmaeJeMBnInanBLFVcCVA7cLEWcHLaWjVO8i3OEhV0QTRxuGYGiUUirynED7JiT6kaQtRGooRVDZjcOtF4modWUvwqAvAH1BbWHQb6HTRZVx6bXxW2FW94_4NmCEiQW_VTtb9OXfjez9r5Fj1Ow9Dvqif313u49WbGAChdD7AC3l2VQfGh6Tq6NinH4AZuvvbg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kPagH3-KbHDwp1aRJ2_QoPhBBEXFhPZUkTWW1dpduFh-_3qQPEcUVj4GEBGbS-Zr55huAPR1mvkzjzFMSB-7phngiCoRHgziLWJjygLtq5Kvr8KLLLntBbwrahnff5AUqObMjcsSoH9nv7HQYWMDdgenu9c3xfaWiF7rkPe653yoexZ5v92hzlxWLy5ROp5CE1ZsfIb9Fn5lxMRRvLyLPv0SX8wU4bWt0alLJ0-HYyEP1_lOycdLBF2G-QZfouHaHJZjSxTLMtMXHo2WY-6I_uAIPtwM5HhnUTxvOUGUmNMiQ6JfIlMLpS6AsH7ygYaXDWYxQv0BX2pSOd_6KGipNjoTjtiNXkFaiVD_bI9qBqukG5m0VuudndycXXtN5wVOUc-OlPk4xZVQ4PUBfM5ypmEimA6XTWAjN7K1ldiwYVy536nOCJZeKS-q6EGG6Bp1iUOh1QBFPucQaU22RhIVbUsospErHNnTGmSAbgFuLJKqRJXfdMfKk5Z89JtaIiTNiQvzEGnED9j-XDGtNjkmTWWvmpAEVNVhIbMyYtOzg0yX-3mTzX7O3YNZ34KDifm9Dx5RjvWOhjZG7jWt_AFVr9Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+identification+of+air+traffic+flow+patterns+in+Metroplex+terminal+areas+under+demand+uncertainty&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Sidiropoulos%2C+Stavros&rft.au=Han%2C+Ke&rft.au=Majumdar%2C+Arnab&rft.au=Ochieng%2C+Washington+Y.&rft.date=2017-02-01&rft.pub=Elsevier+India+Pvt+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=75&rft.spage=212&rft.epage=227&rft_id=info:doi/10.1016%2Fj.trc.2016.12.011&rft.externalDocID=S0968090X16302650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon