Robust identification of air traffic flow patterns in Metroplex terminal areas under demand uncertainty
•The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a robust framework for characterizing dynamic traffic demand in Metroplex.•Distributionally robust optimization is employed to account for dema...
Saved in:
| Published in | Transportation research. Part C, Emerging technologies Vol. 75; pp. 212 - 227 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier India Pvt Ltd
01.02.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0968-090X 1879-2359 1879-2359 |
| DOI | 10.1016/j.trc.2016.12.011 |
Cover
| Abstract | •The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a robust framework for characterizing dynamic traffic demand in Metroplex.•Distributionally robust optimization is employed to account for demand uncertainties.•A case study in the New York Metroplex is conducted and validated by SMEs.
Multi-Airport Systems (MAS), or Metroplexes, serve air traffic demand in cities with two or more airports. Due to the spatial proximity and operational interdependency of the airports, Metroplex airspaces are characterized by high complexity, and current system structures fail to provide satisfactory utilization of the available airspace resources. In order to support system-level design and management towards increased operational efficiency in such systems, an accurate depiction of major demand patterns is a prerequisite. This paper proposes a framework for the robust identification of significant air traffic flow patterns in Metroplex systems, which is aligned with the dynamic route service policy for the effective management of Metroplex operations. We first characterize deterministic demand through a spatio-temporal clustering algorithm that takes into account changes in the traffic flows over the planning horizon. Then, in order to handle uncertainties in the demand, a Distributionally Robust Optimization (DRO) approach is proposed, which takes into account demand variations and prediction errors in a robust way to ensure the reliability of the demand identification. The DRO-based approach is applied on pre-tactical (i.e. one-day planning) as well as operational levels (i.e. 2-h rolling horizon). The framework is applied to Time Based Flow Management (TBFM) data from the New York Metroplex. The framework and results are validated by Subject Matter Experts (SMEs). |
|---|---|
| AbstractList | •The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a robust framework for characterizing dynamic traffic demand in Metroplex.•Distributionally robust optimization is employed to account for demand uncertainties.•A case study in the New York Metroplex is conducted and validated by SMEs.
Multi-Airport Systems (MAS), or Metroplexes, serve air traffic demand in cities with two or more airports. Due to the spatial proximity and operational interdependency of the airports, Metroplex airspaces are characterized by high complexity, and current system structures fail to provide satisfactory utilization of the available airspace resources. In order to support system-level design and management towards increased operational efficiency in such systems, an accurate depiction of major demand patterns is a prerequisite. This paper proposes a framework for the robust identification of significant air traffic flow patterns in Metroplex systems, which is aligned with the dynamic route service policy for the effective management of Metroplex operations. We first characterize deterministic demand through a spatio-temporal clustering algorithm that takes into account changes in the traffic flows over the planning horizon. Then, in order to handle uncertainties in the demand, a Distributionally Robust Optimization (DRO) approach is proposed, which takes into account demand variations and prediction errors in a robust way to ensure the reliability of the demand identification. The DRO-based approach is applied on pre-tactical (i.e. one-day planning) as well as operational levels (i.e. 2-h rolling horizon). The framework is applied to Time Based Flow Management (TBFM) data from the New York Metroplex. The framework and results are validated by Subject Matter Experts (SMEs). |
| Author | Sidiropoulos, Stavros Han, Ke Ochieng, Washington Y. Majumdar, Arnab |
| Author_xml | – sequence: 1 givenname: Stavros surname: Sidiropoulos fullname: Sidiropoulos, Stavros email: stavros.sidiropoulos10@imperial.ac.uk – sequence: 2 givenname: Ke surname: Han fullname: Han, Ke email: k.han@imperial.ac.uk – sequence: 3 givenname: Arnab surname: Majumdar fullname: Majumdar, Arnab email: a.majumdar@imperial.ac.uk – sequence: 4 givenname: Washington Y. surname: Ochieng fullname: Ochieng, Washington Y. email: w.ochieng@imperial.ac.uk |
| BookMark | eNqNkE1rGzEQhkVJoHaSH5Cb_sBuRx-2tfRUTJsEXAqlhdzErDRbZNZaI8l1_O-jxDn1EHqaeV94ZuCZs4s4RWLsVkArQCw_bduSXCvr2grZghAf2EyYVddItegu2Ay6pWmgg8ePbJ7zFgBEt1jN2J-fU3_IhQdPsYQhOCxhinwaOIbES8KhdnwYpyPfYymUYuYh8u9U0rQf6YnXahcijhwTYeaH6ClxTzuMvgZHqWCI5XTNLgccM928zSv2-9vXX-v7ZvPj7mH9ZdM4ZUxpvAQPSitUWq8kaRhcJ3pNC0e-QyS9VEbXjNo40FJLI6A3vTO9WiiQoK6YPN89xD2ejjiOdp_CDtPJCrAvquzWVlX2RZUV0lZVFVqdIZemnBMN1oXyKqIKCOO7pPiH_J9vn88MVQ9_AyWbXaCqyodErlg_hXfoZyVcl_8 |
| CitedBy_id | crossref_primary_10_1016_j_trc_2020_102735 crossref_primary_10_1016_j_trc_2021_103546 crossref_primary_10_1007_s43621_024_00781_7 crossref_primary_10_1016_j_trc_2022_103765 crossref_primary_10_3390_su12145512 crossref_primary_10_1016_j_jairtraman_2020_102013 crossref_primary_10_1016_j_jairtraman_2024_102667 crossref_primary_10_1016_j_trb_2018_02_010 crossref_primary_10_3390_su14020845 crossref_primary_10_1109_TITS_2018_2833452 crossref_primary_10_1016_j_jairtraman_2018_12_004 crossref_primary_10_1016_j_jairtraman_2024_102573 crossref_primary_10_1155_2018_7591932 crossref_primary_10_1016_j_trd_2018_06_018 crossref_primary_10_1109_TITS_2024_3396627 crossref_primary_10_1016_j_trc_2018_10_021 crossref_primary_10_1109_MITS_2023_3307130 crossref_primary_10_3390_aerospace11060457 crossref_primary_10_2478_amns_2024_0328 crossref_primary_10_1016_j_eswa_2025_127024 crossref_primary_10_3141_2658_05 |
| Cites_doi | 10.1109/DASC.2011.6096042 10.1109/DASC.2012.6382301 10.2514/6.2009-7134 10.23919/ACC.1990.4790788 10.2514/6.2008-7226 10.2514/6.2011-6535 10.1287/opre.1090.0741 10.1109/DASC.2010.5655500 10.2514/6.2015-3031 10.1111/1467-9868.00293 10.2514/6.2003-5708 10.2514/6.2002-4766 10.2514/6.2004-5230 10.2514/6.2009-6194 10.2514/6.2007-6451 10.1016/j.trc.2015.05.016 10.1080/01621459.1974.10480196 10.2514/1.C031227 10.2514/6.2010-7611 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.trc.2016.12.011 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2359 |
| EndPage | 227 |
| ExternalDocumentID | oai:spiral.imperial.ac.uk:10044/1/43272 10_1016_j_trc_2016_12_011 S0968090X16302650 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c388t-d20d0343a34472e40fc91b4e5ced9aae46384b4ea48c04242810b8bc8b3530203 |
| IEDL.DBID | UNPAY |
| ISSN | 0968-090X 1879-2359 |
| IngestDate | Sun Oct 26 04:14:06 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Wed Oct 01 02:27:18 EDT 2025 Fri Feb 23 02:16:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Air traffic demand Multi-airport system Terminal area operation Air traffic management Distributionally robust optimization |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c388t-d20d0343a34472e40fc91b4e5ced9aae46384b4ea48c04242810b8bc8b3530203 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10044/1/43272 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1016_j_trc_2016_12_011 crossref_citationtrail_10_1016_j_trc_2016_12_011 crossref_primary_10_1016_j_trc_2016_12_011 elsevier_sciencedirect_doi_10_1016_j_trc_2016_12_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2017 |
| Publisher | Elsevier India Pvt Ltd |
| Publisher_xml | – name: Elsevier India Pvt Ltd |
| References | Timar, S., Schleicher, D., Saraf, A., Griffin, K., Clarke, J., Ren, L., McClain, E., 2010. Metroplex Demand Analysis and Applications. In: AIAA Modeling and Simulation Technologies Conference, pp. 7611. Sidiropoulos, S., Majumdar, A., Ochieng, W.Y., Schuster, W., 2015b. Levels of Organization in Multi-Airport Systems. Transportation Research Board 94th Annual Meeting. Washington, DC. FAA (b0065) 2013 Meyn, L.A., 2002. Probabilistic methods for air traffic demand forecasting. AIAA Guidance. 4766. Gilbo, E., Smith, S., 2009. Probabilistic prediction of aggregate traffic demand using uncertainty in individual flight predictions. Paper Number AIAA. 6494. Krozel, J., Prete, J., Mitchell, J., Kim, J., Zou, J., 2008. Capacity estimation for super-dense operations. In: AIAA Guidance, Navigation, and Control Conf., Honolulu, HI, August 2008. Thas (b0150) 2010 Clarke, Ren, McClain, Schleicher, Timar, Saraf, Crisp, Gutterud, Laroza, Thompson, Cross (b0030) 2012; 49 Delage, Ye (b0045) 2010; 58 Wanke, C., Mulgund, S., Greenbaum, D., Song, L., 2004. Modeling traffic prediction uncertainty for traffic management decision support. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, pp. 16–19. Stephens (b0145) 1974; 69 Saturn project, 2015. Future demand management for Europe: Meeting the airspace challenges. A workshop organised by the SESAR Workpackage E Saturn project. Basseville, Nikiforov (b0005) 1993 Choi, S., Robinson, J.E., Mulfinger, D.G., Capozzi, B.J., 2010. Design of an optimal route structure using heuristics-based stochastic schedulers. In: Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th. IEEE conference proceedings, Salt Lake City, Utah. pp. 2. A. 5-1-2. A. 5–17. FAA, 2015. Time Based Flow Management. FAA. Report number: N JO 7210.890. Zou (b0185) 2010 Li, L., Park, J.W., Clarke, J.P., 2011. A simulation-based method for estimating metroplex efficiency. In: Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th. IEEE, pp. 2E4-1. Wanke, C., Callaham, M.B., Greenbaum, D.P., Masalonis, A.J., 2003. Measuring uncertainty in airspace demand predictions for traffic flow management applications. In: AIAA Guidance, Navigation and Control Conference. Austin, TX. Pfeil, D.M., 2011. Optimisation of Airport Terminal-Area Air Traffic Operations under Uncertain Weather Conditions. PhD Thesis. MIT. Bertsimas, D., Gupta, V., Kallus, N., 2013. Data-driven robust optimization. ArXiv Preprint Available from Liu, Han, Gayah, Friesz, Yao (b0100) 2015; 59 McClain (b0105) 2013 Zingale, Truitt, McAnulty (b9000) 2008 . Sidiropoulos, S., Majumdar, A., Han, K., Schuster, W., Ochieng, W., 2015a. A framework for the classification and prioritization of arrival and departure routes in Multi-Airport Systems Terminal Manoeuvring Areas. In: 15th AIAA Aviation Technology, Integration, and Operations Conference. Dallas, TX. Chen, J., Yousefi, A., Krishna, S., Sliney, B., Smith, P., 2012. Weather avoidance optimal routing for extended terminal airspace in support of Dynamic Airspace Configuration. In: Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st. IEEE conference proceedings, Williamsburg, Virginia. pp. 3A1-1-3A1-16. Nedell, W., Erzberger, H., Neuman, F., 1990. The traffic management advisor. In: American Control Conference. IEEE, pp. 514–520. Ren, L., Clarke, J.P., Scheicher, D., Timar, S., Saraf, A., Crisp, D., Gutterud, R., Lewis, T., Thompson, T., 2009. Contrast and Comparison of Metroplex Operations. An Air Traffic Management Study of Atlanta, Los Angeles, New York and Miami. In: 9th AIAA Aviation Technology, Integration and Operation Conference (ATIO). 21–23 September 2009, South Carolina. The American Institute of Aeronautics and Astronautics. Timar, S.D., Nagle, G., Saraf, A., Yu, P., Hunter, P., Trapani, A., Johnson, N., 2011. Super density operations airspace modeling for the Southern California Metroplex. Portland, OR. In: AIAA Modeling and Simulation Technology Conference. Eurocontrol, 2008. SESAR CONOPS. Eurocontrol. Interview, 2015. Series of interviews with nine SMEs from the Port Authority of New York and New Jersey (PANYNJ) and the JFK, LGA, EWR and TEB airport towers. 15 September 2015–05 December 2015. Krozel, J., Mitchell, J.S., Polishchuk, V., Prete, J., 2007. Maximum flow rates for capacity estimation in level flight with convective weather constraints. Air Traffic Control Quarterly, Fall, 2007. Tibshirani, Walther, Hastie (b0155) 2001; 63 Engelland, S.A., Capps, R., Day, K.B., Kistler, M.S., Gaither, F., Juro, G., 2013. Precision Departure Release Capability (PDRC) Final Report. 10.1016/j.trc.2016.12.011_b0125 Clarke (10.1016/j.trc.2016.12.011_b0030) 2012; 49 10.1016/j.trc.2016.12.011_b0165 10.1016/j.trc.2016.12.011_b0025 10.1016/j.trc.2016.12.011_b0085 10.1016/j.trc.2016.12.011_b0140 Delage (10.1016/j.trc.2016.12.011_b0045) 2010; 58 Liu (10.1016/j.trc.2016.12.011_b0100) 2015; 59 10.1016/j.trc.2016.12.011_b0120 10.1016/j.trc.2016.12.011_b0020 10.1016/j.trc.2016.12.011_b0180 10.1016/j.trc.2016.12.011_b0080 10.1016/j.trc.2016.12.011_b0160 10.1016/j.trc.2016.12.011_b0060 10.1016/j.trc.2016.12.011_b0090 FAA (10.1016/j.trc.2016.12.011_b0065) 2013 Zingale (10.1016/j.trc.2016.12.011_b9000) 2008 McClain (10.1016/j.trc.2016.12.011_b0105) 2013 10.1016/j.trc.2016.12.011_b0115 Zou (10.1016/j.trc.2016.12.011_b0185) 2010 Basseville (10.1016/j.trc.2016.12.011_b0005) 1993 10.1016/j.trc.2016.12.011_b0055 10.1016/j.trc.2016.12.011_b0110 10.1016/j.trc.2016.12.011_b0135 10.1016/j.trc.2016.12.011_b0095 10.1016/j.trc.2016.12.011_b0010 10.1016/j.trc.2016.12.011_b0175 10.1016/j.trc.2016.12.011_b0130 10.1016/j.trc.2016.12.011_b0070 10.1016/j.trc.2016.12.011_b0050 Tibshirani (10.1016/j.trc.2016.12.011_b0155) 2001; 63 Thas (10.1016/j.trc.2016.12.011_b0150) 2010 Stephens (10.1016/j.trc.2016.12.011_b0145) 1974; 69 |
| References_xml | – reference: Gilbo, E., Smith, S., 2009. Probabilistic prediction of aggregate traffic demand using uncertainty in individual flight predictions. Paper Number AIAA. 6494. – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: b0155 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) – reference: Krozel, J., Mitchell, J.S., Polishchuk, V., Prete, J., 2007. Maximum flow rates for capacity estimation in level flight with convective weather constraints. Air Traffic Control Quarterly, Fall, 2007. – reference: Krozel, J., Prete, J., Mitchell, J., Kim, J., Zou, J., 2008. Capacity estimation for super-dense operations. In: AIAA Guidance, Navigation, and Control Conf., Honolulu, HI, August 2008. – reference: Sidiropoulos, S., Majumdar, A., Ochieng, W.Y., Schuster, W., 2015b. Levels of Organization in Multi-Airport Systems. Transportation Research Board 94th Annual Meeting. Washington, DC. – year: 2010 ident: b0150 article-title: Comparing Distributions – year: 2008 ident: b9000 article-title: Human-in-the-loop Evaluation of an Integrated Arrival/Departure Air Traffic Control Service for Major Metropolitan Airspaces (DOT/FAA/TC-08/04) – reference: Wanke, C., Callaham, M.B., Greenbaum, D.P., Masalonis, A.J., 2003. Measuring uncertainty in airspace demand predictions for traffic flow management applications. In: AIAA Guidance, Navigation and Control Conference. Austin, TX. – year: 2013 ident: b0105 article-title: Metroplex identification, evaluation, and optimization – year: 2010 ident: b0185 article-title: Geometric algorithms for capacity estimation and routing in air traffic management – volume: 49 start-page: 758 year: 2012 end-page: 773 ident: b0030 article-title: Evaluating concepts for operations in metroplex terminal area airspace publication-title: J. Aircraft – volume: 69 start-page: 730 year: 1974 end-page: 737 ident: b0145 article-title: Edf statistics for goodness of fit and some comparisons publication-title: J. Am. Stat. Assoc. – reference: Interview, 2015. Series of interviews with nine SMEs from the Port Authority of New York and New Jersey (PANYNJ) and the JFK, LGA, EWR and TEB airport towers. 15 September 2015–05 December 2015. – reference: Li, L., Park, J.W., Clarke, J.P., 2011. A simulation-based method for estimating metroplex efficiency. In: Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th. IEEE, pp. 2E4-1. – reference: Nedell, W., Erzberger, H., Neuman, F., 1990. The traffic management advisor. In: American Control Conference. IEEE, pp. 514–520. – reference: Meyn, L.A., 2002. Probabilistic methods for air traffic demand forecasting. AIAA Guidance. 4766. – reference: Timar, S.D., Nagle, G., Saraf, A., Yu, P., Hunter, P., Trapani, A., Johnson, N., 2011. Super density operations airspace modeling for the Southern California Metroplex. Portland, OR. In: AIAA Modeling and Simulation Technology Conference. – reference: Saturn project, 2015. Future demand management for Europe: Meeting the airspace challenges. A workshop organised by the SESAR Workpackage E Saturn project. – reference: Ren, L., Clarke, J.P., Scheicher, D., Timar, S., Saraf, A., Crisp, D., Gutterud, R., Lewis, T., Thompson, T., 2009. Contrast and Comparison of Metroplex Operations. An Air Traffic Management Study of Atlanta, Los Angeles, New York and Miami. In: 9th AIAA Aviation Technology, Integration and Operation Conference (ATIO). 21–23 September 2009, South Carolina. The American Institute of Aeronautics and Astronautics. – reference: Sidiropoulos, S., Majumdar, A., Han, K., Schuster, W., Ochieng, W., 2015a. A framework for the classification and prioritization of arrival and departure routes in Multi-Airport Systems Terminal Manoeuvring Areas. In: 15th AIAA Aviation Technology, Integration, and Operations Conference. Dallas, TX. – reference: Choi, S., Robinson, J.E., Mulfinger, D.G., Capozzi, B.J., 2010. Design of an optimal route structure using heuristics-based stochastic schedulers. In: Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th. IEEE conference proceedings, Salt Lake City, Utah. pp. 2. A. 5-1-2. A. 5–17. – reference: Chen, J., Yousefi, A., Krishna, S., Sliney, B., Smith, P., 2012. Weather avoidance optimal routing for extended terminal airspace in support of Dynamic Airspace Configuration. In: Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st. IEEE conference proceedings, Williamsburg, Virginia. pp. 3A1-1-3A1-16. – volume: 59 start-page: 260 year: 2015 end-page: 277 ident: b0100 article-title: Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control publication-title: Transp. Res. Part C: Emerging Technol. – reference: >. – reference: . – reference: Engelland, S.A., Capps, R., Day, K.B., Kistler, M.S., Gaither, F., Juro, G., 2013. Precision Departure Release Capability (PDRC) Final Report. – reference: Pfeil, D.M., 2011. Optimisation of Airport Terminal-Area Air Traffic Operations under Uncertain Weather Conditions. PhD Thesis. MIT. – year: 1993 ident: b0005 article-title: Detection of Abrupt Changes: Theory and Application – reference: Bertsimas, D., Gupta, V., Kallus, N., 2013. Data-driven robust optimization. ArXiv Preprint Available from: < – volume: 58 start-page: 595 year: 2010 end-page: 612 ident: b0045 article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems publication-title: Oper. Res. – reference: Wanke, C., Mulgund, S., Greenbaum, D., Song, L., 2004. Modeling traffic prediction uncertainty for traffic management decision support. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, pp. 16–19. – reference: Timar, S., Schleicher, D., Saraf, A., Griffin, K., Clarke, J., Ren, L., McClain, E., 2010. Metroplex Demand Analysis and Applications. In: AIAA Modeling and Simulation Technologies Conference, pp. 7611. – year: 2013 ident: b0065 article-title: NextGen Implementation Plan – reference: FAA, 2015. Time Based Flow Management. FAA. Report number: N JO 7210.890. – reference: Eurocontrol, 2008. SESAR CONOPS. Eurocontrol. – ident: 10.1016/j.trc.2016.12.011_b0095 doi: 10.1109/DASC.2011.6096042 – year: 1993 ident: 10.1016/j.trc.2016.12.011_b0005 – ident: 10.1016/j.trc.2016.12.011_b0020 doi: 10.1109/DASC.2012.6382301 – ident: 10.1016/j.trc.2016.12.011_b0125 doi: 10.2514/6.2009-7134 – ident: 10.1016/j.trc.2016.12.011_b0120 – ident: 10.1016/j.trc.2016.12.011_b0115 doi: 10.23919/ACC.1990.4790788 – ident: 10.1016/j.trc.2016.12.011_b0090 doi: 10.2514/6.2008-7226 – ident: 10.1016/j.trc.2016.12.011_b0160 doi: 10.2514/6.2011-6535 – ident: 10.1016/j.trc.2016.12.011_b0055 – volume: 58 start-page: 595 issue: 3 year: 2010 ident: 10.1016/j.trc.2016.12.011_b0045 article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems publication-title: Oper. Res. doi: 10.1287/opre.1090.0741 – ident: 10.1016/j.trc.2016.12.011_b0050 – ident: 10.1016/j.trc.2016.12.011_b0025 doi: 10.1109/DASC.2010.5655500 – ident: 10.1016/j.trc.2016.12.011_b0135 doi: 10.2514/6.2015-3031 – ident: 10.1016/j.trc.2016.12.011_b0130 – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 10.1016/j.trc.2016.12.011_b0155 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/1467-9868.00293 – ident: 10.1016/j.trc.2016.12.011_b0175 doi: 10.2514/6.2003-5708 – ident: 10.1016/j.trc.2016.12.011_b0080 – year: 2010 ident: 10.1016/j.trc.2016.12.011_b0185 – ident: 10.1016/j.trc.2016.12.011_b0110 doi: 10.2514/6.2002-4766 – ident: 10.1016/j.trc.2016.12.011_b0180 doi: 10.2514/6.2004-5230 – ident: 10.1016/j.trc.2016.12.011_b0070 doi: 10.2514/6.2009-6194 – ident: 10.1016/j.trc.2016.12.011_b0010 – year: 2013 ident: 10.1016/j.trc.2016.12.011_b0065 – ident: 10.1016/j.trc.2016.12.011_b0085 doi: 10.2514/6.2007-6451 – year: 2008 ident: 10.1016/j.trc.2016.12.011_b9000 – volume: 59 start-page: 260 year: 2015 ident: 10.1016/j.trc.2016.12.011_b0100 article-title: Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control publication-title: Transp. Res. Part C: Emerging Technol. doi: 10.1016/j.trc.2015.05.016 – ident: 10.1016/j.trc.2016.12.011_b0140 – volume: 69 start-page: 730 issue: 347 year: 1974 ident: 10.1016/j.trc.2016.12.011_b0145 article-title: Edf statistics for goodness of fit and some comparisons publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1974.10480196 – volume: 49 start-page: 758 issue: 3 year: 2012 ident: 10.1016/j.trc.2016.12.011_b0030 article-title: Evaluating concepts for operations in metroplex terminal area airspace publication-title: J. Aircraft doi: 10.2514/1.C031227 – year: 2010 ident: 10.1016/j.trc.2016.12.011_b0150 – year: 2013 ident: 10.1016/j.trc.2016.12.011_b0105 – ident: 10.1016/j.trc.2016.12.011_b0165 doi: 10.2514/6.2010-7611 – ident: 10.1016/j.trc.2016.12.011_b0060 |
| SSID | ssj0001957 |
| Score | 2.3466578 |
| Snippet | •The current static airspace structure in Metroplex is sub-optimal.•A new concept of operation based on dynamic route service policy is proposed.•We provide a... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 212 |
| SubjectTerms | Air traffic demand Air traffic management Distributionally robust optimization Multi-airport system Terminal area operation |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jl-lBdCrOL3LwpNQlTdqmRxmOIcyDOuitJG0qldqWrmPu4m836cecByd4TElIefLxvkme93kBuJJ2ZIrQjYxAIEtf3WCDOxY3iOVGDrVDZjEdjTx9tCcz-uBZXgeM2lgYTats9v56T6926-bLsEFzmMfx8Fk53wy5yFMehTpIVOd2Sh2dxeD285vmgd1a7VNV1ncSXvuyWXG8ykKrGGK7uhHE-Dfb1FukOV8teZJs2J7xPthrnEZ4V__XAejItA96bUzxvA92N2QFD8HrUyYW8xLGYUMFqtCHWQR5XMCy4Fo2AkZJtoR5Ja-ZzmGcwqksC00n_4ANQyaBXFPWoY4zK2Ao33kaqkJQswjK1RGYje9fRhOjSahgBISx0ghNFCJCCdcyf6akKApcLKi0FNgu55KqxUhVmVMW6CdRk2EkmAiYIDq5ECLHoJtmqTwB0GEhE0giIpWDoLwoIURkk0C6yiK6EccDgFoo_aBRG9dJLxK_pZW9-Qp9X6PvY9NX6A_A9bpJXkttbKtM2_Hxf8wXX5mCbc1u1mP5dyen_-vkDOyY2vhX3O5z0C2LhbxQrkspLqu5-QV0l-xL priority: 102 providerName: Elsevier |
| Title | Robust identification of air traffic flow patterns in Metroplex terminal areas under demand uncertainty |
| URI | https://dx.doi.org/10.1016/j.trc.2016.12.011 http://hdl.handle.net/10044/1/43272 |
| UnpaywallVersion | submittedVersion |
| Volume | 75 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH50yaHrod26jf5a0GGnDaeSJdvyMbQN2UbDGAtkJyPJcsnqOsFRaNND__ZK_lHKxjJ2FEhI8J78Put973sAH3SY-TKNM09JHLinG-KJKBAeDeIsYmHKA-6qkS_H4WjCvkyD6Ra0De9-kxeo5MxOySmjfmS_s90wsIC7A93J-NvgZ6WiF7rkPZ663yoexZ5v92hzlxWLy5ROp5CE1ZsfIX-LPturYiHWtyLPn0WX4R6ctzU6Nankur8ysq_u_5Rs3HTwV7DboEs0qN3hNWzpYh-22-Lj5T7sPNMffANX3-dytTRoljacocpMaJ4hMSuRKYXTl0BZPr9Fi0qHs1iiWYEutSkd7_wONVSaHAnHbUeuIK1Eqb6xR7QDVdMNzPotTIYXP85GXtN5wVOUc-OlPk4xZVQ4PUBfM5ypmEimA6XTWAjN7K1ldiwYVy536nOCJZeKS-q6EGH6DjrFvNAHgCKecok1ptoiCQu3pJRZSJWObeiMM0EOAbcWSVQjS-66Y-RJyz_7lVgjJs6ICfETa8RD-Pi0ZFFrcmyazFozJw2oqMFCYmPGpmWfnlzi35sc_dfsY3jpO3BQcb9PoGPKlX5voY2RPXjRfyA96A4-fx2Ne42jPwK88_a4 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUqGAoD4inK0wMTKNROnNQZUQUq0DLwkLpZduKgoJBWaarShW_HN48CAyAxJrLl6NjxPbbPPUboRHuRrUI_sgJFXNi6oZbsuNJyXD_qMC_kLods5MGd13tiN0N32EDdOhcGZJXV3F_O6cVsXb1pV2i2x3HcfjDkmxOfDA2jMAsJWLcvM9fuwArs_P1T50H90u7TlIZNiWF9tFmIvPIMbAypV2wJUvpTcGpO07Gcz2SSfAk-V-torWKN-KL8sA3U0OkmatZJxZNNtPrFV3ALPd-P1HSS4zistEAF_HgUYRlnOM8k-EbgKBnN8Ljw10wnOE7xQOcZ6MnfcCWRSbAEzTqGRLMMh_pVpqF5CEoZQT7fRk9Xl4_dnlXdqGAFDue5FdokJA5zJPj82ZqRKPCpYto1aPtSamb-RmaeJeMBnInanBLFVcCVA7cLEWcHLaWjVO8i3OEhV0QTRxuGYGiUUirynED7JiT6kaQtRGooRVDZjcOtF4modWUvwqAvAH1BbWHQb6HTRZVx6bXxW2FW94_4NmCEiQW_VTtb9OXfjez9r5Fj1Ow9Dvqif313u49WbGAChdD7AC3l2VQfGh6Tq6NinH4AZuvvbg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kPagH3-KbHDwp1aRJ2_QoPhBBEXFhPZUkTWW1dpduFh-_3qQPEcUVj4GEBGbS-Zr55huAPR1mvkzjzFMSB-7phngiCoRHgziLWJjygLtq5Kvr8KLLLntBbwrahnff5AUqObMjcsSoH9nv7HQYWMDdgenu9c3xfaWiF7rkPe653yoexZ5v92hzlxWLy5ROp5CE1ZsfIb9Fn5lxMRRvLyLPv0SX8wU4bWt0alLJ0-HYyEP1_lOycdLBF2G-QZfouHaHJZjSxTLMtMXHo2WY-6I_uAIPtwM5HhnUTxvOUGUmNMiQ6JfIlMLpS6AsH7ygYaXDWYxQv0BX2pSOd_6KGipNjoTjtiNXkFaiVD_bI9qBqukG5m0VuudndycXXtN5wVOUc-OlPk4xZVQ4PUBfM5ypmEimA6XTWAjN7K1ldiwYVy536nOCJZeKS-q6EGG6Bp1iUOh1QBFPucQaU22RhIVbUsospErHNnTGmSAbgFuLJKqRJXfdMfKk5Z89JtaIiTNiQvzEGnED9j-XDGtNjkmTWWvmpAEVNVhIbMyYtOzg0yX-3mTzX7O3YNZ34KDifm9Dx5RjvWOhjZG7jWt_AFVr9Cw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+identification+of+air+traffic+flow+patterns+in+Metroplex+terminal+areas+under+demand+uncertainty&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Sidiropoulos%2C+Stavros&rft.au=Han%2C+Ke&rft.au=Majumdar%2C+Arnab&rft.au=Ochieng%2C+Washington+Y.&rft.date=2017-02-01&rft.pub=Elsevier+India+Pvt+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=75&rft.spage=212&rft.epage=227&rft_id=info:doi/10.1016%2Fj.trc.2016.12.011&rft.externalDocID=S0968090X16302650 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |