Linear and parabolic relaxations for quadratic constraints

This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic con...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 65; no. 3; pp. 457 - 486
Main Authors Domes, Ferenc, Neumaier, Arnold
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2016
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-5001
1573-2916
DOI10.1007/s10898-015-0381-5

Cover

Abstract This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic constraint and bound constraints, which are then subject to standard constraint propagation techniques. The techniques are often applicable even if the original box is unbounded in some but not all variables. As an auxiliary tool—needed to make our theoretical results implementable in floating-point arithmetic without sacrificing mathematical rigor—we extend the directed Cholesky factorization from Domes and Neumaier (SIAM J Matrix Anal Appl 32:262–285, 2011 ) to a partial directed Cholesky factorization with pivoting. If the quadratic constraint is convex and the initial bounds are sufficiently wide, the final relaxation and the enclosure are optimal up to rounding errors. Numerical tests show the usefulness of the new factorization methods in the context of filtering.
AbstractList This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic constraint and bound constraints, which are then subject to standard constraint propagation techniques. The techniques are often applicable even if the original box is unbounded in some but not all variables. As an auxiliary tool-needed to make our theoretical results implementable in floating-point arithmetic without sacrificing mathematical rigor-we extend the directed Cholesky factorization from Domes and Neumaier (SIAM J Matrix Anal Appl 32:262-285, 2011 (See CR3)) to a partial directed Cholesky factorization with pivoting. If the quadratic constraint is convex and the initial bounds are sufficiently wide, the final relaxation and the enclosure are optimal up to rounding errors. Numerical tests show the usefulness of the new factorization methods in the context of filtering.
This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic constraint and bound constraints, which are then subject to standard constraint propagation techniques. The techniques are often applicable even if the original box is unbounded in some but not all variables. As an auxiliary tool--needed to make our theoretical results implementable in floating-point arithmetic without sacrificing mathematical rigor--we extend the directed Cholesky factorization from Domes and Neumaier (SIAM J Matrix Anal Appl 32:262-285, 2011 ) to a partial directed Cholesky factorization with pivoting. If the quadratic constraint is convex and the initial bounds are sufficiently wide, the final relaxation and the enclosure are optimal up to rounding errors. Numerical tests show the usefulness of the new factorization methods in the context of filtering.
This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic constraint and bound constraints, which are then subject to standard constraint propagation techniques. The techniques are often applicable even if the original box is unbounded in some but not all variables. As an auxiliary tool—needed to make our theoretical results implementable in floating-point arithmetic without sacrificing mathematical rigor—we extend the directed Cholesky factorization from Domes and Neumaier (SIAM J Matrix Anal Appl 32:262–285, 2011 ) to a partial directed Cholesky factorization with pivoting. If the quadratic constraint is convex and the initial bounds are sufficiently wide, the final relaxation and the enclosure are optimal up to rounding errors. Numerical tests show the usefulness of the new factorization methods in the context of filtering.
Audience Academic
Author Domes, Ferenc
Neumaier, Arnold
Author_xml – sequence: 1
  givenname: Ferenc
  surname: Domes
  fullname: Domes, Ferenc
  email: ferenc.domes@univie.ac.at
  organization: Faculty of Mathematics, University of Vienna
– sequence: 2
  givenname: Arnold
  surname: Neumaier
  fullname: Neumaier, Arnold
  organization: Faculty of Mathematics, University of Vienna
BookMark eNp9kU9PAyEQxYmpia36Abxt4sXLVgaWBbyZxn9JEy96JpSFhmYLFbaJfnup68GYaDgQJu_HzJs3Q5MQg0XoAvAcMObXGbCQosbAakwF1OwITYFxWhMJ7QRNsSSsZhjDCZrlvMEYS8HIFN0sfbA6VTp01U4nvYq9N1WyvX7Xg48hVy6m6m2vu1TepjKlNCTtw5DP0LHTfbbn3_cper2_e1k81svnh6fF7bI2VIihNqazpiujEOtsYwnrWgKgV5QbzDBo0q54mVhw5jgwIZxxLQViqNEOS97QU3Q1_rtL8W1v86C2Phvb9zrYuM8KBGENl42URXr5S7qJ-xTKdAq4pIzw0rqo5qNqrXurfHCxODLldHbri0HrfKnfchANUGhZAfgImBRzTtYp44ev9RxW0SvA6hCCGkNQJQR1CEEdSPhF7pLf6vTxL0NGJhdtWNv0w8Sf0CfYf5nG
CitedBy_id crossref_primary_10_1016_j_automatica_2018_03_036
Cites_doi 10.1007/s11081-013-9234-6
10.1080/10556788.2010.547581
10.1137/0911064
10.1137/090778110
10.1007/s10898-012-9874-7
10.1007/978-3-540-39901-8_16
10.1137/S105262349833266X
10.1007/s10107-004-0559-y
10.1007/s10898-014-0166-2
10.1007/s10601-009-9076-1
10.1007/s10107-005-0585-4
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
COPYRIGHT 2016 Springer
Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: COPYRIGHT 2016 Springer
– notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-015-0381-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central [NZ]
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (subscription)
Science Database
Engineering Database (Proquest)
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 486
ExternalDocumentID 4076402411
A718413165
10_1007_s10898_015_0381_5
Genre Feature
GrantInformation_xml – fundername: Austrian Science Fund (FWF)
  grantid: P23554-N13
– fundername: Austrian Science Fund (FWF)
  grantid: P22239-N13
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c388t-ccdecd5732efe4e25d6211ab37c0501a26b7381875f71588fcf6312c3caf09743
IEDL.DBID BENPR
ISSN 0925-5001
IngestDate Fri Sep 05 10:20:15 EDT 2025
Sat Aug 23 14:35:22 EDT 2025
Mon Oct 20 16:29:48 EDT 2025
Wed Oct 01 01:34:43 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 90C26 nonconvex programming, global optimization
Ellipsoid relaxations
Interval hull
90C20 quadratic programming
65F30 other matrix algorithms
Rounding error control
Constraint satisfaction problems
Verified computing
Linear relaxations
65G20 algorithms with automatic result verification
Non-convex constraints
Interval analysis
Directed modified Cholesky factorization
Parabolic relaxations
Quadratic constraints
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-ccdecd5732efe4e25d6211ab37c0501a26b7381875f71588fcf6312c3caf09743
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1793527211
PQPubID 29930
PageCount 30
ParticipantIDs proquest_miscellaneous_1825479499
proquest_journals_1793527211
gale_infotracacademiconefile_A718413165
crossref_citationtrail_10_1007_s10898_015_0381_5
crossref_primary_10_1007_s10898_015_0381_5
springer_journals_10_1007_s10898_015_0381_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160700
2016-7-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 7
  year: 2016
  text: 20160700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2016
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Domes, F., Fuchs, M., Schichl, H., Neumaier, A.: The optimization test environment. Optim. Eng. 15, 443–468 (2014). http://www.mat.univie.ac.at/~dferi/testenv.html
Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15, 404–429 (2010). http://www.mat.univie.ac.at/~dferi/research/Propag.pdf
Domes, F., Neumaier, A.: Rigorous verification of feasibility. J. Glob. Optim. pp. 1–24, (2014). http://www.mat.univie.ac.at/~dferi/research/Feas_csp.pdf
Domes, F., Neumaier, A.: Rigorous enclosures of ellipsoids and directed Cholesky factorizations. SIAM J. Matrix Anal. Appl. 32, 262–285 (2011). http://www.mat.univie.ac.at/~dferi/research/Cholesky.pdf
Domes, F., Neumaier, A.: Directed modified Cholesky factorization and ellipsoid relaxations. Technical report, University of Vienna, (2014). http://www.mat.univie.ac.at/~dferi/research/Modchol.pdf
Schichl, H., Markót, M.C.: Algorithmic differentiation techniques for global optimization in the COCONUT environment. Optim. Methods Softw. 27(2), 359–372 (2012). http://www.mat.univie.ac.at/~herman/papers/griewank.pdf
Schichl, H., Markót, M.C., Neumaier, A., Vu, X.-H., Keil, C.: The COCONUT environment, 2000–2010. Software. http://www.mat.univie.ac.at/coconut-environment
SchnabelRBEskowEA new modified Cholesky factorizationSIAM J. Sci. Stat. Comput.199011611361158106850110.1137/09110640716.65023
HansenERGlobal Optimization Using Interval Analysis1992New YorkMarcel Dekker Inc.0762.90069
NeumaierAShcherbinaOHuyerWVinkóTA comparison of complete global optimization solversMath. Program. B2005103335356214638310.1007/s10107-005-0585-41099.90001
SchnabelRBEskowEA revised modified Cholesky factorization algorithmSIAM J. Optim.19999411351148172478010.1137/S105262349833266X0958.65034
Domes, F., Neumaier, A.: Constraint aggregation in global optimization. In: Mathematical Programming pp. 1–27, (2014). Online First. http://www.mat.univie.ac.at/~dferi/research/Aggregate.pdf
MisenerRFloudasCAANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equationsJ. Glob. Optim.2014592–3503526321669010.1007/s10898-014-0166-21301.90063
Schichl, H., Neumaier, A., Markót, M., Domes, F.: On solving mixed-integer constraint satisfaction problems with unbounded variables. In: Gomes, C., Sellmann, M. (eds) Integration of AI and OR Techniques in constraint programming for combinatorial optimization problems, volume 7874 of lecture notes in computer science, pp. 216–233. Springer, Berlin (2013). http://www.mat.univie.ac.at/~dferi/research/cpaior2013.pdf
Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. In: Proceedings of XIII Baikal International School-seminar “Optimization methods and their applications”, Vol 4, pp. 106–113. Irkutsk: Institute of Energy Systems, Baikal (2005)
Domes, F., Neumaier, A.: JGloptLab: a rigorous global optimization software (in preparation) (2014). http://www.mat.univie.ac.at/~dferi/publications.html
Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, Ch., Jermann, Ch., Neumaier, A. (eds) Global Optimization and Constraint Satisfaction, pp. 211–222. Springer (2003). http://www.mat.univie.ac.at/~neum/ms/bench.pdf
Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83(1–3), 89–100 (1995). http://interval.louisiana.edu/preprints/constrai.pdf
FrommerAHashemiBVerified stability analysis using the lyapunov matrix equationElectron. Trans. Numer. Anal.20134018720330815691288.65058
MisenerRFloudasCAGloMIQO: global mixed-integer quadratic optimizerJ. Glob. Optim.2013571350309527910.1007/s10898-012-9874-71272.90034
WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.200610612557219561610.1007/s10107-004-0559-y1134.90542
381_CR1
R Misener (381_CR13) 2014; 59
A Frommer (381_CR8) 2013; 40
ER Hansen (381_CR9) 1992
381_CR20
381_CR10
381_CR11
381_CR15
381_CR16
A Wächter (381_CR21) 2006; 106
381_CR5
381_CR17
381_CR4
A Neumaier (381_CR14) 2005; 103
381_CR3
RB Schnabel (381_CR18) 1990; 11
381_CR2
R Misener (381_CR12) 2013; 57
RB Schnabel (381_CR19) 1999; 9
381_CR7
381_CR6
References_xml – reference: MisenerRFloudasCAGloMIQO: global mixed-integer quadratic optimizerJ. Glob. Optim.2013571350309527910.1007/s10898-012-9874-71272.90034
– reference: FrommerAHashemiBVerified stability analysis using the lyapunov matrix equationElectron. Trans. Numer. Anal.20134018720330815691288.65058
– reference: Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, Ch., Jermann, Ch., Neumaier, A. (eds) Global Optimization and Constraint Satisfaction, pp. 211–222. Springer (2003). http://www.mat.univie.ac.at/~neum/ms/bench.pdf
– reference: Schichl, H., Markót, M.C.: Algorithmic differentiation techniques for global optimization in the COCONUT environment. Optim. Methods Softw. 27(2), 359–372 (2012). http://www.mat.univie.ac.at/~herman/papers/griewank.pdf
– reference: HansenERGlobal Optimization Using Interval Analysis1992New YorkMarcel Dekker Inc.0762.90069
– reference: Domes, F., Neumaier, A.: Rigorous verification of feasibility. J. Glob. Optim. pp. 1–24, (2014). http://www.mat.univie.ac.at/~dferi/research/Feas_csp.pdf
– reference: Domes, F., Fuchs, M., Schichl, H., Neumaier, A.: The optimization test environment. Optim. Eng. 15, 443–468 (2014). http://www.mat.univie.ac.at/~dferi/testenv.html
– reference: Domes, F., Neumaier, A.: Rigorous enclosures of ellipsoids and directed Cholesky factorizations. SIAM J. Matrix Anal. Appl. 32, 262–285 (2011). http://www.mat.univie.ac.at/~dferi/research/Cholesky.pdf
– reference: MisenerRFloudasCAANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equationsJ. Glob. Optim.2014592–3503526321669010.1007/s10898-014-0166-21301.90063
– reference: Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15, 404–429 (2010). http://www.mat.univie.ac.at/~dferi/research/Propag.pdf
– reference: Domes, F., Neumaier, A.: JGloptLab: a rigorous global optimization software (in preparation) (2014). http://www.mat.univie.ac.at/~dferi/publications.html
– reference: Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. In: Proceedings of XIII Baikal International School-seminar “Optimization methods and their applications”, Vol 4, pp. 106–113. Irkutsk: Institute of Energy Systems, Baikal (2005)
– reference: NeumaierAShcherbinaOHuyerWVinkóTA comparison of complete global optimization solversMath. Program. B2005103335356214638310.1007/s10107-005-0585-41099.90001
– reference: Domes, F., Neumaier, A.: Directed modified Cholesky factorization and ellipsoid relaxations. Technical report, University of Vienna, (2014). http://www.mat.univie.ac.at/~dferi/research/Modchol.pdf
– reference: Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83(1–3), 89–100 (1995). http://interval.louisiana.edu/preprints/constrai.pdf
– reference: Schichl, H., Neumaier, A., Markót, M., Domes, F.: On solving mixed-integer constraint satisfaction problems with unbounded variables. In: Gomes, C., Sellmann, M. (eds) Integration of AI and OR Techniques in constraint programming for combinatorial optimization problems, volume 7874 of lecture notes in computer science, pp. 216–233. Springer, Berlin (2013). http://www.mat.univie.ac.at/~dferi/research/cpaior2013.pdf
– reference: Domes, F., Neumaier, A.: Constraint aggregation in global optimization. In: Mathematical Programming pp. 1–27, (2014). Online First. http://www.mat.univie.ac.at/~dferi/research/Aggregate.pdf
– reference: Schichl, H., Markót, M.C., Neumaier, A., Vu, X.-H., Keil, C.: The COCONUT environment, 2000–2010. Software. http://www.mat.univie.ac.at/coconut-environment
– reference: SchnabelRBEskowEA new modified Cholesky factorizationSIAM J. Sci. Stat. Comput.199011611361158106850110.1137/09110640716.65023
– reference: SchnabelRBEskowEA revised modified Cholesky factorization algorithmSIAM J. Optim.19999411351148172478010.1137/S105262349833266X0958.65034
– reference: WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.200610612557219561610.1007/s10107-004-0559-y1134.90542
– ident: 381_CR11
– ident: 381_CR1
  doi: 10.1007/s11081-013-9234-6
– ident: 381_CR15
  doi: 10.1080/10556788.2010.547581
– volume: 11
  start-page: 1136
  issue: 6
  year: 1990
  ident: 381_CR18
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0911064
– ident: 381_CR3
  doi: 10.1137/090778110
– ident: 381_CR10
– ident: 381_CR16
– ident: 381_CR17
– volume-title: Global Optimization Using Interval Analysis
  year: 1992
  ident: 381_CR9
– volume: 57
  start-page: 3
  issue: 1
  year: 2013
  ident: 381_CR12
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9874-7
– ident: 381_CR20
  doi: 10.1007/978-3-540-39901-8_16
– volume: 9
  start-page: 1135
  issue: 4
  year: 1999
  ident: 381_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262349833266X
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 381_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– ident: 381_CR4
– ident: 381_CR7
– volume: 40
  start-page: 187
  year: 2013
  ident: 381_CR8
  publication-title: Electron. Trans. Numer. Anal.
– ident: 381_CR5
– ident: 381_CR6
– volume: 59
  start-page: 503
  issue: 2–3
  year: 2014
  ident: 381_CR13
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0166-2
– ident: 381_CR2
  doi: 10.1007/s10601-009-9076-1
– volume: 103
  start-page: 335
  year: 2005
  ident: 381_CR14
  publication-title: Math. Program. B
  doi: 10.1007/s10107-005-0585-4
SSID ssj0009852
Score 2.1119106
Snippet This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 457
SubjectTerms Algorithms
Boxes
Cholesky factorization
Computer Science
Factorization
Filtering
Filtration
Floating point arithmetic
Interval arithmetic
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Propagation
Quadratic programming
Real Functions
Studies
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB7yuCSHtHFa6jQtCgSStAh2tXo5N1NqTCA91ZCbkLTaU9m0XRvy8zNja223aQs9LjsrxM5bo_kG4EKHoKQuLTdlEFzWwnIrG8NHMlmdxCgWns4h777o6Uze3qv73Mfd9bfd-5Lk0lJvNbtZagcrFafqFle7sK8IzQuFeCbGG6RduxyzU4yE4gqNcF_K_NMSvzij303ys9ro0uVMXsJRjhXZeMXcY9hJ7QBe9HMYWFbLARxugQri090aibUbwHGm6thVRpi-PoEbzEBRwplva0bY34HAgRm1tTyuDvAYhrLsx8LXJB-RRQoiaZbEvHsFs8nnr5-mPA9R4LGyds5jrFOslalEapJMQtUacz4fKhMLVZRe6GDIaxvVmFJZ28RGV6WIVfRNgclG9Rr22oc2vQHmQ9IGQ4yIQYlEg-2taIxMQWJWZKKJQyj6v-liRhinzX1zG2xkYoBDBjhigFND-LD-5PsKXuNfxJfEIkeqh-tGnzsIcHcEYuXG6GfRJ5caKc96Lrqsk50jU6QEZbxDOF-_Rm2iEolv08MCaShhNgTYM4SPPfe3lvjb1k7_i_otHGDcpVe3fs9gb_5zkd5hbDMP75ey_ASMpO0q
  priority: 102
  providerName: Springer Nature
Title Linear and parabolic relaxations for quadratic constraints
URI https://link.springer.com/article/10.1007/s10898-015-0381-5
https://www.proquest.com/docview/1793527211
https://www.proquest.com/docview/1825479499
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: AMVHM
  dateStart: 20080329
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: AFBBN
  dateStart: 19910301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5GV7GGu3sWxd0GCwL8RsWV8plJKNpGVjYYwFuicjyfJTcdolgf75vYvlputYX21ZFnen-9DpfgfwRnuvpM4tN7kXXFbCcitrw0cyWh3FKGSOziG_z_TpXH49U2c7MOtqYehaZacTN4q6WgQ6I_9EgqQExSvHF5ecukZRdrVroeFSa4XqaAMxtgt9QchYPeh_nsx-_NzC8NpND55sJBRXqKG7PGdbTGep3CxXnLJnXP1lqe7q638Spxt7NH0Mj5IjycYt5_dgJzb78PAWvOA-7KWNu2TvErr0-ydwiNEnSjdzTcUI99sTMDCjkpar9vCOoRvLLteuItkILJADSX0kVsunMJ9Ofn055amBAg-FtSseQhVDpUwhYh1lFKrSSD_nCxMyleVOaG_IYhtVm1xZW4daF7kIRXB1hoFG8Qx6zaKJz4E5H7VB9yKgQyJRWTsraiOjlxgRmWDCALKOWGVI6OK0uPNyi4tM9C2RviXRt1QD-HDzyUULrXHf4LfEgZK2Hc4bXKoewNURgFU5RhuL9jjXOPKgY1KZ9uOy3ErPAF7fvMadROkR18TFGsdQsGwIrGcAHzvm3prif0t7cf8PX8IDdLJ0e8X3AHqrP-v4Ch2ZlR_Crp2eDKE_Pvn9bTJMsopP52J8DX3T76E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gPCgPRFDDCWpNNH6lYbfbrzMhBhVyCFyMgYS32u12n8geeHdR_zn_Nmduuxxq5I3n7bbNfHRmOp3fADzTZamkzi03eSm4rITlVtaG92W0Oop-yDzdQx4N9eBEfjpVpwvwq6uFoWeV3Zk4O6irUaA78i0SJCUoXnl3fsGpaxRlV7sWGj61Vqi2ZxBjqbDjIP78jiHceHv_I_L7uRB7u8cfBjx1GeChsHbCQ6hiqJQpRKyjjEJVGhfxZWFCprLcC10aMmtG1SZX1tah1kUuQhF8naE3XuC8t2BJFrKPwd_S-93h5y9z2F876_mT9YXiCi1Cl1dti_cslbflilO2jqs_LOPf9uGfRO3M_u3dhZXkuLKdVtJWYSE2a7B8Bc5wDVbTQTFmLxOa9at78BajXSQT803FCGe8JCBiRiU0P9rLQoZuM7uY-opkMbBADiv1rZiM78PJjZDyASw2oyauA_Nl1AbdmYAOkETj4K2ojYylxAjMBBN6kHXEciGhmdPmztwch5no65C-jujrVA9eX_5y3kJ5XDf4BXHAkZrjvMGnagXcHQFmuR206Wj_c40jNzsmuaT_YzeX1h48vfyMmkvpGN_E0RTHUHBuCByoB2865l6Z4n9be3j9gk_g9uD46NAd7g8PNuAOOni6fV68CYuTb9P4CJ2oSfk4SSqDrzetHL8Ba5QpDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJEYfDKCGU8CaYPwgDbvdfh0JMUQ8QJT4IAlvpe12n8weeHdR_zX_OmZudznEyBvP222b-ejMdDq_AdjQISipc8tNHgSXpbDcysrwvkxWJ9GPmad7yC_H-uBEfjpVp3Pwp6uFoWeV3Zk4PajLYaQ78i0SJCUoXtmq2mcRX_cG788vOHWQokxr106jEZGj9Psnhm-jncM95PUrIQYfv3044G2HAR4La8c8xjLFUplCpCrJJFSpcQEfChMzleVe6GDIpBlVmVxZW8VKF7mIRfRVhp54gfPegwVDKO5UpT7YnwH-2mm3n6wvFFdoC7qMalO2Z6mwLVec8nRc_WUTb1qGf1K0U8s3WIRHrcvKdhsZW4K5VC_Dw2tAhsuw1B4RI_amxbF--xi2Mc5FIjFfl4wQxgNBEDMqnvnVXBMydJjZxcSXJIWRRXJVqWPFePQETu6EkE9hvh7WaQWYD0kbdGQiuj4SzYK3ojIyBYmxl4km9iDriOVii2NOm_vuZgjMRF-H9HVEX6d68O7ql_MGxOO2wa-JA44UHOeNvq1TwN0RVJbbRWuOlj_XOHK1Y5JrNX_kZnLag5dXn1FnKRHj6zSc4BgKyw3BAvVgs2PutSn-t7Vnty_4Au6jSrjPh8dHz-EBena6eVe8CvPjH5O0ht7TOKxPxZTB2V3rxSU32yan
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+and+parabolic+relaxations+for+quadratic+constraints&rft.jtitle=Journal+of+global+optimization&rft.au=Domes%2C+Ferenc&rft.au=Neumaier%2C+Arnold&rft.date=2016-07-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=65&rft.issue=3&rft.spage=457&rft_id=info:doi/10.1007%2Fs10898-015-0381-5&rft.externalDocID=A718413165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon