Homotopy Perturbation Method for the Fractal Toda Oscillator

The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first, the fractal variational theory is used to show the basic property of the fractal oscillator, and a new form o...

Full description

Saved in:
Bibliographic Details
Published inFractal and fractional Vol. 5; no. 3; p. 93
Main Authors He, Ji-Huan, El-Dib, Yusry O., Mady, Amal A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2021
Subjects
Online AccessGet full text
ISSN2504-3110
2504-3110
DOI10.3390/fractalfract5030093

Cover

Abstract The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first, the fractal variational theory is used to show the basic property of the fractal oscillator, and a new form of the Toda oscillator is obtained free of the exponential nonlinear term, which is similar to the form of the Jerk oscillator. The homotopy perturbation method is used to solve the fractal Toda oscillator, and the analytical solution is examined using the numerical solution which shows excellent agreement. Furthermore, the effect of the order of the fractal derivative on the vibration property is elucidated graphically.
AbstractList The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first, the fractal variational theory is used to show the basic property of the fractal oscillator, and a new form of the Toda oscillator is obtained free of the exponential nonlinear term, which is similar to the form of the Jerk oscillator. The homotopy perturbation method is used to solve the fractal Toda oscillator, and the analytical solution is examined using the numerical solution which shows excellent agreement. Furthermore, the effect of the order of the fractal derivative on the vibration property is elucidated graphically.
Author He, Ji-Huan
Mady, Amal A.
El-Dib, Yusry O.
Author_xml – sequence: 1
  givenname: Ji-Huan
  orcidid: 0000-0002-1636-0559
  surname: He
  fullname: He, Ji-Huan
– sequence: 2
  givenname: Yusry O.
  surname: El-Dib
  fullname: El-Dib, Yusry O.
– sequence: 3
  givenname: Amal A.
  surname: Mady
  fullname: Mady, Amal A.
BookMark eNp9UE1LAzEUDFLBWvsLvCx4Xn3ZZPMBXqRYW6jUQz2HfK3dsm1qNj3037t2FUTEy5vHY2beMJdosAs7j9A1hltCJNxVUdukmxOUQAAkOUPDogSaE4xh8GO_QOO23QBAwSUpgQ_R_SxsQwr7Y_biYzpEo1MddtmzT-vgsirELK19Nu1fZKvgdLZsbd00OoV4hc4r3bR-_IUj9Dp9XE1m-WL5NJ88LHJLhEi5wQ67qsCaVIw5ri3mwgsosaNUOmmJZcRLAxW2glnJnKXgWQmGWmGol2SE5r2vC3qj9rHe6nhUQdfqdAjxTemYatt4ZZgnpmRSEsBUi9LobhpMK8G9w8J3Xje91z6G94Nvk9qEQ9x18VVRckaBs4J3LNmzbAxtG32lbJ1O1aSo60ZhUJ_dqz-677Tkl_Y78X-qD57AjW0
CitedBy_id crossref_primary_10_3390_axioms11120665
crossref_primary_10_1142_S0217979223500303
crossref_primary_10_1016_j_aej_2024_04_040
crossref_primary_10_2298_TSCI2403153L
crossref_primary_10_1016_j_chaos_2022_112487
crossref_primary_10_1088_1361_6404_ad9dc2
crossref_primary_10_1016_j_cnsns_2022_107036
crossref_primary_10_2298_TSCI2203637D
crossref_primary_10_3390_dynamics5010009
crossref_primary_10_1002_mma_8533
crossref_primary_10_1016_j_jelechem_2022_116184
crossref_primary_10_1155_2022_5078060
crossref_primary_10_1177_14613484221097465
crossref_primary_10_1155_2022_5009722
crossref_primary_10_1038_s41598_023_49029_w
crossref_primary_10_1142_S0217984925501283
crossref_primary_10_2298_TSCI2203693L
crossref_primary_10_1177_14613484221104647
crossref_primary_10_1108_HFF_03_2022_0191
crossref_primary_10_2298_TSCI2203459L
crossref_primary_10_2298_TSCI2203505C
crossref_primary_10_1007_s12648_022_02409_w
crossref_primary_10_1108_HFF_09_2022_0554
crossref_primary_10_37394_23206_2024_23_9
crossref_primary_10_1177_14613484221130148
crossref_primary_10_32604_cmes_2022_022323
crossref_primary_10_1016_j_jelechem_2022_116453
crossref_primary_10_1142_S021798492150617X
crossref_primary_10_1177_14613484241278421
crossref_primary_10_1142_S0218348X23500287
crossref_primary_10_1177_14613484221104818
crossref_primary_10_3390_fractalfract6030136
crossref_primary_10_1007_s42417_024_01357_5
crossref_primary_10_1142_S0218348X22501481
crossref_primary_10_2298_TSCI2203517L
crossref_primary_10_1007_s11012_024_01912_0
crossref_primary_10_1142_S1793524523500857
crossref_primary_10_1088_1402_4896_ac2f80
crossref_primary_10_1177_14613484231185907
crossref_primary_10_1088_1572_9494_ac7bdc
crossref_primary_10_1177_14613484221091340
crossref_primary_10_1155_2021_7819209
crossref_primary_10_1186_s43088_022_00317_w
crossref_primary_10_1177_14613484211070883
crossref_primary_10_1007_s00419_021_02039_4
crossref_primary_10_1142_S0217979224502928
crossref_primary_10_3390_math11092031
crossref_primary_10_1007_s10910_023_01554_9
crossref_primary_10_3934_math_2023023
crossref_primary_10_2298_TSCI2203535C
crossref_primary_10_3390_math10162908
crossref_primary_10_2298_TSCI2203667Y
crossref_primary_10_1142_S0218348X22501018
crossref_primary_10_1142_S0217979221502441
crossref_primary_10_1177_14613484211059264
crossref_primary_10_3390_sym14020238
crossref_primary_10_1002_zamm_202100379
crossref_primary_10_1016_j_ymssp_2022_109261
crossref_primary_10_1088_1572_9494_ad2501
crossref_primary_10_1142_S0218348X23500548
crossref_primary_10_1088_1402_4896_ad1868
crossref_primary_10_1177_14613484251326645
crossref_primary_10_1088_1572_9494_acc646
crossref_primary_10_1155_2022_2174192
crossref_primary_10_1177_14613484221133603
crossref_primary_10_3390_sym13091593
crossref_primary_10_2298_TSCI2303039W
crossref_primary_10_1142_S0218348X22500463
crossref_primary_10_1155_2021_7059194
crossref_primary_10_1177_14613484241244992
crossref_primary_10_1088_1402_4896_ad5ca3
crossref_primary_10_1142_S0218348X24500245
crossref_primary_10_47137_usufedbid_1137666
crossref_primary_10_1155_2023_6626189
crossref_primary_10_3390_fractalfract6020104
crossref_primary_10_1142_S0218348X2250061X
crossref_primary_10_1007_s00419_023_02537_7
crossref_primary_10_2298_TSCI2203427Z
crossref_primary_10_2478_ama_2022_0012
crossref_primary_10_1007_s10483_023_3041_9
crossref_primary_10_1177_14613484221075124
crossref_primary_10_1177_14613484251319893
crossref_primary_10_1142_S0217984921506028
crossref_primary_10_1142_S0218348X23500251
crossref_primary_10_1177_14613484221085413
crossref_primary_10_26634_jme_14_2_21191
crossref_primary_10_1142_S0218348X23500123
crossref_primary_10_1177_14613484211063747
crossref_primary_10_2298_TSCI2303049L
crossref_primary_10_2298_TSCI2203727L
crossref_primary_10_2298_TSCI2303947C
crossref_primary_10_1177_14613484221119275
crossref_primary_10_1007_s40819_024_01755_z
crossref_primary_10_2298_TSCI2203771D
crossref_primary_10_1016_j_matcom_2022_05_037
crossref_primary_10_1007_s42417_022_00446_7
crossref_primary_10_1177_14613484221131245
crossref_primary_10_1108_HFF_08_2022_0499
crossref_primary_10_2298_TSCI2303881D
crossref_primary_10_1177_14613484221113458
crossref_primary_10_1016_j_rinp_2022_105602
crossref_primary_10_1016_j_jelechem_2021_115775
crossref_primary_10_2298_TSCI2203607T
crossref_primary_10_1016_j_chaos_2022_112694
crossref_primary_10_1007_s00419_022_02269_0
crossref_primary_10_1177_14613484231185490
crossref_primary_10_1142_S0218348X24500221
crossref_primary_10_3389_fphy_2023_1122592
crossref_primary_10_1038_s41598_024_56477_5
crossref_primary_10_3390_math11040944
crossref_primary_10_1177_14613484221118177
crossref_primary_10_1177_14613484221126759
crossref_primary_10_1515_phys_2022_0052
crossref_primary_10_1016_j_padiff_2024_101043
crossref_primary_10_1142_S0218348X24400401
crossref_primary_10_1142_S0218127424501116
crossref_primary_10_3390_electrochem3030025
crossref_primary_10_2298_TSCI2403171Z
crossref_primary_10_1142_S0218348X22500645
crossref_primary_10_2298_TSCI2303957T
crossref_primary_10_3390_atoms12120068
crossref_primary_10_1142_S0218348X22402290
Cites_doi 10.1016/j.optcom.2012.09.031
10.1080/00051144.2019.1600109
10.1016/j.rinp.2019.102546
10.1142/S0218348X20501078
10.1002/mma.6384
10.1016/S0045-7825(99)00018-3
10.1016/j.apm.2020.01.027
10.1177/1461348420914457
10.1002/mma.6569
10.1177/1461348420972820
10.1016/j.matcom.2020.11.019
10.1142/S0218348X21501176
10.1007/s10910-020-01167-6
10.1177/1461348420984041
10.1016/j.jelechem.2020.114883
10.1142/S0218348X19501342
10.1108/HFF-05-2020-0247
10.2298/TSCI200127065H
10.1177/1461348419844145
10.1016/j.rinp.2020.103345
10.1177/1461348418800554
10.1177/1461348420947832
10.1142/S0218348X21500808
10.1142/S0218348X20500243
10.1142/S0218348X21500304
10.1016/j.aml.2021.107199
10.1142/S0218348X21500225
10.1177/1461348421992608
10.1142/S0218348X2150105X
10.2298/TSCI2004515L
10.1016/j.rinp.2020.103324
10.1142/S0218348X20500954
10.1016/j.rinp.2020.103031
10.1007/s11082-021-02775-5
10.1007/s10910-021-01237-3
10.1002/num.22609
10.1108/HFF-05-2020-0299
10.1142/S0218348X21500341
10.1007/s10910-021-01212-y
10.1088/1402-4896/aac969
10.1177/1461348420917565
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract5030093
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_b6e3b56993014a85ba4a8b14f87ed18e
10_3390_fractalfract5030093
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c388t-b1d1df21a3f66d7ac178e8051d449d9c3c63e9b0f1c86c96dc40e650b4c8b4e93
IEDL.DBID DOA
ISSN 2504-3110
IngestDate Wed Aug 27 01:29:39 EDT 2025
Fri Jul 25 11:35:07 EDT 2025
Tue Jul 01 00:22:00 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-b1d1df21a3f66d7ac178e8051d449d9c3c63e9b0f1c86c96dc40e650b4c8b4e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1636-0559
OpenAccessLink https://doaj.org/article/b6e3b56993014a85ba4a8b14f87ed18e
PQID 2576407627
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_b6e3b56993014a85ba4a8b14f87ed18e
proquest_journals_2576407627
crossref_citationtrail_10_3390_fractalfract5030093
crossref_primary_10_3390_fractalfract5030093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References He (ref_17) 2020; 58
He (ref_27) 2021; 29
Cialdi (ref_7) 2013; 287
Matoog (ref_48) 2021; 7
He (ref_29) 2021; 119
Li (ref_43) 2019; 38
He (ref_2) 2021; 7
ref_12
Wang (ref_34) 2019; 27
He (ref_6) 2019; 15
Khan (ref_36) 2020; 18
Tian (ref_13) 2021; 9
Khan (ref_35) 2021; 53
Kingni (ref_9) 2019; 60
Trejo (ref_26) 2020; 39
Wang (ref_33) 2020; 6
Cao (ref_38) 2020; 28
Takahashi (ref_10) 2018; 93
He (ref_23) 2021; 29
ref_19
(ref_21) 2021; 880
Elgazery (ref_46) 2020; 28
ref_16
ref_15
ref_37
He (ref_1) 2020; 17
He (ref_30) 2020; 24
He (ref_18) 2021; 19
He (ref_42) 2020; 19
Ji (ref_44) 2020; 40
He (ref_4) 2021; 19
ref_25
He (ref_5) 2019; 38
ref_45
He (ref_39) 2020; 37
Liu (ref_3) 2020; 24
He (ref_24) 2021; 20
He (ref_40) 1999; 178
Zuo (ref_20) 2021; 59
He (ref_41) 2021; 59
ref_28
(ref_22) 2021; 29
He (ref_31) 2020; 28
Trejo (ref_8) 2021; 29
Tian (ref_11) 2021; 29
Ji (ref_14) 2020; 82
(ref_47) 2021; 182
He (ref_32) 2021; 29
References_xml – volume: 287
  start-page: 76
  year: 2013
  ident: ref_7
  article-title: Lasers as Toda oscillators: An experimental confirmation
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2012.09.031
– volume: 60
  start-page: 149
  year: 2019
  ident: ref_9
  article-title: Hopf bifurcation, antimonotonicity and amplitude controls in the chotic Toda jerk oscillator: Analysis, circuit realization and combination synchronization in its fractional-order form
  publication-title: Automatika
  doi: 10.1080/00051144.2019.1600109
– volume: 19
  start-page: 229
  year: 2021
  ident: ref_18
  article-title: Passive Atmospheric water harvesting utilizing an ancient Chinese ink slab and its possible applications in modern architecture
  publication-title: Facta Univ. Mech. Eng.
– volume: 15
  start-page: 102546
  year: 2019
  ident: ref_6
  article-title: The simplest approach to nonlinear oscillators
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.102546
– volume: 28
  start-page: 2050107
  year: 2020
  ident: ref_38
  article-title: Variational principle for 2+1 dimensional Broer-Kaup equations with fractal derivatives
  publication-title: Fractals
  doi: 10.1142/S0218348X20501078
– ident: ref_15
  doi: 10.1002/mma.6384
– volume: 178
  start-page: 257
  year: 1999
  ident: ref_40
  article-title: Homotopy perturbation technique
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00018-3
– volume: 82
  start-page: 437
  year: 2020
  ident: ref_14
  article-title: A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.01.027
– volume: 40
  start-page: 675
  year: 2020
  ident: ref_44
  article-title: Li-He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system
  publication-title: J. Low Freq. Noise Vib. Act. Control
  doi: 10.1177/1461348420914457
– ident: ref_16
  doi: 10.1002/mma.6569
– volume: 39
  start-page: 1216
  year: 2020
  ident: ref_26
  article-title: He’s frequency–amplitude formulation for nonlinear oscillators using Jacobi elliptic functions
  publication-title: J. Low Freq. Noise Vib. Act. Control
  doi: 10.1177/1461348420972820
– volume: 9
  start-page: 606011
  year: 2021
  ident: ref_13
  article-title: Fractal Pull-in Stability Theory for Microelectromechanical Systems
  publication-title: Front. Phys.-Math. Stat. Phys.
– volume: 182
  start-page: 555
  year: 2021
  ident: ref_47
  article-title: Homotopy perturbation method with rank upgrading technique for the superior nonlinear oscillation
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.11.019
– volume: 29
  start-page: 2150117
  year: 2021
  ident: ref_23
  article-title: Low frequency property of a fractal vibration model for a concrete beam
  publication-title: Fractals
  doi: 10.1142/S0218348X21501176
– volume: 58
  start-page: 2245
  year: 2020
  ident: ref_17
  article-title: Homotopy perturbation method for Fangzhu oscillator
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-020-01167-6
– ident: ref_12
  doi: 10.1177/1461348420984041
– volume: 880
  start-page: 114883
  year: 2021
  ident: ref_21
  article-title: A fractal model for current generation in porous electrodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114883
– volume: 27
  start-page: 1950134
  year: 2019
  ident: ref_34
  article-title: A remark on Wang’s fractal variational principle
  publication-title: Fractals
  doi: 10.1142/S0218348X19501342
– ident: ref_19
  doi: 10.1108/HFF-05-2020-0247
– volume: 24
  start-page: 659
  year: 2020
  ident: ref_30
  article-title: New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI200127065H
– volume: 38
  start-page: 1252
  year: 2019
  ident: ref_5
  article-title: The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators
  publication-title: J. Low Freq. Noise Vib. Act. Control
  doi: 10.1177/1461348419844145
– volume: 6
  start-page: 1606
  year: 2020
  ident: ref_33
  article-title: Fractal variational theory for Chaplygin-He Gas in a microgravity condition
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 19
  start-page: 199
  year: 2021
  ident: ref_4
  article-title: Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators
  publication-title: Facta Univ. Ser. Mech. Eng.
– volume: 19
  start-page: 103345
  year: 2020
  ident: ref_42
  article-title: Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103345
– volume: 7
  start-page: 78
  year: 2021
  ident: ref_2
  article-title: A Variational Principle for a Nonlinear Oscillator Arising in Microelectromechanical System
  publication-title: J. Appl. Comput. Mech.
– volume: 38
  start-page: 1399
  year: 2019
  ident: ref_43
  article-title: Homotopy perturbation method coupled with the enhanced perturbation method
  publication-title: J. Low Freq. Noise Vib. Act. Control
  doi: 10.1177/1461348418800554
– ident: ref_25
  doi: 10.1177/1461348420947832
– volume: 29
  start-page: 2150080
  year: 2021
  ident: ref_22
  article-title: Analytical solution of the fractal Cubic-Quintic Duffing equation
  publication-title: Fractals
  doi: 10.1142/S0218348X21500808
– volume: 28
  start-page: 2050024
  year: 2020
  ident: ref_31
  article-title: A fractal variational theory for one-dimensional compressible flow in a microgravity space
  publication-title: Fractals
  doi: 10.1142/S0218348X20500243
– volume: 29
  start-page: 2050030
  year: 2021
  ident: ref_11
  article-title: Fractal N/MEMS: From pull-in instability to pull-in stability
  publication-title: Fractals
  doi: 10.1142/S0218348X21500304
– volume: 119
  start-page: 107199
  year: 2021
  ident: ref_29
  article-title: On a strong minimum condition of a fractal variational principle
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2021.107199
– volume: 29
  start-page: 2150022
  year: 2021
  ident: ref_32
  article-title: On the fractal variational principle for the Telegraph equation
  publication-title: Fractals
  doi: 10.1142/S0218348X21500225
– ident: ref_28
  doi: 10.1177/1461348421992608
– volume: 29
  start-page: 2150105
  year: 2021
  ident: ref_27
  article-title: Fractal oscillation and its frequency-amplitude property
  publication-title: Fractals
  doi: 10.1142/S0218348X2150105X
– volume: 24
  start-page: 2515
  year: 2020
  ident: ref_3
  article-title: A variational principle for the photocatalytic NOx abatement
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI2004515L
– volume: 18
  start-page: 103324
  year: 2020
  ident: ref_36
  article-title: Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103324
– volume: 28
  start-page: 2050095
  year: 2020
  ident: ref_46
  article-title: Effect of fractional derivative properties on the periodic solution of the nonlinear oscillators
  publication-title: Fractals
  doi: 10.1142/S0218348X20500954
– volume: 20
  start-page: 1871
  year: 2021
  ident: ref_24
  article-title: A fractal model for the internal temperature response of a porous concrete
  publication-title: Appl. Comput. Math.
– volume: 17
  start-page: 103031
  year: 2020
  ident: ref_1
  article-title: Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103031
– volume: 53
  start-page: 127
  year: 2021
  ident: ref_35
  article-title: A novel soliton solutions for the fractal Radhakrishnan-Kundu-Lakshmanan model arising in birefringent fibers
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-021-02775-5
– volume: 59
  start-page: 1139
  year: 2021
  ident: ref_41
  article-title: Homotopy perturbation method with three expansions
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-021-01237-3
– volume: 37
  start-page: 1800
  year: 2020
  ident: ref_39
  article-title: The reducing rank method to solve third-order Duffing equation with the homotopy perturbation
  publication-title: Numer. Methods Partial. Differ. Equ.
  doi: 10.1002/num.22609
– ident: ref_37
  doi: 10.1108/HFF-05-2020-0299
– volume: 29
  start-page: 2150034
  year: 2021
  ident: ref_8
  article-title: Equivalent power-form representation of the fractal Toda oscillator
  publication-title: Fractals
  doi: 10.1142/S0218348X21500341
– volume: 59
  start-page: 735
  year: 2021
  ident: ref_20
  article-title: A gecko-like fractal receptor of a three-dimensional printing technology: A fractal oscillator
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-021-01212-y
– volume: 7
  start-page: 782
  year: 2021
  ident: ref_48
  article-title: The Rank Upgrading Technique for a Harmonic Restoring Force of Nonlinear oscillators
  publication-title: Appl. Comput. Mech.
– volume: 93
  start-page: 075204
  year: 2018
  ident: ref_10
  article-title: Newton’s equation of motion with quadratic drag force and Toda’s potential as a solvable one
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aac969
– ident: ref_45
  doi: 10.1177/1461348420917565
SSID ssj0002793507
Score 2.5063627
Snippet The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 93
SubjectTerms Energy
Exact solutions
Fractal analysis
fractal Hamilton principle
fractal Weierstrass theorem
Fractals
frequency-amplitude relationship
Perturbation methods
Software
strong minimum condition
Toda oscillator homotopy perturbation method
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5qe9GD-MRqlT14NDTJbjYbUMRKSxFai1joLewrXkpb23rw3zuzTSqieEkg2cAy75nMfkPItQh1wgqjAwvKE3AXo0oZBwzJCmU5Vv6xoD8Yiv6YP02SSY0Mq7Mw2FZZ2URvqO3cYI28jYExJB8iTu8X7wFOjcK_q9UIDVWOVrB3HmJshzTAJEuQ-0anOxy9bKsuMYgjREAb-CEG-X67wMNIaupvCUh8mLEfLsoj-f8y1N779A7Ifhk20ocNnw9Jzc2OyN5gi7m6Oia3fWysmy8-6cgtwZFoT3M68COiKcSmFBbT3mYjFNtn6DP4PxADSLtPyLjXfX3sB-VshMAwKdeBjmxkizhSrBDCpspEqXQSNMxyntnMMCOYy3RYREYKkwlreOggGtPcSM1dxk5JfTafuTNCExsqxhFJ3oDZDIWGlEQJHGOlnEwy1yRxRY7clMDhOL9imkMCgTTM_6Bhk9xsP1pscDP-X95BOm-XIui1fzBfvuWlDuVaOKYTAREV5HVKJlrBVUe8kKmzkYSNtiou5aUmrvJvuTn___UF2Y2xX8WXV1qkvl5-uEsIONb6qpSiL4nL16w
  priority: 102
  providerName: ProQuest
Title Homotopy Perturbation Method for the Fractal Toda Oscillator
URI https://www.proquest.com/docview/2576407627
https://doaj.org/article/b6e3b56993014a85ba4a8b14f87ed18e
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86L3oQP3E6Rw4eLUubNEvAi5PVIWwOcbBbyVcPMraxzYP_vS9pNyaKXry0UFIa3svLe7-X199D6IYTndLC6MiC8UTMJd6kjAOFyEJZ5jP_PqHfH_DeiD2N0_FWqy9fE1bSA5eCa2nuqE45uFEI5pVItYKrjlkh2s7Gwvndl0iyBabewnGapBDplDRDFHB9q_A_HalJuKWwsomkX1xRYOz_tiEHL5MdocMqPMT35bSO0Y6bnqCD_oZbdXmK7nq-gG42_8BDtwCHoYNscT-0gsYQg2IYjLNyItiXyeBn8HOgboDXZ2iUdV8felHVAyEyVIhVpGMb2yKJFS04t21l4rZwAizJMiatNNRw6qQmRWwEN5Jbw4iDqEszIzRzkp6j2nQ2dRcIp5YoyjxjvIHtkXAN0ENx365KOZFKV0fJWhy5qQjCfZ-KSQ5Awcsw_0GGdXS7eWle8mP8Przj5bwZ6smtwwNQeV6pPP9L5XXUWGspryxumXvgBOCUJ-3L__jGFdpPfPVKSLY0UG21eHfXEH6sdBPtiuyxifY63cHwpRnW3SdWWtw1
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5ED-pBfGJ97kFvBpPsZrsBRXzV-qh6UPAW9xUv0ta2Iv1T_kZnNklFFG-9JJBsYJn55pnZGUJ2RKgTlhsdWBCegLsYRco4YEiaK8sx848J_dataD7yq6fkaYJ8VmdhsKyy0oleUduOwRz5PjrGEHyIuH7UfQtwahT-Xa1GaBSwuHbDDwjZ-oeXZ8Df3ThunD-cNoNyqkBgmJSDQEc2snkcKZYLYevKRHXpJGDTcp7a1DAjmEt1mEdGCpMKa3jowI_R3EjNHTZfApU_xSG2QymSjYtRTicGsIN_VTQ3YiwN93M86qRe_S0BeQpT9sMA-jkBv8yAt22NeTJXOqX0uEDRAplw7UUy2xp1dO0vkYMmlu11ukN673pgprTnKG35AdQUPF8Ki2mj2AjF4hx6B9YVQAZB_TJ5HAuNVshku9N2q4QmNlSMY596A0o5FBoCHiVwSJZyMkldjcQVOTJTtiXH6RivGYQnSMPsDxrWyN7oo27RleP_5SdI59FSbKntH3R6L1kpoZkWjulEgL8GUaOSiVZw1RHPZd3ZSMJGNyouZaWc97NvVK79_3qbTDcfWjfZzeXt9TqZibEyxidyNsjkoPfuNsG1GegtjydKnscN4C_Lag6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQSBUcqlKooLx8KDcikthxbKkV4tF0eSxwAIlb6le4oN1ldxHav8av64yTLEJU3PaSSIkjWTPfPDOeIeSHiE3GKmsiB8ITcZ-iSFkPDFGVdhwz_5jQ716Kzi0_u8vu5shLexYGyypbnRgUtetbzJHvo2MMwYeAUL1qyiKuT4qDwWOEE6TwT2s7TqOGyLmfPEP4Nvp1egK83k3T4vfNcSdqJgxElkk5jkziEleliWaVEC7XNsmll4BTx7lyyjIrmFcmrhIrhVXCWR578GkMt9Jwj42YQP0v5CxXKF2y-DPN76QAfPC16kZHjKl4v8JjT_oh3DKQrVixN8YwzAx4ZxKCnSu-kM-Ng0oPa0Qtkznf-0qWutPurqMV8rODJXz9wYRe-yGYLBO4S7thGDUFL5jCYlrUG6FYqEOvwNIC4CDAXyW3M6HRNzLf6_f8GqGZizXj2LPegoKOhYHgRwscmKW9zJRfJ2lLjtI2LcpxUsZDCaEK0rD8Dw3Xyd70o0HdoePj5UdI5-lSbK8dHvSH92UjraURnplMgO8GEaSWmdFwNQmvZO5dImGjmy2XykbmR-UrQr9__HqHfALolhenl-cbZDHFIpmQ09kk8-Phk98CL2dstgOcKPk7a_z-AwajEuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homotopy+Perturbation+Method+for+the+Fractal+Toda+Oscillator&rft.jtitle=Fractal+and+fractional&rft.au=Ji-Huan+He&rft.au=Yusry+O.+El-Dib&rft.au=Amal+A.+Mady&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=5&rft.issue=3&rft.spage=93&rft_id=info:doi/10.3390%2Ffractalfract5030093&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6e3b56993014a85ba4a8b14f87ed18e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon