Homotopy Perturbation Method for the Fractal Toda Oscillator
The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first, the fractal variational theory is used to show the basic property of the fractal oscillator, and a new form o...
Saved in:
Published in | Fractal and fractional Vol. 5; no. 3; p. 93 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-3110 2504-3110 |
DOI | 10.3390/fractalfract5030093 |
Cover
Abstract | The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first, the fractal variational theory is used to show the basic property of the fractal oscillator, and a new form of the Toda oscillator is obtained free of the exponential nonlinear term, which is similar to the form of the Jerk oscillator. The homotopy perturbation method is used to solve the fractal Toda oscillator, and the analytical solution is examined using the numerical solution which shows excellent agreement. Furthermore, the effect of the order of the fractal derivative on the vibration property is elucidated graphically. |
---|---|
AbstractList | The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first, the fractal variational theory is used to show the basic property of the fractal oscillator, and a new form of the Toda oscillator is obtained free of the exponential nonlinear term, which is similar to the form of the Jerk oscillator. The homotopy perturbation method is used to solve the fractal Toda oscillator, and the analytical solution is examined using the numerical solution which shows excellent agreement. Furthermore, the effect of the order of the fractal derivative on the vibration property is elucidated graphically. |
Author | He, Ji-Huan Mady, Amal A. El-Dib, Yusry O. |
Author_xml | – sequence: 1 givenname: Ji-Huan orcidid: 0000-0002-1636-0559 surname: He fullname: He, Ji-Huan – sequence: 2 givenname: Yusry O. surname: El-Dib fullname: El-Dib, Yusry O. – sequence: 3 givenname: Amal A. surname: Mady fullname: Mady, Amal A. |
BookMark | eNp9UE1LAzEUDFLBWvsLvCx4Xn3ZZPMBXqRYW6jUQz2HfK3dsm1qNj3037t2FUTEy5vHY2beMJdosAs7j9A1hltCJNxVUdukmxOUQAAkOUPDogSaE4xh8GO_QOO23QBAwSUpgQ_R_SxsQwr7Y_biYzpEo1MddtmzT-vgsirELK19Nu1fZKvgdLZsbd00OoV4hc4r3bR-_IUj9Dp9XE1m-WL5NJ88LHJLhEi5wQ67qsCaVIw5ri3mwgsosaNUOmmJZcRLAxW2glnJnKXgWQmGWmGol2SE5r2vC3qj9rHe6nhUQdfqdAjxTemYatt4ZZgnpmRSEsBUi9LobhpMK8G9w8J3Xje91z6G94Nvk9qEQ9x18VVRckaBs4J3LNmzbAxtG32lbJ1O1aSo60ZhUJ_dqz-677Tkl_Y78X-qD57AjW0 |
CitedBy_id | crossref_primary_10_3390_axioms11120665 crossref_primary_10_1142_S0217979223500303 crossref_primary_10_1016_j_aej_2024_04_040 crossref_primary_10_2298_TSCI2403153L crossref_primary_10_1016_j_chaos_2022_112487 crossref_primary_10_1088_1361_6404_ad9dc2 crossref_primary_10_1016_j_cnsns_2022_107036 crossref_primary_10_2298_TSCI2203637D crossref_primary_10_3390_dynamics5010009 crossref_primary_10_1002_mma_8533 crossref_primary_10_1016_j_jelechem_2022_116184 crossref_primary_10_1155_2022_5078060 crossref_primary_10_1177_14613484221097465 crossref_primary_10_1155_2022_5009722 crossref_primary_10_1038_s41598_023_49029_w crossref_primary_10_1142_S0217984925501283 crossref_primary_10_2298_TSCI2203693L crossref_primary_10_1177_14613484221104647 crossref_primary_10_1108_HFF_03_2022_0191 crossref_primary_10_2298_TSCI2203459L crossref_primary_10_2298_TSCI2203505C crossref_primary_10_1007_s12648_022_02409_w crossref_primary_10_1108_HFF_09_2022_0554 crossref_primary_10_37394_23206_2024_23_9 crossref_primary_10_1177_14613484221130148 crossref_primary_10_32604_cmes_2022_022323 crossref_primary_10_1016_j_jelechem_2022_116453 crossref_primary_10_1142_S021798492150617X crossref_primary_10_1177_14613484241278421 crossref_primary_10_1142_S0218348X23500287 crossref_primary_10_1177_14613484221104818 crossref_primary_10_3390_fractalfract6030136 crossref_primary_10_1007_s42417_024_01357_5 crossref_primary_10_1142_S0218348X22501481 crossref_primary_10_2298_TSCI2203517L crossref_primary_10_1007_s11012_024_01912_0 crossref_primary_10_1142_S1793524523500857 crossref_primary_10_1088_1402_4896_ac2f80 crossref_primary_10_1177_14613484231185907 crossref_primary_10_1088_1572_9494_ac7bdc crossref_primary_10_1177_14613484221091340 crossref_primary_10_1155_2021_7819209 crossref_primary_10_1186_s43088_022_00317_w crossref_primary_10_1177_14613484211070883 crossref_primary_10_1007_s00419_021_02039_4 crossref_primary_10_1142_S0217979224502928 crossref_primary_10_3390_math11092031 crossref_primary_10_1007_s10910_023_01554_9 crossref_primary_10_3934_math_2023023 crossref_primary_10_2298_TSCI2203535C crossref_primary_10_3390_math10162908 crossref_primary_10_2298_TSCI2203667Y crossref_primary_10_1142_S0218348X22501018 crossref_primary_10_1142_S0217979221502441 crossref_primary_10_1177_14613484211059264 crossref_primary_10_3390_sym14020238 crossref_primary_10_1002_zamm_202100379 crossref_primary_10_1016_j_ymssp_2022_109261 crossref_primary_10_1088_1572_9494_ad2501 crossref_primary_10_1142_S0218348X23500548 crossref_primary_10_1088_1402_4896_ad1868 crossref_primary_10_1177_14613484251326645 crossref_primary_10_1088_1572_9494_acc646 crossref_primary_10_1155_2022_2174192 crossref_primary_10_1177_14613484221133603 crossref_primary_10_3390_sym13091593 crossref_primary_10_2298_TSCI2303039W crossref_primary_10_1142_S0218348X22500463 crossref_primary_10_1155_2021_7059194 crossref_primary_10_1177_14613484241244992 crossref_primary_10_1088_1402_4896_ad5ca3 crossref_primary_10_1142_S0218348X24500245 crossref_primary_10_47137_usufedbid_1137666 crossref_primary_10_1155_2023_6626189 crossref_primary_10_3390_fractalfract6020104 crossref_primary_10_1142_S0218348X2250061X crossref_primary_10_1007_s00419_023_02537_7 crossref_primary_10_2298_TSCI2203427Z crossref_primary_10_2478_ama_2022_0012 crossref_primary_10_1007_s10483_023_3041_9 crossref_primary_10_1177_14613484221075124 crossref_primary_10_1177_14613484251319893 crossref_primary_10_1142_S0217984921506028 crossref_primary_10_1142_S0218348X23500251 crossref_primary_10_1177_14613484221085413 crossref_primary_10_26634_jme_14_2_21191 crossref_primary_10_1142_S0218348X23500123 crossref_primary_10_1177_14613484211063747 crossref_primary_10_2298_TSCI2303049L crossref_primary_10_2298_TSCI2203727L crossref_primary_10_2298_TSCI2303947C crossref_primary_10_1177_14613484221119275 crossref_primary_10_1007_s40819_024_01755_z crossref_primary_10_2298_TSCI2203771D crossref_primary_10_1016_j_matcom_2022_05_037 crossref_primary_10_1007_s42417_022_00446_7 crossref_primary_10_1177_14613484221131245 crossref_primary_10_1108_HFF_08_2022_0499 crossref_primary_10_2298_TSCI2303881D crossref_primary_10_1177_14613484221113458 crossref_primary_10_1016_j_rinp_2022_105602 crossref_primary_10_1016_j_jelechem_2021_115775 crossref_primary_10_2298_TSCI2203607T crossref_primary_10_1016_j_chaos_2022_112694 crossref_primary_10_1007_s00419_022_02269_0 crossref_primary_10_1177_14613484231185490 crossref_primary_10_1142_S0218348X24500221 crossref_primary_10_3389_fphy_2023_1122592 crossref_primary_10_1038_s41598_024_56477_5 crossref_primary_10_3390_math11040944 crossref_primary_10_1177_14613484221118177 crossref_primary_10_1177_14613484221126759 crossref_primary_10_1515_phys_2022_0052 crossref_primary_10_1016_j_padiff_2024_101043 crossref_primary_10_1142_S0218348X24400401 crossref_primary_10_1142_S0218127424501116 crossref_primary_10_3390_electrochem3030025 crossref_primary_10_2298_TSCI2403171Z crossref_primary_10_1142_S0218348X22500645 crossref_primary_10_2298_TSCI2303957T crossref_primary_10_3390_atoms12120068 crossref_primary_10_1142_S0218348X22402290 |
Cites_doi | 10.1016/j.optcom.2012.09.031 10.1080/00051144.2019.1600109 10.1016/j.rinp.2019.102546 10.1142/S0218348X20501078 10.1002/mma.6384 10.1016/S0045-7825(99)00018-3 10.1016/j.apm.2020.01.027 10.1177/1461348420914457 10.1002/mma.6569 10.1177/1461348420972820 10.1016/j.matcom.2020.11.019 10.1142/S0218348X21501176 10.1007/s10910-020-01167-6 10.1177/1461348420984041 10.1016/j.jelechem.2020.114883 10.1142/S0218348X19501342 10.1108/HFF-05-2020-0247 10.2298/TSCI200127065H 10.1177/1461348419844145 10.1016/j.rinp.2020.103345 10.1177/1461348418800554 10.1177/1461348420947832 10.1142/S0218348X21500808 10.1142/S0218348X20500243 10.1142/S0218348X21500304 10.1016/j.aml.2021.107199 10.1142/S0218348X21500225 10.1177/1461348421992608 10.1142/S0218348X2150105X 10.2298/TSCI2004515L 10.1016/j.rinp.2020.103324 10.1142/S0218348X20500954 10.1016/j.rinp.2020.103031 10.1007/s11082-021-02775-5 10.1007/s10910-021-01237-3 10.1002/num.22609 10.1108/HFF-05-2020-0299 10.1142/S0218348X21500341 10.1007/s10910-021-01212-y 10.1088/1402-4896/aac969 10.1177/1461348420917565 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/fractalfract5030093 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2504-3110 |
ExternalDocumentID | oai_doaj_org_article_b6e3b56993014a85ba4a8b14f87ed18e 10_3390_fractalfract5030093 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c388t-b1d1df21a3f66d7ac178e8051d449d9c3c63e9b0f1c86c96dc40e650b4c8b4e93 |
IEDL.DBID | DOA |
ISSN | 2504-3110 |
IngestDate | Wed Aug 27 01:29:39 EDT 2025 Fri Jul 25 11:35:07 EDT 2025 Tue Jul 01 00:22:00 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-b1d1df21a3f66d7ac178e8051d449d9c3c63e9b0f1c86c96dc40e650b4c8b4e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1636-0559 |
OpenAccessLink | https://doaj.org/article/b6e3b56993014a85ba4a8b14f87ed18e |
PQID | 2576407627 |
PQPubID | 2055410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b6e3b56993014a85ba4a8b14f87ed18e proquest_journals_2576407627 crossref_citationtrail_10_3390_fractalfract5030093 crossref_primary_10_3390_fractalfract5030093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fractal and fractional |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | He (ref_17) 2020; 58 He (ref_27) 2021; 29 Cialdi (ref_7) 2013; 287 Matoog (ref_48) 2021; 7 He (ref_29) 2021; 119 Li (ref_43) 2019; 38 He (ref_2) 2021; 7 ref_12 Wang (ref_34) 2019; 27 He (ref_6) 2019; 15 Khan (ref_36) 2020; 18 Tian (ref_13) 2021; 9 Khan (ref_35) 2021; 53 Kingni (ref_9) 2019; 60 Trejo (ref_26) 2020; 39 Wang (ref_33) 2020; 6 Cao (ref_38) 2020; 28 Takahashi (ref_10) 2018; 93 He (ref_23) 2021; 29 ref_19 (ref_21) 2021; 880 Elgazery (ref_46) 2020; 28 ref_16 ref_15 ref_37 He (ref_1) 2020; 17 He (ref_30) 2020; 24 He (ref_18) 2021; 19 He (ref_42) 2020; 19 Ji (ref_44) 2020; 40 He (ref_4) 2021; 19 ref_25 He (ref_5) 2019; 38 ref_45 He (ref_39) 2020; 37 Liu (ref_3) 2020; 24 He (ref_24) 2021; 20 He (ref_40) 1999; 178 Zuo (ref_20) 2021; 59 He (ref_41) 2021; 59 ref_28 (ref_22) 2021; 29 He (ref_31) 2020; 28 Trejo (ref_8) 2021; 29 Tian (ref_11) 2021; 29 Ji (ref_14) 2020; 82 (ref_47) 2021; 182 He (ref_32) 2021; 29 |
References_xml | – volume: 287 start-page: 76 year: 2013 ident: ref_7 article-title: Lasers as Toda oscillators: An experimental confirmation publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.09.031 – volume: 60 start-page: 149 year: 2019 ident: ref_9 article-title: Hopf bifurcation, antimonotonicity and amplitude controls in the chotic Toda jerk oscillator: Analysis, circuit realization and combination synchronization in its fractional-order form publication-title: Automatika doi: 10.1080/00051144.2019.1600109 – volume: 19 start-page: 229 year: 2021 ident: ref_18 article-title: Passive Atmospheric water harvesting utilizing an ancient Chinese ink slab and its possible applications in modern architecture publication-title: Facta Univ. Mech. Eng. – volume: 15 start-page: 102546 year: 2019 ident: ref_6 article-title: The simplest approach to nonlinear oscillators publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102546 – volume: 28 start-page: 2050107 year: 2020 ident: ref_38 article-title: Variational principle for 2+1 dimensional Broer-Kaup equations with fractal derivatives publication-title: Fractals doi: 10.1142/S0218348X20501078 – ident: ref_15 doi: 10.1002/mma.6384 – volume: 178 start-page: 257 year: 1999 ident: ref_40 article-title: Homotopy perturbation technique publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00018-3 – volume: 82 start-page: 437 year: 2020 ident: ref_14 article-title: A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.01.027 – volume: 40 start-page: 675 year: 2020 ident: ref_44 article-title: Li-He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348420914457 – ident: ref_16 doi: 10.1002/mma.6569 – volume: 39 start-page: 1216 year: 2020 ident: ref_26 article-title: He’s frequency–amplitude formulation for nonlinear oscillators using Jacobi elliptic functions publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348420972820 – volume: 9 start-page: 606011 year: 2021 ident: ref_13 article-title: Fractal Pull-in Stability Theory for Microelectromechanical Systems publication-title: Front. Phys.-Math. Stat. Phys. – volume: 182 start-page: 555 year: 2021 ident: ref_47 article-title: Homotopy perturbation method with rank upgrading technique for the superior nonlinear oscillation publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.11.019 – volume: 29 start-page: 2150117 year: 2021 ident: ref_23 article-title: Low frequency property of a fractal vibration model for a concrete beam publication-title: Fractals doi: 10.1142/S0218348X21501176 – volume: 58 start-page: 2245 year: 2020 ident: ref_17 article-title: Homotopy perturbation method for Fangzhu oscillator publication-title: J. Math. Chem. doi: 10.1007/s10910-020-01167-6 – ident: ref_12 doi: 10.1177/1461348420984041 – volume: 880 start-page: 114883 year: 2021 ident: ref_21 article-title: A fractal model for current generation in porous electrodes publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114883 – volume: 27 start-page: 1950134 year: 2019 ident: ref_34 article-title: A remark on Wang’s fractal variational principle publication-title: Fractals doi: 10.1142/S0218348X19501342 – ident: ref_19 doi: 10.1108/HFF-05-2020-0247 – volume: 24 start-page: 659 year: 2020 ident: ref_30 article-title: New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle publication-title: Therm. Sci. doi: 10.2298/TSCI200127065H – volume: 38 start-page: 1252 year: 2019 ident: ref_5 article-title: The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348419844145 – volume: 6 start-page: 1606 year: 2020 ident: ref_33 article-title: Fractal variational theory for Chaplygin-He Gas in a microgravity condition publication-title: Comput. Methods Appl. Mech. Eng. – volume: 19 start-page: 199 year: 2021 ident: ref_4 article-title: Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators publication-title: Facta Univ. Ser. Mech. Eng. – volume: 19 start-page: 103345 year: 2020 ident: ref_42 article-title: Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103345 – volume: 7 start-page: 78 year: 2021 ident: ref_2 article-title: A Variational Principle for a Nonlinear Oscillator Arising in Microelectromechanical System publication-title: J. Appl. Comput. Mech. – volume: 38 start-page: 1399 year: 2019 ident: ref_43 article-title: Homotopy perturbation method coupled with the enhanced perturbation method publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348418800554 – ident: ref_25 doi: 10.1177/1461348420947832 – volume: 29 start-page: 2150080 year: 2021 ident: ref_22 article-title: Analytical solution of the fractal Cubic-Quintic Duffing equation publication-title: Fractals doi: 10.1142/S0218348X21500808 – volume: 28 start-page: 2050024 year: 2020 ident: ref_31 article-title: A fractal variational theory for one-dimensional compressible flow in a microgravity space publication-title: Fractals doi: 10.1142/S0218348X20500243 – volume: 29 start-page: 2050030 year: 2021 ident: ref_11 article-title: Fractal N/MEMS: From pull-in instability to pull-in stability publication-title: Fractals doi: 10.1142/S0218348X21500304 – volume: 119 start-page: 107199 year: 2021 ident: ref_29 article-title: On a strong minimum condition of a fractal variational principle publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2021.107199 – volume: 29 start-page: 2150022 year: 2021 ident: ref_32 article-title: On the fractal variational principle for the Telegraph equation publication-title: Fractals doi: 10.1142/S0218348X21500225 – ident: ref_28 doi: 10.1177/1461348421992608 – volume: 29 start-page: 2150105 year: 2021 ident: ref_27 article-title: Fractal oscillation and its frequency-amplitude property publication-title: Fractals doi: 10.1142/S0218348X2150105X – volume: 24 start-page: 2515 year: 2020 ident: ref_3 article-title: A variational principle for the photocatalytic NOx abatement publication-title: Therm. Sci. doi: 10.2298/TSCI2004515L – volume: 18 start-page: 103324 year: 2020 ident: ref_36 article-title: Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103324 – volume: 28 start-page: 2050095 year: 2020 ident: ref_46 article-title: Effect of fractional derivative properties on the periodic solution of the nonlinear oscillators publication-title: Fractals doi: 10.1142/S0218348X20500954 – volume: 20 start-page: 1871 year: 2021 ident: ref_24 article-title: A fractal model for the internal temperature response of a porous concrete publication-title: Appl. Comput. Math. – volume: 17 start-page: 103031 year: 2020 ident: ref_1 article-title: Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103031 – volume: 53 start-page: 127 year: 2021 ident: ref_35 article-title: A novel soliton solutions for the fractal Radhakrishnan-Kundu-Lakshmanan model arising in birefringent fibers publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-021-02775-5 – volume: 59 start-page: 1139 year: 2021 ident: ref_41 article-title: Homotopy perturbation method with three expansions publication-title: J. Math. Chem. doi: 10.1007/s10910-021-01237-3 – volume: 37 start-page: 1800 year: 2020 ident: ref_39 article-title: The reducing rank method to solve third-order Duffing equation with the homotopy perturbation publication-title: Numer. Methods Partial. Differ. Equ. doi: 10.1002/num.22609 – ident: ref_37 doi: 10.1108/HFF-05-2020-0299 – volume: 29 start-page: 2150034 year: 2021 ident: ref_8 article-title: Equivalent power-form representation of the fractal Toda oscillator publication-title: Fractals doi: 10.1142/S0218348X21500341 – volume: 59 start-page: 735 year: 2021 ident: ref_20 article-title: A gecko-like fractal receptor of a three-dimensional printing technology: A fractal oscillator publication-title: J. Math. Chem. doi: 10.1007/s10910-021-01212-y – volume: 7 start-page: 782 year: 2021 ident: ref_48 article-title: The Rank Upgrading Technique for a Harmonic Restoring Force of Nonlinear oscillators publication-title: Appl. Comput. Mech. – volume: 93 start-page: 075204 year: 2018 ident: ref_10 article-title: Newton’s equation of motion with quadratic drag force and Toda’s potential as a solvable one publication-title: Phys. Scr. doi: 10.1088/1402-4896/aac969 – ident: ref_45 doi: 10.1177/1461348420917565 |
SSID | ssj0002793507 |
Score | 2.5063627 |
Snippet | The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 93 |
SubjectTerms | Energy Exact solutions Fractal analysis fractal Hamilton principle fractal Weierstrass theorem Fractals frequency-amplitude relationship Perturbation methods Software strong minimum condition Toda oscillator homotopy perturbation method |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5qe9GD-MRqlT14NDTJbjYbUMRKSxFai1joLewrXkpb23rw3zuzTSqieEkg2cAy75nMfkPItQh1wgqjAwvKE3AXo0oZBwzJCmU5Vv6xoD8Yiv6YP02SSY0Mq7Mw2FZZ2URvqO3cYI28jYExJB8iTu8X7wFOjcK_q9UIDVWOVrB3HmJshzTAJEuQ-0anOxy9bKsuMYgjREAb-CEG-X67wMNIaupvCUh8mLEfLsoj-f8y1N779A7Ifhk20ocNnw9Jzc2OyN5gi7m6Oia3fWysmy8-6cgtwZFoT3M68COiKcSmFBbT3mYjFNtn6DP4PxADSLtPyLjXfX3sB-VshMAwKdeBjmxkizhSrBDCpspEqXQSNMxyntnMMCOYy3RYREYKkwlreOggGtPcSM1dxk5JfTafuTNCExsqxhFJ3oDZDIWGlEQJHGOlnEwy1yRxRY7clMDhOL9imkMCgTTM_6Bhk9xsP1pscDP-X95BOm-XIui1fzBfvuWlDuVaOKYTAREV5HVKJlrBVUe8kKmzkYSNtiou5aUmrvJvuTn___UF2Y2xX8WXV1qkvl5-uEsIONb6qpSiL4nL16w priority: 102 providerName: ProQuest |
Title | Homotopy Perturbation Method for the Fractal Toda Oscillator |
URI | https://www.proquest.com/docview/2576407627 https://doaj.org/article/b6e3b56993014a85ba4a8b14f87ed18e |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86L3oQP3E6Rw4eLUubNEvAi5PVIWwOcbBbyVcPMraxzYP_vS9pNyaKXry0UFIa3svLe7-X199D6IYTndLC6MiC8UTMJd6kjAOFyEJZ5jP_PqHfH_DeiD2N0_FWqy9fE1bSA5eCa2nuqE45uFEI5pVItYKrjlkh2s7Gwvndl0iyBabewnGapBDplDRDFHB9q_A_HalJuKWwsomkX1xRYOz_tiEHL5MdocMqPMT35bSO0Y6bnqCD_oZbdXmK7nq-gG42_8BDtwCHoYNscT-0gsYQg2IYjLNyItiXyeBn8HOgboDXZ2iUdV8felHVAyEyVIhVpGMb2yKJFS04t21l4rZwAizJMiatNNRw6qQmRWwEN5Jbw4iDqEszIzRzkp6j2nQ2dRcIp5YoyjxjvIHtkXAN0ENx365KOZFKV0fJWhy5qQjCfZ-KSQ5Awcsw_0GGdXS7eWle8mP8Przj5bwZ6smtwwNQeV6pPP9L5XXUWGspryxumXvgBOCUJ-3L__jGFdpPfPVKSLY0UG21eHfXEH6sdBPtiuyxifY63cHwpRnW3SdWWtw1 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5ED-pBfGJ97kFvBpPsZrsBRXzV-qh6UPAW9xUv0ta2Iv1T_kZnNklFFG-9JJBsYJn55pnZGUJ2RKgTlhsdWBCegLsYRco4YEiaK8sx848J_dataD7yq6fkaYJ8VmdhsKyy0oleUduOwRz5PjrGEHyIuH7UfQtwahT-Xa1GaBSwuHbDDwjZ-oeXZ8Df3ThunD-cNoNyqkBgmJSDQEc2snkcKZYLYevKRHXpJGDTcp7a1DAjmEt1mEdGCpMKa3jowI_R3EjNHTZfApU_xSG2QymSjYtRTicGsIN_VTQ3YiwN93M86qRe_S0BeQpT9sMA-jkBv8yAt22NeTJXOqX0uEDRAplw7UUy2xp1dO0vkYMmlu11ukN673pgprTnKG35AdQUPF8Ki2mj2AjF4hx6B9YVQAZB_TJ5HAuNVshku9N2q4QmNlSMY596A0o5FBoCHiVwSJZyMkldjcQVOTJTtiXH6RivGYQnSMPsDxrWyN7oo27RleP_5SdI59FSbKntH3R6L1kpoZkWjulEgL8GUaOSiVZw1RHPZd3ZSMJGNyouZaWc97NvVK79_3qbTDcfWjfZzeXt9TqZibEyxidyNsjkoPfuNsG1GegtjydKnscN4C_Lag6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQSBUcqlKooLx8KDcikthxbKkV4tF0eSxwAIlb6le4oN1ldxHav8av64yTLEJU3PaSSIkjWTPfPDOeIeSHiE3GKmsiB8ITcZ-iSFkPDFGVdhwz_5jQ716Kzi0_u8vu5shLexYGyypbnRgUtetbzJHvo2MMwYeAUL1qyiKuT4qDwWOEE6TwT2s7TqOGyLmfPEP4Nvp1egK83k3T4vfNcSdqJgxElkk5jkziEleliWaVEC7XNsmll4BTx7lyyjIrmFcmrhIrhVXCWR578GkMt9Jwj42YQP0v5CxXKF2y-DPN76QAfPC16kZHjKl4v8JjT_oh3DKQrVixN8YwzAx4ZxKCnSu-kM-Ng0oPa0Qtkznf-0qWutPurqMV8rODJXz9wYRe-yGYLBO4S7thGDUFL5jCYlrUG6FYqEOvwNIC4CDAXyW3M6HRNzLf6_f8GqGZizXj2LPegoKOhYHgRwscmKW9zJRfJ2lLjtI2LcpxUsZDCaEK0rD8Dw3Xyd70o0HdoePj5UdI5-lSbK8dHvSH92UjraURnplMgO8GEaSWmdFwNQmvZO5dImGjmy2XykbmR-UrQr9__HqHfALolhenl-cbZDHFIpmQ09kk8-Phk98CL2dstgOcKPk7a_z-AwajEuY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homotopy+Perturbation+Method+for+the+Fractal+Toda+Oscillator&rft.jtitle=Fractal+and+fractional&rft.au=Ji-Huan+He&rft.au=Yusry+O.+El-Dib&rft.au=Amal+A.+Mady&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=5&rft.issue=3&rft.spage=93&rft_id=info:doi/10.3390%2Ffractalfract5030093&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6e3b56993014a85ba4a8b14f87ed18e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |