CyBERT: Cybersecurity Claim Classification by Fine-Tuning the BERT Language Model
We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our semi-automated cybersecurity vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences from ICS dev...
Saved in:
Published in | Journal of cybersecurity and privacy Vol. 1; no. 4; pp. 615 - 637 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
MDPI AG
04.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2624-800X 2624-800X |
DOI | 10.3390/jcp1040031 |
Cover
Abstract | We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our semi-automated cybersecurity vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences from ICS device documentation collected across a wide range of vendors and devices. This corpus provides the foundation for fine-tuning BERT’s language model, including a prediction-guided relabeling process. We propose an approach to obtain optimal hyperparameters, including the learning rate, the number of dense layers, and their configuration, to increase the accuracy of our classifier. Fine-tuning all hyperparameters of the resulting model led to an increase in classification accuracy from 76% obtained with BertForSequenceClassification’s original architecture to 94.4% obtained with CyBERT. Furthermore, we evaluated CyBERT for the impact of randomness in the initialization, training, and data-sampling phases. CyBERT demonstrated a standard deviation of ±0.6% during validation across 100 random seed values. Finally, we also compared the performance of CyBERT to other well-established language models including GPT2, ULMFiT, and ELMo, as well as neural network models such as CNN, LSTM, and BiLSTM. The results showed that CyBERT outperforms these models on the validation accuracy and the F1 score, validating CyBERT’s robustness and accuracy as a cybersecurity feature claims classifier. |
---|---|
AbstractList | We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our semi-automated cybersecurity vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences from ICS device documentation collected across a wide range of vendors and devices. This corpus provides the foundation for fine-tuning BERT’s language model, including a prediction-guided relabeling process. We propose an approach to obtain optimal hyperparameters, including the learning rate, the number of dense layers, and their configuration, to increase the accuracy of our classifier. Fine-tuning all hyperparameters of the resulting model led to an increase in classification accuracy from 76% obtained with BertForSequenceClassification’s original architecture to 94.4% obtained with CyBERT. Furthermore, we evaluated CyBERT for the impact of randomness in the initialization, training, and data-sampling phases. CyBERT demonstrated a standard deviation of ±0.6% during validation across 100 random seed values. Finally, we also compared the performance of CyBERT to other well-established language models including GPT2, ULMFiT, and ELMo, as well as neural network models such as CNN, LSTM, and BiLSTM. The results showed that CyBERT outperforms these models on the validation accuracy and the F1 score, validating CyBERT’s robustness and accuracy as a cybersecurity feature claims classifier. |
Author | Ameri, Kimia Perumalla, Kalyan Lopez Jr, Juan Hempel, Michael Sharif, Hamid |
Author_xml | – sequence: 1 givenname: Kimia orcidid: 0000-0003-2879-1871 surname: Ameri fullname: Ameri, Kimia – sequence: 2 givenname: Michael orcidid: 0000-0002-7091-8349 surname: Hempel fullname: Hempel, Michael – sequence: 3 givenname: Hamid orcidid: 0000-0001-6229-2043 surname: Sharif fullname: Sharif, Hamid – sequence: 4 givenname: Juan orcidid: 0000-0001-5083-8627 surname: Lopez Jr fullname: Lopez Jr, Juan – sequence: 5 givenname: Kalyan orcidid: 0000-0002-7458-0832 surname: Perumalla fullname: Perumalla, Kalyan |
BackLink | https://www.osti.gov/biblio/1828972$$D View this record in Osti.gov |
BookMark | eNptkc1q3DAUhUWZQNJpNnkCk-4KTvRnW-6uNZMmMCUkTCA7IV3LEw0eaSrJC7997UxJSqkWkrh85xxd3Y9o4bwzCF0QfMVYja93cCCYY8zIB3RGS8pzgfHz4q_7KTqPcYcxplXNCsLP0EMzfl89br5mzahNiAaGYNOYNb2y-3mP0XYWVLLeZXrMbqwz-WZw1m2z9GKyWZutldsOamuyn741_Sd00qk-mvM_5xI93aw2zW2-vv9x13xb58CESLnqKlVVJXBGmKhZy2mJK8Y4ZqouhC4KzQqlKQdjSNe1hCpSARWc8NKUjFO2RHdH39arnTwEu1dhlF5Z-VrwYStVSBZ6IzlAJ6gQupsMtRK1bgUGmMKKSrNWTF6XRy8fk5URbDLwAt45A0mSSVpXc-DnI3QI_tdgYpI7PwQ39ShpWUwLF_VMfTlSEHyMwXRvTyNYzmOS72OaYPwPPEW_fnYKyvb_k_wG5LqTfA |
CitedBy_id | crossref_primary_10_1007_s13278_023_01159_9 crossref_primary_10_1007_s41666_022_00118_x crossref_primary_10_1145_3546580 crossref_primary_10_1155_2023_2118305 crossref_primary_10_1007_s40747_024_01661_3 crossref_primary_10_3390_s23020651 crossref_primary_10_1007_s44163_024_00129_0 crossref_primary_10_1016_j_cose_2023_103424 crossref_primary_10_3390_jcp2020022 crossref_primary_10_1109_ACCESS_2024_3505983 crossref_primary_10_1109_TNSM_2024_3363626 crossref_primary_10_7717_peerj_cs_1841 crossref_primary_10_1007_s10207_023_00769_w crossref_primary_10_1016_j_asoc_2025_112745 crossref_primary_10_3390_ai4010004 crossref_primary_10_1007_s13369_024_09354_2 crossref_primary_10_1016_j_jjimei_2024_100315 crossref_primary_10_1109_ACCESS_2024_3514934 crossref_primary_10_3390_app12188983 |
Cites_doi | 10.1109/ICBDA51983.2021.9403180 10.1109/WACV.2017.58 10.1007/978-1-4842-0214-2 10.18653/v1/N16-1030 10.18653/v1/N18-1202 10.1145/3442188.3445922 10.1016/j.patrec.2005.10.010 10.18653/v1/W19-3805 10.1093/bioinformatics/btz682 10.1007/978-3-030-80119-9_64 10.1007/978-3-030-32381-3_16 10.18653/v1/2020.coling-main.481 10.3115/v1/D14-1162 10.1109/DSAA53316.2021.9564227 10.1007/978-3-030-51310-8_2 10.24963/ijcai.2020/622 10.18653/v1/D19-1371 10.1007/978-3-030-29563-9_17 10.3390/app9194062 10.1145/3451471.3451508 10.1109/KPEC47870.2020.9167562 10.18653/v1/2020.acl-main.487 10.1162/tacl_a_00051 10.1186/s42400-021-00072-y 10.1109/DSAA49011.2020.00084 10.1016/j.wpi.2020.101965 10.18653/v1/P18-1031 10.1016/j.neucom.2019.01.078 10.21203/rs.3.rs-90025/v1 10.1016/j.knosys.2020.106529 10.1155/2021/6629591 10.1016/S0079-7421(08)60536-8 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U OTOTI DOA |
DOI | 10.3390/jcp1040031 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2624-800X |
EndPage | 637 |
ExternalDocumentID | oai_doaj_org_article_4ccf8288bfb24ba89bd80cc34057b3d8 1828972 10_3390_jcp1040031 |
GroupedDBID | 7WY 8FL AAYXX ABUWG AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BEZIV CCPQU CITATION DWQXO FRNLG GROUPED_DOAJ M0C MODMG M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA 3V. 7XB 8FK AZQEC K60 K6~ L.- PKEHL PQEST PQQKQ PQUKI PRINS Q9U OTOTI PUEGO |
ID | FETCH-LOGICAL-c388t-af7a776c4313893d4260733403a958b55b35ab24cee1ffd12a17c284146e63423 |
IEDL.DBID | DOA |
ISSN | 2624-800X |
IngestDate | Wed Aug 27 01:31:37 EDT 2025 Thu May 18 22:32:55 EDT 2023 Sun Jun 29 13:52:54 EDT 2025 Thu Apr 24 22:49:12 EDT 2025 Tue Jul 01 00:49:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-af7a776c4313893d4260733403a958b55b35ab24cee1ffd12a17c284146e63423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE 4000175929 |
ORCID | 0000-0001-6229-2043 0000-0001-5083-8627 0000-0002-7458-0832 0000-0003-2879-1871 0000-0002-7091-8349 0000000328791871 0000000274580832 0000000150838627 0000000270918349 0000000162292043 |
OpenAccessLink | https://doaj.org/article/4ccf8288bfb24ba89bd80cc34057b3d8 |
PQID | 2655550592 |
PQPubID | 5465940 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ccf8288bfb24ba89bd80cc34057b3d8 osti_scitechconnect_1828972 proquest_journals_2655550592 crossref_primary_10_3390_jcp1040031 crossref_citationtrail_10_3390_jcp1040031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-04 |
PublicationDateYYYYMMDD | 2021-11-04 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of cybersecurity and privacy |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lee (ref_7) 2020; 36 ref_14 ref_13 McCloskey (ref_40) 1989; Volume 24 ref_12 ref_11 ref_10 ref_19 ref_18 ref_17 ref_16 ref_15 Xie (ref_25) 2021; 2021 Yin (ref_26) 2020; 210 ref_24 ref_22 ref_21 ref_20 ref_29 ref_27 Liu (ref_47) 2019; 337 Gao (ref_23) 2021; 4 Radford (ref_6) 2019; 1 Bojanowski (ref_28) 2017; 5 ref_36 ref_35 ref_34 ref_33 ref_32 ref_30 Fawcett (ref_49) 2006; 27 ref_39 ref_38 ref_37 ref_46 ref_45 ref_44 ref_43 ref_42 ref_41 ref_1 ref_3 ref_2 ref_48 ref_9 ref_8 ref_5 ref_4 Zhang (ref_31) 2015; 28 |
References_xml | – ident: ref_9 – ident: ref_21 doi: 10.1109/ICBDA51983.2021.9403180 – ident: ref_41 doi: 10.1109/WACV.2017.58 – ident: ref_5 – ident: ref_32 – ident: ref_42 doi: 10.1007/978-1-4842-0214-2 – ident: ref_1 – ident: ref_30 doi: 10.18653/v1/N16-1030 – ident: ref_4 doi: 10.18653/v1/N18-1202 – volume: 1 start-page: 9 year: 2019 ident: ref_6 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – ident: ref_27 – ident: ref_35 doi: 10.1145/3442188.3445922 – ident: ref_48 – volume: 27 start-page: 861 year: 2006 ident: ref_49 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – ident: ref_38 doi: 10.18653/v1/W19-3805 – volume: 36 start-page: 1234 year: 2020 ident: ref_7 article-title: BioBERT: A pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – ident: ref_16 doi: 10.1007/978-3-030-80119-9_64 – ident: ref_45 – ident: ref_15 doi: 10.1007/978-3-030-32381-3_16 – ident: ref_11 doi: 10.18653/v1/2020.coling-main.481 – ident: ref_34 – ident: ref_29 doi: 10.3115/v1/D14-1162 – ident: ref_20 doi: 10.1109/DSAA53316.2021.9564227 – ident: ref_24 doi: 10.1007/978-3-030-51310-8_2 – ident: ref_19 doi: 10.24963/ijcai.2020/622 – ident: ref_10 doi: 10.18653/v1/D19-1371 – ident: ref_14 doi: 10.1007/978-3-030-29563-9_17 – volume: 28 start-page: 649 year: 2015 ident: ref_31 article-title: Character-level convolutional networks for text classification publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_12 doi: 10.3390/app9194062 – ident: ref_22 doi: 10.1145/3451471.3451508 – ident: ref_37 – ident: ref_2 doi: 10.1109/KPEC47870.2020.9167562 – ident: ref_18 – ident: ref_44 – ident: ref_39 doi: 10.18653/v1/2020.acl-main.487 – volume: 5 start-page: 135 year: 2017 ident: ref_28 article-title: Enriching word vectors with subword information publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00051 – volume: 4 start-page: 1 year: 2021 ident: ref_23 article-title: Data and knowledge-driven named entity recognition for cyber security publication-title: Cybersecurity doi: 10.1186/s42400-021-00072-y – ident: ref_33 – ident: ref_46 – ident: ref_13 doi: 10.1109/DSAA49011.2020.00084 – ident: ref_17 doi: 10.1016/j.wpi.2020.101965 – ident: ref_3 doi: 10.18653/v1/P18-1031 – volume: 337 start-page: 325 year: 2019 ident: ref_47 article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – ident: ref_36 – ident: ref_8 doi: 10.21203/rs.3.rs-90025/v1 – volume: 210 start-page: 106529 year: 2020 ident: ref_26 article-title: Apply transfer learning to cybersecurity: Predicting exploitability of vulnerabilities by description publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106529 – ident: ref_43 – volume: 2021 start-page: 6629591 year: 2021 ident: ref_25 article-title: The Named Entity Recognition of Chinese Cybersecurity Using an Active Learning Strategy publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/6629591 – volume: Volume 24 start-page: 109 year: 1989 ident: ref_40 article-title: Catastrophic interference in connectionist networks: The sequential learning problem publication-title: Psychology of Learning and Motivation doi: 10.1016/S0079-7421(08)60536-8 |
SSID | ssj0002793514 |
Score | 2.4503865 |
Snippet | We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our... |
SourceID | doaj osti proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 615 |
SubjectTerms | Automation BERT Classification Cybersecurity CYVET Data mining Datasets Infrastructure Language Natural language natural language processing Neural networks Sentiment analysis transfer learning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swED669GUvW9d2LGs3BN1LH0RjSbbkQSlLSChjC2tJIW9Ckq3SkiVZlz7k3_fOkVPGxp4MtmzwnXT33Vn-PoBP0umImT3yIArDsf7yvBRRcK9DGcntPlJr4Pu4uLxRX6f5dAfG7b8wtK2yjYlNoK4WgXrkZ6LIc0LTpbhY_uKkGkVfV1sJDZekFarzhmLsBewKUlXuwG5_OP5xve26CJyOG8JvUQiF4bk33XCWSqz9z-7DMqNJLbM_slRD5o-HBS66v0J2k4dGe_AqAUj2ZePxN7BTz_fhdSvOwNJaPYCrwbo_vJ58ZoO1R4iXZOrYYObufrJGCpM2CTV-YX7NRog2-eSRuiQMMSGje9m31MxkpJg2O4Sb0XAyuORJP4EHacyKu6id1kVAjECwpCIyei2l6klX5sbnuZe580JhnsxirDLhMh0wXWHwrAtiBnwLnfliXr8DJkWtVVRemMIoU6IHlekVXgnn8Fmh6sJpay8bErk4aVzMLBYZZFv7bNsunGzHLjeUGv8c1Sezb0cQDXZzYvFwa9OqsiqEiCWj8RFfwztT-sr0QpCEQr2sTBeOyGkW0QRR4gbaOxRWNqMyU4suHLe-tGnl_rbP8-z9_y8fwUtB-1uoxayOobN6eKw_IEBZ-Y9p1j0BrTHhfA priority: 102 providerName: ProQuest |
Title | CyBERT: Cybersecurity Claim Classification by Fine-Tuning the BERT Language Model |
URI | https://www.proquest.com/docview/2655550592 https://www.osti.gov/biblio/1828972 https://doaj.org/article/4ccf8288bfb24ba89bd80cc34057b3d8 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-800X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793514 issn: 2624-800X databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-800X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793514 issn: 2624-800X databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2624-800X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793514 issn: 2624-800X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yL178Lc7NEdCLh7I1SZvUmxsbIjp0TPAWkrQBx5yi3WH_ve-13ZwoePFUKGkJ30vyvvf6-j1CzrmRHjy7DxyLVQDxlw0S5llgpUs8mt16TA3cDePrR3HzFD2ttfrCmrBSHrgEri2c8xAVKOstE9aoxKaq4xxHomF5WvzmC25sLZiaFJ_TEixRL_VIOcT17Yl7C3HB8vCbByqE-uHyChvqx3Fc-JjBLtmuyCG9Kie1Rzay2T7ZWTZeoNU-PCAPvUW3Pxpf0t7CAn2rWtDR3tQ8v9CizSUWABWYU7ugA2CSwXiOGRAKfI_is_S2SlRS7IY2PSSPg_64dx1UvRECx5XKA-OlkTJ24P-RcqQoNC85oMJNEikbRZZHBhADHxh6n4bMhNKBK4KDMYtR9e-I1Gavs-yYUM4yKbywTMVKqASsI1QntoIZA-9yaZ1cLPHSrhIOx_4VUw0BBGKrv7Ctk7PV2LdSLuPXUV2EfTUCJa6LG2B4XRle_2X4Ommg0TQwBZS7dVgX5HIdYggpWZ00l7bU1a780CyOIozIEnbyHzNokC2GFS6YZBZNUsvf59kpUJTctshmtz-8H7WKVfkJjBfj5A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7QFexvglyjawBDzwEC2xncRBmqa1tOpYV8HUSX0zthNPoNKWrRPqP8ffxl3qdEIg3vYUKXEi5Xy---7ifB_AG2Fyj5ndR45nKsL6y0YF9zyyuSs8Tbv11Bo4G2b9C_lxnI434FfzLwxtq2xiYh2oy5mjHvkBz9KU0HTBj-Y_IlKNoq-rjYSGCdIK5WFNMRZ-7Ditlj-xhLs-PPmA8_2W81531OlHQWUgckKpRWR8bvI8c5hJKXmXRNmeCyFjYYpU2TS1IjWWS8wmifdlwk2SOwzqGGKqjPjz8Ln3YAthh8BVtdXuDj-dr7s8HN1_RTDOMy4xHcTjFUeqEEV88M3NE1pEIvkjK9biAXiY4SL_K0XUea-3A9sBsLLjlYc9go1q-hgeNmIQLMSGJ_C5s2x3z0fvWWdpEVIGWTzWmZiv31ktvUmbkmo_YHbJeohuo9ENdWUYYlBG97JBaJ4yUmibPIWLO7HkM9iczqbVc2CCV7n00nKVKakK9Bip4sxKbgw-y5UteNfYS7tAZk6aGhONRQ3ZVt_atgWv12PnKwqPf45qk9nXI4h2uz4xu7rUYRVr6ZzHElVZj69hjSpsqWLnBKFeK0rVgl2aNI3ohSh4He1VcgudUFmb8xbsNXOpQ6S41rd-_eL_l1_B_f7obKAHJ8PTXXjAaW8NtbflHmwurm6qfQRHC_syeCCDL3ft9L8BS10cUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK88I0oG2AJeOAhamM7sYM0Idq12tioxtRJffNsJ0ag0patE-q_yF_FXep0QiDe9hQpcSzlfL6vnH8_gNfCqoCePSSe5zrB_MslBQ88ccoXgZbdBSoNfBrlB2fy4ySbbMGv5iwMtVU2NrE21OXcU428w_Mso2i64J0Q2yJO9ofvFz8SYpCiP60NnYaNNAvlXg03Fg95HFWrn5jOXe4d7uPav-F8OBj3D5LIOJB4ofUysUFZpXKPXpUceUnw7UoI2RW2yLTLMicy67hEz5KGUKbcpsqjgUdzU-WEpYfz3oJtRedFW7DdG4xOTjcVH45bYQ02znMu0TV0J2u8VCGKbuebX6S0oUT6h4esiQTwMscN_5e7qH3g8D7cjcEr-7DWtgewVc0ewr2GGIJFO_EIPvdXvcHp-B3rrxyGl5Eij_Wn9ut3VtNwUoNSrRPMrdgQI91kfEUVGobxKKN32XEspDJia5s-hrMbkeQTaM3ms-opMMErJYN0XOda6gK1R-pu7iS3FufyZRveNvIyPgKbE7_G1GCCQ7I117Jtw6vN2MUazuOfo3ok9s0IguCub8wvvpi4o430PmC6ql3Az3BWF67UXe8FRcBOlLoNO7RoBiMZguP11LfklyalFFfxNuw2a2mi1bg01zr-7P-PX8JtVH5zfDg62oE7nNpsqNItd6G1vLiqnmOctHQvogIyOL9pnf8NtsUgig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CyBERT%3A+Cybersecurity+Claim+Classification+by+Fine-Tuning+the+BERT+Language+Model&rft.jtitle=Journal+of+cybersecurity+and+privacy&rft.au=Ameri%2C+Kimia&rft.au=Hempel%2C+Michael&rft.au=Sharif%2C+Hamid&rft.au=Lopez+Jr.%2C+Juan&rft.date=2021-11-04&rft.pub=MDPI+AG&rft.issn=2624-800X&rft.eissn=2624-800X&rft.volume=1&rft.issue=4&rft_id=info:doi/10.3390%2Fjcp1040031&rft.externalDocID=1828972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-800X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-800X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-800X&client=summon |