CyBERT: Cybersecurity Claim Classification by Fine-Tuning the BERT Language Model

We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our semi-automated cybersecurity vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences from ICS dev...

Full description

Saved in:
Bibliographic Details
Published inJournal of cybersecurity and privacy Vol. 1; no. 4; pp. 615 - 637
Main Authors Ameri, Kimia, Hempel, Michael, Sharif, Hamid, Lopez Jr, Juan, Perumalla, Kalyan
Format Journal Article
LanguageEnglish
Published Washington MDPI AG 04.11.2021
Subjects
Online AccessGet full text
ISSN2624-800X
2624-800X
DOI10.3390/jcp1040031

Cover

Abstract We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our semi-automated cybersecurity vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences from ICS device documentation collected across a wide range of vendors and devices. This corpus provides the foundation for fine-tuning BERT’s language model, including a prediction-guided relabeling process. We propose an approach to obtain optimal hyperparameters, including the learning rate, the number of dense layers, and their configuration, to increase the accuracy of our classifier. Fine-tuning all hyperparameters of the resulting model led to an increase in classification accuracy from 76% obtained with BertForSequenceClassification’s original architecture to 94.4% obtained with CyBERT. Furthermore, we evaluated CyBERT for the impact of randomness in the initialization, training, and data-sampling phases. CyBERT demonstrated a standard deviation of ±0.6% during validation across 100 random seed values. Finally, we also compared the performance of CyBERT to other well-established language models including GPT2, ULMFiT, and ELMo, as well as neural network models such as CNN, LSTM, and BiLSTM. The results showed that CyBERT outperforms these models on the validation accuracy and the F1 score, validating CyBERT’s robustness and accuracy as a cybersecurity feature claims classifier.
AbstractList We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our semi-automated cybersecurity vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences from ICS device documentation collected across a wide range of vendors and devices. This corpus provides the foundation for fine-tuning BERT’s language model, including a prediction-guided relabeling process. We propose an approach to obtain optimal hyperparameters, including the learning rate, the number of dense layers, and their configuration, to increase the accuracy of our classifier. Fine-tuning all hyperparameters of the resulting model led to an increase in classification accuracy from 76% obtained with BertForSequenceClassification’s original architecture to 94.4% obtained with CyBERT. Furthermore, we evaluated CyBERT for the impact of randomness in the initialization, training, and data-sampling phases. CyBERT demonstrated a standard deviation of ±0.6% during validation across 100 random seed values. Finally, we also compared the performance of CyBERT to other well-established language models including GPT2, ULMFiT, and ELMo, as well as neural network models such as CNN, LSTM, and BiLSTM. The results showed that CyBERT outperforms these models on the validation accuracy and the F1 score, validating CyBERT’s robustness and accuracy as a cybersecurity feature claims classifier.
Author Ameri, Kimia
Perumalla, Kalyan
Lopez Jr, Juan
Hempel, Michael
Sharif, Hamid
Author_xml – sequence: 1
  givenname: Kimia
  orcidid: 0000-0003-2879-1871
  surname: Ameri
  fullname: Ameri, Kimia
– sequence: 2
  givenname: Michael
  orcidid: 0000-0002-7091-8349
  surname: Hempel
  fullname: Hempel, Michael
– sequence: 3
  givenname: Hamid
  orcidid: 0000-0001-6229-2043
  surname: Sharif
  fullname: Sharif, Hamid
– sequence: 4
  givenname: Juan
  orcidid: 0000-0001-5083-8627
  surname: Lopez Jr
  fullname: Lopez Jr, Juan
– sequence: 5
  givenname: Kalyan
  orcidid: 0000-0002-7458-0832
  surname: Perumalla
  fullname: Perumalla, Kalyan
BackLink https://www.osti.gov/biblio/1828972$$D View this record in Osti.gov
BookMark eNptkc1q3DAUhUWZQNJpNnkCk-4KTvRnW-6uNZMmMCUkTCA7IV3LEw0eaSrJC7997UxJSqkWkrh85xxd3Y9o4bwzCF0QfMVYja93cCCYY8zIB3RGS8pzgfHz4q_7KTqPcYcxplXNCsLP0EMzfl89br5mzahNiAaGYNOYNb2y-3mP0XYWVLLeZXrMbqwz-WZw1m2z9GKyWZutldsOamuyn741_Sd00qk-mvM_5xI93aw2zW2-vv9x13xb58CESLnqKlVVJXBGmKhZy2mJK8Y4ZqouhC4KzQqlKQdjSNe1hCpSARWc8NKUjFO2RHdH39arnTwEu1dhlF5Z-VrwYStVSBZ6IzlAJ6gQupsMtRK1bgUGmMKKSrNWTF6XRy8fk5URbDLwAt45A0mSSVpXc-DnI3QI_tdgYpI7PwQ39ShpWUwLF_VMfTlSEHyMwXRvTyNYzmOS72OaYPwPPEW_fnYKyvb_k_wG5LqTfA
CitedBy_id crossref_primary_10_1007_s13278_023_01159_9
crossref_primary_10_1007_s41666_022_00118_x
crossref_primary_10_1145_3546580
crossref_primary_10_1155_2023_2118305
crossref_primary_10_1007_s40747_024_01661_3
crossref_primary_10_3390_s23020651
crossref_primary_10_1007_s44163_024_00129_0
crossref_primary_10_1016_j_cose_2023_103424
crossref_primary_10_3390_jcp2020022
crossref_primary_10_1109_ACCESS_2024_3505983
crossref_primary_10_1109_TNSM_2024_3363626
crossref_primary_10_7717_peerj_cs_1841
crossref_primary_10_1007_s10207_023_00769_w
crossref_primary_10_1016_j_asoc_2025_112745
crossref_primary_10_3390_ai4010004
crossref_primary_10_1007_s13369_024_09354_2
crossref_primary_10_1016_j_jjimei_2024_100315
crossref_primary_10_1109_ACCESS_2024_3514934
crossref_primary_10_3390_app12188983
Cites_doi 10.1109/ICBDA51983.2021.9403180
10.1109/WACV.2017.58
10.1007/978-1-4842-0214-2
10.18653/v1/N16-1030
10.18653/v1/N18-1202
10.1145/3442188.3445922
10.1016/j.patrec.2005.10.010
10.18653/v1/W19-3805
10.1093/bioinformatics/btz682
10.1007/978-3-030-80119-9_64
10.1007/978-3-030-32381-3_16
10.18653/v1/2020.coling-main.481
10.3115/v1/D14-1162
10.1109/DSAA53316.2021.9564227
10.1007/978-3-030-51310-8_2
10.24963/ijcai.2020/622
10.18653/v1/D19-1371
10.1007/978-3-030-29563-9_17
10.3390/app9194062
10.1145/3451471.3451508
10.1109/KPEC47870.2020.9167562
10.18653/v1/2020.acl-main.487
10.1162/tacl_a_00051
10.1186/s42400-021-00072-y
10.1109/DSAA49011.2020.00084
10.1016/j.wpi.2020.101965
10.18653/v1/P18-1031
10.1016/j.neucom.2019.01.078
10.21203/rs.3.rs-90025/v1
10.1016/j.knosys.2020.106529
10.1155/2021/6629591
10.1016/S0079-7421(08)60536-8
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
OTOTI
DOA
DOI 10.3390/jcp1040031
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-800X
EndPage 637
ExternalDocumentID oai_doaj_org_article_4ccf8288bfb24ba89bd80cc34057b3d8
1828972
10_3390_jcp1040031
GroupedDBID 7WY
8FL
AAYXX
ABUWG
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BEZIV
CCPQU
CITATION
DWQXO
FRNLG
GROUPED_DOAJ
M0C
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
3V.
7XB
8FK
AZQEC
K60
K6~
L.-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
OTOTI
PUEGO
ID FETCH-LOGICAL-c388t-af7a776c4313893d4260733403a958b55b35ab24cee1ffd12a17c284146e63423
IEDL.DBID DOA
ISSN 2624-800X
IngestDate Wed Aug 27 01:31:37 EDT 2025
Thu May 18 22:32:55 EDT 2023
Sun Jun 29 13:52:54 EDT 2025
Thu Apr 24 22:49:12 EDT 2025
Tue Jul 01 00:49:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-af7a776c4313893d4260733403a958b55b35ab24cee1ffd12a17c284146e63423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
4000175929
ORCID 0000-0001-6229-2043
0000-0001-5083-8627
0000-0002-7458-0832
0000-0003-2879-1871
0000-0002-7091-8349
0000000328791871
0000000274580832
0000000150838627
0000000270918349
0000000162292043
OpenAccessLink https://doaj.org/article/4ccf8288bfb24ba89bd80cc34057b3d8
PQID 2655550592
PQPubID 5465940
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_4ccf8288bfb24ba89bd80cc34057b3d8
osti_scitechconnect_1828972
proquest_journals_2655550592
crossref_primary_10_3390_jcp1040031
crossref_citationtrail_10_3390_jcp1040031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-04
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-04
  day: 04
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of cybersecurity and privacy
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lee (ref_7) 2020; 36
ref_14
ref_13
McCloskey (ref_40) 1989; Volume 24
ref_12
ref_11
ref_10
ref_19
ref_18
ref_17
ref_16
ref_15
Xie (ref_25) 2021; 2021
Yin (ref_26) 2020; 210
ref_24
ref_22
ref_21
ref_20
ref_29
ref_27
Liu (ref_47) 2019; 337
Gao (ref_23) 2021; 4
Radford (ref_6) 2019; 1
Bojanowski (ref_28) 2017; 5
ref_36
ref_35
ref_34
ref_33
ref_32
ref_30
Fawcett (ref_49) 2006; 27
ref_39
ref_38
ref_37
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
ref_1
ref_3
ref_2
ref_48
ref_9
ref_8
ref_5
ref_4
Zhang (ref_31) 2015; 28
References_xml – ident: ref_9
– ident: ref_21
  doi: 10.1109/ICBDA51983.2021.9403180
– ident: ref_41
  doi: 10.1109/WACV.2017.58
– ident: ref_5
– ident: ref_32
– ident: ref_42
  doi: 10.1007/978-1-4842-0214-2
– ident: ref_1
– ident: ref_30
  doi: 10.18653/v1/N16-1030
– ident: ref_4
  doi: 10.18653/v1/N18-1202
– volume: 1
  start-page: 9
  year: 2019
  ident: ref_6
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI Blog
– ident: ref_27
– ident: ref_35
  doi: 10.1145/3442188.3445922
– ident: ref_48
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_49
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref_38
  doi: 10.18653/v1/W19-3805
– volume: 36
  start-page: 1234
  year: 2020
  ident: ref_7
  article-title: BioBERT: A pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– ident: ref_16
  doi: 10.1007/978-3-030-80119-9_64
– ident: ref_45
– ident: ref_15
  doi: 10.1007/978-3-030-32381-3_16
– ident: ref_11
  doi: 10.18653/v1/2020.coling-main.481
– ident: ref_34
– ident: ref_29
  doi: 10.3115/v1/D14-1162
– ident: ref_20
  doi: 10.1109/DSAA53316.2021.9564227
– ident: ref_24
  doi: 10.1007/978-3-030-51310-8_2
– ident: ref_19
  doi: 10.24963/ijcai.2020/622
– ident: ref_10
  doi: 10.18653/v1/D19-1371
– ident: ref_14
  doi: 10.1007/978-3-030-29563-9_17
– volume: 28
  start-page: 649
  year: 2015
  ident: ref_31
  article-title: Character-level convolutional networks for text classification
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_12
  doi: 10.3390/app9194062
– ident: ref_22
  doi: 10.1145/3451471.3451508
– ident: ref_37
– ident: ref_2
  doi: 10.1109/KPEC47870.2020.9167562
– ident: ref_18
– ident: ref_44
– ident: ref_39
  doi: 10.18653/v1/2020.acl-main.487
– volume: 5
  start-page: 135
  year: 2017
  ident: ref_28
  article-title: Enriching word vectors with subword information
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00051
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_23
  article-title: Data and knowledge-driven named entity recognition for cyber security
  publication-title: Cybersecurity
  doi: 10.1186/s42400-021-00072-y
– ident: ref_33
– ident: ref_46
– ident: ref_13
  doi: 10.1109/DSAA49011.2020.00084
– ident: ref_17
  doi: 10.1016/j.wpi.2020.101965
– ident: ref_3
  doi: 10.18653/v1/P18-1031
– volume: 337
  start-page: 325
  year: 2019
  ident: ref_47
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– ident: ref_36
– ident: ref_8
  doi: 10.21203/rs.3.rs-90025/v1
– volume: 210
  start-page: 106529
  year: 2020
  ident: ref_26
  article-title: Apply transfer learning to cybersecurity: Predicting exploitability of vulnerabilities by description
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106529
– ident: ref_43
– volume: 2021
  start-page: 6629591
  year: 2021
  ident: ref_25
  article-title: The Named Entity Recognition of Chinese Cybersecurity Using an Active Learning Strategy
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/6629591
– volume: Volume 24
  start-page: 109
  year: 1989
  ident: ref_40
  article-title: Catastrophic interference in connectionist networks: The sequential learning problem
  publication-title: Psychology of Learning and Motivation
  doi: 10.1016/S0079-7421(08)60536-8
SSID ssj0002793514
Score 2.4503865
Snippet We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our...
SourceID doaj
osti
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 615
SubjectTerms Automation
BERT
Classification
Cybersecurity
CYVET
Data mining
Datasets
Infrastructure
Language
Natural language
natural language processing
Neural networks
Sentiment analysis
transfer learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swED669GUvW9d2LGs3BN1LH0RjSbbkQSlLSChjC2tJIW9Ckq3SkiVZlz7k3_fOkVPGxp4MtmzwnXT33Vn-PoBP0umImT3yIArDsf7yvBRRcK9DGcntPlJr4Pu4uLxRX6f5dAfG7b8wtK2yjYlNoK4WgXrkZ6LIc0LTpbhY_uKkGkVfV1sJDZekFarzhmLsBewKUlXuwG5_OP5xve26CJyOG8JvUQiF4bk33XCWSqz9z-7DMqNJLbM_slRD5o-HBS66v0J2k4dGe_AqAUj2ZePxN7BTz_fhdSvOwNJaPYCrwbo_vJ58ZoO1R4iXZOrYYObufrJGCpM2CTV-YX7NRog2-eSRuiQMMSGje9m31MxkpJg2O4Sb0XAyuORJP4EHacyKu6id1kVAjECwpCIyei2l6klX5sbnuZe580JhnsxirDLhMh0wXWHwrAtiBnwLnfliXr8DJkWtVVRemMIoU6IHlekVXgnn8Fmh6sJpay8bErk4aVzMLBYZZFv7bNsunGzHLjeUGv8c1Sezb0cQDXZzYvFwa9OqsiqEiCWj8RFfwztT-sr0QpCEQr2sTBeOyGkW0QRR4gbaOxRWNqMyU4suHLe-tGnl_rbP8-z9_y8fwUtB-1uoxayOobN6eKw_IEBZ-Y9p1j0BrTHhfA
  priority: 102
  providerName: ProQuest
Title CyBERT: Cybersecurity Claim Classification by Fine-Tuning the BERT Language Model
URI https://www.proquest.com/docview/2655550592
https://www.osti.gov/biblio/1828972
https://doaj.org/article/4ccf8288bfb24ba89bd80cc34057b3d8
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-800X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793514
  issn: 2624-800X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-800X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793514
  issn: 2624-800X
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2624-800X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793514
  issn: 2624-800X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yL178Lc7NEdCLh7I1SZvUmxsbIjp0TPAWkrQBx5yi3WH_ve-13ZwoePFUKGkJ30vyvvf6-j1CzrmRHjy7DxyLVQDxlw0S5llgpUs8mt16TA3cDePrR3HzFD2ttfrCmrBSHrgEri2c8xAVKOstE9aoxKaq4xxHomF5WvzmC25sLZiaFJ_TEixRL_VIOcT17Yl7C3HB8vCbByqE-uHyChvqx3Fc-JjBLtmuyCG9Kie1Rzay2T7ZWTZeoNU-PCAPvUW3Pxpf0t7CAn2rWtDR3tQ8v9CizSUWABWYU7ugA2CSwXiOGRAKfI_is_S2SlRS7IY2PSSPg_64dx1UvRECx5XKA-OlkTJ24P-RcqQoNC85oMJNEikbRZZHBhADHxh6n4bMhNKBK4KDMYtR9e-I1Gavs-yYUM4yKbywTMVKqASsI1QntoIZA-9yaZ1cLPHSrhIOx_4VUw0BBGKrv7Ctk7PV2LdSLuPXUV2EfTUCJa6LG2B4XRle_2X4Ommg0TQwBZS7dVgX5HIdYggpWZ00l7bU1a780CyOIozIEnbyHzNokC2GFS6YZBZNUsvf59kpUJTctshmtz-8H7WKVfkJjBfj5A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7QFexvglyjawBDzwEC2xncRBmqa1tOpYV8HUSX0zthNPoNKWrRPqP8ffxl3qdEIg3vYUKXEi5Xy---7ifB_AG2Fyj5ndR45nKsL6y0YF9zyyuSs8Tbv11Bo4G2b9C_lxnI434FfzLwxtq2xiYh2oy5mjHvkBz9KU0HTBj-Y_IlKNoq-rjYSGCdIK5WFNMRZ-7Ditlj-xhLs-PPmA8_2W81531OlHQWUgckKpRWR8bvI8c5hJKXmXRNmeCyFjYYpU2TS1IjWWS8wmifdlwk2SOwzqGGKqjPjz8Ln3YAthh8BVtdXuDj-dr7s8HN1_RTDOMy4xHcTjFUeqEEV88M3NE1pEIvkjK9biAXiY4SL_K0XUea-3A9sBsLLjlYc9go1q-hgeNmIQLMSGJ_C5s2x3z0fvWWdpEVIGWTzWmZiv31ktvUmbkmo_YHbJeohuo9ENdWUYYlBG97JBaJ4yUmibPIWLO7HkM9iczqbVc2CCV7n00nKVKakK9Bip4sxKbgw-y5UteNfYS7tAZk6aGhONRQ3ZVt_atgWv12PnKwqPf45qk9nXI4h2uz4xu7rUYRVr6ZzHElVZj69hjSpsqWLnBKFeK0rVgl2aNI3ohSh4He1VcgudUFmb8xbsNXOpQ6S41rd-_eL_l1_B_f7obKAHJ8PTXXjAaW8NtbflHmwurm6qfQRHC_syeCCDL3ft9L8BS10cUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK88I0oG2AJeOAhamM7sYM0Idq12tioxtRJffNsJ0ag0patE-q_yF_FXep0QiDe9hQpcSzlfL6vnH8_gNfCqoCePSSe5zrB_MslBQ88ccoXgZbdBSoNfBrlB2fy4ySbbMGv5iwMtVU2NrE21OXcU428w_Mso2i64J0Q2yJO9ofvFz8SYpCiP60NnYaNNAvlXg03Fg95HFWrn5jOXe4d7uPav-F8OBj3D5LIOJB4ofUysUFZpXKPXpUceUnw7UoI2RW2yLTLMicy67hEz5KGUKbcpsqjgUdzU-WEpYfz3oJtRedFW7DdG4xOTjcVH45bYQ02znMu0TV0J2u8VCGKbuebX6S0oUT6h4esiQTwMscN_5e7qH3g8D7cjcEr-7DWtgewVc0ewr2GGIJFO_EIPvdXvcHp-B3rrxyGl5Eij_Wn9ut3VtNwUoNSrRPMrdgQI91kfEUVGobxKKN32XEspDJia5s-hrMbkeQTaM3ms-opMMErJYN0XOda6gK1R-pu7iS3FufyZRveNvIyPgKbE7_G1GCCQ7I117Jtw6vN2MUazuOfo3ok9s0IguCub8wvvpi4o430PmC6ql3Az3BWF67UXe8FRcBOlLoNO7RoBiMZguP11LfklyalFFfxNuw2a2mi1bg01zr-7P-PX8JtVH5zfDg62oE7nNpsqNItd6G1vLiqnmOctHQvogIyOL9pnf8NtsUgig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CyBERT%3A+Cybersecurity+Claim+Classification+by+Fine-Tuning+the+BERT+Language+Model&rft.jtitle=Journal+of+cybersecurity+and+privacy&rft.au=Ameri%2C+Kimia&rft.au=Hempel%2C+Michael&rft.au=Sharif%2C+Hamid&rft.au=Lopez+Jr.%2C+Juan&rft.date=2021-11-04&rft.pub=MDPI+AG&rft.issn=2624-800X&rft.eissn=2624-800X&rft.volume=1&rft.issue=4&rft_id=info:doi/10.3390%2Fjcp1040031&rft.externalDocID=1828972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-800X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-800X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-800X&client=summon