Comparison of the EM, CEM and SEM algorithms in the estimation of finite mixtures of linear mixed models: a simulation study
Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression models, mixtures of linear mixed models have also been applied in different areas since, besides taking into consideration the heterogeneity in t...
Saved in:
| Published in | Computational statistics Vol. 36; no. 4; pp. 2507 - 2533 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0943-4062 1613-9658 1613-9658 |
| DOI | 10.1007/s00180-021-01088-1 |
Cover
| Abstract | Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression models, mixtures of linear mixed models have also been applied in different areas since, besides taking into consideration the heterogeneity in the population, they also allow to take into account the correlation between observations from the same individual. One of the main issues in mixture models concerns the estimation of the parameters. Maximum likelihood estimation is one of the most used methods in the estimation of the parameters for mixture models. However, the maximization of the log-likelihood function in mixture models is complex, producing in many cases infinite solutions whereby the maximum likelihood estimator may not exist, at least globally. For this reason, it is common to resort to iterative methods, in particular to the Expectation-Maximization (EM) algorithm. However, the slow convergence and the selection of initial values are two of biggest issues of the EM algorithm, the reason why some modified versions of this algorithm have been developed over the years. In this article we compare the performance of the EM, Classification EM (CEM) and Stochastic EM (SEM) algorithms in the estimation of the parameters for mixtures of linear mixed models. In order to evaluate their performance, we carry out a simulation study and a real data application. The results show that the CEM algorithm is the least computationally demanding algorithm, although the three algorithms provide similar maximum likelihood estimates for the parameters. |
|---|---|
| AbstractList | Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression models, mixtures of linear mixed models have also been applied in different areas since, besides taking into consideration the heterogeneity in the population, they also allow to take into account the correlation between observations from the same individual. One of the main issues in mixture models concerns the estimation of the parameters. Maximum likelihood estimation is one of the most used methods in the estimation of the parameters for mixture models. However, the maximization of the log-likelihood function in mixture models is complex, producing in many cases infinite solutions whereby the maximum likelihood estimator may not exist, at least globally. For this reason, it is common to resort to iterative methods, in particular to the Expectation-Maximization (EM) algorithm. However, the slow convergence and the selection of initial values are two of biggest issues of the EM algorithm, the reason why some modified versions of this algorithm have been developed over the years. In this article we compare the performance of the EM, Classification EM (CEM) and Stochastic EM (SEM) algorithms in the estimation of the parameters for mixtures of linear mixed models. In order to evaluate their performance, we carry out a simulation study and a real data application. The results show that the CEM algorithm is the least computationally demanding algorithm, although the three algorithms provide similar maximum likelihood estimates for the parameters. |
| Author | Novais, Luísa Faria, Susana |
| Author_xml | – sequence: 1 givenname: Luísa orcidid: 0000-0002-3000-5350 surname: Novais fullname: Novais, Luísa email: luisa_novais92@hotmail.com organization: Department of Mathematics and Centre of Molecular and Environmental Biology, University of Minho – sequence: 2 givenname: Susana surname: Faria fullname: Faria, Susana organization: Department of Mathematics and Centre of Molecular and Environmental Biology, University of Minho |
| BookMark | eNqNkN1LwzAUxYNMcJv-Az4FfLWaj7VNfZMyP2DDB_U5pGuyZbRJTVJ04B9vuw4EH4ZPFy7nd-85ZwJGxhoJwCVGNxih9NYjhBmKEMERwoixCJ-AMU4wjbIkZiMwRtmMRjOUkDMw8X6LECEpwWPwndu6EU57a6BVMGwknC-vYT5fQmFK-NrPam2dDpvaQ232CumDrkXQA6O00UHCWn-F1knfryptpHD9SpawtqWs_B0U0Ou6rQbOh7bcnYNTJSovLw5zCt4f5m_5U7R4eXzO7xfRijIWugiMkrJIVFlkNE1lMcNMYUwIoTGJCRYJKRImVSELlqUKxVLOSqRSpYQSK6roFNDhbmsasfsUVcUb1yVwO44R7wvkQ4G8K5DvC-S4o64GqnH2o-0y861tnemMchJnjNE4waxTsUG1ctZ7JxVf6bDPGJzQ1fEH5A_6L1eHLL4Tm7V0v66OUD8-SqPY |
| CitedBy_id | crossref_primary_10_1007_s12206_024_0113_1 crossref_primary_10_1016_j_eneco_2023_107265 crossref_primary_10_1088_1361_6420_ad6a34 crossref_primary_10_1080_00949655_2023_2176503 crossref_primary_10_1080_03610926_2025_2467202 crossref_primary_10_1080_27684520_2023_2242337 |
| Cites_doi | 10.1093/biomet/81.4.633 10.1093/biomet/80.2.267 10.1080/03610918.2011.594534 10.1002/0471721182 10.1111/1467-9868.00082 10.1080/00949659608811772 10.1080/00949659308811525 10.1080/00949655.2015.1036431 10.1016/0167-9473(92)90042-E 10.1191/1471082X05st096oa 10.1016/S0167-9473(02)00180-9 10.1093/bioinformatics/btp686 10.18637/jss.v032.i06 10.1080/02664763.2014.1000272 10.1080/01621459.1978.10480085 10.1023/B:STCO.0000039481.32211.5a 10.1080/00949650802590261 10.1111/j.2517-6161.1977.tb01600.x |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY |
| DOI | 10.1007/s00180-021-01088-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1613-9658 |
| EndPage | 2533 |
| ExternalDocumentID | oai:repositorium.sdum.uminho.pt:1822/74773 10_1007_s00180_021_01088_1 |
| GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia grantid: SFRH/BD/139121/2018 funderid: http://dx.doi.org/10.13039/501100001871 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c388t-96832db6fdb9377eb418f11222352521a62b68efbeb897f05ee4d0f7ffafac3f3 |
| IEDL.DBID | U2A |
| ISSN | 0943-4062 1613-9658 |
| IngestDate | Sun Oct 26 04:10:05 EDT 2025 Fri Jul 25 19:09:30 EDT 2025 Wed Oct 01 05:00:53 EDT 2025 Thu Apr 24 23:09:37 EDT 2025 Fri Feb 21 02:48:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Maximum likelihood estimation Iterative algorithms Mixture models |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c388t-96832db6fdb9377eb418f11222352521a62b68efbeb897f05ee4d0f7ffafac3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3000-5350 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hdl.handle.net/1822/74773 |
| PQID | 2598835618 |
| PQPubID | 54096 |
| PageCount | 27 |
| ParticipantIDs | unpaywall_primary_10_1007_s00180_021_01088_1 proquest_journals_2598835618 crossref_citationtrail_10_1007_s00180_021_01088_1 crossref_primary_10_1007_s00180_021_01088_1 springer_journals_10_1007_s00180_021_01088_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Computational statistics |
| PublicationTitleAbbrev | Comput Stat |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Celeux (CR3) 1985; 2 Liu, Rubin (CR18) 1994; 81 Young, Hunter (CR28) 2015; 42 CR16 CR13 Celeux, Martin, Lavergne (CR7) 2005; 5 Bai, Chen, Yao (CR1) 2016; 86 Ganesalingam (CR14) 1989; 38 Benaglia, Chauveau, Hunter, Young (CR2) 2009; 32 Celeux, Govaert (CR5) 1993; 47 Celeux, Chauveau, Diebolt (CR6) 1996; 55 Hastie, Tibshirani, Friedman, Franklin (CR17) 2005; 27 Goldstein (CR15) 1979 Dias, Wedel (CR9) 2004; 14 McLachlan, Peel (CR19) 2000 Frühwirth-Schnatter (CR12) 2006 Meng, Van Dyk (CR21) 1997; 59 Verbeke, Molenberghs (CR26) 2012 Dempster, Laird, Rubin (CR8) 1977; 39 Scharl, Grün, Leisch (CR24) 2009; 26 Faria, Soromenho (CR11) 2012; 41 Celeux, Govaert (CR4) 1992; 14 CR23 Verbeke, Molenberghs (CR25) 2009 Meng, Rubin (CR20) 1993; 80 Faria, Soromenho (CR10) 2010; 80 Yau, Lee, Ng (CR27) 2003; 41 Quandt, Ramsey (CR22) 1978; 73 AP Dempster (1088_CR8) 1977; 39 JG Dias (1088_CR9) 2004; 14 X-L Meng (1088_CR20) 1993; 80 G Celeux (1088_CR6) 1996; 55 T Hastie (1088_CR17) 2005; 27 S Frühwirth-Schnatter (1088_CR12) 2006 1088_CR23 H Goldstein (1088_CR15) 1979 X-L Meng (1088_CR21) 1997; 59 G Celeux (1088_CR5) 1993; 47 S Ganesalingam (1088_CR14) 1989; 38 X Bai (1088_CR1) 2016; 86 G Celeux (1088_CR7) 2005; 5 KK Yau (1088_CR27) 2003; 41 C Liu (1088_CR18) 1994; 81 RE Quandt (1088_CR22) 1978; 73 1088_CR13 T Scharl (1088_CR24) 2009; 26 DS Young (1088_CR28) 2015; 42 1088_CR16 G McLachlan (1088_CR19) 2000 T Benaglia (1088_CR2) 2009; 32 S Faria (1088_CR11) 2012; 41 S Faria (1088_CR10) 2010; 80 G Celeux (1088_CR4) 1992; 14 G Verbeke (1088_CR26) 2012 G Verbeke (1088_CR25) 2009 G Celeux (1088_CR3) 1985; 2 |
| References_xml | – volume: 81 start-page: 633 issue: 4 year: 1994 end-page: 648 ident: CR18 article-title: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence publication-title: Biometrika doi: 10.1093/biomet/81.4.633 – volume: 38 start-page: 455 issue: 3 year: 1989 end-page: 466 ident: CR14 article-title: Classification and mixture approaches to clustering via maximum likelihood publication-title: J R Stat Soc Ser C (Appl Stat) – volume: 2 start-page: 73 year: 1985 end-page: 82 ident: CR3 article-title: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem publication-title: Comput Stat Q – volume: 80 start-page: 267 issue: 2 year: 1993 end-page: 278 ident: CR20 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – volume: 41 start-page: 497 issue: 4 year: 2012 end-page: 509 ident: CR11 article-title: Comparison of EM and SEM algorithms in Poisson regression models: a simulation study publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2011.594534 – year: 2000 ident: CR19 publication-title: Finite mixture models doi: 10.1002/0471721182 – volume: 59 start-page: 511 issue: 3 year: 1997 end-page: 567 ident: CR21 article-title: The EM algorithm—an old folk-song sung to a fast new tune publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/1467-9868.00082 – volume: 55 start-page: 287 issue: 4 year: 1996 end-page: 314 ident: CR6 article-title: Stochastic versions of the EM algorithm: an experimental study in the mixture case publication-title: J Stat Comput Simul doi: 10.1080/00949659608811772 – ident: CR16 – volume: 47 start-page: 127 issue: 3–4 year: 1993 end-page: 146 ident: CR5 article-title: Comparison of the mixture and the classi-fication maximum likelihood in cluster analysis publication-title: J Stat Comput Simul doi: 10.1080/00949659308811525 – year: 2006 ident: CR12 publication-title: Finite mixture and Markov switching models – volume: 86 start-page: 771 issue: 4 year: 2016 end-page: 787 ident: CR1 article-title: Mixture of linear mixed models using multivariate t distribution publication-title: J Stat Comput Simul doi: 10.1080/00949655.2015.1036431 – volume: 14 start-page: 315 issue: 3 year: 1992 end-page: 332 ident: CR4 article-title: A classification EM algorithm for clustering and two stochastic versions publication-title: Comput Stat Data Anal doi: 10.1016/0167-9473(92)90042-E – volume: 5 start-page: 243 issue: 3 year: 2005 end-page: 267 ident: CR7 article-title: Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments publication-title: Stat Model doi: 10.1191/1471082X05st096oa – volume: 41 start-page: 359 issue: 3–4 year: 2003 end-page: 366 ident: CR27 article-title: Finite mixture regression model with random effects: application to neonatal hospital length of stay publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(02)00180-9 – ident: CR23 – year: 2009 ident: CR25 publication-title: Linear mixed models for longitudinal data – year: 2012 ident: CR26 publication-title: Linear mixed models in practice: a SAS-oriented approach – volume: 26 start-page: 370 issue: 3 year: 2009 end-page: 377 ident: CR24 article-title: Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp686 – year: 1979 ident: CR15 publication-title: The design and analysis of longitudinal studies – volume: 32 start-page: 1 issue: 6 year: 2009 end-page: 29 ident: CR2 article-title: Mixtools: an R package for analyzing finite mixture models publication-title: J Stat Softw doi: 10.18637/jss.v032.i06 – volume: 42 start-page: 1421 issue: 7 year: 2015 end-page: 1441 ident: CR28 article-title: Random effects regression mixtures for analyzing infant habituation publication-title: J Appl Stat doi: 10.1080/02664763.2014.1000272 – ident: CR13 – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 ident: CR8 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B (Methodol) – volume: 73 start-page: 730 issue: 364 year: 1978 end-page: 738 ident: CR22 article-title: Estimating mixtures of normal distributions and switching regressions publication-title: J Am Stat Assoc doi: 10.1080/01621459.1978.10480085 – volume: 14 start-page: 323 issue: 4 year: 2004 end-page: 332 ident: CR9 article-title: An empirical comparison of EM, SEM and MCMC performance for problematic Gaussian mixture likelihoods publication-title: Stat Comput doi: 10.1023/B:STCO.0000039481.32211.5a – volume: 80 start-page: 201 issue: 2 year: 2010 end-page: 225 ident: CR10 article-title: Fitting mixtures of linear regressions publication-title: J Stat Comput Simul doi: 10.1080/00949650802590261 – volume: 27 start-page: 83 issue: 2 year: 2005 end-page: 85 ident: CR17 article-title: The elements of statistical learning: data mining, inference and prediction publication-title: Math Intell – volume: 5 start-page: 243 issue: 3 year: 2005 ident: 1088_CR7 publication-title: Stat Model doi: 10.1191/1471082X05st096oa – volume: 14 start-page: 315 issue: 3 year: 1992 ident: 1088_CR4 publication-title: Comput Stat Data Anal doi: 10.1016/0167-9473(92)90042-E – volume-title: Linear mixed models in practice: a SAS-oriented approach year: 2012 ident: 1088_CR26 – volume: 86 start-page: 771 issue: 4 year: 2016 ident: 1088_CR1 publication-title: J Stat Comput Simul doi: 10.1080/00949655.2015.1036431 – volume: 38 start-page: 455 issue: 3 year: 1989 ident: 1088_CR14 publication-title: J R Stat Soc Ser C (Appl Stat) – volume: 80 start-page: 201 issue: 2 year: 2010 ident: 1088_CR10 publication-title: J Stat Comput Simul doi: 10.1080/00949650802590261 – volume: 32 start-page: 1 issue: 6 year: 2009 ident: 1088_CR2 publication-title: J Stat Softw doi: 10.18637/jss.v032.i06 – volume: 41 start-page: 359 issue: 3–4 year: 2003 ident: 1088_CR27 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(02)00180-9 – ident: 1088_CR13 – volume: 80 start-page: 267 issue: 2 year: 1993 ident: 1088_CR20 publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – volume: 47 start-page: 127 issue: 3–4 year: 1993 ident: 1088_CR5 publication-title: J Stat Comput Simul doi: 10.1080/00949659308811525 – volume: 41 start-page: 497 issue: 4 year: 2012 ident: 1088_CR11 publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2011.594534 – volume-title: The design and analysis of longitudinal studies year: 1979 ident: 1088_CR15 – volume-title: Finite mixture and Markov switching models year: 2006 ident: 1088_CR12 – volume: 81 start-page: 633 issue: 4 year: 1994 ident: 1088_CR18 publication-title: Biometrika doi: 10.1093/biomet/81.4.633 – volume-title: Finite mixture models year: 2000 ident: 1088_CR19 doi: 10.1002/0471721182 – ident: 1088_CR23 – volume: 55 start-page: 287 issue: 4 year: 1996 ident: 1088_CR6 publication-title: J Stat Comput Simul doi: 10.1080/00949659608811772 – volume: 73 start-page: 730 issue: 364 year: 1978 ident: 1088_CR22 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1978.10480085 – volume: 26 start-page: 370 issue: 3 year: 2009 ident: 1088_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp686 – volume-title: Linear mixed models for longitudinal data year: 2009 ident: 1088_CR25 – volume: 27 start-page: 83 issue: 2 year: 2005 ident: 1088_CR17 publication-title: Math Intell – volume: 42 start-page: 1421 issue: 7 year: 2015 ident: 1088_CR28 publication-title: J Appl Stat doi: 10.1080/02664763.2014.1000272 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 1088_CR8 publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 59 start-page: 511 issue: 3 year: 1997 ident: 1088_CR21 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/1467-9868.00082 – volume: 2 start-page: 73 year: 1985 ident: 1088_CR3 publication-title: Comput Stat Q – volume: 14 start-page: 323 issue: 4 year: 2004 ident: 1088_CR9 publication-title: Stat Comput doi: 10.1023/B:STCO.0000039481.32211.5a – ident: 1088_CR16 |
| SSID | ssj0022721 |
| Score | 2.2901502 |
| Snippet | Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2507 |
| SubjectTerms | Algorithms Economic Theory/Quantitative Economics/Mathematical Methods Heterogeneity Iterative methods Mathematics and Statistics Maximization Maximum likelihood estimates Maximum likelihood estimation Maximum likelihood estimators Optimization Original Paper Parameters Performance evaluation Probabilistic models Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Regression models Statistics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BeYA-oI2BKLDJD7xRi-bTCRJCW1WEJrVC25B4i-zYhkptWkgRIO2P352bpNtLtadI_oiT3Nn-XXx3P4DTQIS5L3zNdSAUD-NEcxUrwUNpFZrYqY2s8_IdxTd34ff76H4DRnUsDLlV1muiW6j1LKd_5OcI0xNEC7GXXM2fOLFG0elqTaEhK2oFfelSjG3Clk-ZsVqw9W0wuv3RmGD4WI5DLw0DtJxivwqjccF0xE_X4-SygDYK6o_371a1wp_NkWkbtl-KuXx_lZPJX7vS9QfYreAk-7qU_0fYMMUetIdNLtbyE_zuN1SDbGYZ1rDBsMv6gyGThWY_6Tp5wFddPE5LNi5cC8q9sQxqpD52TMiUTcdvdN5QUhGhU_lMRUYzR6dTXjDJyvG04gNjLnHtPtxdD371b3jFucDzIEkWPI1xilNonlYIXIRRoZdYxGSIIiIft3oZ-ypOjFVGJamwvciYUPessFZamQc2OIBWMSvMITAbKGwv09wgxNQyUoESRLAeCW0s7ood8OrPm-VVQnLixZhkTSplJ5IMRZI5kWReB86aPvNlOo61rU9qqWXV1CyzlSJ1oFtLclW97m7dRtr_MfjR-sGPYccnXXOeMSfQWjy_mM-IbxbqS6W0fwCzgfSL priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofNA9eBfnjQi-ueratE3nm4yJCBNBB_pUkjbR4tbJ2uEFf7wnWdepD0OfCslJSntOyBdyzvcBHFHmRg5zYiumTFiuH8SW8AWzXK4EHrGbylMmy_fav-y6V_fe_RwcTmphfvELIPp1ThHxMjoPC76HcLsCC93rm_MHw6HnUjz_GNFQBC7U0kQmRWGMKY_TinMNSych4KkDI8L-uflMEWV5CVqFxVH6wt9fea_3bZ-5WJlW64zTS55PRrk4iT5-kTfO_IRVWC5QJjkfh8UazMl0HaqdkqI124DPVqlASAaKYA9pd-qk1e4QnJXc6mfvcTBM8qd-RpLUWGhKjnGtox6jEg1YST9509cQmW7SoJUPdZOMiVHZyc4IJ1nSL2TCiOGz3YTuRfuudWkVUgxWRIMgxz-LK19X7MUC8QyTwrUDhVANwYXnIALgviP8QCohRdBkquFJ6cYNxZTiikdU0S2opINUbgNRVKA9b0YSkWfMPUEF07rrHoulws2yBvbER2FU8JRruYxeWDIsG7-G6NfQ-DW0a3BcjnkZs3TMtN6buD4sVmwW4jEwQDTq20EN6pNwmHbPmq1ehswfXr7zP_NdWHJ0AJsEmj2o5MOR3EcYlIuDYiF8AZlC_aM priority: 102 providerName: Unpaywall |
| Title | Comparison of the EM, CEM and SEM algorithms in the estimation of finite mixtures of linear mixed models: a simulation study |
| URI | https://link.springer.com/article/10.1007/s00180-021-01088-1 https://www.proquest.com/docview/2598835618 https://hdl.handle.net/1822/74773 |
| UnpaywallVersion | submittedVersion |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1613-9658 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AMVHM dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1613-9658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AFBBN dateStart: 19990301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1613-9658 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1613-9658 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1613-9658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1613-9658 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: U2A dateStart: 20040212 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7B9sD2gGCAKIzKD7zRSM1PO7yVKl0FSjUBRdtTZMf2iNSmU9MJkPjjuXOTDCQ0wUusOBdbytm57-S77wBehzwqAx5oT4dceVEitKcSxb1IWoUudmpj66J8F8l8Gb2_iC_apLCmi3bvjiTdn7pPdqP6cWOPQgrQh0D9os9zGBOdF67iZTDp3Syc2tXJS6MQvaMkaFNl_j7Gn-boFmP2x6LH8OCmvpY_vsnV6jfLM3sED1vIyCZ7HT-Ge6Y-geO851ttTuCIMOOecvkJ_Jz2tQXZxjIUY1k-YtMsZ7LW7BO1q6vNttp9XTesqp0EkW3ssxjpHVsRFGXr6jsdMDTURXBUbqnLaObq5zRvmWRNtW4LgDHHVPsUlrPs83TutUUWvDIUYuelCe5pysXTCpEKNyryhUUQhrAhDtC2yyRQiTBWGSVSbsexMZEeW26ttLIMbfgMDupNbZ4Ds6FCeZmWBjGllrEKFaeK6jHXxqIZHIDffeuibBnIqRDGqui5k51-CtRP4fRT-AN4079zveffuFP6tFNh0e7FpkAHTyDOTHwxgFGn1tvHd4026lX_D5O_-L_RX8JRQAvRhcacwsFue2NeIcDZqSHcF1OfrrOzIRxOzi4_ZNTmX-Y5tu-yxfnHoVvzeLdcnE8ufwFwAPcs |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAfEpygb4AZ5oRBM7cYI0oVE6dWytEGzS3jI7tqFSm3ZLp23S_jb-tp1dJ4WXipc9RXL8Id1dfL-LffcDeEc5KyIeqUBRLgOWpCqQieQBE0ZiiJ2Z2LhbvsOkf8K-ncana_CnzoWx1yrrPdFt1Gpa2H_kHxGmp4gWkjD9PDsPLGuUPV2tKTSEp1ZQu67EmE_sONQ3VxjCVbsHX1Hf76Nov3fc7QeeZSAoaJrOgyxBo7bJaEqiq-ZasjA1iELQb8YROjeRRDJJtZFaphk3nVhrpjqGGyOMKKihOO8D2GCUZRj8bXzpDb__aEI-FIPj7MsYxUgtiXzajkves3x4ncBekcCYCO01_Nc1LvFuc0S7BZuX5UzcXInx-C8vuP8YHnn4SvYW9vYE1nT5FLYGTe3X6hncdhtqQzI1BN-Q3qBNur0BEaUiP-1z_AtFO_89qciodD1srY9FEqUdY0YWCZPJ6Nqeb1S2yaJhcWGbtCKOvqf6RASpRhPPP0ZcodzncHIv0n8B6-W01C-BGCqxv8gKjZBWiVhSyS2he8yVNuiFWxDW4s0LXwDd8nCM86Z0s1NJjirJnUrysAUfmjGzRfmPlb13aq3lfiuo8qXhtqBda3L5etVs7Ubb_7H4q9WLv4XN_vHgKD86GB5uw8PI2p27lbMD6_OLS_0asdVcvvEGTODsvr-ZO79kMp4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7mPiaKAzwAzzRaI2T2AkSmqau1cbohAST9hbs2IZKbVqWTmMSfxl_3e7cJIWXipc9RfKn5Dv7fo7v7gfwJpJxwSU3gYmkDmKRmkALLYNYOY1X7Mwlznv5noqjs_jjeXK-AX-aWBhyq2zORH9Qm1lB_8j3EKaniBZEmO652i3i8-Fwf_4zIAYpemlt6DSWKnJir6_w-lZ9OD5EWb_lfDj42j8KaoaBoIjSdBFkAhWaAtGMRjMtrY7D1CECQZuZcDRsSnAtUuu01WkmXS-xNjY9J51TThWRi3DcO3BXRkJQ3v6037qXcFwAz9aXxRHe0QSvA3Z82B4x4fUCco7A2xBqavivUVwh3fZxdgvuX5ZzdX2lJpO_7N_wIWzXwJUdLDXtEWzY8jFsjdqsr9UT-N1vSQ3ZzDGsYYNRl_UHI6ZKw77Qd_IdF3LxY1qxcelbUJaPZfgk9XFjwsBsOv5FLxsVFREOVhdUZA3zxD3Ve6ZYNZ7WzGPMp8h9Cme3svY7sFnOSvsMmIs0tldZYRHMGpXoSEuick-ksQ7tbwfCZnnzok59Tgwck7xN2uxFkqNIci-SPOzAu7bPfJn4Y23r3UZqeX0IVPlKZTvQbSS5ql43WreV9n9M_nz95K_hHu6U_NPx6ckLeMBJ7bw7zi5sLi4u7UsEVQv9ymsvg2-3vV1uAOt5MAM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofNA9eBfnjQi-ueratE3nm4yJCBNBB_pUkjbR4tbJ2uEFf7wnWdepD0OfCslJSntOyBdyzvcBHFHmRg5zYiumTFiuH8SW8AWzXK4EHrGbylMmy_fav-y6V_fe_RwcTmphfvELIPp1ThHxMjoPC76HcLsCC93rm_MHw6HnUjz_GNFQBC7U0kQmRWGMKY_TinMNSych4KkDI8L-uflMEWV5CVqFxVH6wt9fea_3bZ-5WJlW64zTS55PRrk4iT5-kTfO_IRVWC5QJjkfh8UazMl0HaqdkqI124DPVqlASAaKYA9pd-qk1e4QnJXc6mfvcTBM8qd-RpLUWGhKjnGtox6jEg1YST9509cQmW7SoJUPdZOMiVHZyc4IJ1nSL2TCiOGz3YTuRfuudWkVUgxWRIMgxz-LK19X7MUC8QyTwrUDhVANwYXnIALgviP8QCohRdBkquFJ6cYNxZTiikdU0S2opINUbgNRVKA9b0YSkWfMPUEF07rrHoulws2yBvbER2FU8JRruYxeWDIsG7-G6NfQ-DW0a3BcjnkZs3TMtN6buD4sVmwW4jEwQDTq20EN6pNwmHbPmq1ehswfXr7zP_NdWHJ0AJsEmj2o5MOR3EcYlIuDYiF8AZlC_aM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+the+EM%2C+CEM+and+SEM+algorithms+in+the+estimation+of+finite+mixtures+of+linear+mixed+models%3A+a+simulation+study&rft.jtitle=Computational+statistics&rft.au=Novais%2C+Lu%C3%ADsa&rft.au=Faria%2C+Susana&rft.date=2021-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=4&rft.spage=2507&rft.epage=2533&rft_id=info:doi/10.1007%2Fs00180-021-01088-1&rft.externalDocID=10_1007_s00180_021_01088_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |