Comparison of the EM, CEM and SEM algorithms in the estimation of finite mixtures of linear mixed models: a simulation study

Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression models, mixtures of linear mixed models have also been applied in different areas since, besides taking into consideration the heterogeneity in t...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 36; no. 4; pp. 2507 - 2533
Main Authors Novais, Luísa, Faria, Susana
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0943-4062
1613-9658
1613-9658
DOI10.1007/s00180-021-01088-1

Cover

Abstract Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression models, mixtures of linear mixed models have also been applied in different areas since, besides taking into consideration the heterogeneity in the population, they also allow to take into account the correlation between observations from the same individual. One of the main issues in mixture models concerns the estimation of the parameters. Maximum likelihood estimation is one of the most used methods in the estimation of the parameters for mixture models. However, the maximization of the log-likelihood function in mixture models is complex, producing in many cases infinite solutions whereby the maximum likelihood estimator may not exist, at least globally. For this reason, it is common to resort to iterative methods, in particular to the Expectation-Maximization (EM) algorithm. However, the slow convergence and the selection of initial values are two of biggest issues of the EM algorithm, the reason why some modified versions of this algorithm have been developed over the years. In this article we compare the performance of the EM, Classification EM (CEM) and Stochastic EM (SEM) algorithms in the estimation of the parameters for mixtures of linear mixed models. In order to evaluate their performance, we carry out a simulation study and a real data application. The results show that the CEM algorithm is the least computationally demanding algorithm, although the three algorithms provide similar maximum likelihood estimates for the parameters.
AbstractList Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression models, mixtures of linear mixed models have also been applied in different areas since, besides taking into consideration the heterogeneity in the population, they also allow to take into account the correlation between observations from the same individual. One of the main issues in mixture models concerns the estimation of the parameters. Maximum likelihood estimation is one of the most used methods in the estimation of the parameters for mixture models. However, the maximization of the log-likelihood function in mixture models is complex, producing in many cases infinite solutions whereby the maximum likelihood estimator may not exist, at least globally. For this reason, it is common to resort to iterative methods, in particular to the Expectation-Maximization (EM) algorithm. However, the slow convergence and the selection of initial values are two of biggest issues of the EM algorithm, the reason why some modified versions of this algorithm have been developed over the years. In this article we compare the performance of the EM, Classification EM (CEM) and Stochastic EM (SEM) algorithms in the estimation of the parameters for mixtures of linear mixed models. In order to evaluate their performance, we carry out a simulation study and a real data application. The results show that the CEM algorithm is the least computationally demanding algorithm, although the three algorithms provide similar maximum likelihood estimates for the parameters.
Author Novais, Luísa
Faria, Susana
Author_xml – sequence: 1
  givenname: Luísa
  orcidid: 0000-0002-3000-5350
  surname: Novais
  fullname: Novais, Luísa
  email: luisa_novais92@hotmail.com
  organization: Department of Mathematics and Centre of Molecular and Environmental Biology, University of Minho
– sequence: 2
  givenname: Susana
  surname: Faria
  fullname: Faria, Susana
  organization: Department of Mathematics and Centre of Molecular and Environmental Biology, University of Minho
BookMark eNqNkN1LwzAUxYNMcJv-Az4FfLWaj7VNfZMyP2DDB_U5pGuyZbRJTVJ04B9vuw4EH4ZPFy7nd-85ZwJGxhoJwCVGNxih9NYjhBmKEMERwoixCJ-AMU4wjbIkZiMwRtmMRjOUkDMw8X6LECEpwWPwndu6EU57a6BVMGwknC-vYT5fQmFK-NrPam2dDpvaQ232CumDrkXQA6O00UHCWn-F1knfryptpHD9SpawtqWs_B0U0Ou6rQbOh7bcnYNTJSovLw5zCt4f5m_5U7R4eXzO7xfRijIWugiMkrJIVFlkNE1lMcNMYUwIoTGJCRYJKRImVSELlqUKxVLOSqRSpYQSK6roFNDhbmsasfsUVcUb1yVwO44R7wvkQ4G8K5DvC-S4o64GqnH2o-0y861tnemMchJnjNE4waxTsUG1ctZ7JxVf6bDPGJzQ1fEH5A_6L1eHLL4Tm7V0v66OUD8-SqPY
CitedBy_id crossref_primary_10_1007_s12206_024_0113_1
crossref_primary_10_1016_j_eneco_2023_107265
crossref_primary_10_1088_1361_6420_ad6a34
crossref_primary_10_1080_00949655_2023_2176503
crossref_primary_10_1080_03610926_2025_2467202
crossref_primary_10_1080_27684520_2023_2242337
Cites_doi 10.1093/biomet/81.4.633
10.1093/biomet/80.2.267
10.1080/03610918.2011.594534
10.1002/0471721182
10.1111/1467-9868.00082
10.1080/00949659608811772
10.1080/00949659308811525
10.1080/00949655.2015.1036431
10.1016/0167-9473(92)90042-E
10.1191/1471082X05st096oa
10.1016/S0167-9473(02)00180-9
10.1093/bioinformatics/btp686
10.18637/jss.v032.i06
10.1080/02664763.2014.1000272
10.1080/01621459.1978.10480085
10.1023/B:STCO.0000039481.32211.5a
10.1080/00949650802590261
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.1007/s00180-021-01088-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 2533
ExternalDocumentID oai:repositorium.sdum.uminho.pt:1822/74773
10_1007_s00180_021_01088_1
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  grantid: SFRH/BD/139121/2018
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c388t-96832db6fdb9377eb418f11222352521a62b68efbeb897f05ee4d0f7ffafac3f3
IEDL.DBID U2A
ISSN 0943-4062
1613-9658
IngestDate Sun Oct 26 04:10:05 EDT 2025
Fri Jul 25 19:09:30 EDT 2025
Wed Oct 01 05:00:53 EDT 2025
Thu Apr 24 23:09:37 EDT 2025
Fri Feb 21 02:48:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Maximum likelihood estimation
Iterative algorithms
Mixture models
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-96832db6fdb9377eb418f11222352521a62b68efbeb897f05ee4d0f7ffafac3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3000-5350
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hdl.handle.net/1822/74773
PQID 2598835618
PQPubID 54096
PageCount 27
ParticipantIDs unpaywall_primary_10_1007_s00180_021_01088_1
proquest_journals_2598835618
crossref_citationtrail_10_1007_s00180_021_01088_1
crossref_primary_10_1007_s00180_021_01088_1
springer_journals_10_1007_s00180_021_01088_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Celeux (CR3) 1985; 2
Liu, Rubin (CR18) 1994; 81
Young, Hunter (CR28) 2015; 42
CR16
CR13
Celeux, Martin, Lavergne (CR7) 2005; 5
Bai, Chen, Yao (CR1) 2016; 86
Ganesalingam (CR14) 1989; 38
Benaglia, Chauveau, Hunter, Young (CR2) 2009; 32
Celeux, Govaert (CR5) 1993; 47
Celeux, Chauveau, Diebolt (CR6) 1996; 55
Hastie, Tibshirani, Friedman, Franklin (CR17) 2005; 27
Goldstein (CR15) 1979
Dias, Wedel (CR9) 2004; 14
McLachlan, Peel (CR19) 2000
Frühwirth-Schnatter (CR12) 2006
Meng, Van Dyk (CR21) 1997; 59
Verbeke, Molenberghs (CR26) 2012
Dempster, Laird, Rubin (CR8) 1977; 39
Scharl, Grün, Leisch (CR24) 2009; 26
Faria, Soromenho (CR11) 2012; 41
Celeux, Govaert (CR4) 1992; 14
CR23
Verbeke, Molenberghs (CR25) 2009
Meng, Rubin (CR20) 1993; 80
Faria, Soromenho (CR10) 2010; 80
Yau, Lee, Ng (CR27) 2003; 41
Quandt, Ramsey (CR22) 1978; 73
AP Dempster (1088_CR8) 1977; 39
JG Dias (1088_CR9) 2004; 14
X-L Meng (1088_CR20) 1993; 80
G Celeux (1088_CR6) 1996; 55
T Hastie (1088_CR17) 2005; 27
S Frühwirth-Schnatter (1088_CR12) 2006
1088_CR23
H Goldstein (1088_CR15) 1979
X-L Meng (1088_CR21) 1997; 59
G Celeux (1088_CR5) 1993; 47
S Ganesalingam (1088_CR14) 1989; 38
X Bai (1088_CR1) 2016; 86
G Celeux (1088_CR7) 2005; 5
KK Yau (1088_CR27) 2003; 41
C Liu (1088_CR18) 1994; 81
RE Quandt (1088_CR22) 1978; 73
1088_CR13
T Scharl (1088_CR24) 2009; 26
DS Young (1088_CR28) 2015; 42
1088_CR16
G McLachlan (1088_CR19) 2000
T Benaglia (1088_CR2) 2009; 32
S Faria (1088_CR11) 2012; 41
S Faria (1088_CR10) 2010; 80
G Celeux (1088_CR4) 1992; 14
G Verbeke (1088_CR26) 2012
G Verbeke (1088_CR25) 2009
G Celeux (1088_CR3) 1985; 2
References_xml – volume: 81
  start-page: 633
  issue: 4
  year: 1994
  end-page: 648
  ident: CR18
  article-title: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence
  publication-title: Biometrika
  doi: 10.1093/biomet/81.4.633
– volume: 38
  start-page: 455
  issue: 3
  year: 1989
  end-page: 466
  ident: CR14
  article-title: Classification and mixture approaches to clustering via maximum likelihood
  publication-title: J R Stat Soc Ser C (Appl Stat)
– volume: 2
  start-page: 73
  year: 1985
  end-page: 82
  ident: CR3
  article-title: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
  publication-title: Comput Stat Q
– volume: 80
  start-page: 267
  issue: 2
  year: 1993
  end-page: 278
  ident: CR20
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 41
  start-page: 497
  issue: 4
  year: 2012
  end-page: 509
  ident: CR11
  article-title: Comparison of EM and SEM algorithms in Poisson regression models: a simulation study
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2011.594534
– year: 2000
  ident: CR19
  publication-title: Finite mixture models
  doi: 10.1002/0471721182
– volume: 59
  start-page: 511
  issue: 3
  year: 1997
  end-page: 567
  ident: CR21
  article-title: The EM algorithm—an old folk-song sung to a fast new tune
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/1467-9868.00082
– volume: 55
  start-page: 287
  issue: 4
  year: 1996
  end-page: 314
  ident: CR6
  article-title: Stochastic versions of the EM algorithm: an experimental study in the mixture case
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949659608811772
– ident: CR16
– volume: 47
  start-page: 127
  issue: 3–4
  year: 1993
  end-page: 146
  ident: CR5
  article-title: Comparison of the mixture and the classi-fication maximum likelihood in cluster analysis
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949659308811525
– year: 2006
  ident: CR12
  publication-title: Finite mixture and Markov switching models
– volume: 86
  start-page: 771
  issue: 4
  year: 2016
  end-page: 787
  ident: CR1
  article-title: Mixture of linear mixed models using multivariate t distribution
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2015.1036431
– volume: 14
  start-page: 315
  issue: 3
  year: 1992
  end-page: 332
  ident: CR4
  article-title: A classification EM algorithm for clustering and two stochastic versions
  publication-title: Comput Stat Data Anal
  doi: 10.1016/0167-9473(92)90042-E
– volume: 5
  start-page: 243
  issue: 3
  year: 2005
  end-page: 267
  ident: CR7
  article-title: Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
  publication-title: Stat Model
  doi: 10.1191/1471082X05st096oa
– volume: 41
  start-page: 359
  issue: 3–4
  year: 2003
  end-page: 366
  ident: CR27
  article-title: Finite mixture regression model with random effects: application to neonatal hospital length of stay
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(02)00180-9
– ident: CR23
– year: 2009
  ident: CR25
  publication-title: Linear mixed models for longitudinal data
– year: 2012
  ident: CR26
  publication-title: Linear mixed models in practice: a SAS-oriented approach
– volume: 26
  start-page: 370
  issue: 3
  year: 2009
  end-page: 377
  ident: CR24
  article-title: Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp686
– year: 1979
  ident: CR15
  publication-title: The design and analysis of longitudinal studies
– volume: 32
  start-page: 1
  issue: 6
  year: 2009
  end-page: 29
  ident: CR2
  article-title: Mixtools: an R package for analyzing finite mixture models
  publication-title: J Stat Softw
  doi: 10.18637/jss.v032.i06
– volume: 42
  start-page: 1421
  issue: 7
  year: 2015
  end-page: 1441
  ident: CR28
  article-title: Random effects regression mixtures for analyzing infant habituation
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2014.1000272
– ident: CR13
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 38
  ident: CR8
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodol)
– volume: 73
  start-page: 730
  issue: 364
  year: 1978
  end-page: 738
  ident: CR22
  article-title: Estimating mixtures of normal distributions and switching regressions
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1978.10480085
– volume: 14
  start-page: 323
  issue: 4
  year: 2004
  end-page: 332
  ident: CR9
  article-title: An empirical comparison of EM, SEM and MCMC performance for problematic Gaussian mixture likelihoods
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000039481.32211.5a
– volume: 80
  start-page: 201
  issue: 2
  year: 2010
  end-page: 225
  ident: CR10
  article-title: Fitting mixtures of linear regressions
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650802590261
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  end-page: 85
  ident: CR17
  article-title: The elements of statistical learning: data mining, inference and prediction
  publication-title: Math Intell
– volume: 5
  start-page: 243
  issue: 3
  year: 2005
  ident: 1088_CR7
  publication-title: Stat Model
  doi: 10.1191/1471082X05st096oa
– volume: 14
  start-page: 315
  issue: 3
  year: 1992
  ident: 1088_CR4
  publication-title: Comput Stat Data Anal
  doi: 10.1016/0167-9473(92)90042-E
– volume-title: Linear mixed models in practice: a SAS-oriented approach
  year: 2012
  ident: 1088_CR26
– volume: 86
  start-page: 771
  issue: 4
  year: 2016
  ident: 1088_CR1
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2015.1036431
– volume: 38
  start-page: 455
  issue: 3
  year: 1989
  ident: 1088_CR14
  publication-title: J R Stat Soc Ser C (Appl Stat)
– volume: 80
  start-page: 201
  issue: 2
  year: 2010
  ident: 1088_CR10
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650802590261
– volume: 32
  start-page: 1
  issue: 6
  year: 2009
  ident: 1088_CR2
  publication-title: J Stat Softw
  doi: 10.18637/jss.v032.i06
– volume: 41
  start-page: 359
  issue: 3–4
  year: 2003
  ident: 1088_CR27
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(02)00180-9
– ident: 1088_CR13
– volume: 80
  start-page: 267
  issue: 2
  year: 1993
  ident: 1088_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 47
  start-page: 127
  issue: 3–4
  year: 1993
  ident: 1088_CR5
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949659308811525
– volume: 41
  start-page: 497
  issue: 4
  year: 2012
  ident: 1088_CR11
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2011.594534
– volume-title: The design and analysis of longitudinal studies
  year: 1979
  ident: 1088_CR15
– volume-title: Finite mixture and Markov switching models
  year: 2006
  ident: 1088_CR12
– volume: 81
  start-page: 633
  issue: 4
  year: 1994
  ident: 1088_CR18
  publication-title: Biometrika
  doi: 10.1093/biomet/81.4.633
– volume-title: Finite mixture models
  year: 2000
  ident: 1088_CR19
  doi: 10.1002/0471721182
– ident: 1088_CR23
– volume: 55
  start-page: 287
  issue: 4
  year: 1996
  ident: 1088_CR6
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949659608811772
– volume: 73
  start-page: 730
  issue: 364
  year: 1978
  ident: 1088_CR22
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1978.10480085
– volume: 26
  start-page: 370
  issue: 3
  year: 2009
  ident: 1088_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp686
– volume-title: Linear mixed models for longitudinal data
  year: 2009
  ident: 1088_CR25
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  ident: 1088_CR17
  publication-title: Math Intell
– volume: 42
  start-page: 1421
  issue: 7
  year: 2015
  ident: 1088_CR28
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2014.1000272
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 1088_CR8
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 59
  start-page: 511
  issue: 3
  year: 1997
  ident: 1088_CR21
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/1467-9868.00082
– volume: 2
  start-page: 73
  year: 1985
  ident: 1088_CR3
  publication-title: Comput Stat Q
– volume: 14
  start-page: 323
  issue: 4
  year: 2004
  ident: 1088_CR9
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000039481.32211.5a
– ident: 1088_CR16
SSID ssj0022721
Score 2.2901502
Snippet Finite mixture models are a widely known method for modelling data that arise from a heterogeneous population. Within the family of mixtures of regression...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2507
SubjectTerms Algorithms
Economic Theory/Quantitative Economics/Mathematical Methods
Heterogeneity
Iterative methods
Mathematics and Statistics
Maximization
Maximum likelihood estimates
Maximum likelihood estimation
Maximum likelihood estimators
Optimization
Original Paper
Parameters
Performance evaluation
Probabilistic models
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Regression models
Statistics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BeYA-oI2BKLDJD7xRi-bTCRJCW1WEJrVC25B4i-zYhkptWkgRIO2P352bpNtLtadI_oiT3Nn-XXx3P4DTQIS5L3zNdSAUD-NEcxUrwUNpFZrYqY2s8_IdxTd34ff76H4DRnUsDLlV1muiW6j1LKd_5OcI0xNEC7GXXM2fOLFG0elqTaEhK2oFfelSjG3Clk-ZsVqw9W0wuv3RmGD4WI5DLw0DtJxivwqjccF0xE_X4-SygDYK6o_371a1wp_NkWkbtl-KuXx_lZPJX7vS9QfYreAk-7qU_0fYMMUetIdNLtbyE_zuN1SDbGYZ1rDBsMv6gyGThWY_6Tp5wFddPE5LNi5cC8q9sQxqpD52TMiUTcdvdN5QUhGhU_lMRUYzR6dTXjDJyvG04gNjLnHtPtxdD371b3jFucDzIEkWPI1xilNonlYIXIRRoZdYxGSIIiIft3oZ-ypOjFVGJamwvciYUPessFZamQc2OIBWMSvMITAbKGwv09wgxNQyUoESRLAeCW0s7ood8OrPm-VVQnLixZhkTSplJ5IMRZI5kWReB86aPvNlOo61rU9qqWXV1CyzlSJ1oFtLclW97m7dRtr_MfjR-sGPYccnXXOeMSfQWjy_mM-IbxbqS6W0fwCzgfSL
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofNA9eBfnjQi-ueratE3nm4yJCBNBB_pUkjbR4tbJ2uEFf7wnWdepD0OfCslJSntOyBdyzvcBHFHmRg5zYiumTFiuH8SW8AWzXK4EHrGbylMmy_fav-y6V_fe_RwcTmphfvELIPp1ThHxMjoPC76HcLsCC93rm_MHw6HnUjz_GNFQBC7U0kQmRWGMKY_TinMNSych4KkDI8L-uflMEWV5CVqFxVH6wt9fea_3bZ-5WJlW64zTS55PRrk4iT5-kTfO_IRVWC5QJjkfh8UazMl0HaqdkqI124DPVqlASAaKYA9pd-qk1e4QnJXc6mfvcTBM8qd-RpLUWGhKjnGtox6jEg1YST9509cQmW7SoJUPdZOMiVHZyc4IJ1nSL2TCiOGz3YTuRfuudWkVUgxWRIMgxz-LK19X7MUC8QyTwrUDhVANwYXnIALgviP8QCohRdBkquFJ6cYNxZTiikdU0S2opINUbgNRVKA9b0YSkWfMPUEF07rrHoulws2yBvbER2FU8JRruYxeWDIsG7-G6NfQ-DW0a3BcjnkZs3TMtN6buD4sVmwW4jEwQDTq20EN6pNwmHbPmq1ehswfXr7zP_NdWHJ0AJsEmj2o5MOR3EcYlIuDYiF8AZlC_aM
  priority: 102
  providerName: Unpaywall
Title Comparison of the EM, CEM and SEM algorithms in the estimation of finite mixtures of linear mixed models: a simulation study
URI https://link.springer.com/article/10.1007/s00180-021-01088-1
https://www.proquest.com/docview/2598835618
https://hdl.handle.net/1822/74773
UnpaywallVersion submittedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AMVHM
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AFBBN
  dateStart: 19990301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: U2A
  dateStart: 20040212
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7B9sD2gGCAKIzKD7zRSM1PO7yVKl0FSjUBRdtTZMf2iNSmU9MJkPjjuXOTDCQ0wUusOBdbytm57-S77wBehzwqAx5oT4dceVEitKcSxb1IWoUudmpj66J8F8l8Gb2_iC_apLCmi3bvjiTdn7pPdqP6cWOPQgrQh0D9os9zGBOdF67iZTDp3Syc2tXJS6MQvaMkaFNl_j7Gn-boFmP2x6LH8OCmvpY_vsnV6jfLM3sED1vIyCZ7HT-Ge6Y-geO851ttTuCIMOOecvkJ_Jz2tQXZxjIUY1k-YtMsZ7LW7BO1q6vNttp9XTesqp0EkW3ssxjpHVsRFGXr6jsdMDTURXBUbqnLaObq5zRvmWRNtW4LgDHHVPsUlrPs83TutUUWvDIUYuelCe5pysXTCpEKNyryhUUQhrAhDtC2yyRQiTBWGSVSbsexMZEeW26ttLIMbfgMDupNbZ4Ds6FCeZmWBjGllrEKFaeK6jHXxqIZHIDffeuibBnIqRDGqui5k51-CtRP4fRT-AN4079zveffuFP6tFNh0e7FpkAHTyDOTHwxgFGn1tvHd4026lX_D5O_-L_RX8JRQAvRhcacwsFue2NeIcDZqSHcF1OfrrOzIRxOzi4_ZNTmX-Y5tu-yxfnHoVvzeLdcnE8ufwFwAPcs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAfEpygb4AZ5oRBM7cYI0oVE6dWytEGzS3jI7tqFSm3ZLp23S_jb-tp1dJ4WXipc9RXL8Id1dfL-LffcDeEc5KyIeqUBRLgOWpCqQieQBE0ZiiJ2Z2LhbvsOkf8K-ncana_CnzoWx1yrrPdFt1Gpa2H_kHxGmp4gWkjD9PDsPLGuUPV2tKTSEp1ZQu67EmE_sONQ3VxjCVbsHX1Hf76Nov3fc7QeeZSAoaJrOgyxBo7bJaEqiq-ZasjA1iELQb8YROjeRRDJJtZFaphk3nVhrpjqGGyOMKKihOO8D2GCUZRj8bXzpDb__aEI-FIPj7MsYxUgtiXzajkves3x4ncBekcCYCO01_Nc1LvFuc0S7BZuX5UzcXInx-C8vuP8YHnn4SvYW9vYE1nT5FLYGTe3X6hncdhtqQzI1BN-Q3qBNur0BEaUiP-1z_AtFO_89qciodD1srY9FEqUdY0YWCZPJ6Nqeb1S2yaJhcWGbtCKOvqf6RASpRhPPP0ZcodzncHIv0n8B6-W01C-BGCqxv8gKjZBWiVhSyS2he8yVNuiFWxDW4s0LXwDd8nCM86Z0s1NJjirJnUrysAUfmjGzRfmPlb13aq3lfiuo8qXhtqBda3L5etVs7Ubb_7H4q9WLv4XN_vHgKD86GB5uw8PI2p27lbMD6_OLS_0asdVcvvEGTODsvr-ZO79kMp4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7mPiaKAzwAzzRaI2T2AkSmqau1cbohAST9hbs2IZKbVqWTmMSfxl_3e7cJIWXipc9RfKn5Dv7fo7v7gfwJpJxwSU3gYmkDmKRmkALLYNYOY1X7Mwlznv5noqjs_jjeXK-AX-aWBhyq2zORH9Qm1lB_8j3EKaniBZEmO652i3i8-Fwf_4zIAYpemlt6DSWKnJir6_w-lZ9OD5EWb_lfDj42j8KaoaBoIjSdBFkAhWaAtGMRjMtrY7D1CECQZuZcDRsSnAtUuu01WkmXS-xNjY9J51TThWRi3DcO3BXRkJQ3v6037qXcFwAz9aXxRHe0QSvA3Z82B4x4fUCco7A2xBqavivUVwh3fZxdgvuX5ZzdX2lJpO_7N_wIWzXwJUdLDXtEWzY8jFsjdqsr9UT-N1vSQ3ZzDGsYYNRl_UHI6ZKw77Qd_IdF3LxY1qxcelbUJaPZfgk9XFjwsBsOv5FLxsVFREOVhdUZA3zxD3Ve6ZYNZ7WzGPMp8h9Cme3svY7sFnOSvsMmIs0tldZYRHMGpXoSEuick-ksQ7tbwfCZnnzok59Tgwck7xN2uxFkqNIci-SPOzAu7bPfJn4Y23r3UZqeX0IVPlKZTvQbSS5ql43WreV9n9M_nz95K_hHu6U_NPx6ckLeMBJ7bw7zi5sLi4u7UsEVQv9ymsvg2-3vV1uAOt5MAM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofNA9eBfnjQi-ueratE3nm4yJCBNBB_pUkjbR4tbJ2uEFf7wnWdepD0OfCslJSntOyBdyzvcBHFHmRg5zYiumTFiuH8SW8AWzXK4EHrGbylMmy_fav-y6V_fe_RwcTmphfvELIPp1ThHxMjoPC76HcLsCC93rm_MHw6HnUjz_GNFQBC7U0kQmRWGMKY_TinMNSych4KkDI8L-uflMEWV5CVqFxVH6wt9fea_3bZ-5WJlW64zTS55PRrk4iT5-kTfO_IRVWC5QJjkfh8UazMl0HaqdkqI124DPVqlASAaKYA9pd-qk1e4QnJXc6mfvcTBM8qd-RpLUWGhKjnGtox6jEg1YST9509cQmW7SoJUPdZOMiVHZyc4IJ1nSL2TCiOGz3YTuRfuudWkVUgxWRIMgxz-LK19X7MUC8QyTwrUDhVANwYXnIALgviP8QCohRdBkquFJ6cYNxZTiikdU0S2opINUbgNRVKA9b0YSkWfMPUEF07rrHoulws2yBvbER2FU8JRruYxeWDIsG7-G6NfQ-DW0a3BcjnkZs3TMtN6buD4sVmwW4jEwQDTq20EN6pNwmHbPmq1ehswfXr7zP_NdWHJ0AJsEmj2o5MOR3EcYlIuDYiF8AZlC_aM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+the+EM%2C+CEM+and+SEM+algorithms+in+the+estimation+of+finite+mixtures+of+linear+mixed+models%3A+a+simulation+study&rft.jtitle=Computational+statistics&rft.au=Novais%2C+Lu%C3%ADsa&rft.au=Faria%2C+Susana&rft.date=2021-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=4&rft.spage=2507&rft.epage=2533&rft_id=info:doi/10.1007%2Fs00180-021-01088-1&rft.externalDocID=10_1007_s00180_021_01088_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon