Biometric User Identification Based on Human Activity Recognition Using Wearable Sensors: An Experiment Using Deep Learning Models

Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its practical uses in real-world applications, such as biometric user identification, health monitoring of the elderly, and surveillance by authoriti...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 10; no. 3; p. 308
Main Authors Mekruksavanich, Sakorn, Jitpattanakul, Anuchit
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2021
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics10030308

Cover

Abstract Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its practical uses in real-world applications, such as biometric user identification, health monitoring of the elderly, and surveillance by authorities. The widespread use of wearable sensor devices and the Internet of Things (IoT) has led the topic of HAR to become a significant subject in areas of mobile and ubiquitous computing. In recent years, the most widely-used inference and problem-solving approach in the HAR system has been deep learning. Nevertheless, major challenges exist with regard to the application of HAR for problems in biometric user identification in which various human behaviors can be regarded as types of biometric qualities and used for identifying people. In this research study, a novel framework for multi-class wearable user identification, with a basis in the recognition of human behavior through the use of deep learning models, is presented. In order to obtain advanced information regarding users during the performance of various activities, sensory data from tri-axial gyroscopes and tri-axial accelerometers of the wearable devices are applied. Additionally, a set of experiments were shown to validate this work, and the proposed framework’s effectiveness was demonstrated. The results for the two basic models, namely, the Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM) deep learning, showed that the highest accuracy for all users was 91.77% and 92.43%, respectively. With regard to the biometric user identification, these are both acceptable levels.
AbstractList Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its practical uses in real-world applications, such as biometric user identification, health monitoring of the elderly, and surveillance by authorities. The widespread use of wearable sensor devices and the Internet of Things (IoT) has led the topic of HAR to become a significant subject in areas of mobile and ubiquitous computing. In recent years, the most widely-used inference and problem-solving approach in the HAR system has been deep learning. Nevertheless, major challenges exist with regard to the application of HAR for problems in biometric user identification in which various human behaviors can be regarded as types of biometric qualities and used for identifying people. In this research study, a novel framework for multi-class wearable user identification, with a basis in the recognition of human behavior through the use of deep learning models, is presented. In order to obtain advanced information regarding users during the performance of various activities, sensory data from tri-axial gyroscopes and tri-axial accelerometers of the wearable devices are applied. Additionally, a set of experiments were shown to validate this work, and the proposed framework’s effectiveness was demonstrated. The results for the two basic models, namely, the Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM) deep learning, showed that the highest accuracy for all users was 91.77% and 92.43%, respectively. With regard to the biometric user identification, these are both acceptable levels.
Author Jitpattanakul, Anuchit
Mekruksavanich, Sakorn
Author_xml – sequence: 1
  givenname: Sakorn
  orcidid: 0000-0002-3735-4262
  surname: Mekruksavanich
  fullname: Mekruksavanich, Sakorn
– sequence: 2
  givenname: Anuchit
  orcidid: 0000-0002-5249-2786
  surname: Jitpattanakul
  fullname: Jitpattanakul, Anuchit
BookMark eNqNkE9LAzEQxYMoWKufwEvAczW7ye4m3lqtf6AiqMXjkmYnEtkma5KqvfrJTW0PIiLOHGYGfu8xvD20bZ0FhA4zckypICfQgoreWaNCRghNzbdQLyeVGIhc5Nvf9l10EMIzSSUyyinpoY-RcXOI3ig8DeDxdQM2Gm2UjMZZPJIBGpyWq8VcWjxU0byauMR3oNyTNV_MNBj7hB9BejlrAd-DDc6HUzy0ePzegTfzZLmhzgE6PEmoXV03roE27KMdLdsAB5vZR9OL8cPZ1WBye3l9NpwMFOU8DlhBOVG5rIjgOS2aTBOhqaLZrGBUMlJoyJlkUHIx01mluZKk4iXJdNOUjShoH7G178J2cvkm27bu0nPSL-uM1Kso61-iTLKjtazz7mUBIdbPbuFt-rTOGWeMUUbLRNE1pbwLwYP-p7f4oVImfiUfvTTtn9pPARCegw
CitedBy_id crossref_primary_10_3390_s21051636
crossref_primary_10_1016_j_heliyon_2025_e41779
crossref_primary_10_1016_j_cose_2024_103747
crossref_primary_10_1016_j_iot_2023_100925
crossref_primary_10_3934_math_2023629
crossref_primary_10_1016_j_jisa_2022_103204
crossref_primary_10_1038_s41598_024_81733_z
crossref_primary_10_1109_ACCESS_2023_3306022
crossref_primary_10_1007_s12553_021_00540_y
crossref_primary_10_3233_AIC_220247
crossref_primary_10_3390_s21092981
crossref_primary_10_3390_app11135880
crossref_primary_10_1109_TCSS_2022_3223343
crossref_primary_10_1155_2024_5551009
crossref_primary_10_1016_j_procs_2024_09_430
crossref_primary_10_1109_ACCESS_2022_3174124
crossref_primary_10_1109_ACCESS_2022_3214986
crossref_primary_10_1109_JIOT_2023_3234053
crossref_primary_10_1109_TII_2023_3315773
crossref_primary_10_3390_sym14102022
crossref_primary_10_1016_j_measen_2022_100512
crossref_primary_10_1016_j_procs_2025_02_248
crossref_primary_10_1109_ACCESS_2021_3112973
crossref_primary_10_3390_s23083814
crossref_primary_10_32604_iasc_2023_033940
crossref_primary_10_1186_s13677_023_00416_8
crossref_primary_10_1007_s11277_023_10797_3
crossref_primary_10_3390_electronics10141715
crossref_primary_10_1007_s11042_023_16423_5
crossref_primary_10_3390_math11051260
crossref_primary_10_1142_S0218001423560268
crossref_primary_10_3390_s22176463
crossref_primary_10_3390_electronics13173407
crossref_primary_10_3390_electronics12071622
crossref_primary_10_3390_bios12070549
crossref_primary_10_1007_s41870_025_02474_4
crossref_primary_10_1007_s11042_024_19095_x
crossref_primary_10_1080_17508975_2024_2437421
crossref_primary_10_1109_ACCESS_2024_3486051
crossref_primary_10_3390_s21248294
crossref_primary_10_1145_3603705
crossref_primary_10_3390_app112411807
crossref_primary_10_3390_electronics13193954
crossref_primary_10_1155_2022_5678736
crossref_primary_10_1109_ACCESS_2022_3208686
crossref_primary_10_3390_app14062377
crossref_primary_10_1016_j_compbiomed_2024_109254
crossref_primary_10_1155_2022_2913507
crossref_primary_10_3390_s21227519
crossref_primary_10_1088_2057_1976_ad17f9
crossref_primary_10_3389_fnbot_2022_889308
crossref_primary_10_1007_s12517_023_11549_0
crossref_primary_10_1049_bme2_12105
crossref_primary_10_3390_app142210286
crossref_primary_10_1016_j_knosys_2024_112021
crossref_primary_10_1007_s11042_023_14977_y
crossref_primary_10_1016_j_eswa_2023_121978
crossref_primary_10_3390_electronics10141685
crossref_primary_10_1016_j_procs_2022_11_220
crossref_primary_10_1186_s12938_022_01035_1
crossref_primary_10_3390_s22083094
crossref_primary_10_3390_s23094319
crossref_primary_10_3390_s22020634
crossref_primary_10_1109_JSEN_2023_3332897
crossref_primary_10_1007_s10207_022_00640_4
crossref_primary_10_1016_j_eswa_2024_124999
crossref_primary_10_1080_1206212X_2024_2427287
crossref_primary_10_1080_19393555_2023_2260818
crossref_primary_10_1007_s11042_023_16795_8
crossref_primary_10_3390_info15010047
crossref_primary_10_36548_jitdw_2022_2_005
crossref_primary_10_3390_s22155644
crossref_primary_10_3390_electronics12030693
crossref_primary_10_1016_j_bspc_2022_103963
crossref_primary_10_1109_TMC_2023_3243772
crossref_primary_10_3390_electronics10151805
crossref_primary_10_1016_j_iot_2024_101374
crossref_primary_10_1016_j_compeleceng_2024_109883
crossref_primary_10_32604_cmc_2023_037433
crossref_primary_10_1080_08839514_2023_2219943
crossref_primary_10_1186_s12916_023_03168_z
crossref_primary_10_3390_electronics13142708
crossref_primary_10_1145_3649448
Cites_doi 10.1109/ECTIDAMTNCON48261.2020.9090711
10.1145/2733373.2806333
10.3390/fi12090155
10.3390/s17092043
10.1007/978-981-15-8289-9
10.1007/s10462-017-9545-7
10.1016/j.cviu.2011.08.009
10.1016/j.patrec.2012.12.014
10.3390/electronics8101169
10.1109/SENSORS47125.2020.9278630
10.3390/sym8100100
10.1109/ISIE.2010.5636922
10.1109/SURV.2012.110112.00192
10.1145/2370216.2370438
10.1109/SITIS.2017.73
10.1145/3052973.3055160
10.1016/j.patrec.2018.02.010
10.1109/NUiCONE.2013.6780190
10.1109/BTAS.2010.5634532
10.3390/s16010115
10.1109/IROS.2011.6048716
10.1016/j.pmcj.2016.08.003
10.3390/sym12091570
10.1109/TCSVT.2008.2005612
10.1023/B:AUSE.0000049210.42738.00
10.1109/ACCESS.2020.2982225
10.1016/j.jnca.2007.11.002
10.1109/TITB.2010.2050696
10.3390/s18041055
10.1109/ICNSC.2007.372796
10.1109/ICMLA.2015.48
10.1117/12.603331
10.1109/BTAS.2012.6374552
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics10030308
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics10030308
10_3390_electronics10030308
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c388t-45380c2a7098235d1f09f3c31b543a405fe24a4e689bf17f8ca078601fdd6d953
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 03:34:40 EDT 2025
Mon Jul 14 10:05:31 EDT 2025
Thu Apr 24 23:00:21 EDT 2025
Thu Oct 16 04:42:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-45380c2a7098235d1f09f3c31b543a405fe24a4e689bf17f8ca078601fdd6d953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5249-2786
0000-0002-3735-4262
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/10/3/308/pdf?version=1611890534
PQID 2484443436
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics10030308
proquest_journals_2484443436
crossref_primary_10_3390_electronics10030308
crossref_citationtrail_10_3390_electronics10030308
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Curone (ref_23) 2010; 14
Lara (ref_10) 2013; 15
ref_14
Wang (ref_24) 2019; 119
ref_36
ref_13
ref_35
ref_12
Jain (ref_33) 2005; Volume 5779
ref_34
ref_11
Osmani (ref_4) 2008; 31
ref_32
ref_31
Zhou (ref_20) 2008; 18
Issarny (ref_2) 2005; 12
ref_19
ref_17
ref_39
ref_15
ref_37
Hammerla (ref_30) 2011; Volume 2
Drosou (ref_7) 2012; 116
Chavarriaga (ref_29) 2013; 34
ref_25
ref_22
ref_21
Xia (ref_38) 2020; 8
Slim (ref_1) 2019; 10
ref_3
ref_28
ref_27
Rault (ref_18) 2017; 37
ref_26
ref_9
ref_8
ref_5
ref_6
Tripathi (ref_16) 2018; 50
References_xml – ident: ref_28
– ident: ref_15
  doi: 10.1109/ECTIDAMTNCON48261.2020.9090711
– ident: ref_25
  doi: 10.1145/2733373.2806333
– ident: ref_37
  doi: 10.3390/fi12090155
– ident: ref_5
  doi: 10.3390/s17092043
– ident: ref_9
  doi: 10.1007/978-981-15-8289-9
– volume: 50
  start-page: 283
  year: 2018
  ident: ref_16
  article-title: Suspicious Human Activity Recognition: A Review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9545-7
– volume: 116
  start-page: 411
  year: 2012
  ident: ref_7
  article-title: Spatiotemporal analysis of human activities for biometric authentication
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2011.08.009
– volume: 34
  start-page: 2033
  year: 2013
  ident: ref_29
  article-title: The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.12.014
– ident: ref_14
  doi: 10.3390/electronics8101169
– ident: ref_6
  doi: 10.1109/SENSORS47125.2020.9278630
– ident: ref_17
  doi: 10.3390/sym8100100
– ident: ref_19
  doi: 10.1109/ISIE.2010.5636922
– volume: Volume 2
  start-page: 1729
  year: 2011
  ident: ref_30
  article-title: Feature Learning for Activity Recognition in Ubiquitous Computing
  publication-title: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI’11)
– volume: 15
  start-page: 1192
  year: 2013
  ident: ref_10
  article-title: A Survey on Human Activity Recognition Using Wearable Sensors
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– ident: ref_36
  doi: 10.1145/2370216.2370438
– ident: ref_11
  doi: 10.1109/SITIS.2017.73
– ident: ref_8
  doi: 10.1145/3052973.3055160
– volume: 119
  start-page: 3
  year: 2019
  ident: ref_24
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– ident: ref_31
– ident: ref_32
  doi: 10.1109/NUiCONE.2013.6780190
– ident: ref_34
  doi: 10.1109/BTAS.2010.5634532
– ident: ref_27
  doi: 10.3390/s16010115
– ident: ref_13
  doi: 10.1109/IROS.2011.6048716
– volume: 37
  start-page: 23
  year: 2017
  ident: ref_18
  article-title: A Survey of Energy-Efficient Context Recognition Systems Using Wearable Sensors for Healthcare Applications
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2016.08.003
– ident: ref_12
– ident: ref_3
  doi: 10.3390/sym12091570
– volume: 18
  start-page: 1489
  year: 2008
  ident: ref_20
  article-title: Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2008.2005612
– volume: 12
  start-page: 101
  year: 2005
  ident: ref_2
  article-title: Developing Ambient Intelligence Systems: A Solution based on Web Services
  publication-title: Autom. Softw. Eng.
  doi: 10.1023/B:AUSE.0000049210.42738.00
– volume: 8
  start-page: 56855
  year: 2020
  ident: ref_38
  article-title: LSTM-CNN Architecture for Human Activity Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– volume: 31
  start-page: 628
  year: 2008
  ident: ref_4
  article-title: Human Activity Recognition in Pervasive Health-Care: Supporting Efficient Remote Collaboration
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2007.11.002
– volume: 14
  start-page: 1098
  year: 2010
  ident: ref_23
  article-title: A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2050696
– ident: ref_39
  doi: 10.3390/s18041055
– ident: ref_21
  doi: 10.1109/ICNSC.2007.372796
– volume: 10
  start-page: 84
  year: 2019
  ident: ref_1
  article-title: Survey on Human Activity Recognition based on Acceleration Data
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_22
– ident: ref_26
  doi: 10.1109/ICMLA.2015.48
– volume: Volume 5779
  start-page: 7
  year: 2005
  ident: ref_33
  article-title: Identifying people from gait pattern with accelerometers
  publication-title: Biometric Technology for Human Identification II
  doi: 10.1117/12.603331
– ident: ref_35
  doi: 10.1109/BTAS.2012.6374552
SSID ssj0000913830
Score 2.5765965
Snippet Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 308
SubjectTerms Accelerometers
Activities of daily living
Artificial intelligence
Artificial neural networks
Biometric identification
Biometrics
Cameras
Datasets
Deep learning
Gyroscopes
Human activity recognition
Human behavior
Internet of Things
Machine learning
Mobile computing
Moving object recognition
Neural networks
Physiology
Sensors
Smartphones
Ubiquitous computing
Wearable computers
Wearable technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4q7WFwQNvYtEKHfOBIRBI7iTNpQi20qiZRoY5q3CLHsblUaUeLENf95XsvcdoeEOJmKY4V5T37_fB73wdwFiW-koHCMFVo5QmDoxQ_2JPayoQXeRwZak6-mcTjmfh1H923YNL0wlBZZXMmVgd1sdCUI78IhRSC2iDjy-Vfj1ij6Ha1odBQjlqh-FlBjO1BJyRkrDZ0BsPJ7XSTdSEUTMn9Gn6IY7x_sWWbWQWk8ZyIJndN1Nbv_PBULtXLs5rPd0zQ6CMcOt-R9Wthf4KWKT_DwQ6i4BH8G1A7PaHusxkqF6v7cK1LzLEB2qyC4aDK3bO-rrkj2LQpI8JHVREB-4M7gLqq2G-McxePqx-sX7Lhhg7Azbo2ZskcROsDI161-eoLzEbDu6ux52gWPM2lXHsCzzxfhyrxUxnyqAisn1queZBHgit06KwJhRImlmlug8RKrdCvwEDOEhtVGvGv0C4XpfkGzKLxx4noZOWFKCxPpY2SnPs6tpJL5XchbP5sph0GOVFhzDOMRUgc2Svi6ML55qVlDcHx9vReI7LM7cdVttWeLngbMb5nueO3lzuB_ZCqXKo67h60149P5ju6Kev81Onefzwl654
  priority: 102
  providerName: ProQuest
Title Biometric User Identification Based on Human Activity Recognition Using Wearable Sensors: An Experiment Using Deep Learning Models
URI https://www.proquest.com/docview/2484443436
https://www.mdpi.com/2079-9292/10/3/308/pdf?version=1611890534
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5Be2A58NiHKI_Khz0SmsRO4nBBLbSglagQu9Wyp8hx7BWiChVpQXDgwC9n3DilQmgFe3OUceTIY8839sx8AN-DyBXcE-imMikcprAV44AdLjWPaJaGgTLJyaf98GTAflwEF_bArbBhleiKX043ad-NYgftt49ru0Vb1OWtUaYPbu1JEoIVj8eoRWwR6mGAWLwG9UH_rP3HMMpVfctSQxR9-9YLs0zhGe2mhlRy3hy9YMylST4S93diOJwzN71VSKqBllEmV3uTcbonH17VcPz_P1mDFYtESbtUnXVYUPlnWJ6rT_gFnjomOd_U8CcDVFVSZvVqe8xHOmgBM4KN6U0AacuSiYKcV0FJ-GoakkB-43oyOVrkJ3rN1zfFPmnnpDsjF7BSR0qNiC34-pcYlrZh8RUGve6vwxPHkjY4knI-dhjuoK70ReTG3KdB5mk31lRSLw0YFQgPtfKZYCrkcaq9SHMpEKWgW6gNt1Uc0G9Qy69ztQFEI5RAQYRsacYyTWOugyilrgw1p1y4DfCruUukrWhuiDWGCXo2ZsKTNya8AbuzTqOyoMe_xbcrpUjs6i4Sn3HGTEpu2ABnpijv-dzmB-W34JNvgmimYeLbUBvfTNQOoqBx2oRF3jtuQr3T7Z-d49PpY7dp1f8ZhR4JzA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOFAOFX0gtqWtD_TWiCR2EgcJVbtl0fJaVcAKbsFxbC6r7JYsQlz7w_rbOpM4u3uoUC_cLMWxLM_YM2PPfB_AbpT4SgYKw1ShlScMtlKcsCe1lQkv8jgyVJx8PowHI3FyE92swJ-2FobSKtszsT6oi4mmO_K9UEghqAwy_j795RFrFL2uthQaylErFAc1xJgr7Dg1T48YwlUHx4co769heNS_-jHwHMuAp7mUM0_glvd1qBI_lSGPisD6qeWaB3kkuEJ_xppQKGFimeY2SKzUCs0qxjGWyJhSYo1AE7CGU0sx-Fvr9Yc_L-a3PIS6KbnfwB1xnvp7C3abKqAdxonYctkkLvzc9Ydyqp4e1Xi8ZPKONuG181VZt1GuN7BiyrewsYRg-A5-96h8n1D-2QiVmTV1v9ZdBLIe2siCYaN-K2Bd3XBVsIs2bQk_1UkL7BqXkqq42CXG1ZP7ap91S9af0w-4XofGTJmDhL1jxOM2rt7D6EUWfAtWy0lptoFZdDawIzp1eSEKy1NpoyTnvo6t5FL5HQjblc20wzwn6o1xhrEPiSP7hzg68G3-07SB_Hi--04rsszt_ypbaGsHvLkY_2e4D88P9wXWB1fnZ9nZ8fD0I7wKKcOmziHfgdXZ_YP5hC7SLP_s9JDB7Uur_l-jFSdf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkKAcUHlULI_Wh3Ij2iR2EgepqpYuW96qSlflFhzH5rLKLmQR4tqf1V_HTB67e0CICzdLsa3IM_bM2DPfB_A1iFwlPYVhqtDKEQZbMf6wI7WVEc_SMDBUnHxxGR73xel1cD0H_5taGEqrbM7E8qDOhpruyNu-kEJQGWTYtnVaxK9u7_voziEGKXppbeg0KhU5M0-PGL4V3066KOs93-8d_flx7NQMA47mUo4dgdvd1b6K3Fj6PMg868aWa-6lgeAKfRlrfKGECWWcWi-yUis0qRjDWCJiiokxAo__hYhQ3KlKvfdzcr9DeJuSuxXQEeex257y2hQe7S1OlJazxnDq4S495CP19KgGgxlj1_sIK7WXyjqVWq3CnMnXYHkGu3Ad_h1S4T7h-7M-qjGrKn5tfQXIDtE6Zgwb5SsB6-iKpYL9bhKW8FOZrsD-4kJS_Ra7woh6eF8csE7OjibEA3WvrjEjVoPB3jJicBsUG9B_l-X-BPP5MDebwCy6GdgR3bk0E5nlsbRBlHJXh1ZyqdwW-M3KJrpGOyfSjUGCUQ-JI3lBHC3YnwwaVWAfr3ffaUSW1Du_SKZ62gJnIsa3TLf1-nRfYBEVPjk_uTzbhg8-pdaUyeM7MD--fzC76BuN08-lEjK4eW-tfwaa9CT5
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH3-L6IgeP1m2btE29yPpCBEXURT2VNE1EXLqL3VX06C93sk3XRUTUW6CTkjKTzDfpzHwAW0HkCu4JDFOZFA5TOIpxwQ6Xmkc0S8NAmeLks_PwpMVOb4Nbe-FW2LRKDMUfBoe070axg_7bx73doA3q8kY303vP9iYJwYrHY7QiNg4TYYBYvAYTrfOL5p1hlKvmlq2GKMb2jU9mmcIz1k0NqeSoO_rEmJP9vCteX0S7PeJujmchqRZaZpk87vR76Y58-9LD8f9fMgczFomSZmk68zCm8gWYHulPuAjv-6Y43_TwJy00VVJW9Wp7zUf20QNmBAeDPwGkKUsmCnJZJSXho0FKArnB_WRqtMgVRs2dp2KXNHNyNCQXsFKHSnWJbfh6TwxLW7tYgtbx0fXBiWNJGxxJOe85DE9QV_oicmPu0yDztBtrKqmXBowKhIda-UwwFfI41V6kuRSIUjAs1IbbKg7oMtTyTq5WgGiEEiiIkC3NWKZpzHUQpdSVoeaUC7cOfqW7RNqO5oZYo51gZGMUnnyj8DpsDyd1y4YeP4uvV0aR2N1dJD7jjJmS3LAOztBQfvO61T_Kr8GUb5JoBmni61DrPfXVBqKgXrppTf0D7pAGGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+User+Identification+Based+on+Human+Activity+Recognition+Using+Wearable+Sensors%3A+An+Experiment+Using+Deep+Learning+Models&rft.jtitle=Electronics+%28Basel%29&rft.au=Mekruksavanich%2C+Sakorn&rft.au=Jitpattanakul%2C+Anuchit&rft.date=2021-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=3&rft.spage=308&rft_id=info:doi/10.3390%2Felectronics10030308&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10030308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon