Biometric User Identification Based on Human Activity Recognition Using Wearable Sensors: An Experiment Using Deep Learning Models
Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its practical uses in real-world applications, such as biometric user identification, health monitoring of the elderly, and surveillance by authoriti...
        Saved in:
      
    
          | Published in | Electronics (Basel) Vol. 10; no. 3; p. 308 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.02.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2079-9292 2079-9292  | 
| DOI | 10.3390/electronics10030308 | 
Cover
| Abstract | Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its practical uses in real-world applications, such as biometric user identification, health monitoring of the elderly, and surveillance by authorities. The widespread use of wearable sensor devices and the Internet of Things (IoT) has led the topic of HAR to become a significant subject in areas of mobile and ubiquitous computing. In recent years, the most widely-used inference and problem-solving approach in the HAR system has been deep learning. Nevertheless, major challenges exist with regard to the application of HAR for problems in biometric user identification in which various human behaviors can be regarded as types of biometric qualities and used for identifying people. In this research study, a novel framework for multi-class wearable user identification, with a basis in the recognition of human behavior through the use of deep learning models, is presented. In order to obtain advanced information regarding users during the performance of various activities, sensory data from tri-axial gyroscopes and tri-axial accelerometers of the wearable devices are applied. Additionally, a set of experiments were shown to validate this work, and the proposed framework’s effectiveness was demonstrated. The results for the two basic models, namely, the Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM) deep learning, showed that the highest accuracy for all users was 91.77% and 92.43%, respectively. With regard to the biometric user identification, these are both acceptable levels. | 
    
|---|---|
| AbstractList | Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its practical uses in real-world applications, such as biometric user identification, health monitoring of the elderly, and surveillance by authorities. The widespread use of wearable sensor devices and the Internet of Things (IoT) has led the topic of HAR to become a significant subject in areas of mobile and ubiquitous computing. In recent years, the most widely-used inference and problem-solving approach in the HAR system has been deep learning. Nevertheless, major challenges exist with regard to the application of HAR for problems in biometric user identification in which various human behaviors can be regarded as types of biometric qualities and used for identifying people. In this research study, a novel framework for multi-class wearable user identification, with a basis in the recognition of human behavior through the use of deep learning models, is presented. In order to obtain advanced information regarding users during the performance of various activities, sensory data from tri-axial gyroscopes and tri-axial accelerometers of the wearable devices are applied. Additionally, a set of experiments were shown to validate this work, and the proposed framework’s effectiveness was demonstrated. The results for the two basic models, namely, the Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM) deep learning, showed that the highest accuracy for all users was 91.77% and 92.43%, respectively. With regard to the biometric user identification, these are both acceptable levels. | 
    
| Author | Jitpattanakul, Anuchit Mekruksavanich, Sakorn  | 
    
| Author_xml | – sequence: 1 givenname: Sakorn orcidid: 0000-0002-3735-4262 surname: Mekruksavanich fullname: Mekruksavanich, Sakorn – sequence: 2 givenname: Anuchit orcidid: 0000-0002-5249-2786 surname: Jitpattanakul fullname: Jitpattanakul, Anuchit  | 
    
| BookMark | eNqNkE9LAzEQxYMoWKufwEvAczW7ye4m3lqtf6AiqMXjkmYnEtkma5KqvfrJTW0PIiLOHGYGfu8xvD20bZ0FhA4zckypICfQgoreWaNCRghNzbdQLyeVGIhc5Nvf9l10EMIzSSUyyinpoY-RcXOI3ig8DeDxdQM2Gm2UjMZZPJIBGpyWq8VcWjxU0byauMR3oNyTNV_MNBj7hB9BejlrAd-DDc6HUzy0ePzegTfzZLmhzgE6PEmoXV03roE27KMdLdsAB5vZR9OL8cPZ1WBye3l9NpwMFOU8DlhBOVG5rIjgOS2aTBOhqaLZrGBUMlJoyJlkUHIx01mluZKk4iXJdNOUjShoH7G178J2cvkm27bu0nPSL-uM1Kso61-iTLKjtazz7mUBIdbPbuFt-rTOGWeMUUbLRNE1pbwLwYP-p7f4oVImfiUfvTTtn9pPARCegw | 
    
| CitedBy_id | crossref_primary_10_3390_s21051636 crossref_primary_10_1016_j_heliyon_2025_e41779 crossref_primary_10_1016_j_cose_2024_103747 crossref_primary_10_1016_j_iot_2023_100925 crossref_primary_10_3934_math_2023629 crossref_primary_10_1016_j_jisa_2022_103204 crossref_primary_10_1038_s41598_024_81733_z crossref_primary_10_1109_ACCESS_2023_3306022 crossref_primary_10_1007_s12553_021_00540_y crossref_primary_10_3233_AIC_220247 crossref_primary_10_3390_s21092981 crossref_primary_10_3390_app11135880 crossref_primary_10_1109_TCSS_2022_3223343 crossref_primary_10_1155_2024_5551009 crossref_primary_10_1016_j_procs_2024_09_430 crossref_primary_10_1109_ACCESS_2022_3174124 crossref_primary_10_1109_ACCESS_2022_3214986 crossref_primary_10_1109_JIOT_2023_3234053 crossref_primary_10_1109_TII_2023_3315773 crossref_primary_10_3390_sym14102022 crossref_primary_10_1016_j_measen_2022_100512 crossref_primary_10_1016_j_procs_2025_02_248 crossref_primary_10_1109_ACCESS_2021_3112973 crossref_primary_10_3390_s23083814 crossref_primary_10_32604_iasc_2023_033940 crossref_primary_10_1186_s13677_023_00416_8 crossref_primary_10_1007_s11277_023_10797_3 crossref_primary_10_3390_electronics10141715 crossref_primary_10_1007_s11042_023_16423_5 crossref_primary_10_3390_math11051260 crossref_primary_10_1142_S0218001423560268 crossref_primary_10_3390_s22176463 crossref_primary_10_3390_electronics13173407 crossref_primary_10_3390_electronics12071622 crossref_primary_10_3390_bios12070549 crossref_primary_10_1007_s41870_025_02474_4 crossref_primary_10_1007_s11042_024_19095_x crossref_primary_10_1080_17508975_2024_2437421 crossref_primary_10_1109_ACCESS_2024_3486051 crossref_primary_10_3390_s21248294 crossref_primary_10_1145_3603705 crossref_primary_10_3390_app112411807 crossref_primary_10_3390_electronics13193954 crossref_primary_10_1155_2022_5678736 crossref_primary_10_1109_ACCESS_2022_3208686 crossref_primary_10_3390_app14062377 crossref_primary_10_1016_j_compbiomed_2024_109254 crossref_primary_10_1155_2022_2913507 crossref_primary_10_3390_s21227519 crossref_primary_10_1088_2057_1976_ad17f9 crossref_primary_10_3389_fnbot_2022_889308 crossref_primary_10_1007_s12517_023_11549_0 crossref_primary_10_1049_bme2_12105 crossref_primary_10_3390_app142210286 crossref_primary_10_1016_j_knosys_2024_112021 crossref_primary_10_1007_s11042_023_14977_y crossref_primary_10_1016_j_eswa_2023_121978 crossref_primary_10_3390_electronics10141685 crossref_primary_10_1016_j_procs_2022_11_220 crossref_primary_10_1186_s12938_022_01035_1 crossref_primary_10_3390_s22083094 crossref_primary_10_3390_s23094319 crossref_primary_10_3390_s22020634 crossref_primary_10_1109_JSEN_2023_3332897 crossref_primary_10_1007_s10207_022_00640_4 crossref_primary_10_1016_j_eswa_2024_124999 crossref_primary_10_1080_1206212X_2024_2427287 crossref_primary_10_1080_19393555_2023_2260818 crossref_primary_10_1007_s11042_023_16795_8 crossref_primary_10_3390_info15010047 crossref_primary_10_36548_jitdw_2022_2_005 crossref_primary_10_3390_s22155644 crossref_primary_10_3390_electronics12030693 crossref_primary_10_1016_j_bspc_2022_103963 crossref_primary_10_1109_TMC_2023_3243772 crossref_primary_10_3390_electronics10151805 crossref_primary_10_1016_j_iot_2024_101374 crossref_primary_10_1016_j_compeleceng_2024_109883 crossref_primary_10_32604_cmc_2023_037433 crossref_primary_10_1080_08839514_2023_2219943 crossref_primary_10_1186_s12916_023_03168_z crossref_primary_10_3390_electronics13142708 crossref_primary_10_1145_3649448  | 
    
| Cites_doi | 10.1109/ECTIDAMTNCON48261.2020.9090711 10.1145/2733373.2806333 10.3390/fi12090155 10.3390/s17092043 10.1007/978-981-15-8289-9 10.1007/s10462-017-9545-7 10.1016/j.cviu.2011.08.009 10.1016/j.patrec.2012.12.014 10.3390/electronics8101169 10.1109/SENSORS47125.2020.9278630 10.3390/sym8100100 10.1109/ISIE.2010.5636922 10.1109/SURV.2012.110112.00192 10.1145/2370216.2370438 10.1109/SITIS.2017.73 10.1145/3052973.3055160 10.1016/j.patrec.2018.02.010 10.1109/NUiCONE.2013.6780190 10.1109/BTAS.2010.5634532 10.3390/s16010115 10.1109/IROS.2011.6048716 10.1016/j.pmcj.2016.08.003 10.3390/sym12091570 10.1109/TCSVT.2008.2005612 10.1023/B:AUSE.0000049210.42738.00 10.1109/ACCESS.2020.2982225 10.1016/j.jnca.2007.11.002 10.1109/TITB.2010.2050696 10.3390/s18041055 10.1109/ICNSC.2007.372796 10.1109/ICMLA.2015.48 10.1117/12.603331 10.1109/BTAS.2012.6374552  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.3390/electronics10030308 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2079-9292 | 
    
| ExternalDocumentID | 10.3390/electronics10030308 10_3390_electronics10030308  | 
    
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c388t-45380c2a7098235d1f09f3c31b543a405fe24a4e689bf17f8ca078601fdd6d953 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2079-9292 | 
    
| IngestDate | Sun Oct 26 03:34:40 EDT 2025 Mon Jul 14 10:05:31 EDT 2025 Thu Apr 24 23:00:21 EDT 2025 Thu Oct 16 04:42:34 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | public-domain | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c388t-45380c2a7098235d1f09f3c31b543a405fe24a4e689bf17f8ca078601fdd6d953 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-5249-2786 0000-0002-3735-4262  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/10/3/308/pdf?version=1611890534 | 
    
| PQID | 2484443436 | 
    
| PQPubID | 2032404 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_electronics10030308 proquest_journals_2484443436 crossref_primary_10_3390_electronics10030308 crossref_citationtrail_10_3390_electronics10030308  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-02-01 | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Electronics (Basel) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Curone (ref_23) 2010; 14 Lara (ref_10) 2013; 15 ref_14 Wang (ref_24) 2019; 119 ref_36 ref_13 ref_35 ref_12 Jain (ref_33) 2005; Volume 5779 ref_34 ref_11 Osmani (ref_4) 2008; 31 ref_32 ref_31 Zhou (ref_20) 2008; 18 Issarny (ref_2) 2005; 12 ref_19 ref_17 ref_39 ref_15 ref_37 Hammerla (ref_30) 2011; Volume 2 Drosou (ref_7) 2012; 116 Chavarriaga (ref_29) 2013; 34 ref_25 ref_22 ref_21 Xia (ref_38) 2020; 8 Slim (ref_1) 2019; 10 ref_3 ref_28 ref_27 Rault (ref_18) 2017; 37 ref_26 ref_9 ref_8 ref_5 ref_6 Tripathi (ref_16) 2018; 50  | 
    
| References_xml | – ident: ref_28 – ident: ref_15 doi: 10.1109/ECTIDAMTNCON48261.2020.9090711 – ident: ref_25 doi: 10.1145/2733373.2806333 – ident: ref_37 doi: 10.3390/fi12090155 – ident: ref_5 doi: 10.3390/s17092043 – ident: ref_9 doi: 10.1007/978-981-15-8289-9 – volume: 50 start-page: 283 year: 2018 ident: ref_16 article-title: Suspicious Human Activity Recognition: A Review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9545-7 – volume: 116 start-page: 411 year: 2012 ident: ref_7 article-title: Spatiotemporal analysis of human activities for biometric authentication publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2011.08.009 – volume: 34 start-page: 2033 year: 2013 ident: ref_29 article-title: The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.12.014 – ident: ref_14 doi: 10.3390/electronics8101169 – ident: ref_6 doi: 10.1109/SENSORS47125.2020.9278630 – ident: ref_17 doi: 10.3390/sym8100100 – ident: ref_19 doi: 10.1109/ISIE.2010.5636922 – volume: Volume 2 start-page: 1729 year: 2011 ident: ref_30 article-title: Feature Learning for Activity Recognition in Ubiquitous Computing publication-title: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI’11) – volume: 15 start-page: 1192 year: 2013 ident: ref_10 article-title: A Survey on Human Activity Recognition Using Wearable Sensors publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2012.110112.00192 – ident: ref_36 doi: 10.1145/2370216.2370438 – ident: ref_11 doi: 10.1109/SITIS.2017.73 – ident: ref_8 doi: 10.1145/3052973.3055160 – volume: 119 start-page: 3 year: 2019 ident: ref_24 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.010 – ident: ref_31 – ident: ref_32 doi: 10.1109/NUiCONE.2013.6780190 – ident: ref_34 doi: 10.1109/BTAS.2010.5634532 – ident: ref_27 doi: 10.3390/s16010115 – ident: ref_13 doi: 10.1109/IROS.2011.6048716 – volume: 37 start-page: 23 year: 2017 ident: ref_18 article-title: A Survey of Energy-Efficient Context Recognition Systems Using Wearable Sensors for Healthcare Applications publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2016.08.003 – ident: ref_12 – ident: ref_3 doi: 10.3390/sym12091570 – volume: 18 start-page: 1489 year: 2008 ident: ref_20 article-title: Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2008.2005612 – volume: 12 start-page: 101 year: 2005 ident: ref_2 article-title: Developing Ambient Intelligence Systems: A Solution based on Web Services publication-title: Autom. Softw. Eng. doi: 10.1023/B:AUSE.0000049210.42738.00 – volume: 8 start-page: 56855 year: 2020 ident: ref_38 article-title: LSTM-CNN Architecture for Human Activity Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225 – volume: 31 start-page: 628 year: 2008 ident: ref_4 article-title: Human Activity Recognition in Pervasive Health-Care: Supporting Efficient Remote Collaboration publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2007.11.002 – volume: 14 start-page: 1098 year: 2010 ident: ref_23 article-title: A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2050696 – ident: ref_39 doi: 10.3390/s18041055 – ident: ref_21 doi: 10.1109/ICNSC.2007.372796 – volume: 10 start-page: 84 year: 2019 ident: ref_1 article-title: Survey on Human Activity Recognition based on Acceleration Data publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_22 – ident: ref_26 doi: 10.1109/ICMLA.2015.48 – volume: Volume 5779 start-page: 7 year: 2005 ident: ref_33 article-title: Identifying people from gait pattern with accelerometers publication-title: Biometric Technology for Human Identification II doi: 10.1117/12.603331 – ident: ref_35 doi: 10.1109/BTAS.2012.6374552  | 
    
| SSID | ssj0000913830 | 
    
| Score | 2.5765965 | 
    
| Snippet | Currently, a significant amount of interest is focused on research in the field of Human Activity Recognition (HAR) as a result of the wide variety of its... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 308 | 
    
| SubjectTerms | Accelerometers Activities of daily living Artificial intelligence Artificial neural networks Biometric identification Biometrics Cameras Datasets Deep learning Gyroscopes Human activity recognition Human behavior Internet of Things Machine learning Mobile computing Moving object recognition Neural networks Physiology Sensors Smartphones Ubiquitous computing Wearable computers Wearable technology  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4q7WFwQNvYtEKHfOBIRBI7iTNpQi20qiZRoY5q3CLHsblUaUeLENf95XsvcdoeEOJmKY4V5T37_fB73wdwFiW-koHCMFVo5QmDoxQ_2JPayoQXeRwZak6-mcTjmfh1H923YNL0wlBZZXMmVgd1sdCUI78IhRSC2iDjy-Vfj1ij6Ha1odBQjlqh-FlBjO1BJyRkrDZ0BsPJ7XSTdSEUTMn9Gn6IY7x_sWWbWQWk8ZyIJndN1Nbv_PBULtXLs5rPd0zQ6CMcOt-R9Wthf4KWKT_DwQ6i4BH8G1A7PaHusxkqF6v7cK1LzLEB2qyC4aDK3bO-rrkj2LQpI8JHVREB-4M7gLqq2G-McxePqx-sX7Lhhg7Azbo2ZskcROsDI161-eoLzEbDu6ux52gWPM2lXHsCzzxfhyrxUxnyqAisn1queZBHgit06KwJhRImlmlug8RKrdCvwEDOEhtVGvGv0C4XpfkGzKLxx4noZOWFKCxPpY2SnPs6tpJL5XchbP5sph0GOVFhzDOMRUgc2Svi6ML55qVlDcHx9vReI7LM7cdVttWeLngbMb5nueO3lzuB_ZCqXKo67h60149P5ju6Kev81Onefzwl654 priority: 102 providerName: ProQuest  | 
    
| Title | Biometric User Identification Based on Human Activity Recognition Using Wearable Sensors: An Experiment Using Deep Learning Models | 
    
| URI | https://www.proquest.com/docview/2484443436 https://www.mdpi.com/2079-9292/10/3/308/pdf?version=1611890534  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5Be2A58NiHKI_Khz0SmsRO4nBBLbSglagQu9Wyp8hx7BWiChVpQXDgwC9n3DilQmgFe3OUceTIY8839sx8AN-DyBXcE-imMikcprAV44AdLjWPaJaGgTLJyaf98GTAflwEF_bArbBhleiKX043ad-NYgftt49ru0Vb1OWtUaYPbu1JEoIVj8eoRWwR6mGAWLwG9UH_rP3HMMpVfctSQxR9-9YLs0zhGe2mhlRy3hy9YMylST4S93diOJwzN71VSKqBllEmV3uTcbonH17VcPz_P1mDFYtESbtUnXVYUPlnWJ6rT_gFnjomOd_U8CcDVFVSZvVqe8xHOmgBM4KN6U0AacuSiYKcV0FJ-GoakkB-43oyOVrkJ3rN1zfFPmnnpDsjF7BSR0qNiC34-pcYlrZh8RUGve6vwxPHkjY4knI-dhjuoK70ReTG3KdB5mk31lRSLw0YFQgPtfKZYCrkcaq9SHMpEKWgW6gNt1Uc0G9Qy69ztQFEI5RAQYRsacYyTWOugyilrgw1p1y4DfCruUukrWhuiDWGCXo2ZsKTNya8AbuzTqOyoMe_xbcrpUjs6i4Sn3HGTEpu2ABnpijv-dzmB-W34JNvgmimYeLbUBvfTNQOoqBx2oRF3jtuQr3T7Z-d49PpY7dp1f8ZhR4JzA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOFAOFX0gtqWtD_TWiCR2EgcJVbtl0fJaVcAKbsFxbC6r7JYsQlz7w_rbOpM4u3uoUC_cLMWxLM_YM2PPfB_AbpT4SgYKw1ShlScMtlKcsCe1lQkv8jgyVJx8PowHI3FyE92swJ-2FobSKtszsT6oi4mmO_K9UEghqAwy_j795RFrFL2uthQaylErFAc1xJgr7Dg1T48YwlUHx4co769heNS_-jHwHMuAp7mUM0_glvd1qBI_lSGPisD6qeWaB3kkuEJ_xppQKGFimeY2SKzUCs0qxjGWyJhSYo1AE7CGU0sx-Fvr9Yc_L-a3PIS6KbnfwB1xnvp7C3abKqAdxonYctkkLvzc9Ydyqp4e1Xi8ZPKONuG181VZt1GuN7BiyrewsYRg-A5-96h8n1D-2QiVmTV1v9ZdBLIe2siCYaN-K2Bd3XBVsIs2bQk_1UkL7BqXkqq42CXG1ZP7ap91S9af0w-4XofGTJmDhL1jxOM2rt7D6EUWfAtWy0lptoFZdDawIzp1eSEKy1NpoyTnvo6t5FL5HQjblc20wzwn6o1xhrEPiSP7hzg68G3-07SB_Hi--04rsszt_ypbaGsHvLkY_2e4D88P9wXWB1fnZ9nZ8fD0I7wKKcOmziHfgdXZ_YP5hC7SLP_s9JDB7Uur_l-jFSdf | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkKAcUHlULI_Wh3Ij2iR2EgepqpYuW96qSlflFhzH5rLKLmQR4tqf1V_HTB67e0CICzdLsa3IM_bM2DPfB_A1iFwlPYVhqtDKEQZbMf6wI7WVEc_SMDBUnHxxGR73xel1cD0H_5taGEqrbM7E8qDOhpruyNu-kEJQGWTYtnVaxK9u7_voziEGKXppbeg0KhU5M0-PGL4V3066KOs93-8d_flx7NQMA47mUo4dgdvd1b6K3Fj6PMg868aWa-6lgeAKfRlrfKGECWWcWi-yUis0qRjDWCJiiokxAo__hYhQ3KlKvfdzcr9DeJuSuxXQEeex257y2hQe7S1OlJazxnDq4S495CP19KgGgxlj1_sIK7WXyjqVWq3CnMnXYHkGu3Ad_h1S4T7h-7M-qjGrKn5tfQXIDtE6Zgwb5SsB6-iKpYL9bhKW8FOZrsD-4kJS_Ra7woh6eF8csE7OjibEA3WvrjEjVoPB3jJicBsUG9B_l-X-BPP5MDebwCy6GdgR3bk0E5nlsbRBlHJXh1ZyqdwW-M3KJrpGOyfSjUGCUQ-JI3lBHC3YnwwaVWAfr3ffaUSW1Du_SKZ62gJnIsa3TLf1-nRfYBEVPjk_uTzbhg8-pdaUyeM7MD--fzC76BuN08-lEjK4eW-tfwaa9CT5 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH3-L6IgeP1m2btE29yPpCBEXURT2VNE1EXLqL3VX06C93sk3XRUTUW6CTkjKTzDfpzHwAW0HkCu4JDFOZFA5TOIpxwQ6Xmkc0S8NAmeLks_PwpMVOb4Nbe-FW2LRKDMUfBoe070axg_7bx73doA3q8kY303vP9iYJwYrHY7QiNg4TYYBYvAYTrfOL5p1hlKvmlq2GKMb2jU9mmcIz1k0NqeSoO_rEmJP9vCteX0S7PeJujmchqRZaZpk87vR76Y58-9LD8f9fMgczFomSZmk68zCm8gWYHulPuAjv-6Y43_TwJy00VVJW9Wp7zUf20QNmBAeDPwGkKUsmCnJZJSXho0FKArnB_WRqtMgVRs2dp2KXNHNyNCQXsFKHSnWJbfh6TwxLW7tYgtbx0fXBiWNJGxxJOe85DE9QV_oicmPu0yDztBtrKqmXBowKhIda-UwwFfI41V6kuRSIUjAs1IbbKg7oMtTyTq5WgGiEEiiIkC3NWKZpzHUQpdSVoeaUC7cOfqW7RNqO5oZYo51gZGMUnnyj8DpsDyd1y4YeP4uvV0aR2N1dJD7jjJmS3LAOztBQfvO61T_Kr8GUb5JoBmni61DrPfXVBqKgXrppTf0D7pAGGw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+User+Identification+Based+on+Human+Activity+Recognition+Using+Wearable+Sensors%3A+An+Experiment+Using+Deep+Learning+Models&rft.jtitle=Electronics+%28Basel%29&rft.au=Mekruksavanich%2C+Sakorn&rft.au=Jitpattanakul%2C+Anuchit&rft.date=2021-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=3&rft.spage=308&rft_id=info:doi/10.3390%2Felectronics10030308&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10030308 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |