Improved k-Means Clustering Algorithm for Big Data Based on Distributed SmartphoneNeural Engine Processor

Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of processing power and resources due to the complexity and resulting increment in the clustering time. Therefore, many techniques have been im...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 6; p. 883
Main Authors Awad, Fouad H., Hamad, Murtadha M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 11.03.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11060883

Cover

Abstract Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of processing power and resources due to the complexity and resulting increment in the clustering time. Therefore, many techniques have been implemented to improve the performance of the clustering algorithms, especially for k-means clustering. In this paper, the neural-processor-based k-means clustering technique is proposed to cluster big data by accumulating the advantage of dedicated machine learning processors of mobile devices. The solution was designed to be run with a single-instruction machine processor that exists in the mobile device’s processor. Running the k-means clustering in a distributed scheme run based on mobile machine learning efficiently can handle the big data clustering over the network. The results showed that using a neural engine processor on a mobile smartphone device can maximize the speed of the clustering algorithm, which shows an improvement in the performance of the cluttering up to two-times faster compared with traditional laptop/desktop processors. Furthermore, the number of iterations that are required to obtain (k) clusters was improved up to two-times faster than parallel and distributed k-means.
AbstractList Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of processing power and resources due to the complexity and resulting increment in the clustering time. Therefore, many techniques have been implemented to improve the performance of the clustering algorithms, especially for k-means clustering. In this paper, the neural-processor-based k-means clustering technique is proposed to cluster big data by accumulating the advantage of dedicated machine learning processors of mobile devices. The solution was designed to be run with a single-instruction machine processor that exists in the mobile device’s processor. Running the k-means clustering in a distributed scheme run based on mobile machine learning efficiently can handle the big data clustering over the network. The results showed that using a neural engine processor on a mobile smartphone device can maximize the speed of the clustering algorithm, which shows an improvement in the performance of the cluttering up to two-times faster compared with traditional laptop/desktop processors. Furthermore, the number of iterations that are required to obtain (k) clusters was improved up to two-times faster than parallel and distributed k-means.
Author Awad, Fouad H.
Hamad, Murtadha M.
Author_xml – sequence: 1
  givenname: Fouad H.
  orcidid: 0000-0002-9254-1845
  surname: Awad
  fullname: Awad, Fouad H.
– sequence: 2
  givenname: Murtadha M.
  surname: Hamad
  fullname: Hamad, Murtadha M.
BookMark eNqNkFtLxDAQhYMoeNtf4EvA52ou3SZ9XNcreAP1uaTptJu1m9QkVfz3RtYHEUHnZWbgnJmPs4s2rbOA0AElR5yX5Bh60NE7a3SglBRESr6BdhgRZVaykm1-m7fRJIQlSVVSLjnZQeZqNXj3Cg1-zm5A2YDn_RgieGM7POs7501crHDrPD4xHT5VUeETFZLeWXxqQvSmHmNaH1bKx2GR0G5h9KrHZ7YzFvC9dxpCcH4fbbWqDzD56nvo6fzscX6ZXd9dXM1n15nmUsaMFU0utdAlANc5oUI2cjqtc1lCW5BaMpGTRmuYti1vpBAMKG01FYLk0OY18D2Ur--OdlDvb6rvq8GbRPdeUVJ9Jlb9kliyHa5tKY6XEUKslm70NpFWrMgZL6SQLKnKtUp7F4KHttImqmicjV6Z_o8P_If3P1wfLXOWng
CitedBy_id crossref_primary_10_3390_life13030691
crossref_primary_10_59277_ROMJIST_2023_3_4_06
crossref_primary_10_1007_s11042_024_18147_6
crossref_primary_10_1016_j_procs_2024_09_109
crossref_primary_10_1109_ACCESS_2024_3369487
crossref_primary_10_3390_bdcc7030123
crossref_primary_10_1049_tje2_12263
crossref_primary_10_1007_s41870_022_01012_w
crossref_primary_10_1177_15485129231214569
crossref_primary_10_2478_amns_2023_2_00512
crossref_primary_10_2478_amns_2023_2_00693
crossref_primary_10_3390_su141710822
crossref_primary_10_3233_JIFS_231389
crossref_primary_10_1038_s41598_023_49619_8
crossref_primary_10_3390_electronics13020288
crossref_primary_10_34133_jbioxresearch_0008
crossref_primary_10_1007_s11082_023_05874_7
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_20965_jaciii_2025_p0358
crossref_primary_10_2478_amns_2024_0006
crossref_primary_10_58598_cuhes_1486254
Cites_doi 10.1007/s40565-018-0406-4
10.1007/s10462-020-09918-2
10.1016/j.neucom.2020.02.104
10.1109/JPROC.2016.2591592
10.2478/amns.2020.1.00001
10.1109/ACCESS.2021.3084057
10.1016/j.inffus.2017.10.006
10.1186/s40537-015-0030-3
10.1016/j.future.2020.08.031
10.3390/sym10080342
10.1109/MC.2005.239
10.1049/sfw2.12032
10.1109/TNNLS.2018.2890021
10.1016/j.comnet.2017.06.013
10.1186/s40537-020-00384-9
10.1186/s40537-019-0236-x
10.26599/BDMA.2018.9020037
10.1109/Trustcom/BigDataSE/ICESS.2017.332
10.3390/machines6040054
10.1016/j.knosys.2018.01.031
10.1109/JIOT.2016.2619369
10.1007/978-3-030-66288-2_3
10.1007/978-3-030-00084-4_27
10.1109/ICWR49608.2020.9122313
10.1007/s10723-019-09503-0
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics11060883
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics11060883
10_3390_electronics11060883
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c388t-26d48c7c9ee3c40178d855b489ef60b82740dcce5ff3d8772e11fc17704ef4be3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 04:12:57 EDT 2025
Sun Jul 13 05:13:11 EDT 2025
Thu Oct 16 04:38:00 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-26d48c7c9ee3c40178d855b489ef60b82740dcce5ff3d8772e11fc17704ef4be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9254-1845
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/6/883/pdf?version=1646970885
PQID 2642368782
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics11060883
proquest_journals_2642368782
crossref_citationtrail_10_3390_electronics11060883
crossref_primary_10_3390_electronics11060883
PublicationCentury 2000
PublicationDate 2022-03-11
PublicationDateYYYYMMDD 2022-03-11
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-11
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nguyen (ref_3) 2019; 30
Mahdi (ref_5) 2021; 9
Zhang (ref_22) 2018; 145
Wang (ref_18) 2019; 7
Dafir (ref_12) 2021; 54
ref_13
ref_10
Lu (ref_26) 2020; 18
Fu (ref_8) 2020; 402
Cai (ref_6) 2016; 4
Goodacre (ref_30) 2005; 38
Tsai (ref_4) 2015; 2
Caruso (ref_24) 2019; Volume 179
ref_17
Li (ref_16) 2021; 29
Jane (ref_11) 2018; 28
Moodi (ref_27) 2021; 16
Heidari (ref_14) 2019; 6
Shang (ref_28) 2021; 2021
Daghistani (ref_19) 2020; 7
ref_20
Zhang (ref_9) 2016; 104
Kumar (ref_23) 2019; 2
Ahmed (ref_7) 2017; 129
ref_2
Xie (ref_25) 2020; 5
ref_29
Zhang (ref_1) 2018; 42
Azhir (ref_15) 2021; 114
Mittal (ref_21) 2019; 11
References_xml – volume: 7
  start-page: 65
  year: 2019
  ident: ref_18
  article-title: Cloud-based parallel power flow calculation using resilient distributed datasets and directed acyclic graph
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-018-0406-4
– volume: 54
  start-page: 2411
  year: 2021
  ident: ref_12
  article-title: A survey on parallel clustering algorithms for big data
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09918-2
– volume: 402
  start-page: 148
  year: 2020
  ident: ref_8
  article-title: An overview of recent multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.104
– volume: 104
  start-page: 2114
  year: 2016
  ident: ref_9
  article-title: Parallel processing systems for big data: A survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2591592
– volume: 5
  start-page: 1
  year: 2020
  ident: ref_25
  article-title: Improvement of the Fast Clustering Algorithm Improved by-Means in the Big Data
  publication-title: Appl. Math. Nonlinear Sci.
  doi: 10.2478/amns.2020.1.00001
– volume: 9
  start-page: 80015
  year: 2021
  ident: ref_5
  article-title: Scalable clustering algorithms for big data: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084057
– volume: 42
  start-page: 146
  year: 2018
  ident: ref_1
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.006
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_4
  article-title: Big data analytics: A survey
  publication-title: J. Big Data
  doi: 10.1186/s40537-015-0030-3
– volume: 114
  start-page: 665
  year: 2021
  ident: ref_15
  article-title: An efficient automated incremental density-based algorithm for clustering and classification
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.08.031
– ident: ref_17
  doi: 10.3390/sym10080342
– volume: 38
  start-page: 42
  year: 2005
  ident: ref_30
  article-title: Parallelism and the ARM instruction set architecture
  publication-title: Computer
  doi: 10.1109/MC.2005.239
– volume: 16
  start-page: 48
  year: 2021
  ident: ref_27
  article-title: An improved K-means algorithm for big data
  publication-title: IET Softw.
  doi: 10.1049/sfw2.12032
– volume: 30
  start-page: 3084
  year: 2019
  ident: ref_3
  article-title: Kernel-based distance metric learning for supervised k-means clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2890021
– volume: 129
  start-page: 459
  year: 2017
  ident: ref_7
  article-title: The role of big data analytics in Internet of Things
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2017.06.013
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_19
  article-title: Predictors of outpatients’ no-show: Big data analytics using Apache Spark
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00384-9
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_14
  article-title: Big data clustering with varied density based on MapReduce
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0236-x
– volume: 2
  start-page: 240
  year: 2019
  ident: ref_23
  article-title: A novel clustering technique for efficient clustering of big data in Hadoop Ecosystem
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2018.9020037
– ident: ref_20
  doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.332
– volume: 28
  start-page: 1
  year: 2018
  ident: ref_11
  article-title: SBKMMA: Sorting based K means and median based clustering algorithm using multi machine technique for big data
  publication-title: Int. J. Comput. (IJC)
– ident: ref_29
– ident: ref_2
  doi: 10.3390/machines6040054
– volume: 145
  start-page: 289
  year: 2018
  ident: ref_22
  article-title: Improved K-means algorithm based on density Canopy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.031
– volume: 2021
  start-page: 9988318
  year: 2021
  ident: ref_28
  article-title: Analysis of simple K-mean and parallel K-mean clustering for software products and organizational performance using education sector dataset
  publication-title: Sci. Program.
– volume: 11
  start-page: 535
  year: 2019
  ident: ref_21
  article-title: Performance study of K-nearest neighbor classifier and K-means clustering for predicting the diagnostic accuracy
  publication-title: Int. J. Inf. Technol.
– volume: 4
  start-page: 75
  year: 2016
  ident: ref_6
  article-title: IoT-based big data storage systems in cloud computing: Perspectives and challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2619369
– volume: 29
  start-page: 674
  year: 2021
  ident: ref_16
  article-title: k-Means Parallel Algorithm of Big Data Clustering Based on Mapreduce PCAM Method
  publication-title: Int. J. Eng. Intell. Syst.
– ident: ref_13
  doi: 10.1007/978-3-030-66288-2_3
– volume: Volume 179
  start-page: 525
  year: 2019
  ident: ref_24
  article-title: Cluster analysis: An application to a real mixed-type dataset
  publication-title: Models and Theories in Social Systems
  doi: 10.1007/978-3-030-00084-4_27
– ident: ref_10
  doi: 10.1109/ICWR49608.2020.9122313
– volume: 18
  start-page: 239
  year: 2020
  ident: ref_26
  article-title: Improved K-means clustering algorithm for big data mining under Hadoop parallel framework
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-019-09503-0
SSID ssj0000913830
Score 2.4009206
Snippet Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 883
SubjectTerms Algorithms
Big Data
Cluster analysis
Clustering
Datasets
Electronic devices
Machine learning
Microprocessors
Peer to peer computing
Performance enhancement
Processors
Smartphones
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50PagH8Ynrixw8Gtw2aZs9iLg-EMFFfIC3kld1se6u2kX8987YdldBxGNpm9CZJN9Mmvk-gF2ZCOJoMdxFLuRShZor6yOOWGQcQp4LDNUOX3bj8zt5cR_dT0G3roWhY5X1mvi1ULuBpT3yfQTuUMQKAe1w-MJJNYr-rtYSGrqSVnAHXxRj0zATEjNWA2Y6p92r6_GuC7FgKtEq6YcE5vv7E7WZN0TCGCed-AlRk7hzdtQf6o93neffIOhsERaq2JEdlc5eginfX4b5b4yCK9ArNwm8Y0_80iMMseN8RFwIeJcd5Q_4RcXjM8NIlXV6D-xEF5p1EMgcG_TZCZHokv4VXt4845iic-ue6Duw17IbVhUWDF5X4e7s9Pb4nFdqCtwKpQoexk4qm9i298JiVpUop9BJUrV9FreMwvS05Sz6KcuEUxh0-yDIbJAkLekzabxYg0Yfe10HFmaBsujXIHFaRtpqG2llZDuLnBE2Nk0IawOmtqIaJ8WLPMWUg6ye_mL1JuyNXxqWTBt_P75Veyatpt1bOhkkTeBjb_2nuY2_m9uEuZDqHuggX7AFjeJ15LcxGinMTjXEPgH_uuOw
  priority: 102
  providerName: ProQuest
Title Improved k-Means Clustering Algorithm for Big Data Based on Distributed SmartphoneNeural Engine Processor
URI https://www.proquest.com/docview/2642368782
https://www.mdpi.com/2079-9292/11/6/883/pdf?version=1646970885
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5i7QE4jJ8ThVH5wBEvje0kzgm168qEaDUxKo1T5F8Z1bK2atMh-Ot5Ju42EELAKYpix47ec77vWc_fA3glMu41WjS1iWVUSKaoNC6hiEXaIuTZWPuzw-NJejwV786Ss7Dhtg5plRiKz378pFkvyyniN4viOEojKXm0tOWbq7CT5KWx8gyXSbID7TRBLt6C9nRy0v_kK8pt-zZSQxxj--imsswaUS_FnvxnOLrhmHc386X6-kVV1S24GT2AYjvRJsvk4mBT6wPz7RcNx___koewG5go6Teu8wjuuPljuH9Ln_AJzJotB2fJBR07BDVyWG28sgI-Jf3qfLGa1Z8vCfJeMpidk6GqFRkgLFqymJOhl-T11bTw9vQSPdRnwTsvBoKjNsOQcExhsXoK09HRx8NjGmozUMOlrClLrZAmM7lz3GCMlkkr0eRC5q5Me1pisNuzBq1eltxKpPAujksTZ1lPuFJox_egNcdRnwFhZSwNekmcWSUSZZRJlNQiLxOruUl1B9jWRIUJwuW-fkZVYADj7Vr8xq4deH3dadnodvy5-f7W9kVYxOsCuSLjqUQO1QF67Q9_87rn_9j-Bdxj_liFzxOM96FVrzbuJZKdWndhR47edqHdH47fn-J1cDQ5-dANfv4deLACeQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPFRQQ20LrQ3urRWI7iXNAFcuClsKuKh4St-BXKGrY3bJZIf5cf1vHJNmlEkK9cIyS2NF47G_G8XwfwGeRcM_RoqmNLKNCMkWlcRFFLNIWIc-G2tcO9_px90J8v4wu5-BPUwvjj1U2a-LjQm2Hxu-R7yBwMx5LBLRvo9_Uq0b5v6uNhIaqpRXs7iPFWF3Ycewe7jGFG-8edXC8vzB2eHC-36W1ygA1XMqSstgKaRKTOseN8Gr1VuLHC5m6PA60xLQtsAa_P8-5lRiMujDMTZgkgXC50I5ju_OwKLhIMflbbB_0f5xOd3k866bkQUV3xHka7MzUbcaIvDFOcv4vJM7i3KXJYKQe7lVRPIG8wxV4W8eqZK9yrlWYc4N38OYJg-Ea3FSbEs6SX7TnEPbIfjHx3At4l-wV12jB8uctwciYtG-uSUeVirQROC0ZDkjHk_Z6vS28PLtFH_bn5J2nC8Feq25IXcgwvFuHi1ex6wYsDLDXTSAsD6VBPwoTq0SkjDKRklqkeWQ1N7FuAWsMmJma2twrbBQZpjje6tkzVm_B1-lLo4rZ4-XHt5qRyeppPs5mTtkCOh2t_2nu_cvNfYKl7nnvJDs56h9_gGXmay78IcJwCxbKu4nbxkio1B9rdyNw9doe_hdMbCEf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkPo4VKUPdVva-kBvtTaxncR7qBCw3fIoqFKLxC31KxQRdhc2K8Rf49d1hiS7IFWIC8coiR2NP_sbOzPfAKyqTJJGi-U-8YIrLQzXLiQcuch6pDwfW8od3ttPtw7UzmFyuABXbS4MhVW2a-L1Qu1Hjs7Iu0jcQqYaCa1bNGERP_uDtfEZpwpS9Ke1LadRQ2Q3XF7g9m3ydbuPY_1ZiMG335tbvKkwwJ3UuuIi9Uq7zPVCkE5RpXqv8cOV7oUijazGLVvkHX57UUiv0RENcVy4OMsiFQplg8R2H8FSRirulKU--D473yG9TS2jWuhIyl7Unde1mSDnpji95W0ynHu4T6bDsbm8MGV5g-wGL-B546Wy9RpWy7AQhi_h2Q3twldwXB9HBM9O-F5AwmOb5ZRUF_AuWy-P0F7V31OGPjHbOD5ifVMZtoGU6dloyPok10uVtvDy1ymilyLkAwmFYK91N6xJYRidv4aDB7HqG1gcYq9vgYki1g4RFGfeqMQ44xKjreoVibfSpbYDojVg7hpRc6qtUea4uSGr5_-xege-zF4a15oedz--0o5M3kzwST6HYwf4bLTu09y7u5v7BI8R1_mP7f3d9_BUULIFRQ_GK7BYnU_DB3SBKvvxGmsM_jw0uP8Bfa0euQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6VcIAe-gCqpoVqDxxZnH3YXp-q8BKqBEIqkeBk7csQYZIocYror-9svQFaVVXp0fKO19bM-vtmNfsNwLbMRdBoMdSljlOpuKbK-pQiFhmHkOeYCWeHT06z44H8cpFexA23WSyrxFR8-PMnzXt5QRG_ecJYkiVKiWTiqs_f4k5SkMYqclwm6RIsZyly8Q4sD07P-peho9zCtpUaEpjbJ4-dZWaIehlail_h6JFjrsxHE31_p-v6CdwcvYZy8aJtlcnN7rwxu_b7bxqO__8lb-BVZKKk34bOW3jhR2vw8ok-4ToM2y0H78gNPfEIamS_ngdlBbxL-vXVeDpsrm8J8l6yN7wiB7rRZA9h0ZHxiBwESd7QTQsvv95ihIYqeB_EQHDWdhoSjymMpxswODo83z-msTcDtUKphvLMSWVzW3gvLOZouXIKXS5V4ausZxQmuz1n0etVJZxCCu8ZqyzL8570lTRevIPOCGd9D4RXTFmMEpY7LVNttU21MrKoUmeEzUwX-MJFpY3C5aF_Rl1iAhP8Wv7Br13YeTCatLodfx--ufB9GRfxrESuyEWmkEN1gT7Ew7887sMzx3-EVR6OVYQ6QbYJnWY691tIdhrzKUb0D3jK_lY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+k-Means+Clustering+Algorithm+for+Big+Data+Based+on+Distributed+SmartphoneNeural+Engine+Processor&rft.jtitle=Electronics+%28Basel%29&rft.au=Awad%2C+Fouad+H.&rft.au=Hamad%2C+Murtadha+M.&rft.date=2022-03-11&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=6&rft.spage=883&rft_id=info:doi/10.3390%2Felectronics11060883&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11060883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon