Improved k-Means Clustering Algorithm for Big Data Based on Distributed SmartphoneNeural Engine Processor
Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of processing power and resources due to the complexity and resulting increment in the clustering time. Therefore, many techniques have been im...
Saved in:
| Published in | Electronics (Basel) Vol. 11; no. 6; p. 883 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
11.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics11060883 |
Cover
| Abstract | Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of processing power and resources due to the complexity and resulting increment in the clustering time. Therefore, many techniques have been implemented to improve the performance of the clustering algorithms, especially for k-means clustering. In this paper, the neural-processor-based k-means clustering technique is proposed to cluster big data by accumulating the advantage of dedicated machine learning processors of mobile devices. The solution was designed to be run with a single-instruction machine processor that exists in the mobile device’s processor. Running the k-means clustering in a distributed scheme run based on mobile machine learning efficiently can handle the big data clustering over the network. The results showed that using a neural engine processor on a mobile smartphone device can maximize the speed of the clustering algorithm, which shows an improvement in the performance of the cluttering up to two-times faster compared with traditional laptop/desktop processors. Furthermore, the number of iterations that are required to obtain (k) clusters was improved up to two-times faster than parallel and distributed k-means. |
|---|---|
| AbstractList | Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of processing power and resources due to the complexity and resulting increment in the clustering time. Therefore, many techniques have been implemented to improve the performance of the clustering algorithms, especially for k-means clustering. In this paper, the neural-processor-based k-means clustering technique is proposed to cluster big data by accumulating the advantage of dedicated machine learning processors of mobile devices. The solution was designed to be run with a single-instruction machine processor that exists in the mobile device’s processor. Running the k-means clustering in a distributed scheme run based on mobile machine learning efficiently can handle the big data clustering over the network. The results showed that using a neural engine processor on a mobile smartphone device can maximize the speed of the clustering algorithm, which shows an improvement in the performance of the cluttering up to two-times faster compared with traditional laptop/desktop processors. Furthermore, the number of iterations that are required to obtain (k) clusters was improved up to two-times faster than parallel and distributed k-means. |
| Author | Awad, Fouad H. Hamad, Murtadha M. |
| Author_xml | – sequence: 1 givenname: Fouad H. orcidid: 0000-0002-9254-1845 surname: Awad fullname: Awad, Fouad H. – sequence: 2 givenname: Murtadha M. surname: Hamad fullname: Hamad, Murtadha M. |
| BookMark | eNqNkFtLxDAQhYMoeNtf4EvA52ou3SZ9XNcreAP1uaTptJu1m9QkVfz3RtYHEUHnZWbgnJmPs4s2rbOA0AElR5yX5Bh60NE7a3SglBRESr6BdhgRZVaykm1-m7fRJIQlSVVSLjnZQeZqNXj3Cg1-zm5A2YDn_RgieGM7POs7501crHDrPD4xHT5VUeETFZLeWXxqQvSmHmNaH1bKx2GR0G5h9KrHZ7YzFvC9dxpCcH4fbbWqDzD56nvo6fzscX6ZXd9dXM1n15nmUsaMFU0utdAlANc5oUI2cjqtc1lCW5BaMpGTRmuYti1vpBAMKG01FYLk0OY18D2Ur--OdlDvb6rvq8GbRPdeUVJ9Jlb9kliyHa5tKY6XEUKslm70NpFWrMgZL6SQLKnKtUp7F4KHttImqmicjV6Z_o8P_If3P1wfLXOWng |
| CitedBy_id | crossref_primary_10_3390_life13030691 crossref_primary_10_59277_ROMJIST_2023_3_4_06 crossref_primary_10_1007_s11042_024_18147_6 crossref_primary_10_1016_j_procs_2024_09_109 crossref_primary_10_1109_ACCESS_2024_3369487 crossref_primary_10_3390_bdcc7030123 crossref_primary_10_1049_tje2_12263 crossref_primary_10_1007_s41870_022_01012_w crossref_primary_10_1177_15485129231214569 crossref_primary_10_2478_amns_2023_2_00512 crossref_primary_10_2478_amns_2023_2_00693 crossref_primary_10_3390_su141710822 crossref_primary_10_3233_JIFS_231389 crossref_primary_10_1038_s41598_023_49619_8 crossref_primary_10_3390_electronics13020288 crossref_primary_10_34133_jbioxresearch_0008 crossref_primary_10_1007_s11082_023_05874_7 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_20965_jaciii_2025_p0358 crossref_primary_10_2478_amns_2024_0006 crossref_primary_10_58598_cuhes_1486254 |
| Cites_doi | 10.1007/s40565-018-0406-4 10.1007/s10462-020-09918-2 10.1016/j.neucom.2020.02.104 10.1109/JPROC.2016.2591592 10.2478/amns.2020.1.00001 10.1109/ACCESS.2021.3084057 10.1016/j.inffus.2017.10.006 10.1186/s40537-015-0030-3 10.1016/j.future.2020.08.031 10.3390/sym10080342 10.1109/MC.2005.239 10.1049/sfw2.12032 10.1109/TNNLS.2018.2890021 10.1016/j.comnet.2017.06.013 10.1186/s40537-020-00384-9 10.1186/s40537-019-0236-x 10.26599/BDMA.2018.9020037 10.1109/Trustcom/BigDataSE/ICESS.2017.332 10.3390/machines6040054 10.1016/j.knosys.2018.01.031 10.1109/JIOT.2016.2619369 10.1007/978-3-030-66288-2_3 10.1007/978-3-030-00084-4_27 10.1109/ICWR49608.2020.9122313 10.1007/s10723-019-09503-0 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics11060883 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics11060883 10_3390_electronics11060883 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c388t-26d48c7c9ee3c40178d855b489ef60b82740dcce5ff3d8772e11fc17704ef4be3 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 04:12:57 EDT 2025 Sun Jul 13 05:13:11 EDT 2025 Thu Oct 16 04:38:00 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c388t-26d48c7c9ee3c40178d855b489ef60b82740dcce5ff3d8772e11fc17704ef4be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9254-1845 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/6/883/pdf?version=1646970885 |
| PQID | 2642368782 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics11060883 proquest_journals_2642368782 crossref_citationtrail_10_3390_electronics11060883 crossref_primary_10_3390_electronics11060883 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-11 |
| PublicationDateYYYYMMDD | 2022-03-11 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Nguyen (ref_3) 2019; 30 Mahdi (ref_5) 2021; 9 Zhang (ref_22) 2018; 145 Wang (ref_18) 2019; 7 Dafir (ref_12) 2021; 54 ref_13 ref_10 Lu (ref_26) 2020; 18 Fu (ref_8) 2020; 402 Cai (ref_6) 2016; 4 Goodacre (ref_30) 2005; 38 Tsai (ref_4) 2015; 2 Caruso (ref_24) 2019; Volume 179 ref_17 Li (ref_16) 2021; 29 Jane (ref_11) 2018; 28 Moodi (ref_27) 2021; 16 Heidari (ref_14) 2019; 6 Shang (ref_28) 2021; 2021 Daghistani (ref_19) 2020; 7 ref_20 Zhang (ref_9) 2016; 104 Kumar (ref_23) 2019; 2 Ahmed (ref_7) 2017; 129 ref_2 Xie (ref_25) 2020; 5 ref_29 Zhang (ref_1) 2018; 42 Azhir (ref_15) 2021; 114 Mittal (ref_21) 2019; 11 |
| References_xml | – volume: 7 start-page: 65 year: 2019 ident: ref_18 article-title: Cloud-based parallel power flow calculation using resilient distributed datasets and directed acyclic graph publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-018-0406-4 – volume: 54 start-page: 2411 year: 2021 ident: ref_12 article-title: A survey on parallel clustering algorithms for big data publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09918-2 – volume: 402 start-page: 148 year: 2020 ident: ref_8 article-title: An overview of recent multi-view clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.104 – volume: 104 start-page: 2114 year: 2016 ident: ref_9 article-title: Parallel processing systems for big data: A survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2591592 – volume: 5 start-page: 1 year: 2020 ident: ref_25 article-title: Improvement of the Fast Clustering Algorithm Improved by-Means in the Big Data publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00001 – volume: 9 start-page: 80015 year: 2021 ident: ref_5 article-title: Scalable clustering algorithms for big data: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3084057 – volume: 42 start-page: 146 year: 2018 ident: ref_1 article-title: A survey on deep learning for big data publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.10.006 – volume: 2 start-page: 1 year: 2015 ident: ref_4 article-title: Big data analytics: A survey publication-title: J. Big Data doi: 10.1186/s40537-015-0030-3 – volume: 114 start-page: 665 year: 2021 ident: ref_15 article-title: An efficient automated incremental density-based algorithm for clustering and classification publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.08.031 – ident: ref_17 doi: 10.3390/sym10080342 – volume: 38 start-page: 42 year: 2005 ident: ref_30 article-title: Parallelism and the ARM instruction set architecture publication-title: Computer doi: 10.1109/MC.2005.239 – volume: 16 start-page: 48 year: 2021 ident: ref_27 article-title: An improved K-means algorithm for big data publication-title: IET Softw. doi: 10.1049/sfw2.12032 – volume: 30 start-page: 3084 year: 2019 ident: ref_3 article-title: Kernel-based distance metric learning for supervised k-means clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2890021 – volume: 129 start-page: 459 year: 2017 ident: ref_7 article-title: The role of big data analytics in Internet of Things publication-title: Comput. Netw. doi: 10.1016/j.comnet.2017.06.013 – volume: 7 start-page: 1 year: 2020 ident: ref_19 article-title: Predictors of outpatients’ no-show: Big data analytics using Apache Spark publication-title: J. Big Data doi: 10.1186/s40537-020-00384-9 – volume: 6 start-page: 1 year: 2019 ident: ref_14 article-title: Big data clustering with varied density based on MapReduce publication-title: J. Big Data doi: 10.1186/s40537-019-0236-x – volume: 2 start-page: 240 year: 2019 ident: ref_23 article-title: A novel clustering technique for efficient clustering of big data in Hadoop Ecosystem publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2018.9020037 – ident: ref_20 doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.332 – volume: 28 start-page: 1 year: 2018 ident: ref_11 article-title: SBKMMA: Sorting based K means and median based clustering algorithm using multi machine technique for big data publication-title: Int. J. Comput. (IJC) – ident: ref_29 – ident: ref_2 doi: 10.3390/machines6040054 – volume: 145 start-page: 289 year: 2018 ident: ref_22 article-title: Improved K-means algorithm based on density Canopy publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.01.031 – volume: 2021 start-page: 9988318 year: 2021 ident: ref_28 article-title: Analysis of simple K-mean and parallel K-mean clustering for software products and organizational performance using education sector dataset publication-title: Sci. Program. – volume: 11 start-page: 535 year: 2019 ident: ref_21 article-title: Performance study of K-nearest neighbor classifier and K-means clustering for predicting the diagnostic accuracy publication-title: Int. J. Inf. Technol. – volume: 4 start-page: 75 year: 2016 ident: ref_6 article-title: IoT-based big data storage systems in cloud computing: Perspectives and challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2619369 – volume: 29 start-page: 674 year: 2021 ident: ref_16 article-title: k-Means Parallel Algorithm of Big Data Clustering Based on Mapreduce PCAM Method publication-title: Int. J. Eng. Intell. Syst. – ident: ref_13 doi: 10.1007/978-3-030-66288-2_3 – volume: Volume 179 start-page: 525 year: 2019 ident: ref_24 article-title: Cluster analysis: An application to a real mixed-type dataset publication-title: Models and Theories in Social Systems doi: 10.1007/978-3-030-00084-4_27 – ident: ref_10 doi: 10.1109/ICWR49608.2020.9122313 – volume: 18 start-page: 239 year: 2020 ident: ref_26 article-title: Improved K-means clustering algorithm for big data mining under Hadoop parallel framework publication-title: J. Grid Comput. doi: 10.1007/s10723-019-09503-0 |
| SSID | ssj0000913830 |
| Score | 2.4009206 |
| Snippet | Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 883 |
| SubjectTerms | Algorithms Big Data Cluster analysis Clustering Datasets Electronic devices Machine learning Microprocessors Peer to peer computing Performance enhancement Processors Smartphones Vector quantization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50PagH8Ynrixw8Gtw2aZs9iLg-EMFFfIC3kld1se6u2kX8987YdldBxGNpm9CZJN9Mmvk-gF2ZCOJoMdxFLuRShZor6yOOWGQcQp4LDNUOX3bj8zt5cR_dT0G3roWhY5X1mvi1ULuBpT3yfQTuUMQKAe1w-MJJNYr-rtYSGrqSVnAHXxRj0zATEjNWA2Y6p92r6_GuC7FgKtEq6YcE5vv7E7WZN0TCGCed-AlRk7hzdtQf6o93neffIOhsERaq2JEdlc5eginfX4b5b4yCK9ArNwm8Y0_80iMMseN8RFwIeJcd5Q_4RcXjM8NIlXV6D-xEF5p1EMgcG_TZCZHokv4VXt4845iic-ue6Duw17IbVhUWDF5X4e7s9Pb4nFdqCtwKpQoexk4qm9i298JiVpUop9BJUrV9FreMwvS05Sz6KcuEUxh0-yDIbJAkLekzabxYg0Yfe10HFmaBsujXIHFaRtpqG2llZDuLnBE2Nk0IawOmtqIaJ8WLPMWUg6ye_mL1JuyNXxqWTBt_P75Veyatpt1bOhkkTeBjb_2nuY2_m9uEuZDqHuggX7AFjeJ15LcxGinMTjXEPgH_uuOw priority: 102 providerName: ProQuest |
| Title | Improved k-Means Clustering Algorithm for Big Data Based on Distributed SmartphoneNeural Engine Processor |
| URI | https://www.proquest.com/docview/2642368782 https://www.mdpi.com/2079-9292/11/6/883/pdf?version=1646970885 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5i7QE4jJ8ThVH5wBEvje0kzgm168qEaDUxKo1T5F8Z1bK2atMh-Ot5Ju42EELAKYpix47ec77vWc_fA3glMu41WjS1iWVUSKaoNC6hiEXaIuTZWPuzw-NJejwV786Ss7Dhtg5plRiKz378pFkvyyniN4viOEojKXm0tOWbq7CT5KWx8gyXSbID7TRBLt6C9nRy0v_kK8pt-zZSQxxj--imsswaUS_FnvxnOLrhmHc386X6-kVV1S24GT2AYjvRJsvk4mBT6wPz7RcNx___koewG5go6Teu8wjuuPljuH9Ln_AJzJotB2fJBR07BDVyWG28sgI-Jf3qfLGa1Z8vCfJeMpidk6GqFRkgLFqymJOhl-T11bTw9vQSPdRnwTsvBoKjNsOQcExhsXoK09HRx8NjGmozUMOlrClLrZAmM7lz3GCMlkkr0eRC5q5Me1pisNuzBq1eltxKpPAujksTZ1lPuFJox_egNcdRnwFhZSwNekmcWSUSZZRJlNQiLxOruUl1B9jWRIUJwuW-fkZVYADj7Vr8xq4deH3dadnodvy5-f7W9kVYxOsCuSLjqUQO1QF67Q9_87rn_9j-Bdxj_liFzxOM96FVrzbuJZKdWndhR47edqHdH47fn-J1cDQ5-dANfv4deLACeQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPFRQQ20LrQ3urRWI7iXNAFcuClsKuKh4St-BXKGrY3bJZIf5cf1vHJNmlEkK9cIyS2NF47G_G8XwfwGeRcM_RoqmNLKNCMkWlcRFFLNIWIc-G2tcO9_px90J8v4wu5-BPUwvjj1U2a-LjQm2Hxu-R7yBwMx5LBLRvo9_Uq0b5v6uNhIaqpRXs7iPFWF3Ycewe7jGFG-8edXC8vzB2eHC-36W1ygA1XMqSstgKaRKTOseN8Gr1VuLHC5m6PA60xLQtsAa_P8-5lRiMujDMTZgkgXC50I5ju_OwKLhIMflbbB_0f5xOd3k866bkQUV3xHka7MzUbcaIvDFOcv4vJM7i3KXJYKQe7lVRPIG8wxV4W8eqZK9yrlWYc4N38OYJg-Ea3FSbEs6SX7TnEPbIfjHx3At4l-wV12jB8uctwciYtG-uSUeVirQROC0ZDkjHk_Z6vS28PLtFH_bn5J2nC8Feq25IXcgwvFuHi1ex6wYsDLDXTSAsD6VBPwoTq0SkjDKRklqkeWQ1N7FuAWsMmJma2twrbBQZpjje6tkzVm_B1-lLo4rZ4-XHt5qRyeppPs5mTtkCOh2t_2nu_cvNfYKl7nnvJDs56h9_gGXmay78IcJwCxbKu4nbxkio1B9rdyNw9doe_hdMbCEf |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkPo4VKUPdVva-kBvtTaxncR7qBCw3fIoqFKLxC31KxQRdhc2K8Rf49d1hiS7IFWIC8coiR2NP_sbOzPfAKyqTJJGi-U-8YIrLQzXLiQcuch6pDwfW8od3ttPtw7UzmFyuABXbS4MhVW2a-L1Qu1Hjs7Iu0jcQqYaCa1bNGERP_uDtfEZpwpS9Ke1LadRQ2Q3XF7g9m3ydbuPY_1ZiMG335tbvKkwwJ3UuuIi9Uq7zPVCkE5RpXqv8cOV7oUijazGLVvkHX57UUiv0RENcVy4OMsiFQplg8R2H8FSRirulKU--D473yG9TS2jWuhIyl7Unde1mSDnpji95W0ynHu4T6bDsbm8MGV5g-wGL-B546Wy9RpWy7AQhi_h2Q3twldwXB9HBM9O-F5AwmOb5ZRUF_AuWy-P0F7V31OGPjHbOD5ifVMZtoGU6dloyPok10uVtvDy1ymilyLkAwmFYK91N6xJYRidv4aDB7HqG1gcYq9vgYki1g4RFGfeqMQ44xKjreoVibfSpbYDojVg7hpRc6qtUea4uSGr5_-xege-zF4a15oedz--0o5M3kzwST6HYwf4bLTu09y7u5v7BI8R1_mP7f3d9_BUULIFRQ_GK7BYnU_DB3SBKvvxGmsM_jw0uP8Bfa0euQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6VcIAe-gCqpoVqDxxZnH3YXp-q8BKqBEIqkeBk7csQYZIocYror-9svQFaVVXp0fKO19bM-vtmNfsNwLbMRdBoMdSljlOpuKbK-pQiFhmHkOeYCWeHT06z44H8cpFexA23WSyrxFR8-PMnzXt5QRG_ecJYkiVKiWTiqs_f4k5SkMYqclwm6RIsZyly8Q4sD07P-peho9zCtpUaEpjbJ4-dZWaIehlail_h6JFjrsxHE31_p-v6CdwcvYZy8aJtlcnN7rwxu_b7bxqO__8lb-BVZKKk34bOW3jhR2vw8ok-4ToM2y0H78gNPfEIamS_ngdlBbxL-vXVeDpsrm8J8l6yN7wiB7rRZA9h0ZHxiBwESd7QTQsvv95ihIYqeB_EQHDWdhoSjymMpxswODo83z-msTcDtUKphvLMSWVzW3gvLOZouXIKXS5V4ausZxQmuz1n0etVJZxCCu8ZqyzL8570lTRevIPOCGd9D4RXTFmMEpY7LVNttU21MrKoUmeEzUwX-MJFpY3C5aF_Rl1iAhP8Wv7Br13YeTCatLodfx--ufB9GRfxrESuyEWmkEN1gT7Ew7887sMzx3-EVR6OVYQ6QbYJnWY691tIdhrzKUb0D3jK_lY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+k-Means+Clustering+Algorithm+for+Big+Data+Based+on+Distributed+SmartphoneNeural+Engine+Processor&rft.jtitle=Electronics+%28Basel%29&rft.au=Awad%2C+Fouad+H.&rft.au=Hamad%2C+Murtadha+M.&rft.date=2022-03-11&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=6&rft.spage=883&rft_id=info:doi/10.3390%2Felectronics11060883&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11060883 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |