Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations

By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path depen...

Full description

Saved in:
Bibliographic Details
Published inPotential analysis Vol. 61; no. 2; pp. 379 - 407
Main Authors Ren, Panpan, Tang, Hao, Wang, Feng-Yu
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0926-2601
1572-929X
DOI10.1007/s11118-023-10113-5

Cover

Abstract By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path dependent stochastic transport type equations, which are arising from stochastic fluid mechanics with forces depending on the history and the environment. In particular, the distribution-path dependent stochastic Camassa-Holm equation with or without Coriolis effect has a unique global solution when the noise is strong enough, whereas for the deterministic model wave-breaking may occur. This indicates that the noise may prevent blow-up almost surely.
AbstractList By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path dependent stochastic transport type equations, which are arising from stochastic fluid mechanics with forces depending on the history and the environment. In particular, the distribution-path dependent stochastic Camassa-Holm equation with or without Coriolis effect has a unique global solution when the noise is strong enough, whereas for the deterministic model wave-breaking may occur. This indicates that the noise may prevent blow-up almost surely.
Author Ren, Panpan
Wang, Feng-Yu
Tang, Hao
Author_xml – sequence: 1
  givenname: Panpan
  surname: Ren
  fullname: Ren, Panpan
  organization: Department of Mathematics, City University University of Hong Kong
– sequence: 2
  givenname: Hao
  orcidid: 0000-0003-3414-7345
  surname: Tang
  fullname: Tang, Hao
  email: haot@math.uio.no
  organization: Department of Mathematics, University of Oslo
– sequence: 3
  givenname: Feng-Yu
  surname: Wang
  fullname: Wang, Feng-Yu
  organization: Center for Applied Mathematics, Tianjin University
BookMark eNp9kEFPnCEQhomxiavtH_BE0jM6gPDB0bhrNTFq4jbpjVA-qJgtfAKbxn8vu6tp4sG5zGGe952Z9xDtp5w8QscUTijAcFppL0WAcUKBUk7EHppRMTCimf61j2agmSRMAj1Ah7U-AQAbBjVDbh5rK_H3usWcyL1tj3juJ59Gnxq-zWkVk7cFP9zPFxX_i318Pk2r6OyGxy3jh5bdo60tOrwsNtUpl4aXL5PHi-f1lqpf0ZdgV9V_e-tH6OflYnlxRW7uflxfnN8Qx5VqhHrOmFZi0yF46UehldNCnDnFVFBno9YSpHAUZNA-DDJQGGVwcrTBesaPEN75utKfismkXKyhoAQzlA5SiI583yFTyc9rX5t5yuuS-lWGg5LAgVHeKfVulGstPhgX2_aXVmxcdUuzSd3sUjc9dbNN3WwWsA_SqcS_trx8LuI7Ue1w-uPL_6s-Ub0CXMqVnA
CitedBy_id crossref_primary_10_3934_dcdss_2024185
crossref_primary_10_1016_j_jmaa_2024_128912
crossref_primary_10_1016_j_cnsns_2024_108535
Cites_doi 10.1016/j.spa.2011.03.004
10.1103/PhysRevLett.71.1661
10.1214/21-AIHP1241
10.3934/dcds.2019125
10.1137/16M1080537
10.1214/12-AOP773
10.1016/j.spa.2014.01.010
10.1016/j.spa.2018.12.012
10.1007/s00440-004-0392-5
10.1016/j.jde.2019.05.016
10.1090/S0894-0347-1991-1086966-0
10.1007/s40072-023-00291-z
10.1007/s00205-008-0128-2
10.1016/j.jde.2021.02.019
10.1016/S0375-9601(03)00114-2
10.1016/j.spa.2021.01.008
10.1007/s10231-019-00882-5
10.1142/S0219199722500730
10.1016/j.jfa.2013.01.003
10.1007/BF02392586
10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
10.3934/dcds.2022163
10.1016/j.spa.2022.11.010
10.1007/s00222-009-0224-4
10.1007/s00030-015-0321-6
10.1007/978-3-0348-7909-5
10.1016/j.spa.2017.05.006
10.4310/CMS.2021.v19.n3.a2
10.1103/PhysRevLett.87.194501
10.1007/s00028-023-00890-2
10.2422/2036-2145.201512_008
10.1016/j.jmaa.2021.125000
10.1017/CBO9781139137119
10.1007/978-3-642-36297-2_2
10.1515/9783110492552
10.1017/CBO9781107295513
10.1214/ECP.v19-2833
10.1007/s00021-019-0432-7
10.1007/s00332-021-09755-9
10.1007/s00030-019-0602-6
10.1007/s10231-017-0633-8
10.1007/978-3-642-18231-0
10.1016/j.jfa.2023.110075
10.1016/0167-2789(81)90004-X
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID C6C
AAYXX
CITATION
3HK
DOI 10.1007/s11118-023-10113-5
DatabaseName Springer Nature OA Free Journals
CrossRef
NORA - Norwegian Open Research Archives
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1572-929X
EndPage 407
ExternalDocumentID 10852_117655
10_1007_s11118_023_10113_5
GrantInformation_xml – fundername: National Key Research & Development Program of China
  grantid: No.2020YFA0712900 and No. 2022YFA1006000
– fundername: Alexander von Humboldt-Stiftung
  funderid: http://dx.doi.org/10.13039/100005156
– fundername: National Natural Science Foundation of China
  grantid: 11831014; 11921001
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
3HK
ID FETCH-LOGICAL-c388t-1e3229851e320fe6ed598c9554c828f84d996065c106f9ef76f10d6fc6dafae23
IEDL.DBID C6C
ISSN 0926-2601
IngestDate Mon Mar 31 03:23:22 EDT 2025
Thu Sep 25 00:42:59 EDT 2025
Tue Jul 01 01:52:26 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Fri Feb 21 02:39:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Distribution-Path Dependent Nonlinear SPDEs
35Q35
35A01
Secondary: 60H30
Stochastic transport type equation
Stochastic Camassa-Holm type equation
Primary: 60H15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-1e3229851e320fe6ed598c9554c828f84d996065c106f9ef76f10d6fc6dafae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3414-7345
OpenAccessLink https://doi.org/10.1007/s11118-023-10113-5
PQID 3086030213
PQPubID 2043741
PageCount 29
ParticipantIDs cristin_nora_10852_117655
proquest_journals_3086030213
crossref_citationtrail_10_1007_s11118_023_10113_5
crossref_primary_10_1007_s11118_023_10113_5
springer_journals_10_1007_s11118_023_10113_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis
PublicationTitle Potential analysis
PublicationTitleAbbrev Potential Anal
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Pardoux (CR22) 1972; 275
Constantin, Escher (CR39) 1998; 51
Tang, Yang (CR45) 2023; 59
Holden, Karlsen, Pang (CR44) 2023; 43
CR37
Dullin, Gottwald, Holm (CR36) 2001; 87
CR32
CR30
Chen, Duan, Gao (CR42) 2021; 19
Flandoli, Gubinelli, Priola (CR29) 2011; 121
Wang (CR5) 2018; 128
CR4
CR6
CR8
CR7
Bao, Ren, Wang (CR1) 2021; 282
CR9
CR48
Zhu, Liu, Mi (CR40) 2020; 199
Tang (CR26) 2018; 50
Himonas, Kenig (CR49) 2009; 22
Miao, Rohde, Tang (CR16) 2023
Constantin, Lannes (CR35) 2009; 192
CR43
CR41
Fedrizzi, Flandoli (CR11) 2013; 264
Camassa, Holm (CR33) 1993; 71
Brzeźniak, Maslowski, Seidler (CR31) 2005; 132
Tang, Wang (CR28) 2023
CR19
CR17
Huang, Wang (CR47) 2019; 129
Da Prato (CR23) 2004
CR15
CR14
CR12
CR10
Röckner, Zhu, Zhu (CR25) 2014; 124
Huang, Röckner, Wang (CR2) 2019; 39
Holm, Staley (CR34) 2003; 308
Glatt-Holtz, Vicol (CR24) 2014; 42
Flandoli, Gubinelli, Priola (CR13) 2010; 180
Neves, Olivera (CR18) 2015; 22
Kenig, Ponce, Vega (CR50) 1991; 4
Ren (CR46) 2023; 156
Ren, Wang (CR3) 2019; 267
Li, Liu, Tang (CR27) 2021; 135
CR21
CR20
Constantin, Escher (CR38) 1998; 181
E Pardoux (10113_CR22) 1972; 275
10113_CR4
E Fedrizzi (10113_CR11) 2013; 264
10113_CR9
10113_CR8
X Huang (10113_CR47) 2019; 129
10113_CR7
A Constantin (10113_CR38) 1998; 181
10113_CR6
HR Dullin (10113_CR36) 2001; 87
P Ren (10113_CR46) 2023; 156
F Flandoli (10113_CR13) 2010; 180
H Holden (10113_CR44) 2023; 43
10113_CR48
A Himonas (10113_CR49) 2009; 22
J Bao (10113_CR1) 2021; 282
H Tang (10113_CR26) 2018; 50
10113_CR43
10113_CR41
A Constantin (10113_CR35) 2009; 192
R Camassa (10113_CR33) 1993; 71
H Tang (10113_CR45) 2023; 59
Z Brzeźniak (10113_CR31) 2005; 132
Y Miao (10113_CR16) 2023
A Constantin (10113_CR39) 1998; 51
10113_CR37
10113_CR32
10113_CR30
P Ren (10113_CR3) 2019; 267
H Tang (10113_CR28) 2023
F Flandoli (10113_CR29) 2011; 121
N Glatt-Holtz (10113_CR24) 2014; 42
M Zhu (10113_CR40) 2020; 199
10113_CR19
10113_CR17
X Huang (10113_CR2) 2019; 39
10113_CR21
10113_CR20
F-Y Wang (10113_CR5) 2018; 128
Y Chen (10113_CR42) 2021; 19
J Li (10113_CR27) 2021; 135
M Röckner (10113_CR25) 2014; 124
10113_CR15
10113_CR14
10113_CR12
10113_CR10
G Da Prato (10113_CR23) 2004
W Neves (10113_CR18) 2015; 22
DD Holm (10113_CR34) 2003; 308
CE Kenig (10113_CR50) 1991; 4
References_xml – volume: 121
  start-page: 1445
  year: 2011
  end-page: 1463
  ident: CR29
  article-title: Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2011.03.004
– volume: 71
  start-page: 1661
  issue: 11
  year: 1993
  end-page: 1664
  ident: CR33
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1661
– ident: CR4
– volume: 59
  start-page: 378
  issue: 1
  year: 2023
  end-page: 410
  ident: CR45
  article-title: Noise effects in some stochastic evolution equations: global existence and dependence on initial data
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/21-AIHP1241
– ident: CR12
– volume: 39
  start-page: 3017
  year: 2019
  end-page: 3035
  ident: CR2
  article-title: Nonlinear Fokker-Planck equations for probability measures on path space and path-distribution dependent SDEs
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2019125
– ident: CR8
– volume: 50
  start-page: 1322
  issue: 1
  year: 2018
  end-page: 1366
  ident: CR26
  article-title: On the pathwise solutions to the Camassa-Holm equation with multiplicative noise
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1080537
– ident: CR21
– ident: CR19
– volume: 42
  start-page: 80
  issue: 1
  year: 2014
  end-page: 145
  ident: CR24
  article-title: Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise
  publication-title: Ann. Probab.
  doi: 10.1214/12-AOP773
– ident: CR15
– volume: 124
  start-page: 1974
  year: 2014
  end-page: 2002
  ident: CR25
  article-title: Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2014.01.010
– ident: CR9
– volume: 129
  start-page: 4747
  year: 2019
  end-page: 4770
  ident: CR47
  article-title: Distribution dependent SDEs with singular coefficients
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2018.12.012
– ident: CR32
– volume: 132
  start-page: 119
  issue: 1
  year: 2005
  end-page: 149
  ident: CR31
  article-title: Stochastic nonlinear beam equations
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s00440-004-0392-5
– volume: 267
  start-page: 4745
  year: 2019
  end-page: 4777
  ident: CR3
  article-title: Bismut formula for Lions derivative of distribution dependent SDEs and applications
  publication-title: J. Differential Euqations
  doi: 10.1016/j.jde.2019.05.016
– volume: 4
  start-page: 323
  issue: 2
  year: 1991
  end-page: 347
  ident: CR50
  article-title: Well-posedness of the initial value problem for the Korteweg-de Vries equation
  publication-title: J. Amer. Math. Soc.
  doi: 10.1090/S0894-0347-1991-1086966-0
– year: 2023
  ident: CR16
  article-title: Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities
  publication-title: Stoch. Partial Differ. Equ. Anal. Comput.
  doi: 10.1007/s40072-023-00291-z
– volume: 192
  start-page: 165
  issue: 1
  year: 2009
  end-page: 186
  ident: CR35
  article-title: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0128-2
– ident: CR43
– volume: 282
  start-page: 285
  year: 2021
  end-page: 329
  ident: CR1
  article-title: Bismut formulas for Lions derivative of McKean-Vlasov SDEs with memory
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2021.02.019
– ident: CR14
– ident: CR37
– ident: CR30
– volume: 308
  start-page: 437
  issue: 5–6
  year: 2003
  end-page: 444
  ident: CR34
  article-title: Nonlinear balance and exchange of stability of dynamics of solitons, peakons, ramps/cliffs and leftons in a nonlinear evolutionary PDE
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(03)00114-2
– ident: CR10
– volume: 135
  start-page: 139
  year: 2021
  end-page: 182
  ident: CR27
  article-title: Stochastic MHD equations with fractional kinematic dissipation and partial magnetic diffusion in
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2021.01.008
– volume: 199
  start-page: 355
  year: 2020
  end-page: 377
  ident: CR40
  article-title: Wave-breaking phenomena and persistence properties for the nonlocal rotation-Camassa-Holm equation
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-019-00882-5
– ident: CR6
– year: 2023
  ident: CR28
  article-title: Strong solutions to nonlinear stochastic aggregation-diffusion equations
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199722500730
– volume: 264
  start-page: 1329
  issue: 6
  year: 2013
  end-page: 1354
  ident: CR11
  article-title: Noise prevents singularities in linear transport equations
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2013.01.003
– volume: 181
  start-page: 229
  issue: 2
  year: 1998
  end-page: 243
  ident: CR38
  article-title: Wave breaking for nonlinear nonlocal shallow water equations
  publication-title: Acta Math.
  doi: 10.1007/BF02392586
– volume: 51
  start-page: 475
  issue: 5
  year: 1998
  end-page: 504
  ident: CR39
  article-title: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
– ident: CR48
– volume: 43
  start-page: 568
  issue: 2
  year: 2023
  end-page: 618
  ident: CR44
  article-title: Global well-posedness of the viscous Camassa-Holm equation with gradient noise
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2022163
– volume: 156
  start-page: 291
  year: 2023
  end-page: 311
  ident: CR46
  article-title: Singular McKean-Vlasov SDEs: well-posedness, regularities and Wang’s Harnack inequality
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2022.11.010
– volume: 180
  start-page: 1
  issue: 1
  year: 2010
  end-page: 53
  ident: CR13
  article-title: Well-posedness of the transport equation by stochastic perturbation
  publication-title: Invent. Math.
  doi: 10.1007/s00222-009-0224-4
– ident: CR17
– volume: 22
  start-page: 1247
  year: 2015
  end-page: 1258
  ident: CR18
  article-title: Wellposedness for stochastic continuity equations with Ladyzhenskaya-Prodi-Serrin condition
  publication-title: NoDEA Nonlinear Differential Equations Appl.
  doi: 10.1007/s00030-015-0321-6
– year: 2004
  ident: CR23
  publication-title: Kolmogorov Equations for Stochastic PDEs
  doi: 10.1007/978-3-0348-7909-5
– volume: 128
  start-page: 595
  year: 2018
  end-page: 621
  ident: CR5
  article-title: Distribution dependent SDEs for Landau type equations
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2017.05.006
– volume: 19
  start-page: 607
  issue: 3
  year: 2021
  end-page: 627
  ident: CR42
  article-title: Global well-posedness of the stochastic Camassa-Holm equation
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2021.v19.n3.a2
– volume: 22
  start-page: 201
  year: 2009
  end-page: 224
  ident: CR49
  article-title: Non-uniform dependence on initial data for the CH equation on the line
  publication-title: Diff. Integr. Eqns.
– ident: CR7
– volume: 87
  start-page: 194501
  year: 2001
  ident: CR36
  article-title: An integrable shallow water equation with linear and nonlinear dispersion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.194501
– volume: 275
  start-page: A101
  year: 1972
  end-page: A103
  ident: CR22
  article-title: Sur des equations aux dérivées partielles stochastiques monotones
  publication-title: C. R. Acad. Sci.
– ident: CR41
– ident: CR20
– volume: 124
  start-page: 1974
  year: 2014
  ident: 10113_CR25
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2014.01.010
– volume: 267
  start-page: 4745
  year: 2019
  ident: 10113_CR3
  publication-title: J. Differential Euqations
  doi: 10.1016/j.jde.2019.05.016
– ident: 10113_CR6
  doi: 10.1007/s00028-023-00890-2
– volume: 129
  start-page: 4747
  year: 2019
  ident: 10113_CR47
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2018.12.012
– year: 2023
  ident: 10113_CR28
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199722500730
– ident: 10113_CR12
  doi: 10.2422/2036-2145.201512_008
– volume: 135
  start-page: 139
  year: 2021
  ident: 10113_CR27
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2021.01.008
– volume: 181
  start-page: 229
  issue: 2
  year: 1998
  ident: 10113_CR38
  publication-title: Acta Math.
  doi: 10.1007/BF02392586
– volume: 282
  start-page: 285
  year: 2021
  ident: 10113_CR1
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2021.02.019
– ident: 10113_CR4
  doi: 10.1016/j.jmaa.2021.125000
– ident: 10113_CR10
  doi: 10.1017/CBO9781139137119
– volume: 275
  start-page: A101
  year: 1972
  ident: 10113_CR22
  publication-title: C. R. Acad. Sci.
– volume: 264
  start-page: 1329
  issue: 6
  year: 2013
  ident: 10113_CR11
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2013.01.003
– volume: 22
  start-page: 201
  year: 2009
  ident: 10113_CR49
  publication-title: Diff. Integr. Eqns.
– volume: 71
  start-page: 1661
  issue: 11
  year: 1993
  ident: 10113_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1661
– volume: 59
  start-page: 378
  issue: 1
  year: 2023
  ident: 10113_CR45
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/21-AIHP1241
– year: 2023
  ident: 10113_CR16
  publication-title: Stoch. Partial Differ. Equ. Anal. Comput.
  doi: 10.1007/s40072-023-00291-z
– volume: 156
  start-page: 291
  year: 2023
  ident: 10113_CR46
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2022.11.010
– ident: 10113_CR7
  doi: 10.1007/978-3-642-36297-2_2
– volume: 180
  start-page: 1
  issue: 1
  year: 2010
  ident: 10113_CR13
  publication-title: Invent. Math.
  doi: 10.1007/s00222-009-0224-4
– volume: 192
  start-page: 165
  issue: 1
  year: 2009
  ident: 10113_CR35
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0128-2
– ident: 10113_CR9
  doi: 10.1515/9783110492552
– volume: 308
  start-page: 437
  issue: 5–6
  year: 2003
  ident: 10113_CR34
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(03)00114-2
– ident: 10113_CR43
– ident: 10113_CR19
  doi: 10.1017/CBO9781107295513
– volume: 43
  start-page: 568
  issue: 2
  year: 2023
  ident: 10113_CR44
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2022163
– ident: 10113_CR48
  doi: 10.1214/ECP.v19-2833
– volume: 132
  start-page: 119
  issue: 1
  year: 2005
  ident: 10113_CR31
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s00440-004-0392-5
– volume: 128
  start-page: 595
  year: 2018
  ident: 10113_CR5
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2017.05.006
– volume: 22
  start-page: 1247
  year: 2015
  ident: 10113_CR18
  publication-title: NoDEA Nonlinear Differential Equations Appl.
  doi: 10.1007/s00030-015-0321-6
– ident: 10113_CR21
– ident: 10113_CR37
  doi: 10.1007/s00021-019-0432-7
– volume: 51
  start-page: 475
  issue: 5
  year: 1998
  ident: 10113_CR39
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
– ident: 10113_CR41
  doi: 10.1007/s00332-021-09755-9
– volume: 39
  start-page: 3017
  year: 2019
  ident: 10113_CR2
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2019125
– volume-title: Kolmogorov Equations for Stochastic PDEs
  year: 2004
  ident: 10113_CR23
  doi: 10.1007/978-3-0348-7909-5
– ident: 10113_CR15
  doi: 10.1007/s00030-019-0602-6
– ident: 10113_CR30
– volume: 4
  start-page: 323
  issue: 2
  year: 1991
  ident: 10113_CR50
  publication-title: J. Amer. Math. Soc.
  doi: 10.1090/S0894-0347-1991-1086966-0
– ident: 10113_CR14
  doi: 10.1007/s10231-017-0633-8
– ident: 10113_CR8
  doi: 10.1007/978-3-642-18231-0
– volume: 199
  start-page: 355
  year: 2020
  ident: 10113_CR40
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-019-00882-5
– ident: 10113_CR17
  doi: 10.1016/j.jfa.2023.110075
– volume: 50
  start-page: 1322
  issue: 1
  year: 2018
  ident: 10113_CR26
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1080537
– ident: 10113_CR20
– volume: 19
  start-page: 607
  issue: 3
  year: 2021
  ident: 10113_CR42
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2021.v19.n3.a2
– volume: 87
  start-page: 194501
  year: 2001
  ident: 10113_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.194501
– volume: 42
  start-page: 80
  issue: 1
  year: 2014
  ident: 10113_CR24
  publication-title: Ann. Probab.
  doi: 10.1214/12-AOP773
– ident: 10113_CR32
  doi: 10.1016/0167-2789(81)90004-X
– volume: 121
  start-page: 1445
  year: 2011
  ident: 10113_CR29
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2011.03.004
SSID ssj0002778
Score 2.3767252
Snippet By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole...
SourceID cristin
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 379
SubjectTerms Coriolis effect
Fluid dynamics
Fluid mechanics
Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Partial differential equations
Potential Theory
Probability Theory and Stochastic Processes
Uniqueness
Wave breaking
Title Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations
URI https://link.springer.com/article/10.1007/s11118-023-10113-5
https://www.proquest.com/docview/3086030213
http://hdl.handle.net/10852/117655
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-929X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002778
  issn: 0926-2601
  databaseCode: AFBBN
  dateStart: 19920301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-929X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002778
  issn: 0926-2601
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-929X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002778
  issn: 0926-2601
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT4MwFMcb3S56MP6M6Fx68KaNUGiBI_vlotmyZC6ZJwKlxINhOvD_9xU60EVNvEBIgUMf773vo-2nCF2DAvWpTFwizNgkDjVjEjuRQyCZWJBRRGKXq_gnUz5eOA9LttSYHLUWZmv8_i5XLu0RyCwQMCzLJmwXtRkEXjV9r8_7ddSlbhV1fcqJwmTpBTI_vwPErih9KPuejhqNuTUsWmab0SE60DIRB5Vdj9COzI7R_hd4IFxNauJqfoLEQBFw9eZVZAZNeKD3ty3wtOJhRGs8nw2GOVY_X3HQDF3jYoXnxUq8RIrajGvgOVZVKh6-Vzjw_BQtRsOn_pjoDRSIsD2vIJYEd_VBU8HZTCWXCfM94YOCEFBopZ6TKDYLZwLqwtSXqctTy0x4KngSpZGk9hlqZatMniNseb7wKdR-DCpKUFkRdb2SLSaS2HYjYSBD92iYwberuKOMKpI4Z8xA1qaPQ6HJ42oDjNewYSYrC4VgobC0UAjP3NTPvFXcjT_v7mxMF2ofzEMbqjUIYdSyDXS7MWfT_PvbLv53-yXao6B0qlmBHdQq1h_yCpRKEXdROxj1elN1vn9-HHbLTxaOCxp8AlYb3gM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a5QAcYBtMFNjwYbdhFDtfzrGi7bpBq0ptJThZieMIaSiFJlz463lOnIahMYlcosgfSmy_934v9vs9gO-IQCOu05AqJ3Gox52EJl7sUTQmDC2KSt0qin88CUYL7_e1f22DwormtHuzJVlp6jbYDS9B0cag6mDMpf4GbHpMCK8Dm72fN5eDtQbmYa2BIx5QQ5llg2X-3QsCX1XJU_63aWrx5qst0sryDPdg0bxzfeDkz_ljmZyrp1d0ju_9qI-wa6Eo6dVr5xN80Pln2HlBUIhP4zWra7EPqm9Ydm2CLDrFItK3OXRLMqk5N-IVmU37g4KYH7yk126Pk3JJZuVS3caGGZqsSdWJ8YTJ4KGmHC8OYDEczC9G1CZpoMoVoqRMo0qIELfh3cl0oFM_EipClKLQmcuElxr-l8BX6Htmkc7CIGNOGmQqSOMs1tz9Ap18metDIExEKuLoX_rotSKSi3koKv4ylSZuGKsudO1MyRzlw3Cb-tywlQe-3wXWzJ1Ult3cJNm4ky0vsxlqiUMtq6GW2ObHus19ze3x39onzZKQVs4L6aJHiGqSM7cLZ80Mt8Vv93b0vuqnsDWaj6_k1a_J5TFsc0RW9SnEE-iUq0f9FZFRmXyzgvAMSKn-Bw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT4MwFMcbnYnRg_FnRKf24E0bofw-LrJl_tiyZC7ZrYHSxoNhc-D_7ysUmEZN5EIItIc--t73Ud6nCF2DAg2pSH3CzcQkDjUTkjixQyCYWBBReGqXVfyjsTecOY9zd75WxV_-7V4vSVY1DYrSlBV3y1TetYVvcAQE4g24EcuyibuJthyI1Sr9mtFe44upX_nikHpEwbN02czPfYAE5uXMyr4GqVZ5flssLWPQYB_tafGIe5W1D9CGyA7R7hpSEK5GDYc1P0I8UlxcvaUVmcAtHOldbws8rigZ8QpPJ1E_x-qTLO61C9q4WOBpseCvsWI54waDjlXuivvvFSQ8P0azQf_lfkj0tgqE20FQEEvAJA5BacHZlMITqRsGPARdwSH9koGTKmKL53LIFmUopO9Jy0w9yb00lrGg9gnqZItMnCJsBSEPKWSELuSZoL1i6gclcYynie3H3ECGHlGWwRutaKQuVXxxz3UNZNVjzLjmkattMd5YS1JWFmJgIVZaiEGbm6bNsqJx_Pl0tzYd0zMzZzbkcODYqGUb6LY2Z3v7997O_vf4FdqeRAP2_DB-Okc7FKRQ9dtgF3WK1Ye4AClTJJfl2_oJlAflXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution-Path+Dependent+Nonlinear+SPDEs+with+Application+to+Stochastic+Transport+Type+Equations&rft.jtitle=Potential+analysis&rft.au=Ren%2C+Panpan&rft.au=Tang%2C+Hao&rft.au=Wang%2C+Feng-Yu&rft.date=2024-08-01&rft.issn=0926-2601&rft.eissn=1572-929X&rft.volume=61&rft.issue=2&rft.spage=379&rft.epage=407&rft_id=info:doi/10.1007%2Fs11118-023-10113-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11118_023_10113_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-2601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-2601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-2601&client=summon