Single Cell Resolution of Human Hematoendothelial Cells Defines Transcriptional Signatures of Hemogenic Endothelium
Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–R...
Saved in:
Published in | Stem cells (Dayton, Ohio) Vol. 36; no. 2; pp. 206 - 217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1066-5099 1549-4918 1549-4918 |
DOI | 10.1002/stem.2739 |
Cover
Abstract | Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non‐HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non‐HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC‐derived HE and HP share a common developmental pathway, while non‐HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206–217
Using a RUNX1c reporter hESC line, we derived functional hemogenic endothelium, non‐hemogenic endothelium, and early hematopoietic progenitor cells from embryoid bodies. With single‐cell RNA‐sequencing, we characterized the genetic signatures distinct to each population and further identified novel genetic targets that may be used to optimize production of definitive human hematopoietic cells from pluripotent stem cells. |
---|---|
AbstractList | Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c+ ), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c- ), and 35 hematopoietic progenitor cells (HPCs: CD34+ CD43+ RUNX1c+ ) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206-217.Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c+ ), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c- ), and 35 hematopoietic progenitor cells (HPCs: CD34+ CD43+ RUNX1c+ ) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206-217. Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non‐HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non‐HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC‐derived HE and HP share a common developmental pathway, while non‐HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206–217 Using a RUNX1c reporter hESC line, we derived functional hemogenic endothelium, non‐hemogenic endothelium, and early hematopoietic progenitor cells from embryoid bodies. With single‐cell RNA‐sequencing, we characterized the genetic signatures distinct to each population and further identified novel genetic targets that may be used to optimize production of definitive human hematopoietic cells from pluripotent stem cells. Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non‐HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non‐HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC‐derived HE and HP share a common developmental pathway, while non‐HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206–217 Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31 CD144 CD41 CD43 CD45 CD73 RUNX1c ), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31 CD144 CD41 CD43 CD45 CD73 RUNX1c ), and 35 hematopoietic progenitor cells (HPCs: CD34 CD43 RUNX1c ) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206-217. Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. |
Author | Angelos, Mathew G. Abrahante, Juan E. Blum, Robert H. Kaufman, Dan S. |
Author_xml | – sequence: 1 givenname: Mathew G. surname: Angelos fullname: Angelos, Mathew G. organization: University of Minnesota – sequence: 2 givenname: Juan E. surname: Abrahante fullname: Abrahante, Juan E. organization: University of Minnesota Informatics Institute, University of Minnesota – sequence: 3 givenname: Robert H. surname: Blum fullname: Blum, Robert H. organization: University of California‐San Diego – sequence: 4 givenname: Dan S. orcidid: 0000-0002-2003-2494 surname: Kaufman fullname: Kaufman, Dan S. email: dskaufman@ucsd.edu organization: University of California‐San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29139170$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9P3DAQxa2KqvwpB74AisSFHgJ2Ejv2ES3bbiUQUnc5W15nvBg59mInQnz7OrB7Qe1pRprfe5qZd4wOfPCA0BnBVwTj6joN0F9VbS2-oCNCG1E2gvCD3GPGSoqFOETHKT1jTBrK-Td0WAlSC9LiI5SW1m8cFDNwrvgDKbhxsMEXwRSLsVe-WECvhgC-C8MTOKvcO5qKWzDWQypWUfmko91Osjxd2o1XwxjzaPKAPmzAW13M9w5j_x19NcolON3VE_T4c76aLcq7h1-_Zzd3pa45FyXvFHCBNakqCrRh9ZqaSmitMe5yMR1hdc0o4W0r2Bq6tjEGG0wEo1SvualP0OWH7zaGlxHSIHubdN5eeQhjkplsmOC44hm9-IQ-hzHmeyZKYN60NcOZOt9R47qHTm6j7VV8k_t3ZuD6A9AxpBTBSG0HNX1miMo6SbCcApNTYHIKLCt-fFLsTf_F7txfrYO3_4NyuZrfvyv-AhqapnI |
CitedBy_id | crossref_primary_10_1186_s40164_022_00285_y crossref_primary_10_1016_j_htct_2020_01_005 crossref_primary_10_3389_fcell_2021_812639 crossref_primary_10_1007_s11427_022_2374_x crossref_primary_10_3389_fcell_2021_660350 crossref_primary_10_1016_j_jim_2019_112684 crossref_primary_10_1126_sciadv_abi9787 crossref_primary_10_3389_fcell_2020_00832 crossref_primary_10_1186_s12872_024_04345_5 crossref_primary_10_1002_jcp_30924 crossref_primary_10_1093_stcltm_szab001 crossref_primary_10_1155_2021_9919422 crossref_primary_10_1002_ptr_6241 crossref_primary_10_1182_blood_2020006229 crossref_primary_10_1038_s41389_020_00269_9 crossref_primary_10_1016_j_jbc_2023_105556 crossref_primary_10_1016_j_stemcr_2020_11_008 crossref_primary_10_1016_j_stem_2018_04_015 crossref_primary_10_1089_scd_2023_0204 |
Cites_doi | 10.1136/jcp.2008.061010 10.1242/dev.083147 10.1042/BST20110702 10.1016/j.exphem.2010.02.011 10.1182/blood-2014-04-572958 10.1038/ncb2724 10.1038/ncomms3924 10.1016/j.devcel.2015.11.004 10.1182/blood-2004-11-4522 10.1016/j.biocel.2012.12.013 10.1038/nbt.1605 10.3389/fphys.2014.00003 10.1002/stem.507 10.1182/blood-2006-09-047704 10.1007/978-1-62703-478-4_3 10.1038/nature12172 10.1182/blood-2012-05-431403 10.1016/S0301-472X(01)00669-5 10.1038/nature07619 10.1016/j.cell.2008.01.025 10.1038/ncomms11853 10.1182/blood-2010-10-315275 10.1089/scd.2012.0608 10.1182/blood-2006-02-003327 10.1038/ncb3161 10.1038/nbt.3192 10.1182/blood-2010-01-266528 10.3324/haematol.2011.055566 10.1073/pnas.1520760112 10.1242/dev.02568 10.1073/pnas.191362598 10.1172/JCI79328 10.1016/j.stemcr.2013.10.010 10.1182/blood-2004-04-1649 10.1038/nprot.2008.42 10.1038/nmeth1041 10.1016/j.ydbio.2012.03.024 10.1196/annals.1392.010 10.15252/embj.201488784 10.1182/blood.V98.12.3332 10.1038/nbt.2915 10.1002/iub.1059 10.1038/nature12207 10.1016/j.stemcr.2015.07.008 10.1182/blood-2009-05-222307 10.1016/j.stem.2011.10.003 10.1182/blood-2008-07-167106 10.1182/blood-2007-07-100883 10.1038/nature08761 10.1371/journal.pone.0019854 10.1016/j.cell.2015.05.002 10.1038/nature16943 10.2217/17460751.3.5.693 10.1016/j.celrep.2012.11.003 10.1038/nature08738 10.1038/ncb3354 10.1038/nmeth.4197 10.1182/blood-2012-07-444208 10.1038/nature07760 10.1038/nature08764 10.1016/j.bbrc.2005.11.146 10.1016/S1074-7613(03)00117-1 10.1182/blood-2015-07-659276 10.1186/1471-213X-9-72 10.1016/j.celrep.2012.08.002 10.1182/blood-2003-03-0832 10.1002/stem.1940 10.1182/blood-2004-03-1224 10.1016/j.semcdb.2011.10.003 10.1038/ni.3368 10.1634/stemcells.2008-0824 |
ContentType | Journal Article |
Copyright | 2017 AlphaMed Press 2017 AlphaMed Press. 2018 AlphaMed Press |
Copyright_xml | – notice: 2017 AlphaMed Press – notice: 2017 AlphaMed Press. – notice: 2018 AlphaMed Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/stem.2739 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-4918 |
EndPage | 217 |
ExternalDocumentID | 29139170 10_1002_stem_2739 STEM2739 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Regenerative Medicine Minnesota – fundername: NIH – fundername: Regenerative Medicine Minnesota program – fundername: National Institute of Diabetes and Digestive and Kidney Diseases funderid: F30DK107071 – fundername: National Cancer Institute Grant funderid: R01CA203348 – fundername: National Institute of General Medicine Sciences funderid: T32GM113846 ; T32GM008244 – fundername: NIDDK NIH HHS grantid: R41 DK107071 – fundername: NICHD NIH HHS grantid: T32 HD060536 – fundername: NIDDK NIH HHS grantid: F30 DK107017 – fundername: NCI NIH HHS grantid: R01 CA203348 – fundername: NIGMS NIH HHS grantid: T32 GM113846 – fundername: NIGMS NIH HHS grantid: T32 GM008244 |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AHMMS AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AAYXX ABGNP ABJNI ABVGC ABXZS AGORE AJNCP ALXQX CITATION AAMMB ACVCV ADMTO AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJBYB AJDVS CGR CUY CVF ECM EIF NPM OBFPC 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. NTU P64 RC3 WIN 7X8 |
ID | FETCH-LOGICAL-c3889-8dae890c1225e5463b5f29ccc00d9ccfd163365187796bed74ff0f019655cb8f3 |
ISSN | 1066-5099 1549-4918 |
IngestDate | Sat Sep 27 16:36:27 EDT 2025 Sun Sep 07 23:50:07 EDT 2025 Mon Jul 21 05:36:20 EDT 2025 Thu Apr 24 23:10:40 EDT 2025 Tue Jul 01 00:23:39 EDT 2025 Wed Jan 22 16:43:10 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human embryonic stem cells Human hematopoiesis Single cell RNA-seq Hemogenic endothelium |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2017 AlphaMed Press. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3889-8dae890c1225e5463b5f29ccc00d9ccfd163365187796bed74ff0f019655cb8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2003-2494 |
OpenAccessLink | https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stem.2739 |
PMID | 29139170 |
PQID | 1990847360 |
PQPubID | 1046343 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1964698028 proquest_journals_1990847360 pubmed_primary_29139170 crossref_citationtrail_10_1002_stem_2739 crossref_primary_10_1002_stem_2739 wiley_primary_10_1002_stem_2739_STEM2739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-01 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | Stem Cells |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2015; 35 2013; 4 2013; 1 2011; 118 2012; 366 2013; 22 2010; 464 2015; 33 2016; 143 2007; 1106 2009; 113 2003; 18 2013; 121 2008; 3 2007; 109 2009; 114 2006; 133 2012; 97 2014; 127 2014; 5 2013; 15 2010; 116 2010; 28 2005; 105 2005; 106 2011; 22 2007; 4 2012; 64 2014; 124 2001; 98 2015; 161 2010; 38 2015; 17 2009; 62 2015; 5 2004; 104 2015; 126 2013; 45 2015; 125 2013; 140 2001; 29 2011; 39 2016; 18 2016; 17 2011; 6 2009; 27 2009; 457 2011; 9 2016; 7 2012; 2 2006; 108 2013; 1029 2017; 14 2007; 110 2015; 112 2016; 530 2009; 9 2013; 498 2006; 340 2014 2008; 132 2003; 102 2014; 33 2014; 32 Yokota (2022022511595186300_stem2739-bib-0059) 2009; 113 Lie-A-Ling (2022022511595186300_stem2739-bib-0018) 2014; 124 Lu (2022022511595186300_stem2739-bib-0054) 2007; 4 Chen (2022022511595186300_stem2739-bib-0021) 2009; 457 McLaughlin (2022022511595186300_stem2739-bib-0063) 2001; 98 Kaufman (2022022511595186300_stem2739-bib-0029) 2001; 98 Gori (2022022511595186300_stem2739-bib-0068) 2015; 125 James (2022022511595186300_stem2739-bib-0072) 2010; 28 Björklund (2022022511595186300_stem2739-bib-0039) 2016; 17 Eilken (2022022511595186300_stem2739-bib-0011) 2009; 457 Shalek (2022022511595186300_stem2739-bib-0036) 2013; 498 Wurtzel (2022022511595186300_stem2739-bib-0043) 2015; 35 Zape (2022022511595186300_stem2739-bib-0004) 2011; 22 Swiers (2022022511595186300_stem2739-bib-0013) 2013; 4 Søreide (2022022511595186300_stem2739-bib-0046) 2009; 62 Yuan (2022022511595186300_stem2739-bib-0061) 2011; 118 Kim (2022022511595186300_stem2739-bib-0065) 2014; 33 Ni (2022022511595186300_stem2739-bib-0031) 2013; 1029 Nakajima-Takagi (2022022511595186300_stem2739-bib-0050) 2013; 121 Nakajima (2022022511595186300_stem2739-bib-0058) 2006; 340 Kumano (2022022511595186300_stem2739-bib-0066) 2003; 18 Orkin (2022022511595186300_stem2739-bib-0009) 2008; 132 Ng (2022022511595186300_stem2739-bib-0040) 2008; 3 Chadwick (2022022511595186300_stem2739-bib-0028) 2003; 102 Vodyanik (2022022511595186300_stem2739-bib-0075) 2006; 108 Camp (2022022511595186300_stem2739-bib-0044) 2015; 112 Clarke (2022022511595186300_stem2739-bib-0051) 2013; 15 Lin (2022022511595186300_stem2739-bib-0071) 2012; 64 Chen (2022022511595186300_stem2739-bib-0049) 2011; 9 Maddaluno (2022022511595186300_stem2739-bib-0073) 2013; 498 Hadland (2022022511595186300_stem2739-bib-0067) 2004; 104 Knorr (2022022511595186300_stem2739-bib-0030) 2013; 22 Jagannathan-Bogdan (2022022511595186300_stem2739-bib-0008) 2013; 140 Nottingham (2022022511595186300_stem2739-bib-0015) 2007; 110 Evrard (2022022511595186300_stem2739-bib-0074) 2016; 7 Bertrand (2022022511595186300_stem2739-bib-0001) 2010; 464 Zambidis (2022022511595186300_stem2739-bib-0055) 2007; 1106 Palis (2022022511595186300_stem2739-bib-0007) 2014; 5 Ng (2022022511595186300_stem2739-bib-0014) 2010; 28 Challen (2022022511595186300_stem2739-bib-0017) 2010; 38 Ditadi (2022022511595186300_stem2739-bib-0023) 2015; 17 Leszczynska (2022022511595186300_stem2739-bib-0062) 2011; 39 Choi (2022022511595186300_stem2739-bib-0026) 2012; 2 Lu (2022022511595186300_stem2739-bib-0053) 2008; 3 Ooi (2022022511595186300_stem2739-bib-0060) 2009; 27 Kennedy (2022022511595186300_stem2739-bib-0032) 2012; 2 Mikkola (2022022511595186300_stem2739-bib-0005) 2006; 133 Ferrell (2022022511595186300_stem2739-bib-0022) 2015; 33 Sturgeon (2022022511595186300_stem2739-bib-0056) 2014; 32 Kennedy (2022022511595186300_stem2739-bib-0035) 2007; 109 Tanaka (2022022511595186300_stem2739-bib-0020) 2012; 366 Kobar (2022022511595186300_stem2739-bib-0025) 2012; 97 Rafii (2022022511595186300_stem2739-bib-0010) 2013; 121 Patro (2022022511595186300_stem2739-bib-0045) 2017; 14 Melichar (2022022511595186300_stem2739-bib-0033) 2011; 6 Tan (2022022511595186300_stem2739-bib-0037) 2016; 143 Anderson (2022022511595186300_stem2739-bib-0047) 2015; 126 Antas (2022022511595186300_stem2739-bib-0012) 2013; 45 Clarke (2022022511595186300_stem2739-bib-0052) 2015; 5 Dou (2022022511595186300_stem2739-bib-0069) 2016; 18 Vodyanik (2022022511595186300_stem2739-bib-0027) 2005; 105 Chen (2022022511595186300_stem2739-bib-0070) 2016; 530 Nakajima (2022022511595186300_stem2739-bib-0057) 2010; 116 Nikolova-Krstevski (2022022511595186300_stem2739-bib-0048) 2009; 9 Wilson (2022022511595186300_stem2739-bib-0064) 2014; 127 Kissa (2022022511595186300_stem2739-bib-0003) 2010; 464 Boisset (2022022511595186300_stem2739-bib-0002) 2010; 464 Satija (2022022511595186300_stem2739-bib-0041) 2015; 33 Zambidis (2022022511595186300_stem2739-bib-0016) 2005; 106 Yvernogeau (2022022511595186300_stem2739-bib-0038) 2016; 143 Palis (2022022511595186300_stem2739-bib-0006) 2001; 29 Hirose (2022022511595186300_stem2739-bib-0024) 2013; 1 Chen (2022022511595186300_stem2739-bib-0034) 2014 Sroczynska (2022022511595186300_stem2739-bib-0019) 2009; 114 Macosko (2022022511595186300_stem2739-bib-0042) 2015; 161 |
References_xml | – volume: 105 start-page: 617 year: 2005 end-page: 626 article-title: Human embryonic stem cell – derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential publication-title: Blood – volume: 104 start-page: 3097 year: 2004 end-page: 3105 article-title: A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development publication-title: Blood – volume: 530 start-page: 223 year: 2016 end-page: 227 article-title: Hoxb5 marks long‐term haematopoietic stem cells and reveals a homogenous perivascular niche publication-title: Nature – volume: 33 start-page: 1130 year: 2015 end-page: 1141 article-title: The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells publication-title: Stem Cells – volume: 14 start-page: 417 year: 2017 end-page: 419 article-title: Salmon provides fast and bias‐aware quantification of transcript expression publication-title: Nature Methods – volume: 98 start-page: 3332 year: 2001 end-page: 3339 article-title: Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation publication-title: Blood – volume: 109 start-page: 2679 year: 2007 end-page: 2687 article-title: Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures publication-title: Blood – volume: 340 start-page: 35 year: 2006 end-page: 42 article-title: Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells publication-title: Biochem Biophys Res Commun – volume: 2 start-page: 1722 year: 2012 end-page: 1735 article-title: T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures publication-title: Cell Rep – volume: 39 start-page: 1606 year: 2011 end-page: 1611 article-title: The role of RhoJ in endothelial cell biology and angiogenesis publication-title: Biochem Soc Trans – volume: 62 start-page: 1 year: 2009 end-page: 5 article-title: Receiver‐operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research publication-title: J Clin Pathol – volume: 108 start-page: 2095 year: 2006 end-page: 2105 article-title: Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures publication-title: Blood – volume: 9 start-page: 72 year: 2009 article-title: ERG is required for the differentiation of embryonic stem cells along the endothelial lineage publication-title: BMC Dev Biol – volume: 118 start-page: 1145 year: 2011 end-page: 1153 article-title: RhoJ is an endothelial cell‐restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG publication-title: Blood – volume: 366 start-page: 404 year: 2012 end-page: 419 article-title: The transcriptional programme controlled by Runx1 during early embryonic blood development publication-title: Dev Biol – volume: 3 start-page: 768 year: 2008 end-page: 776 article-title: A protocol describing the use of a recombinant protein‐based, animal product‐free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies publication-title: Nat Protoc – volume: 143 start-page: 1318 year: 2016 end-page: 1327 article-title: Developmental origin of lung macrophage diversity publication-title: Development – volume: 126 start-page: 2811 year: 2015 end-page: 2820 article-title: Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression publication-title: Blood – volume: 132 start-page: 631 year: 2008 end-page: 644 article-title: Hematopoiesis: An evolving paradigm for stem cell biology publication-title: Cell – volume: 98 start-page: 10716 year: 2001 end-page: 10721 article-title: Hematopoietic colony‐forming cells derived from human embryonic stem cells publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: e19854 year: 2011 article-title: Comparative study of hematopoietic differentiation between human embryonic stem cell lines publication-title: PLoS One – volume: 32 start-page: 554 year: 2014 end-page: 561 article-title: Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells publication-title: Nat Biotechnol – volume: 18 start-page: 595 year: 2016 end-page: 606 article-title: Medial HOXA genes demarcate haematopoietic stem cell fate during human development publication-title: Nat Cell Biol – volume: 498 start-page: 492 year: 2013 end-page: 496 article-title: EndMT contributes to the onset and progression of cerebral cavernous malformations publication-title: Nature – volume: 143 start-page: 1302 year: 2016 end-page: 1312 article-title: An in vitro model of hemogenic endothelium commitment and hematopoietic production publication-title: Development – volume: 140 start-page: 2463 year: 2013 end-page: 2467 article-title: Hematopoiesis publication-title: Development – volume: 2 start-page: 553 year: 2012 end-page: 567 article-title: Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures publication-title: Cell Rep – volume: 15 start-page: 502 year: 2013 end-page: 510 article-title: The expression of Sox17 identifies and regulates haemogenic endothelium publication-title: Nat Cell Biol – volume: 464 start-page: 116 year: 2010 end-page: 120 article-title: In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium publication-title: Nature – volume: 64 start-page: 717 year: 2012 end-page: 723 article-title: The role of endothelial‐mesenchymal transition in development and pathological process publication-title: IUBMB Life – volume: 1 start-page: 499 year: 2013 end-page: 508 article-title: Immortalization of erythroblasts by c‐MYC and BCL‐XL enables large‐scale erythrocyte production from human pluripotent stem cells publication-title: Stem Cell Rep – volume: 161 start-page: 1202 year: 2015 end-page: 1214 article-title: Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets publication-title: Cell – volume: 124 start-page: e11 year: 2014 end-page: e20 article-title: RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence publication-title: Blood – volume: 106 start-page: 860 year: 2005 end-page: 870 article-title: Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development publication-title: Blood – volume: 35 start-page: 632 year: 2015 end-page: 645 article-title: A generic and cell‐type‐specific wound response precedes regeneration in planarians publication-title: Dev Cell – volume: 1106 start-page: 223 year: 2007 end-page: 232 article-title: Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells publication-title: Ann NY Acad Sci – volume: 121 start-page: 770 year: 2013 end-page: 780 article-title: Human ESC‐derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition publication-title: Blood – volume: 133 start-page: 3733 year: 2006 end-page: 3744 article-title: The journey of developing hematopoietic stem cells publication-title: Development – volume: 27 start-page: 653 year: 2009 end-page: 661 article-title: The adhesion molecule esam1 is a novel hematopoietic stem cell marker publication-title: Stem Cells – volume: 116 start-page: 4474 year: 2010 end-page: 4482 article-title: TIMP‐3 recruits quiescent hematopoietic stem cells into active cell cycle and expands multipotent progenitor pool publication-title: Blood – volume: 45 start-page: 692 year: 2013 end-page: 695 article-title: Hemogenic endothelium: A vessel for blood production publication-title: Int J Biochem Cell Biol – volume: 3 start-page: 693 year: 2008 end-page: 704 article-title: Robust generation of hemangioblastic progenitors from human embryonic stem cells publication-title: Regen Med – volume: 457 start-page: 887 year: 2009 end-page: 891 article-title: Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter publication-title: Nature – volume: 113 start-page: 2914 year: 2009 end-page: 2923 article-title: The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice publication-title: Blood – volume: 97 start-page: 1795 year: 2012 end-page: 1803 article-title: Human induced pluripotent stem cells can reach complete terminal maturation: In vivo and in vitro evidence in the erythropoietic differentiation model publication-title: Haematologica – start-page: 87 year: 2014 end-page: 114 – volume: 102 start-page: 906 year: 2003 end-page: 915 article-title: Cytokines and BMP‐4 promote hematopoietic differentiation of human embryonic stem cells publication-title: Blood – volume: 33 start-page: 495 year: 2015 end-page: 502 article-title: Spatial reconstruction of single‐cell gene expression data publication-title: Nat Biotechnol – volume: 110 start-page: 4188 year: 2007 end-page: 4197 article-title: Runx1‐mediated hematopoietic stem‐cell emergence is controlled by a Gata/Ets/SCL‐regulated enhancer publication-title: Blood – volume: 4 start-page: 501 year: 2007 end-page: 509 article-title: Generation of functional hemangioblasts from human embryonic stem cells publication-title: Nat Methods – volume: 33 start-page: 2363 year: 2014 end-page: 2373 article-title: Discrete Notch signaling requirements in the specification of hematopoietic stem cells publication-title: EMBO J – volume: 28 start-page: 1869 year: 2010 end-page: 1881 article-title: A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells publication-title: Stem Cells – volume: 1029 start-page: 33 year: 2013 end-page: 41 article-title: Hematopoietic and natural killer cell development from human pluripotent stem cells publication-title: Embryonic Methods Mol Biol – volume: 18 start-page: 699 year: 2003 end-page: 711 article-title: Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells publication-title: Immunity – volume: 38 start-page: 403 year: 2010 end-page: 416 article-title: Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells publication-title: Exp Hematol – volume: 5 start-page: 1 year: 2014 end-page: 9 article-title: Primitive and definitive erythropoiesis in mammals publication-title: Front Physiol – volume: 457 start-page: 896 year: 2009 end-page: 900 article-title: Continuous single‐cell imaging of blood generation from haemogenic endothelium publication-title: Nature – volume: 4 start-page: 2924 year: 2013 article-title: Early dynamic fate changes in haemogenic endothelium characterized at the single‐cell level publication-title: Nat Commun – volume: 9 start-page: 541 year: 2011 end-page: 552 article-title: Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells publication-title: Cell Stem Cell – volume: 121 start-page: 447 year: 2013 end-page: 458 article-title: Role of SOX17 in hematopoietic development from human embryonic stem cells publication-title: Blood – volume: 464 start-page: 108 year: 2010 end-page: 111 article-title: Haematopoietic stem cells derive directly from aortic endothelium during development publication-title: Nature – volume: 5 start-page: 291 year: 2015 end-page: 304 article-title: A quantitative proteomic analysis of hemogenic endothelium reveals differential regulation of hematopoiesis by SOX17 publication-title: Stem Cell Rep – volume: 114 start-page: 5279 year: 2009 end-page: 5289 article-title: The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis publication-title: Blood – volume: 17 start-page: 451 year: 2016 end-page: 460 article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single‐cell RNA sequencing publication-title: Nat Immunol – volume: 29 start-page: 927 year: 2001 end-page: 936 article-title: Yolk‐sac hematopoiesis: The first blood cells of mouse and man publication-title: Exp Hematol – volume: 28 start-page: 161 year: 2010 end-page: 166 article-title: Expansion and maintenance of human embryonic stem cell – derived endothelial cells by TGFb inhibition is Id1 dependent publication-title: Nat Biotechnol – volume: 112 start-page: 15672 year: 2015 end-page: 15677 article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 1036 year: 2011 end-page: 1047 article-title: Hemogenic endothelium: Origins, regulation, and implications for vascular biology publication-title: Semin Cell Dev Biol – volume: 7 start-page: 1 year: 2016 end-page: 15 article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability publication-title: Nat Commun – volume: 498 start-page: 236 year: 2013 end-page: 240 article-title: Single‐cell transcriptomics reveals bimodality in expression and splicing in immune cells publication-title: Nature – volume: 22 start-page: 1861 year: 2013 end-page: 1869 article-title: Engineered human embryonic stem cell‐derived lymphocytes to study in vivo trafficking and immunotherapy publication-title: Stem Cells Dev – volume: 464 start-page: 112 year: 2010 end-page: 115 article-title: Blood stem cells emerge from aortic endothelium by a novel type of cell transition publication-title: Nature – volume: 127 start-page: 3039 issue: Pt 14 year: 2014 end-page: 3051 article-title: RhoJ interacts with the GIT‐PIX complex and regulates focal adhesion disassembly publication-title: J Cell Sci – volume: 17 start-page: 580 year: 2015 end-page: 591 article-title: Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages publication-title: Nat Cell Biol – volume: 125 start-page: 1243 year: 2015 end-page: 1254 article-title: Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells publication-title: J Clin Invest – volume: 62 start-page: 1 year: 2009 ident: 2022022511595186300_stem2739-bib-0046 article-title: Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research publication-title: J Clin Pathol doi: 10.1136/jcp.2008.061010 – volume: 140 start-page: 2463 year: 2013 ident: 2022022511595186300_stem2739-bib-0008 article-title: Hematopoiesis publication-title: Development doi: 10.1242/dev.083147 – volume: 39 start-page: 1606 year: 2011 ident: 2022022511595186300_stem2739-bib-0062 article-title: The role of RhoJ in endothelial cell biology and angiogenesis publication-title: Biochem Soc Trans doi: 10.1042/BST20110702 – volume: 38 start-page: 403 year: 2010 ident: 2022022511595186300_stem2739-bib-0017 article-title: Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells publication-title: Exp Hematol doi: 10.1016/j.exphem.2010.02.011 – volume: 124 start-page: e11 year: 2014 ident: 2022022511595186300_stem2739-bib-0018 article-title: RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence publication-title: Blood doi: 10.1182/blood-2014-04-572958 – volume: 15 start-page: 502 year: 2013 ident: 2022022511595186300_stem2739-bib-0051 article-title: The expression of Sox17 identifies and regulates haemogenic endothelium publication-title: Nat Cell Biol doi: 10.1038/ncb2724 – volume: 4 start-page: 2924 year: 2013 ident: 2022022511595186300_stem2739-bib-0013 article-title: Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level publication-title: Nat Commun doi: 10.1038/ncomms3924 – volume: 35 start-page: 632 year: 2015 ident: 2022022511595186300_stem2739-bib-0043 article-title: A generic and cell-type-specific wound response precedes regeneration in planarians publication-title: Dev Cell doi: 10.1016/j.devcel.2015.11.004 – volume: 106 start-page: 860 year: 2005 ident: 2022022511595186300_stem2739-bib-0016 article-title: Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development publication-title: Blood doi: 10.1182/blood-2004-11-4522 – volume: 143 start-page: 1318 year: 2016 ident: 2022022511595186300_stem2739-bib-0037 article-title: Developmental origin of lung macrophage diversity publication-title: Development – volume: 45 start-page: 692 year: 2013 ident: 2022022511595186300_stem2739-bib-0012 article-title: Hemogenic endothelium: A vessel for blood production publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2012.12.013 – volume: 28 start-page: 161 year: 2010 ident: 2022022511595186300_stem2739-bib-0072 article-title: Expansion and maintenance of human embryonic stem cell – derived endothelial cells by TGFb inhibition is Id1 dependent publication-title: Nat Biotechnol doi: 10.1038/nbt.1605 – volume: 5 start-page: 1 year: 2014 ident: 2022022511595186300_stem2739-bib-0007 article-title: Primitive and definitive erythropoiesis in mammals publication-title: Front Physiol doi: 10.3389/fphys.2014.00003 – volume: 28 start-page: 1869 year: 2010 ident: 2022022511595186300_stem2739-bib-0014 article-title: A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells publication-title: Stem Cells doi: 10.1002/stem.507 – volume: 109 start-page: 2679 year: 2007 ident: 2022022511595186300_stem2739-bib-0035 article-title: Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures publication-title: Blood doi: 10.1182/blood-2006-09-047704 – volume: 1029 start-page: 33 year: 2013 ident: 2022022511595186300_stem2739-bib-0031 article-title: Hematopoietic and natural killer cell development from human pluripotent stem cells publication-title: Embryonic Methods Mol Biol doi: 10.1007/978-1-62703-478-4_3 – volume: 498 start-page: 236 year: 2013 ident: 2022022511595186300_stem2739-bib-0036 article-title: Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells publication-title: Nature doi: 10.1038/nature12172 – volume: 121 start-page: 447 year: 2013 ident: 2022022511595186300_stem2739-bib-0050 article-title: Role of SOX17 in hematopoietic development from human embryonic stem cells publication-title: Blood doi: 10.1182/blood-2012-05-431403 – volume: 29 start-page: 927 year: 2001 ident: 2022022511595186300_stem2739-bib-0006 article-title: Yolk-sac hematopoiesis: The first blood cells of mouse and man publication-title: Exp Hematol doi: 10.1016/S0301-472X(01)00669-5 – volume: 457 start-page: 887 year: 2009 ident: 2022022511595186300_stem2739-bib-0021 article-title: Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter publication-title: Nature doi: 10.1038/nature07619 – volume: 132 start-page: 631 year: 2008 ident: 2022022511595186300_stem2739-bib-0009 article-title: Hematopoiesis: An evolving paradigm for stem cell biology publication-title: Cell doi: 10.1016/j.cell.2008.01.025 – volume: 7 start-page: 1 year: 2016 ident: 2022022511595186300_stem2739-bib-0074 article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability publication-title: Nat Commun doi: 10.1038/ncomms11853 – volume: 118 start-page: 1145 year: 2011 ident: 2022022511595186300_stem2739-bib-0061 article-title: RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG publication-title: Blood doi: 10.1182/blood-2010-10-315275 – volume: 127 start-page: 3039 issue: Pt 14 year: 2014 ident: 2022022511595186300_stem2739-bib-0064 article-title: RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly publication-title: J Cell Sci – volume: 22 start-page: 1861 year: 2013 ident: 2022022511595186300_stem2739-bib-0030 article-title: Engineered human embryonic stem cell-derived lymphocytes to study in vivo trafficking and immunotherapy publication-title: Stem Cells Dev doi: 10.1089/scd.2012.0608 – volume: 108 start-page: 2095 year: 2006 ident: 2022022511595186300_stem2739-bib-0075 article-title: Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures publication-title: Blood doi: 10.1182/blood-2006-02-003327 – volume: 17 start-page: 580 year: 2015 ident: 2022022511595186300_stem2739-bib-0023 article-title: Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages publication-title: Nat Cell Biol doi: 10.1038/ncb3161 – volume: 33 start-page: 495 year: 2015 ident: 2022022511595186300_stem2739-bib-0041 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 – volume: 116 start-page: 4474 year: 2010 ident: 2022022511595186300_stem2739-bib-0057 article-title: TIMP-3 recruits quiescent hematopoietic stem cells into active cell cycle and expands multipotent progenitor pool publication-title: Blood doi: 10.1182/blood-2010-01-266528 – volume: 97 start-page: 1795 year: 2012 ident: 2022022511595186300_stem2739-bib-0025 article-title: Human induced pluripotent stem cells can reach complete terminal maturation: In vivo and in vitro evidence in the erythropoietic differentiation model publication-title: Haematologica doi: 10.3324/haematol.2011.055566 – volume: 112 start-page: 15672 year: 2015 ident: 2022022511595186300_stem2739-bib-0044 article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1520760112 – volume: 133 start-page: 3733 year: 2006 ident: 2022022511595186300_stem2739-bib-0005 article-title: The journey of developing hematopoietic stem cells publication-title: Development doi: 10.1242/dev.02568 – volume: 98 start-page: 10716 year: 2001 ident: 2022022511595186300_stem2739-bib-0029 article-title: Hematopoietic colony-forming cells derived from human embryonic stem cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.191362598 – volume: 125 start-page: 1243 year: 2015 ident: 2022022511595186300_stem2739-bib-0068 article-title: Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells publication-title: J Clin Invest doi: 10.1172/JCI79328 – volume: 1 start-page: 499 year: 2013 ident: 2022022511595186300_stem2739-bib-0024 article-title: Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2013.10.010 – volume: 105 start-page: 617 year: 2005 ident: 2022022511595186300_stem2739-bib-0027 article-title: Human embryonic stem cell – derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential publication-title: Blood doi: 10.1182/blood-2004-04-1649 – volume: 143 start-page: 1302 year: 2016 ident: 2022022511595186300_stem2739-bib-0038 article-title: An in vitro model of hemogenic endothelium commitment and hematopoietic production publication-title: Development – volume: 3 start-page: 768 year: 2008 ident: 2022022511595186300_stem2739-bib-0040 article-title: A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies publication-title: Nat Protoc doi: 10.1038/nprot.2008.42 – volume: 4 start-page: 501 year: 2007 ident: 2022022511595186300_stem2739-bib-0054 article-title: Generation of functional hemangioblasts from human embryonic stem cells publication-title: Nat Methods doi: 10.1038/nmeth1041 – volume: 366 start-page: 404 year: 2012 ident: 2022022511595186300_stem2739-bib-0020 article-title: The transcriptional programme controlled by Runx1 during early embryonic blood development publication-title: Dev Biol doi: 10.1016/j.ydbio.2012.03.024 – volume: 1106 start-page: 223 year: 2007 ident: 2022022511595186300_stem2739-bib-0055 article-title: Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells publication-title: Ann NY Acad Sci doi: 10.1196/annals.1392.010 – volume: 33 start-page: 2363 year: 2014 ident: 2022022511595186300_stem2739-bib-0065 article-title: Discrete Notch signaling requirements in the specification of hematopoietic stem cells publication-title: EMBO J doi: 10.15252/embj.201488784 – volume: 98 start-page: 3332 year: 2001 ident: 2022022511595186300_stem2739-bib-0063 article-title: Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation publication-title: Blood doi: 10.1182/blood.V98.12.3332 – volume: 32 start-page: 554 year: 2014 ident: 2022022511595186300_stem2739-bib-0056 article-title: Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells publication-title: Nat Biotechnol doi: 10.1038/nbt.2915 – volume: 64 start-page: 717 year: 2012 ident: 2022022511595186300_stem2739-bib-0071 article-title: The role of endothelial-mesenchymal transition in development and pathological process publication-title: IUBMB Life doi: 10.1002/iub.1059 – volume: 498 start-page: 492 year: 2013 ident: 2022022511595186300_stem2739-bib-0073 article-title: EndMT contributes to the onset and progression of cerebral cavernous malformations publication-title: Nature doi: 10.1038/nature12207 – volume: 5 start-page: 291 year: 2015 ident: 2022022511595186300_stem2739-bib-0052 article-title: A quantitative proteomic analysis of hemogenic endothelium reveals differential regulation of hematopoiesis by SOX17 publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2015.07.008 – volume: 114 start-page: 5279 year: 2009 ident: 2022022511595186300_stem2739-bib-0019 article-title: The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis publication-title: Blood doi: 10.1182/blood-2009-05-222307 – volume: 9 start-page: 541 year: 2011 ident: 2022022511595186300_stem2739-bib-0049 article-title: Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.10.003 – volume: 113 start-page: 2914 year: 2009 ident: 2022022511595186300_stem2739-bib-0059 article-title: The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice publication-title: Blood doi: 10.1182/blood-2008-07-167106 – volume: 110 start-page: 4188 year: 2007 ident: 2022022511595186300_stem2739-bib-0015 article-title: Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer publication-title: Blood doi: 10.1182/blood-2007-07-100883 – volume: 464 start-page: 112 year: 2010 ident: 2022022511595186300_stem2739-bib-0003 article-title: Blood stem cells emerge from aortic endothelium by a novel type of cell transition publication-title: Nature doi: 10.1038/nature08761 – volume: 6 start-page: e19854 year: 2011 ident: 2022022511595186300_stem2739-bib-0033 article-title: Comparative study of hematopoietic differentiation between human embryonic stem cell lines publication-title: PLoS One doi: 10.1371/journal.pone.0019854 – volume: 161 start-page: 1202 year: 2015 ident: 2022022511595186300_stem2739-bib-0042 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 530 start-page: 223 year: 2016 ident: 2022022511595186300_stem2739-bib-0070 article-title: Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche publication-title: Nature doi: 10.1038/nature16943 – volume: 3 start-page: 693 year: 2008 ident: 2022022511595186300_stem2739-bib-0053 article-title: Robust generation of hemangioblastic progenitors from human embryonic stem cells publication-title: Regen Med doi: 10.2217/17460751.3.5.693 – volume: 2 start-page: 1722 year: 2012 ident: 2022022511595186300_stem2739-bib-0032 article-title: T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures publication-title: Cell Rep doi: 10.1016/j.celrep.2012.11.003 – volume: 464 start-page: 108 year: 2010 ident: 2022022511595186300_stem2739-bib-0001 article-title: Haematopoietic stem cells derive directly from aortic endothelium during development publication-title: Nature doi: 10.1038/nature08738 – volume: 18 start-page: 595 year: 2016 ident: 2022022511595186300_stem2739-bib-0069 article-title: Medial HOXA genes demarcate haematopoietic stem cell fate during human development publication-title: Nat Cell Biol doi: 10.1038/ncb3354 – volume: 14 start-page: 417 year: 2017 ident: 2022022511595186300_stem2739-bib-0045 article-title: Salmon provides fast and bias-aware quantification of transcript expression publication-title: Nature Methods doi: 10.1038/nmeth.4197 – volume: 121 start-page: 770 year: 2013 ident: 2022022511595186300_stem2739-bib-0010 article-title: Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition publication-title: Blood doi: 10.1182/blood-2012-07-444208 – volume: 457 start-page: 896 year: 2009 ident: 2022022511595186300_stem2739-bib-0011 article-title: Continuous single-cell imaging of blood generation from haemogenic endothelium publication-title: Nature doi: 10.1038/nature07760 – start-page: 87 volume-title: Pluripotent Stem Cell Biology—Advanced in Mechanisms, Methods, and Models year: 2014 ident: 2022022511595186300_stem2739-bib-0034 – volume: 464 start-page: 116 year: 2010 ident: 2022022511595186300_stem2739-bib-0002 article-title: In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium publication-title: Nature doi: 10.1038/nature08764 – volume: 340 start-page: 35 year: 2006 ident: 2022022511595186300_stem2739-bib-0058 article-title: Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2005.11.146 – volume: 18 start-page: 699 year: 2003 ident: 2022022511595186300_stem2739-bib-0066 article-title: Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells publication-title: Immunity doi: 10.1016/S1074-7613(03)00117-1 – volume: 126 start-page: 2811 year: 2015 ident: 2022022511595186300_stem2739-bib-0047 article-title: Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression publication-title: Blood doi: 10.1182/blood-2015-07-659276 – volume: 9 start-page: 72 year: 2009 ident: 2022022511595186300_stem2739-bib-0048 article-title: ERG is required for the differentiation of embryonic stem cells along the endothelial lineage publication-title: BMC Dev Biol doi: 10.1186/1471-213X-9-72 – volume: 2 start-page: 553 year: 2012 ident: 2022022511595186300_stem2739-bib-0026 article-title: Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures publication-title: Cell Rep doi: 10.1016/j.celrep.2012.08.002 – volume: 102 start-page: 906 year: 2003 ident: 2022022511595186300_stem2739-bib-0028 article-title: Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells publication-title: Blood doi: 10.1182/blood-2003-03-0832 – volume: 33 start-page: 1130 year: 2015 ident: 2022022511595186300_stem2739-bib-0022 article-title: The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells publication-title: Stem Cells doi: 10.1002/stem.1940 – volume: 104 start-page: 3097 year: 2004 ident: 2022022511595186300_stem2739-bib-0067 article-title: A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development publication-title: Blood doi: 10.1182/blood-2004-03-1224 – volume: 22 start-page: 1036 year: 2011 ident: 2022022511595186300_stem2739-bib-0004 article-title: Hemogenic endothelium: Origins, regulation, and implications for vascular biology publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2011.10.003 – volume: 17 start-page: 451 year: 2016 ident: 2022022511595186300_stem2739-bib-0039 article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing publication-title: Nat Immunol doi: 10.1038/ni.3368 – volume: 27 start-page: 653 year: 2009 ident: 2022022511595186300_stem2739-bib-0060 article-title: The adhesion molecule esam1 is a novel hematopoietic stem cell marker publication-title: Stem Cells doi: 10.1634/stemcells.2008-0824 |
SSID | ssj0014588 |
Score | 2.372507 |
Snippet | Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human... Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 206 |
SubjectTerms | Antigens, Surface - metabolism Biomarkers CD34 antigen CD43 antigen CD45 antigen CD73 antigen Cell Differentiation - genetics Cell Differentiation - physiology Cells (biology) Cells, Cultured Computational Biology Developmental stages Embryo cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Embryos Endothelial cells Endothelium Flow Cytometry Hemangioblasts - cytology Hemangioblasts - metabolism Hematopoiesis - genetics Hematopoiesis - physiology Hematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Hemogenic endothelium Human embryonic stem cells Human hematopoiesis Humans Pluripotency Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Progenitor cells Ribonucleic acid RNA Single cell RNA‐seq Stem cells Tissue inhibitor of metalloproteinase 3 Transcription |
Title | Single Cell Resolution of Human Hematoendothelial Cells Defines Transcriptional Signatures of Hemogenic Endothelium |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2739 https://www.ncbi.nlm.nih.gov/pubmed/29139170 https://www.proquest.com/docview/1990847360 https://www.proquest.com/docview/1964698028 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIvE98rDGQQD5OqlHw4TvIIa6FsKjy0k_YWJY49KpVkoo3Q-If4N7mznaRdhzR4aaPEX-1d7s7nu98R8jZIGPeTLHcK2PM4jCWRkzFEwpQs4TIIMk9gcvL0C5-csZPz8LzX-70RtVSv86H4dWNeyf9QFe4BXTFL9h8o2w4KN-Aa6AufQGH4vBWNZ6B3lnJwjP439MObuTrf_AQBWStZFphmtUTfODZdgZBRGO1ukM0bsYGwIIsLA_Sp4zugdwVTL8Rg3IxgcRusMTtby-8DoUcEO3WUXdlQ_K_fFtWWh-FCLk003xTtzZ-DT8Pu1AkztUtTo--khjWP22cfmhrMOvh7MGkfnGa1so7bEYqn4abrwoubaOdW2oK944DFYhYkrQRmWPbOCmUrog1GimVFf1PeunxDdfsmDXRHKxiUWQTGHoK1lnSqrznuv6YR2zhFg-nsp9g1xa53yF0_4hxLZYw-n7bHVZjuq4_V7e9pIKxc_10767bhs7Ob2d4caetm_oDs220JfW947CHpyfIRuWcKlV49JivDaRTZh3acRitFNafRHU7TTVfUchq9xmm04zQ9RsNpdIPTnpCzj-P58cSx5TocEWCsXFxkMk5c4YGKkFhlIQ-VnwghXLeAL1WA6R_w0IujKOG5LCKmlKs0pGUo8lgFT8leWZXygNAk4NLNeJixsGBSqszlQnoxA_2jfO7HfXLU_JepsFj2WFJlme5QrE_etE0vDYDLTY0OG4Kk9v1epR4YamC7Bdztk9ftY5C--GJlpaxqbMOxBKuLS3pmCNnO4iPirhdB7yNN2b9Pn87m4ylePL_NYl-Q-93LdEj21j9q-RIs43X-SnPlH-PCup4 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Cell+Resolution+of+Human+Hematoendothelial+Cells+Defines+Transcriptional+Signatures+of+Hemogenic+Endothelium&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Angelos%2C+Mathew+G.&rft.au=Abrahante%2C+Juan+E.&rft.au=Blum%2C+Robert+H.&rft.au=Kaufman%2C+Dan+S.&rft.date=2018-02-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=36&rft.issue=2&rft.spage=206&rft.epage=217&rft_id=info:doi/10.1002%2Fstem.2739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stem_2739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |