Single Cell Resolution of Human Hematoendothelial Cells Defines Transcriptional Signatures of Hemogenic Endothelium

Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–R...

Full description

Saved in:
Bibliographic Details
Published inStem cells (Dayton, Ohio) Vol. 36; no. 2; pp. 206 - 217
Main Authors Angelos, Mathew G., Abrahante, Juan E., Blum, Robert H., Kaufman, Dan S.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.02.2018
Subjects
Online AccessGet full text
ISSN1066-5099
1549-4918
1549-4918
DOI10.1002/stem.2739

Cover

Abstract Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non‐HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non‐HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC‐derived HE and HP share a common developmental pathway, while non‐HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206–217 Using a RUNX1c reporter hESC line, we derived functional hemogenic endothelium, non‐hemogenic endothelium, and early hematopoietic progenitor cells from embryoid bodies. With single‐cell RNA‐sequencing, we characterized the genetic signatures distinct to each population and further identified novel genetic targets that may be used to optimize production of definitive human hematopoietic cells from pluripotent stem cells.
AbstractList Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c+ ), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c- ), and 35 hematopoietic progenitor cells (HPCs: CD34+ CD43+ RUNX1c+ ) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206-217.Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c+ ), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c- ), and 35 hematopoietic progenitor cells (HPCs: CD34+ CD43+ RUNX1c+ ) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206-217.
Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non‐HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non‐HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC‐derived HE and HP share a common developmental pathway, while non‐HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206–217 Using a RUNX1c reporter hESC line, we derived functional hemogenic endothelium, non‐hemogenic endothelium, and early hematopoietic progenitor cells from embryoid bodies. With single‐cell RNA‐sequencing, we characterized the genetic signatures distinct to each population and further identified novel genetic targets that may be used to optimize production of definitive human hematopoietic cells from pluripotent stem cells.
Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA‐seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non‐HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non‐HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC‐derived HE and HP share a common developmental pathway, while non‐HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206–217
Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31 CD144 CD41 CD43 CD45 CD73 RUNX1c ), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31 CD144 CD41 CD43 CD45 CD73 RUNX1c ), and 35 hematopoietic progenitor cells (HPCs: CD34 CD43 RUNX1c ) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206-217.
Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c+), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31+CD144+CD41–CD43–CD45–CD73–RUNX1c–), and 35 hematopoietic progenitor cells (HPCs: CD34+CD43+RUNX1c+) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells.
Author Angelos, Mathew G.
Abrahante, Juan E.
Blum, Robert H.
Kaufman, Dan S.
Author_xml – sequence: 1
  givenname: Mathew G.
  surname: Angelos
  fullname: Angelos, Mathew G.
  organization: University of Minnesota
– sequence: 2
  givenname: Juan E.
  surname: Abrahante
  fullname: Abrahante, Juan E.
  organization: University of Minnesota Informatics Institute, University of Minnesota
– sequence: 3
  givenname: Robert H.
  surname: Blum
  fullname: Blum, Robert H.
  organization: University of California‐San Diego
– sequence: 4
  givenname: Dan S.
  orcidid: 0000-0002-2003-2494
  surname: Kaufman
  fullname: Kaufman, Dan S.
  email: dskaufman@ucsd.edu
  organization: University of California‐San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29139170$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9P3DAQxa2KqvwpB74AisSFHgJ2Ejv2ES3bbiUQUnc5W15nvBg59mInQnz7OrB7Qe1pRprfe5qZd4wOfPCA0BnBVwTj6joN0F9VbS2-oCNCG1E2gvCD3GPGSoqFOETHKT1jTBrK-Td0WAlSC9LiI5SW1m8cFDNwrvgDKbhxsMEXwRSLsVe-WECvhgC-C8MTOKvcO5qKWzDWQypWUfmko91Osjxd2o1XwxjzaPKAPmzAW13M9w5j_x19NcolON3VE_T4c76aLcq7h1-_Zzd3pa45FyXvFHCBNakqCrRh9ZqaSmitMe5yMR1hdc0o4W0r2Bq6tjEGG0wEo1SvualP0OWH7zaGlxHSIHubdN5eeQhjkplsmOC44hm9-IQ-hzHmeyZKYN60NcOZOt9R47qHTm6j7VV8k_t3ZuD6A9AxpBTBSG0HNX1miMo6SbCcApNTYHIKLCt-fFLsTf_F7txfrYO3_4NyuZrfvyv-AhqapnI
CitedBy_id crossref_primary_10_1186_s40164_022_00285_y
crossref_primary_10_1016_j_htct_2020_01_005
crossref_primary_10_3389_fcell_2021_812639
crossref_primary_10_1007_s11427_022_2374_x
crossref_primary_10_3389_fcell_2021_660350
crossref_primary_10_1016_j_jim_2019_112684
crossref_primary_10_1126_sciadv_abi9787
crossref_primary_10_3389_fcell_2020_00832
crossref_primary_10_1186_s12872_024_04345_5
crossref_primary_10_1002_jcp_30924
crossref_primary_10_1093_stcltm_szab001
crossref_primary_10_1155_2021_9919422
crossref_primary_10_1002_ptr_6241
crossref_primary_10_1182_blood_2020006229
crossref_primary_10_1038_s41389_020_00269_9
crossref_primary_10_1016_j_jbc_2023_105556
crossref_primary_10_1016_j_stemcr_2020_11_008
crossref_primary_10_1016_j_stem_2018_04_015
crossref_primary_10_1089_scd_2023_0204
Cites_doi 10.1136/jcp.2008.061010
10.1242/dev.083147
10.1042/BST20110702
10.1016/j.exphem.2010.02.011
10.1182/blood-2014-04-572958
10.1038/ncb2724
10.1038/ncomms3924
10.1016/j.devcel.2015.11.004
10.1182/blood-2004-11-4522
10.1016/j.biocel.2012.12.013
10.1038/nbt.1605
10.3389/fphys.2014.00003
10.1002/stem.507
10.1182/blood-2006-09-047704
10.1007/978-1-62703-478-4_3
10.1038/nature12172
10.1182/blood-2012-05-431403
10.1016/S0301-472X(01)00669-5
10.1038/nature07619
10.1016/j.cell.2008.01.025
10.1038/ncomms11853
10.1182/blood-2010-10-315275
10.1089/scd.2012.0608
10.1182/blood-2006-02-003327
10.1038/ncb3161
10.1038/nbt.3192
10.1182/blood-2010-01-266528
10.3324/haematol.2011.055566
10.1073/pnas.1520760112
10.1242/dev.02568
10.1073/pnas.191362598
10.1172/JCI79328
10.1016/j.stemcr.2013.10.010
10.1182/blood-2004-04-1649
10.1038/nprot.2008.42
10.1038/nmeth1041
10.1016/j.ydbio.2012.03.024
10.1196/annals.1392.010
10.15252/embj.201488784
10.1182/blood.V98.12.3332
10.1038/nbt.2915
10.1002/iub.1059
10.1038/nature12207
10.1016/j.stemcr.2015.07.008
10.1182/blood-2009-05-222307
10.1016/j.stem.2011.10.003
10.1182/blood-2008-07-167106
10.1182/blood-2007-07-100883
10.1038/nature08761
10.1371/journal.pone.0019854
10.1016/j.cell.2015.05.002
10.1038/nature16943
10.2217/17460751.3.5.693
10.1016/j.celrep.2012.11.003
10.1038/nature08738
10.1038/ncb3354
10.1038/nmeth.4197
10.1182/blood-2012-07-444208
10.1038/nature07760
10.1038/nature08764
10.1016/j.bbrc.2005.11.146
10.1016/S1074-7613(03)00117-1
10.1182/blood-2015-07-659276
10.1186/1471-213X-9-72
10.1016/j.celrep.2012.08.002
10.1182/blood-2003-03-0832
10.1002/stem.1940
10.1182/blood-2004-03-1224
10.1016/j.semcdb.2011.10.003
10.1038/ni.3368
10.1634/stemcells.2008-0824
ContentType Journal Article
Copyright 2017 AlphaMed Press
2017 AlphaMed Press.
2018 AlphaMed Press
Copyright_xml – notice: 2017 AlphaMed Press
– notice: 2017 AlphaMed Press.
– notice: 2018 AlphaMed Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/stem.2739
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 217
ExternalDocumentID 29139170
10_1002_stem_2739
STEM2739
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Regenerative Medicine Minnesota
– fundername: NIH
– fundername: Regenerative Medicine Minnesota program
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: F30DK107071
– fundername: National Cancer Institute Grant
  funderid: R01CA203348
– fundername: National Institute of General Medicine Sciences
  funderid: T32GM113846 ; T32GM008244
– fundername: NIDDK NIH HHS
  grantid: R41 DK107071
– fundername: NICHD NIH HHS
  grantid: T32 HD060536
– fundername: NIDDK NIH HHS
  grantid: F30 DK107017
– fundername: NCI NIH HHS
  grantid: R01 CA203348
– fundername: NIGMS NIH HHS
  grantid: T32 GM113846
– fundername: NIGMS NIH HHS
  grantid: T32 GM008244
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AHMMS
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NU-
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
AAYXX
ABGNP
ABJNI
ABVGC
ABXZS
AGORE
AJNCP
ALXQX
CITATION
AAMMB
ACVCV
ADMTO
AEFGJ
AFFQV
AGXDD
AHGBF
AIDQK
AIDYY
AJBYB
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
OBFPC
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
NTU
P64
RC3
WIN
7X8
ID FETCH-LOGICAL-c3889-8dae890c1225e5463b5f29ccc00d9ccfd163365187796bed74ff0f019655cb8f3
ISSN 1066-5099
1549-4918
IngestDate Sat Sep 27 16:36:27 EDT 2025
Sun Sep 07 23:50:07 EDT 2025
Mon Jul 21 05:36:20 EDT 2025
Thu Apr 24 23:10:40 EDT 2025
Tue Jul 01 00:23:39 EDT 2025
Wed Jan 22 16:43:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human embryonic stem cells
Human hematopoiesis
Single cell RNA-seq
Hemogenic endothelium
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2017 AlphaMed Press.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3889-8dae890c1225e5463b5f29ccc00d9ccfd163365187796bed74ff0f019655cb8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2003-2494
OpenAccessLink https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stem.2739
PMID 29139170
PQID 1990847360
PQPubID 1046343
PageCount 12
ParticipantIDs proquest_miscellaneous_1964698028
proquest_journals_1990847360
pubmed_primary_29139170
crossref_citationtrail_10_1002_stem_2739
crossref_primary_10_1002_stem_2739
wiley_primary_10_1002_stem_2739_STEM2739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-01
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2015; 35
2013; 4
2013; 1
2011; 118
2012; 366
2013; 22
2010; 464
2015; 33
2016; 143
2007; 1106
2009; 113
2003; 18
2013; 121
2008; 3
2007; 109
2009; 114
2006; 133
2012; 97
2014; 127
2014; 5
2013; 15
2010; 116
2010; 28
2005; 105
2005; 106
2011; 22
2007; 4
2012; 64
2014; 124
2001; 98
2015; 161
2010; 38
2015; 17
2009; 62
2015; 5
2004; 104
2015; 126
2013; 45
2015; 125
2013; 140
2001; 29
2011; 39
2016; 18
2016; 17
2011; 6
2009; 27
2009; 457
2011; 9
2016; 7
2012; 2
2006; 108
2013; 1029
2017; 14
2007; 110
2015; 112
2016; 530
2009; 9
2013; 498
2006; 340
2014
2008; 132
2003; 102
2014; 33
2014; 32
Yokota (2022022511595186300_stem2739-bib-0059) 2009; 113
Lie-A-Ling (2022022511595186300_stem2739-bib-0018) 2014; 124
Lu (2022022511595186300_stem2739-bib-0054) 2007; 4
Chen (2022022511595186300_stem2739-bib-0021) 2009; 457
McLaughlin (2022022511595186300_stem2739-bib-0063) 2001; 98
Kaufman (2022022511595186300_stem2739-bib-0029) 2001; 98
Gori (2022022511595186300_stem2739-bib-0068) 2015; 125
James (2022022511595186300_stem2739-bib-0072) 2010; 28
Björklund (2022022511595186300_stem2739-bib-0039) 2016; 17
Eilken (2022022511595186300_stem2739-bib-0011) 2009; 457
Shalek (2022022511595186300_stem2739-bib-0036) 2013; 498
Wurtzel (2022022511595186300_stem2739-bib-0043) 2015; 35
Zape (2022022511595186300_stem2739-bib-0004) 2011; 22
Swiers (2022022511595186300_stem2739-bib-0013) 2013; 4
Søreide (2022022511595186300_stem2739-bib-0046) 2009; 62
Yuan (2022022511595186300_stem2739-bib-0061) 2011; 118
Kim (2022022511595186300_stem2739-bib-0065) 2014; 33
Ni (2022022511595186300_stem2739-bib-0031) 2013; 1029
Nakajima-Takagi (2022022511595186300_stem2739-bib-0050) 2013; 121
Nakajima (2022022511595186300_stem2739-bib-0058) 2006; 340
Kumano (2022022511595186300_stem2739-bib-0066) 2003; 18
Orkin (2022022511595186300_stem2739-bib-0009) 2008; 132
Ng (2022022511595186300_stem2739-bib-0040) 2008; 3
Chadwick (2022022511595186300_stem2739-bib-0028) 2003; 102
Vodyanik (2022022511595186300_stem2739-bib-0075) 2006; 108
Camp (2022022511595186300_stem2739-bib-0044) 2015; 112
Clarke (2022022511595186300_stem2739-bib-0051) 2013; 15
Lin (2022022511595186300_stem2739-bib-0071) 2012; 64
Chen (2022022511595186300_stem2739-bib-0049) 2011; 9
Maddaluno (2022022511595186300_stem2739-bib-0073) 2013; 498
Hadland (2022022511595186300_stem2739-bib-0067) 2004; 104
Knorr (2022022511595186300_stem2739-bib-0030) 2013; 22
Jagannathan-Bogdan (2022022511595186300_stem2739-bib-0008) 2013; 140
Nottingham (2022022511595186300_stem2739-bib-0015) 2007; 110
Evrard (2022022511595186300_stem2739-bib-0074) 2016; 7
Bertrand (2022022511595186300_stem2739-bib-0001) 2010; 464
Zambidis (2022022511595186300_stem2739-bib-0055) 2007; 1106
Palis (2022022511595186300_stem2739-bib-0007) 2014; 5
Ng (2022022511595186300_stem2739-bib-0014) 2010; 28
Challen (2022022511595186300_stem2739-bib-0017) 2010; 38
Ditadi (2022022511595186300_stem2739-bib-0023) 2015; 17
Leszczynska (2022022511595186300_stem2739-bib-0062) 2011; 39
Choi (2022022511595186300_stem2739-bib-0026) 2012; 2
Lu (2022022511595186300_stem2739-bib-0053) 2008; 3
Ooi (2022022511595186300_stem2739-bib-0060) 2009; 27
Kennedy (2022022511595186300_stem2739-bib-0032) 2012; 2
Mikkola (2022022511595186300_stem2739-bib-0005) 2006; 133
Ferrell (2022022511595186300_stem2739-bib-0022) 2015; 33
Sturgeon (2022022511595186300_stem2739-bib-0056) 2014; 32
Kennedy (2022022511595186300_stem2739-bib-0035) 2007; 109
Tanaka (2022022511595186300_stem2739-bib-0020) 2012; 366
Kobar (2022022511595186300_stem2739-bib-0025) 2012; 97
Rafii (2022022511595186300_stem2739-bib-0010) 2013; 121
Patro (2022022511595186300_stem2739-bib-0045) 2017; 14
Melichar (2022022511595186300_stem2739-bib-0033) 2011; 6
Tan (2022022511595186300_stem2739-bib-0037) 2016; 143
Anderson (2022022511595186300_stem2739-bib-0047) 2015; 126
Antas (2022022511595186300_stem2739-bib-0012) 2013; 45
Clarke (2022022511595186300_stem2739-bib-0052) 2015; 5
Dou (2022022511595186300_stem2739-bib-0069) 2016; 18
Vodyanik (2022022511595186300_stem2739-bib-0027) 2005; 105
Chen (2022022511595186300_stem2739-bib-0070) 2016; 530
Nakajima (2022022511595186300_stem2739-bib-0057) 2010; 116
Nikolova-Krstevski (2022022511595186300_stem2739-bib-0048) 2009; 9
Wilson (2022022511595186300_stem2739-bib-0064) 2014; 127
Kissa (2022022511595186300_stem2739-bib-0003) 2010; 464
Boisset (2022022511595186300_stem2739-bib-0002) 2010; 464
Satija (2022022511595186300_stem2739-bib-0041) 2015; 33
Zambidis (2022022511595186300_stem2739-bib-0016) 2005; 106
Yvernogeau (2022022511595186300_stem2739-bib-0038) 2016; 143
Palis (2022022511595186300_stem2739-bib-0006) 2001; 29
Hirose (2022022511595186300_stem2739-bib-0024) 2013; 1
Chen (2022022511595186300_stem2739-bib-0034) 2014
Sroczynska (2022022511595186300_stem2739-bib-0019) 2009; 114
Macosko (2022022511595186300_stem2739-bib-0042) 2015; 161
References_xml – volume: 105
  start-page: 617
  year: 2005
  end-page: 626
  article-title: Human embryonic stem cell – derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential
  publication-title: Blood
– volume: 104
  start-page: 3097
  year: 2004
  end-page: 3105
  article-title: A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development
  publication-title: Blood
– volume: 530
  start-page: 223
  year: 2016
  end-page: 227
  article-title: Hoxb5 marks long‐term haematopoietic stem cells and reveals a homogenous perivascular niche
  publication-title: Nature
– volume: 33
  start-page: 1130
  year: 2015
  end-page: 1141
  article-title: The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells
  publication-title: Stem Cells
– volume: 14
  start-page: 417
  year: 2017
  end-page: 419
  article-title: Salmon provides fast and bias‐aware quantification of transcript expression
  publication-title: Nature Methods
– volume: 98
  start-page: 3332
  year: 2001
  end-page: 3339
  article-title: Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation
  publication-title: Blood
– volume: 109
  start-page: 2679
  year: 2007
  end-page: 2687
  article-title: Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures
  publication-title: Blood
– volume: 340
  start-page: 35
  year: 2006
  end-page: 42
  article-title: Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells
  publication-title: Biochem Biophys Res Commun
– volume: 2
  start-page: 1722
  year: 2012
  end-page: 1735
  article-title: T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures
  publication-title: Cell Rep
– volume: 39
  start-page: 1606
  year: 2011
  end-page: 1611
  article-title: The role of RhoJ in endothelial cell biology and angiogenesis
  publication-title: Biochem Soc Trans
– volume: 62
  start-page: 1
  year: 2009
  end-page: 5
  article-title: Receiver‐operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research
  publication-title: J Clin Pathol
– volume: 108
  start-page: 2095
  year: 2006
  end-page: 2105
  article-title: Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures
  publication-title: Blood
– volume: 9
  start-page: 72
  year: 2009
  article-title: ERG is required for the differentiation of embryonic stem cells along the endothelial lineage
  publication-title: BMC Dev Biol
– volume: 118
  start-page: 1145
  year: 2011
  end-page: 1153
  article-title: RhoJ is an endothelial cell‐restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG
  publication-title: Blood
– volume: 366
  start-page: 404
  year: 2012
  end-page: 419
  article-title: The transcriptional programme controlled by Runx1 during early embryonic blood development
  publication-title: Dev Biol
– volume: 3
  start-page: 768
  year: 2008
  end-page: 776
  article-title: A protocol describing the use of a recombinant protein‐based, animal product‐free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies
  publication-title: Nat Protoc
– volume: 143
  start-page: 1318
  year: 2016
  end-page: 1327
  article-title: Developmental origin of lung macrophage diversity
  publication-title: Development
– volume: 126
  start-page: 2811
  year: 2015
  end-page: 2820
  article-title: Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression
  publication-title: Blood
– volume: 132
  start-page: 631
  year: 2008
  end-page: 644
  article-title: Hematopoiesis: An evolving paradigm for stem cell biology
  publication-title: Cell
– volume: 98
  start-page: 10716
  year: 2001
  end-page: 10721
  article-title: Hematopoietic colony‐forming cells derived from human embryonic stem cells
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: e19854
  year: 2011
  article-title: Comparative study of hematopoietic differentiation between human embryonic stem cell lines
  publication-title: PLoS One
– volume: 32
  start-page: 554
  year: 2014
  end-page: 561
  article-title: Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells
  publication-title: Nat Biotechnol
– volume: 18
  start-page: 595
  year: 2016
  end-page: 606
  article-title: Medial HOXA genes demarcate haematopoietic stem cell fate during human development
  publication-title: Nat Cell Biol
– volume: 498
  start-page: 492
  year: 2013
  end-page: 496
  article-title: EndMT contributes to the onset and progression of cerebral cavernous malformations
  publication-title: Nature
– volume: 143
  start-page: 1302
  year: 2016
  end-page: 1312
  article-title: An in vitro model of hemogenic endothelium commitment and hematopoietic production
  publication-title: Development
– volume: 140
  start-page: 2463
  year: 2013
  end-page: 2467
  article-title: Hematopoiesis
  publication-title: Development
– volume: 2
  start-page: 553
  year: 2012
  end-page: 567
  article-title: Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures
  publication-title: Cell Rep
– volume: 15
  start-page: 502
  year: 2013
  end-page: 510
  article-title: The expression of Sox17 identifies and regulates haemogenic endothelium
  publication-title: Nat Cell Biol
– volume: 464
  start-page: 116
  year: 2010
  end-page: 120
  article-title: In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium
  publication-title: Nature
– volume: 64
  start-page: 717
  year: 2012
  end-page: 723
  article-title: The role of endothelial‐mesenchymal transition in development and pathological process
  publication-title: IUBMB Life
– volume: 1
  start-page: 499
  year: 2013
  end-page: 508
  article-title: Immortalization of erythroblasts by c‐MYC and BCL‐XL enables large‐scale erythrocyte production from human pluripotent stem cells
  publication-title: Stem Cell Rep
– volume: 161
  start-page: 1202
  year: 2015
  end-page: 1214
  article-title: Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
– volume: 124
  start-page: e11
  year: 2014
  end-page: e20
  article-title: RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence
  publication-title: Blood
– volume: 106
  start-page: 860
  year: 2005
  end-page: 870
  article-title: Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development
  publication-title: Blood
– volume: 35
  start-page: 632
  year: 2015
  end-page: 645
  article-title: A generic and cell‐type‐specific wound response precedes regeneration in planarians
  publication-title: Dev Cell
– volume: 1106
  start-page: 223
  year: 2007
  end-page: 232
  article-title: Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells
  publication-title: Ann NY Acad Sci
– volume: 121
  start-page: 770
  year: 2013
  end-page: 780
  article-title: Human ESC‐derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition
  publication-title: Blood
– volume: 133
  start-page: 3733
  year: 2006
  end-page: 3744
  article-title: The journey of developing hematopoietic stem cells
  publication-title: Development
– volume: 27
  start-page: 653
  year: 2009
  end-page: 661
  article-title: The adhesion molecule esam1 is a novel hematopoietic stem cell marker
  publication-title: Stem Cells
– volume: 116
  start-page: 4474
  year: 2010
  end-page: 4482
  article-title: TIMP‐3 recruits quiescent hematopoietic stem cells into active cell cycle and expands multipotent progenitor pool
  publication-title: Blood
– volume: 45
  start-page: 692
  year: 2013
  end-page: 695
  article-title: Hemogenic endothelium: A vessel for blood production
  publication-title: Int J Biochem Cell Biol
– volume: 3
  start-page: 693
  year: 2008
  end-page: 704
  article-title: Robust generation of hemangioblastic progenitors from human embryonic stem cells
  publication-title: Regen Med
– volume: 457
  start-page: 887
  year: 2009
  end-page: 891
  article-title: Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter
  publication-title: Nature
– volume: 113
  start-page: 2914
  year: 2009
  end-page: 2923
  article-title: The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice
  publication-title: Blood
– volume: 97
  start-page: 1795
  year: 2012
  end-page: 1803
  article-title: Human induced pluripotent stem cells can reach complete terminal maturation: In vivo and in vitro evidence in the erythropoietic differentiation model
  publication-title: Haematologica
– start-page: 87
  year: 2014
  end-page: 114
– volume: 102
  start-page: 906
  year: 2003
  end-page: 915
  article-title: Cytokines and BMP‐4 promote hematopoietic differentiation of human embryonic stem cells
  publication-title: Blood
– volume: 33
  start-page: 495
  year: 2015
  end-page: 502
  article-title: Spatial reconstruction of single‐cell gene expression data
  publication-title: Nat Biotechnol
– volume: 110
  start-page: 4188
  year: 2007
  end-page: 4197
  article-title: Runx1‐mediated hematopoietic stem‐cell emergence is controlled by a Gata/Ets/SCL‐regulated enhancer
  publication-title: Blood
– volume: 4
  start-page: 501
  year: 2007
  end-page: 509
  article-title: Generation of functional hemangioblasts from human embryonic stem cells
  publication-title: Nat Methods
– volume: 33
  start-page: 2363
  year: 2014
  end-page: 2373
  article-title: Discrete Notch signaling requirements in the specification of hematopoietic stem cells
  publication-title: EMBO J
– volume: 28
  start-page: 1869
  year: 2010
  end-page: 1881
  article-title: A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells
  publication-title: Stem Cells
– volume: 1029
  start-page: 33
  year: 2013
  end-page: 41
  article-title: Hematopoietic and natural killer cell development from human pluripotent stem cells
  publication-title: Embryonic Methods Mol Biol
– volume: 18
  start-page: 699
  year: 2003
  end-page: 711
  article-title: Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
  publication-title: Immunity
– volume: 38
  start-page: 403
  year: 2010
  end-page: 416
  article-title: Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells
  publication-title: Exp Hematol
– volume: 5
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Primitive and definitive erythropoiesis in mammals
  publication-title: Front Physiol
– volume: 457
  start-page: 896
  year: 2009
  end-page: 900
  article-title: Continuous single‐cell imaging of blood generation from haemogenic endothelium
  publication-title: Nature
– volume: 4
  start-page: 2924
  year: 2013
  article-title: Early dynamic fate changes in haemogenic endothelium characterized at the single‐cell level
  publication-title: Nat Commun
– volume: 9
  start-page: 541
  year: 2011
  end-page: 552
  article-title: Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells
  publication-title: Cell Stem Cell
– volume: 121
  start-page: 447
  year: 2013
  end-page: 458
  article-title: Role of SOX17 in hematopoietic development from human embryonic stem cells
  publication-title: Blood
– volume: 464
  start-page: 108
  year: 2010
  end-page: 111
  article-title: Haematopoietic stem cells derive directly from aortic endothelium during development
  publication-title: Nature
– volume: 5
  start-page: 291
  year: 2015
  end-page: 304
  article-title: A quantitative proteomic analysis of hemogenic endothelium reveals differential regulation of hematopoiesis by SOX17
  publication-title: Stem Cell Rep
– volume: 114
  start-page: 5279
  year: 2009
  end-page: 5289
  article-title: The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis
  publication-title: Blood
– volume: 17
  start-page: 451
  year: 2016
  end-page: 460
  article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single‐cell RNA sequencing
  publication-title: Nat Immunol
– volume: 29
  start-page: 927
  year: 2001
  end-page: 936
  article-title: Yolk‐sac hematopoiesis: The first blood cells of mouse and man
  publication-title: Exp Hematol
– volume: 28
  start-page: 161
  year: 2010
  end-page: 166
  article-title: Expansion and maintenance of human embryonic stem cell – derived endothelial cells by TGFb inhibition is Id1 dependent
  publication-title: Nat Biotechnol
– volume: 112
  start-page: 15672
  year: 2015
  end-page: 15677
  article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 1036
  year: 2011
  end-page: 1047
  article-title: Hemogenic endothelium: Origins, regulation, and implications for vascular biology
  publication-title: Semin Cell Dev Biol
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability
  publication-title: Nat Commun
– volume: 498
  start-page: 236
  year: 2013
  end-page: 240
  article-title: Single‐cell transcriptomics reveals bimodality in expression and splicing in immune cells
  publication-title: Nature
– volume: 22
  start-page: 1861
  year: 2013
  end-page: 1869
  article-title: Engineered human embryonic stem cell‐derived lymphocytes to study in vivo trafficking and immunotherapy
  publication-title: Stem Cells Dev
– volume: 464
  start-page: 112
  year: 2010
  end-page: 115
  article-title: Blood stem cells emerge from aortic endothelium by a novel type of cell transition
  publication-title: Nature
– volume: 127
  start-page: 3039
  issue: Pt 14
  year: 2014
  end-page: 3051
  article-title: RhoJ interacts with the GIT‐PIX complex and regulates focal adhesion disassembly
  publication-title: J Cell Sci
– volume: 17
  start-page: 580
  year: 2015
  end-page: 591
  article-title: Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages
  publication-title: Nat Cell Biol
– volume: 125
  start-page: 1243
  year: 2015
  end-page: 1254
  article-title: Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
  publication-title: J Clin Invest
– volume: 62
  start-page: 1
  year: 2009
  ident: 2022022511595186300_stem2739-bib-0046
  article-title: Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.2008.061010
– volume: 140
  start-page: 2463
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0008
  article-title: Hematopoiesis
  publication-title: Development
  doi: 10.1242/dev.083147
– volume: 39
  start-page: 1606
  year: 2011
  ident: 2022022511595186300_stem2739-bib-0062
  article-title: The role of RhoJ in endothelial cell biology and angiogenesis
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20110702
– volume: 38
  start-page: 403
  year: 2010
  ident: 2022022511595186300_stem2739-bib-0017
  article-title: Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2010.02.011
– volume: 124
  start-page: e11
  year: 2014
  ident: 2022022511595186300_stem2739-bib-0018
  article-title: RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence
  publication-title: Blood
  doi: 10.1182/blood-2014-04-572958
– volume: 15
  start-page: 502
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0051
  article-title: The expression of Sox17 identifies and regulates haemogenic endothelium
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2724
– volume: 4
  start-page: 2924
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0013
  article-title: Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level
  publication-title: Nat Commun
  doi: 10.1038/ncomms3924
– volume: 35
  start-page: 632
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0043
  article-title: A generic and cell-type-specific wound response precedes regeneration in planarians
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2015.11.004
– volume: 106
  start-page: 860
  year: 2005
  ident: 2022022511595186300_stem2739-bib-0016
  article-title: Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development
  publication-title: Blood
  doi: 10.1182/blood-2004-11-4522
– volume: 143
  start-page: 1318
  year: 2016
  ident: 2022022511595186300_stem2739-bib-0037
  article-title: Developmental origin of lung macrophage diversity
  publication-title: Development
– volume: 45
  start-page: 692
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0012
  article-title: Hemogenic endothelium: A vessel for blood production
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2012.12.013
– volume: 28
  start-page: 161
  year: 2010
  ident: 2022022511595186300_stem2739-bib-0072
  article-title: Expansion and maintenance of human embryonic stem cell – derived endothelial cells by TGFb inhibition is Id1 dependent
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1605
– volume: 5
  start-page: 1
  year: 2014
  ident: 2022022511595186300_stem2739-bib-0007
  article-title: Primitive and definitive erythropoiesis in mammals
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00003
– volume: 28
  start-page: 1869
  year: 2010
  ident: 2022022511595186300_stem2739-bib-0014
  article-title: A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.507
– volume: 109
  start-page: 2679
  year: 2007
  ident: 2022022511595186300_stem2739-bib-0035
  article-title: Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures
  publication-title: Blood
  doi: 10.1182/blood-2006-09-047704
– volume: 1029
  start-page: 33
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0031
  article-title: Hematopoietic and natural killer cell development from human pluripotent stem cells
  publication-title: Embryonic Methods Mol Biol
  doi: 10.1007/978-1-62703-478-4_3
– volume: 498
  start-page: 236
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0036
  article-title: Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
  publication-title: Nature
  doi: 10.1038/nature12172
– volume: 121
  start-page: 447
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0050
  article-title: Role of SOX17 in hematopoietic development from human embryonic stem cells
  publication-title: Blood
  doi: 10.1182/blood-2012-05-431403
– volume: 29
  start-page: 927
  year: 2001
  ident: 2022022511595186300_stem2739-bib-0006
  article-title: Yolk-sac hematopoiesis: The first blood cells of mouse and man
  publication-title: Exp Hematol
  doi: 10.1016/S0301-472X(01)00669-5
– volume: 457
  start-page: 887
  year: 2009
  ident: 2022022511595186300_stem2739-bib-0021
  article-title: Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter
  publication-title: Nature
  doi: 10.1038/nature07619
– volume: 132
  start-page: 631
  year: 2008
  ident: 2022022511595186300_stem2739-bib-0009
  article-title: Hematopoiesis: An evolving paradigm for stem cell biology
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.025
– volume: 7
  start-page: 1
  year: 2016
  ident: 2022022511595186300_stem2739-bib-0074
  article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability
  publication-title: Nat Commun
  doi: 10.1038/ncomms11853
– volume: 118
  start-page: 1145
  year: 2011
  ident: 2022022511595186300_stem2739-bib-0061
  article-title: RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG
  publication-title: Blood
  doi: 10.1182/blood-2010-10-315275
– volume: 127
  start-page: 3039
  issue: Pt 14
  year: 2014
  ident: 2022022511595186300_stem2739-bib-0064
  article-title: RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly
  publication-title: J Cell Sci
– volume: 22
  start-page: 1861
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0030
  article-title: Engineered human embryonic stem cell-derived lymphocytes to study in vivo trafficking and immunotherapy
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2012.0608
– volume: 108
  start-page: 2095
  year: 2006
  ident: 2022022511595186300_stem2739-bib-0075
  article-title: Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures
  publication-title: Blood
  doi: 10.1182/blood-2006-02-003327
– volume: 17
  start-page: 580
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0023
  article-title: Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3161
– volume: 33
  start-page: 495
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0041
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
– volume: 116
  start-page: 4474
  year: 2010
  ident: 2022022511595186300_stem2739-bib-0057
  article-title: TIMP-3 recruits quiescent hematopoietic stem cells into active cell cycle and expands multipotent progenitor pool
  publication-title: Blood
  doi: 10.1182/blood-2010-01-266528
– volume: 97
  start-page: 1795
  year: 2012
  ident: 2022022511595186300_stem2739-bib-0025
  article-title: Human induced pluripotent stem cells can reach complete terminal maturation: In vivo and in vitro evidence in the erythropoietic differentiation model
  publication-title: Haematologica
  doi: 10.3324/haematol.2011.055566
– volume: 112
  start-page: 15672
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0044
  article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1520760112
– volume: 133
  start-page: 3733
  year: 2006
  ident: 2022022511595186300_stem2739-bib-0005
  article-title: The journey of developing hematopoietic stem cells
  publication-title: Development
  doi: 10.1242/dev.02568
– volume: 98
  start-page: 10716
  year: 2001
  ident: 2022022511595186300_stem2739-bib-0029
  article-title: Hematopoietic colony-forming cells derived from human embryonic stem cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.191362598
– volume: 125
  start-page: 1243
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0068
  article-title: Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
  publication-title: J Clin Invest
  doi: 10.1172/JCI79328
– volume: 1
  start-page: 499
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0024
  article-title: Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2013.10.010
– volume: 105
  start-page: 617
  year: 2005
  ident: 2022022511595186300_stem2739-bib-0027
  article-title: Human embryonic stem cell – derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential
  publication-title: Blood
  doi: 10.1182/blood-2004-04-1649
– volume: 143
  start-page: 1302
  year: 2016
  ident: 2022022511595186300_stem2739-bib-0038
  article-title: An in vitro model of hemogenic endothelium commitment and hematopoietic production
  publication-title: Development
– volume: 3
  start-page: 768
  year: 2008
  ident: 2022022511595186300_stem2739-bib-0040
  article-title: A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.42
– volume: 4
  start-page: 501
  year: 2007
  ident: 2022022511595186300_stem2739-bib-0054
  article-title: Generation of functional hemangioblasts from human embryonic stem cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth1041
– volume: 366
  start-page: 404
  year: 2012
  ident: 2022022511595186300_stem2739-bib-0020
  article-title: The transcriptional programme controlled by Runx1 during early embryonic blood development
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2012.03.024
– volume: 1106
  start-page: 223
  year: 2007
  ident: 2022022511595186300_stem2739-bib-0055
  article-title: Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells
  publication-title: Ann NY Acad Sci
  doi: 10.1196/annals.1392.010
– volume: 33
  start-page: 2363
  year: 2014
  ident: 2022022511595186300_stem2739-bib-0065
  article-title: Discrete Notch signaling requirements in the specification of hematopoietic stem cells
  publication-title: EMBO J
  doi: 10.15252/embj.201488784
– volume: 98
  start-page: 3332
  year: 2001
  ident: 2022022511595186300_stem2739-bib-0063
  article-title: Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation
  publication-title: Blood
  doi: 10.1182/blood.V98.12.3332
– volume: 32
  start-page: 554
  year: 2014
  ident: 2022022511595186300_stem2739-bib-0056
  article-title: Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2915
– volume: 64
  start-page: 717
  year: 2012
  ident: 2022022511595186300_stem2739-bib-0071
  article-title: The role of endothelial-mesenchymal transition in development and pathological process
  publication-title: IUBMB Life
  doi: 10.1002/iub.1059
– volume: 498
  start-page: 492
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0073
  article-title: EndMT contributes to the onset and progression of cerebral cavernous malformations
  publication-title: Nature
  doi: 10.1038/nature12207
– volume: 5
  start-page: 291
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0052
  article-title: A quantitative proteomic analysis of hemogenic endothelium reveals differential regulation of hematopoiesis by SOX17
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2015.07.008
– volume: 114
  start-page: 5279
  year: 2009
  ident: 2022022511595186300_stem2739-bib-0019
  article-title: The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis
  publication-title: Blood
  doi: 10.1182/blood-2009-05-222307
– volume: 9
  start-page: 541
  year: 2011
  ident: 2022022511595186300_stem2739-bib-0049
  article-title: Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.10.003
– volume: 113
  start-page: 2914
  year: 2009
  ident: 2022022511595186300_stem2739-bib-0059
  article-title: The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice
  publication-title: Blood
  doi: 10.1182/blood-2008-07-167106
– volume: 110
  start-page: 4188
  year: 2007
  ident: 2022022511595186300_stem2739-bib-0015
  article-title: Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer
  publication-title: Blood
  doi: 10.1182/blood-2007-07-100883
– volume: 464
  start-page: 112
  year: 2010
  ident: 2022022511595186300_stem2739-bib-0003
  article-title: Blood stem cells emerge from aortic endothelium by a novel type of cell transition
  publication-title: Nature
  doi: 10.1038/nature08761
– volume: 6
  start-page: e19854
  year: 2011
  ident: 2022022511595186300_stem2739-bib-0033
  article-title: Comparative study of hematopoietic differentiation between human embryonic stem cell lines
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019854
– volume: 161
  start-page: 1202
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0042
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 530
  start-page: 223
  year: 2016
  ident: 2022022511595186300_stem2739-bib-0070
  article-title: Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche
  publication-title: Nature
  doi: 10.1038/nature16943
– volume: 3
  start-page: 693
  year: 2008
  ident: 2022022511595186300_stem2739-bib-0053
  article-title: Robust generation of hemangioblastic progenitors from human embryonic stem cells
  publication-title: Regen Med
  doi: 10.2217/17460751.3.5.693
– volume: 2
  start-page: 1722
  year: 2012
  ident: 2022022511595186300_stem2739-bib-0032
  article-title: T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.11.003
– volume: 464
  start-page: 108
  year: 2010
  ident: 2022022511595186300_stem2739-bib-0001
  article-title: Haematopoietic stem cells derive directly from aortic endothelium during development
  publication-title: Nature
  doi: 10.1038/nature08738
– volume: 18
  start-page: 595
  year: 2016
  ident: 2022022511595186300_stem2739-bib-0069
  article-title: Medial HOXA genes demarcate haematopoietic stem cell fate during human development
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3354
– volume: 14
  start-page: 417
  year: 2017
  ident: 2022022511595186300_stem2739-bib-0045
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nature Methods
  doi: 10.1038/nmeth.4197
– volume: 121
  start-page: 770
  year: 2013
  ident: 2022022511595186300_stem2739-bib-0010
  article-title: Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition
  publication-title: Blood
  doi: 10.1182/blood-2012-07-444208
– volume: 457
  start-page: 896
  year: 2009
  ident: 2022022511595186300_stem2739-bib-0011
  article-title: Continuous single-cell imaging of blood generation from haemogenic endothelium
  publication-title: Nature
  doi: 10.1038/nature07760
– start-page: 87
  volume-title: Pluripotent Stem Cell Biology—Advanced in Mechanisms, Methods, and Models
  year: 2014
  ident: 2022022511595186300_stem2739-bib-0034
– volume: 464
  start-page: 116
  year: 2010
  ident: 2022022511595186300_stem2739-bib-0002
  article-title: In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium
  publication-title: Nature
  doi: 10.1038/nature08764
– volume: 340
  start-page: 35
  year: 2006
  ident: 2022022511595186300_stem2739-bib-0058
  article-title: Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.11.146
– volume: 18
  start-page: 699
  year: 2003
  ident: 2022022511595186300_stem2739-bib-0066
  article-title: Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
  publication-title: Immunity
  doi: 10.1016/S1074-7613(03)00117-1
– volume: 126
  start-page: 2811
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0047
  article-title: Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression
  publication-title: Blood
  doi: 10.1182/blood-2015-07-659276
– volume: 9
  start-page: 72
  year: 2009
  ident: 2022022511595186300_stem2739-bib-0048
  article-title: ERG is required for the differentiation of embryonic stem cells along the endothelial lineage
  publication-title: BMC Dev Biol
  doi: 10.1186/1471-213X-9-72
– volume: 2
  start-page: 553
  year: 2012
  ident: 2022022511595186300_stem2739-bib-0026
  article-title: Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.08.002
– volume: 102
  start-page: 906
  year: 2003
  ident: 2022022511595186300_stem2739-bib-0028
  article-title: Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells
  publication-title: Blood
  doi: 10.1182/blood-2003-03-0832
– volume: 33
  start-page: 1130
  year: 2015
  ident: 2022022511595186300_stem2739-bib-0022
  article-title: The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1940
– volume: 104
  start-page: 3097
  year: 2004
  ident: 2022022511595186300_stem2739-bib-0067
  article-title: A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development
  publication-title: Blood
  doi: 10.1182/blood-2004-03-1224
– volume: 22
  start-page: 1036
  year: 2011
  ident: 2022022511595186300_stem2739-bib-0004
  article-title: Hemogenic endothelium: Origins, regulation, and implications for vascular biology
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2011.10.003
– volume: 17
  start-page: 451
  year: 2016
  ident: 2022022511595186300_stem2739-bib-0039
  article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing
  publication-title: Nat Immunol
  doi: 10.1038/ni.3368
– volume: 27
  start-page: 653
  year: 2009
  ident: 2022022511595186300_stem2739-bib-0060
  article-title: The adhesion molecule esam1 is a novel hematopoietic stem cell marker
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0824
SSID ssj0014588
Score 2.372507
Snippet Endothelial‐to‐hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human...
Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
SubjectTerms Antigens, Surface - metabolism
Biomarkers
CD34 antigen
CD43 antigen
CD45 antigen
CD73 antigen
Cell Differentiation - genetics
Cell Differentiation - physiology
Cells (biology)
Cells, Cultured
Computational Biology
Developmental stages
Embryo cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Embryos
Endothelial cells
Endothelium
Flow Cytometry
Hemangioblasts - cytology
Hemangioblasts - metabolism
Hematopoiesis - genetics
Hematopoiesis - physiology
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Hemogenic endothelium
Human embryonic stem cells
Human hematopoiesis
Humans
Pluripotency
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Progenitor cells
Ribonucleic acid
RNA
Single cell RNA‐seq
Stem cells
Tissue inhibitor of metalloproteinase 3
Transcription
Title Single Cell Resolution of Human Hematoendothelial Cells Defines Transcriptional Signatures of Hemogenic Endothelium
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2739
https://www.ncbi.nlm.nih.gov/pubmed/29139170
https://www.proquest.com/docview/1990847360
https://www.proquest.com/docview/1964698028
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIvE98rDGQQD5OqlHw4TvIIa6FsKjy0k_YWJY49KpVkoo3Q-If4N7mznaRdhzR4aaPEX-1d7s7nu98R8jZIGPeTLHcK2PM4jCWRkzFEwpQs4TIIMk9gcvL0C5-csZPz8LzX-70RtVSv86H4dWNeyf9QFe4BXTFL9h8o2w4KN-Aa6AufQGH4vBWNZ6B3lnJwjP439MObuTrf_AQBWStZFphmtUTfODZdgZBRGO1ukM0bsYGwIIsLA_Sp4zugdwVTL8Rg3IxgcRusMTtby-8DoUcEO3WUXdlQ_K_fFtWWh-FCLk003xTtzZ-DT8Pu1AkztUtTo--khjWP22cfmhrMOvh7MGkfnGa1so7bEYqn4abrwoubaOdW2oK944DFYhYkrQRmWPbOCmUrog1GimVFf1PeunxDdfsmDXRHKxiUWQTGHoK1lnSqrznuv6YR2zhFg-nsp9g1xa53yF0_4hxLZYw-n7bHVZjuq4_V7e9pIKxc_10767bhs7Ob2d4caetm_oDs220JfW947CHpyfIRuWcKlV49JivDaRTZh3acRitFNafRHU7TTVfUchq9xmm04zQ9RsNpdIPTnpCzj-P58cSx5TocEWCsXFxkMk5c4YGKkFhlIQ-VnwghXLeAL1WA6R_w0IujKOG5LCKmlKs0pGUo8lgFT8leWZXygNAk4NLNeJixsGBSqszlQnoxA_2jfO7HfXLU_JepsFj2WFJlme5QrE_etE0vDYDLTY0OG4Kk9v1epR4YamC7Bdztk9ftY5C--GJlpaxqbMOxBKuLS3pmCNnO4iPirhdB7yNN2b9Pn87m4ylePL_NYl-Q-93LdEj21j9q-RIs43X-SnPlH-PCup4
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Cell+Resolution+of+Human+Hematoendothelial+Cells+Defines+Transcriptional+Signatures+of+Hemogenic+Endothelium&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Angelos%2C+Mathew+G.&rft.au=Abrahante%2C+Juan+E.&rft.au=Blum%2C+Robert+H.&rft.au=Kaufman%2C+Dan+S.&rft.date=2018-02-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=36&rft.issue=2&rft.spage=206&rft.epage=217&rft_id=info:doi/10.1002%2Fstem.2739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stem_2739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon