StimFit—A Data‐Driven Algorithm for Automated Deep Brain Stimulation Programming

Background Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. Objective We developed an automated algorithm to identify optimal stimulation settings in Parkinson...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 37; no. 3; pp. 574 - 584
Main Authors Roediger, Jan, Dembek, Till A., Wenzel, Gregor, Butenko, Konstantin, Kühn, Andrea A., Horn, Andreas
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0885-3185
1531-8257
1531-8257
DOI10.1002/mds.28878

Cover

Abstract Background Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. Objective We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging‐derived metrics. Methods Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross‐validation and on an independent cohort of 19 patients. We inverted the model by applying a brute‐force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. Results Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10−10) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model‐based suggestions more closely matched the setting with superior motor improvement. Conclusion We developed and validated a data‐driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation‐induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
AbstractList Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.BACKGROUNDFinding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics.OBJECTIVEWe developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics.Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice.METHODSElectrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice.Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10-10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement.RESULTSPredicted motor outcome correlated with observed outcome (R = 0.57, P < 10-10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement.We developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.CONCLUSIONWe developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
BackgroundFinding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.ObjectiveWe developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging‐derived metrics.MethodsElectrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross‐validation and on an independent cohort of 19 patients. We inverted the model by applying a brute‐force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice.ResultsPredicted motor outcome correlated with observed outcome (R = 0.57, P < 10−10) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model‐based suggestions more closely matched the setting with superior motor improvement.ConclusionWe developed and validated a data‐driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation‐induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Background Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. Objective We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging‐derived metrics. Methods Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross‐validation and on an independent cohort of 19 patients. We inverted the model by applying a brute‐force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. Results Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10−10) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model‐based suggestions more closely matched the setting with superior motor improvement. Conclusion We developed and validated a data‐driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation‐induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics. Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement. We developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Author Butenko, Konstantin
Roediger, Jan
Wenzel, Gregor
Horn, Andreas
Dembek, Till A.
Kühn, Andrea A.
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0003-2814-3532
  surname: Roediger
  fullname: Roediger, Jan
  email: jan.roediger@charite.de
  organization: Charité University Medicine Berlin
– sequence: 2
  givenname: Till A.
  orcidid: 0000-0001-7023-146X
  surname: Dembek
  fullname: Dembek, Till A.
  organization: University of Cologne
– sequence: 3
  givenname: Gregor
  surname: Wenzel
  fullname: Wenzel, Gregor
  organization: Charité University Medicine Berlin
– sequence: 4
  givenname: Konstantin
  surname: Butenko
  fullname: Butenko, Konstantin
  organization: University of Rostock
– sequence: 5
  givenname: Andrea A.
  surname: Kühn
  fullname: Kühn, Andrea A.
  organization: DZNE, German Center for Degenerative Diseases
– sequence: 6
  givenname: Andreas
  surname: Horn
  fullname: Horn, Andreas
  organization: Charité University Medicine Berlin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34837245$$D View this record in MEDLINE/PubMed
BookMark eNp90M9O3DAQBnCroioL5cALVJF6gUoBO47j2ePClrYSiErAOfImk62R_yyOA9obj9BDn5AnqWG3HBDl5Mvvm_F8W2TDeYeE7DJ6wCgtDm3bHxQAEt6REROc5VAIuUFGFEDknIHYJFt9f00pY4JVH8gmL4HLohQjcnkRtT3R8eH-zySbqqge7n9Pg75Fl03M3Acdf9ms8yGbDNFbFbHNpoiL7Cgo7bLH8GBU1N5lP4OfB2WtdvOP5H2nTI8763ebXJ18vTz-np-ef_txPDnNGw4AealAClFhN5sJ3nJZUqSKVhwqRDpmAFyVSKGpkqsk7wrAVnYdk2PRdrQd823yZTV3cAu1vFPG1IugrQrLmtH6sZo6VVM_VZPw3govgr8ZsI-11X2DxiiHfkiqoiVlaW2R6OcX9NoPwaVTkioZl-OyoEl9WqthZrF9Xv2v3AQOV6AJvu8DdnWj41NZMbVnXv3j_ovEW_esp99pg8v_w_pserFK_AXV3aix
CitedBy_id crossref_primary_10_1038_s41467_024_48731_1
crossref_primary_10_3389_fninf_2024_1435971
crossref_primary_10_1016_j_bas_2024_102756
crossref_primary_10_1016_j_brs_2025_03_008
crossref_primary_10_2139_ssrn_4619425
crossref_primary_10_1016_j_neurom_2022_09_010
crossref_primary_10_3390_jcm12051781
crossref_primary_10_1016_j_brs_2023_06_018
crossref_primary_10_1159_000531644
crossref_primary_10_1016_S2589_7500_22_00214_X
crossref_primary_10_1002_hbm_26390
crossref_primary_10_1002_mds_30169
crossref_primary_10_3389_fneur_2023_1270746
crossref_primary_10_1002_mds_30026
crossref_primary_10_1016_j_brs_2024_01_007
crossref_primary_10_1136_jnnp_2024_333947
crossref_primary_10_1007_s00415_024_12751_0
crossref_primary_10_1016_j_tins_2023_03_009
crossref_primary_10_1002_mds_29626
crossref_primary_10_1016_j_neurom_2024_11_002
crossref_primary_10_1038_s41531_022_00396_7
crossref_primary_10_3389_fnhum_2022_925283
crossref_primary_10_1016_j_nicl_2022_103185
crossref_primary_10_1038_s41582_023_00836_9
Cites_doi 10.1007/s00701-020-04495-3
10.1093/braincomms/fcab027
10.1007/s10548-020-00807-z
10.1093/brain/awp315
10.1088/1741-2552/ab35b1
10.1227/01.neu.0000489704.68466.0a
10.15252/emmm.201809575
10.1016/j.clineuro.2018.09.037
10.1016/j.nicl.2016.11.019
10.1109/TVCG.2012.92
10.1016/j.neuroimage.2018.08.068
10.1136/jnnp-2017-316907
10.1007/s10548-019-00710-2
10.1016/j.neuroimage.2014.12.002
10.1016/j.brs.2020.03.017
10.1016/j.wneu.2019.09.106
10.1088/1741-2552/abf8ca
10.1016/j.parkreldis.2021.07.003
10.1088/1741-2552/aaa14b
10.1088/1741-2552/aa5238
10.1002/ana.25567
10.1097/WCO.0000000000000679
10.1016/j.brs.2021.03.009
10.1016/j.biopsych.2018.12.019
10.1007/s00701-013-1782-1
10.1109/TBME.2014.2363494
10.1111/ner.13356
10.1159/000494738
10.1016/j.nicl.2017.10.004
10.1088/1741-2560/13/3/036023
10.1093/brain/awz236
10.1109/TBME.2015.2457873
10.1002/ana.24974
10.1007/PL00011391
10.1007/s00701-020-04248-2
10.1056/NEJMoa035275
10.1007/978-3-211-33081-4_66
10.1088/1741-2552/aae590
10.1016/j.brs.2015.02.002
10.1088/1741-2552/aae12f
10.1016/j.neuroimage.2014.06.040
10.1016/j.nicl.2020.102235
10.1093/brain/aws023
10.1371/journal.pone.0176132
10.3233/JPD-202480
10.1016/j.neuroimage.2020.117180
10.1155/2011/156869
10.1093/brain/awz046
10.1002/mds.27093
10.1016/j.neuroimage.2020.117330
10.1016/j.neuron.2019.09.030
10.1016/j.neuroimage.2017.07.012
10.1145/2629697
10.1016/j.media.2007.06.004
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
– notice: 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ADTOC
UNPAY
DOI 10.1002/mds.28878
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Nursing & Allied Health Premium

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 584
ExternalDocumentID oai:pub.dzne.de:164013
34837245
10_1002_mds_28878
MDS28878
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 424778381; TRR 295
– fundername: NeuroCure Exzellenzcluster
  funderid: EXC‐2049; 39068808
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
24P
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3888-4a87556efbb53d3740e0a06386ee091883a4e08c6a87673f28ed7ff1795df0d93
IEDL.DBID UNPAY
ISSN 0885-3185
1531-8257
IngestDate Sun Oct 26 04:09:44 EDT 2025
Thu Jul 10 22:58:52 EDT 2025
Tue Oct 07 06:11:28 EDT 2025
Wed Feb 19 02:26:40 EST 2025
Sat Oct 25 05:14:36 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Wed Jan 22 16:26:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DBS sweet spot
DBS programming
image-guided DBS
subthalamic nucleus-deep brain stimulation
Language English
License Attribution-NonCommercial
2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3888-4a87556efbb53d3740e0a06386ee091883a4e08c6a87673f28ed7ff1795df0d93
Notes J.R., T.A.D., G.W., and K.B. have nothing to disclose. A.A.K. declares that she is on the advisory board of Boston Scientific and Medtronic and has received honoraria from Boston Scientific, Medtronic, Zambon, and Stadapharm. A.H. has received grants from the German Research Council.
Relevant conflicts of interest/financial disclosures
Funding agencies
This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project ID 4247788381‐TRR 295 grant and under Germany's Excellence Strategy—EXC‐2049‐390688087. J.R. is a fellow of the Berlin Einstein Center for Neurosciences PhD program. T.A.D. was supported by the Cologne Clinician Scientist Program (CCSP)/Faculty of Medicine/University of Cologne. This study was funded by the German Research Foundation (DFG, FI 773/15‐1).
Andrea A. Kühn and Andreas Horn contributed equally to this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7023-146X
0000-0003-2814-3532
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pub.dzne.de/record/164013
PMID 34837245
PQID 2641379420
PQPubID 1016421
PageCount 11
ParticipantIDs unpaywall_primary_10_1002_mds_28878
proquest_miscellaneous_2604019182
proquest_journals_2641379420
pubmed_primary_34837245
crossref_citationtrail_10_1002_mds_28878
crossref_primary_10_1002_mds_28878
wiley_primary_10_1002_mds_28878_MDS28878
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Movement disorders
PublicationTitleAlternate Mov Disord
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 82
2020; 162
2019; 11
2000; 89
2019; 16
2020; 13
2021; 163
2015; 107
2018; 89
2017; 158
2013; 19
2018; 174
2021; 34
2012; 135
2015; 42
2017; 32
2013; 155
2020; 134
2021; 3
2021; 89
2019; 32
2019; 104
2008; 12
2020; 221
2020; 223
2007; 97
2019; 184
2015; 8
2016; 13
2019; 142
2021; 14
2011; 2011
2018; 17
2003; 349
2021; 11
2019; 86
2019; 85
2017; 14
2015; 62
2021
2021; 18
2017; 13
2017; 12
2010; 133
2016; 63
2020; 26
2018; 96
2014; 100
2018; 15
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 32
  start-page: 511
  year: 2019
  end-page: 520
  article-title: The impact of modern‐day neuroimaging on the field of deep brain stimulation
  publication-title: Curr Opin Neurol
– volume: 158
  start-page: 332
  year: 2017
  end-page: 345
  article-title: Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease
  publication-title: Neuroimage
– volume: 174
  start-page: 230
  year: 2018
  end-page: 232
  article-title: Targeting the hot spot in a patient with essential tremor and Parkinson's disease: tractography matters
  publication-title: Clin Neurol Neurosurg
– volume: 97
  start-page: 569
  year: 2007
  end-page: 574
  article-title: StimExplorer: deep brain stimulation parameter selection software system
  publication-title: Acta Neurochir Suppl
– volume: 13
  start-page: 164
  year: 2017
  end-page: 173
  article-title: Probabilistic mapping of deep brain stimulation effects in essential tremor
  publication-title: NeuroImage Clin
– volume: 82
  start-page: 67
  year: 2017
  end-page: 78
  article-title: Connectivity predicts deep brain stimulation outcome in Parkinson disease
  publication-title: Ann Neurol
– volume: 32
  start-page: 825
  year: 2019
  end-page: 858
  article-title: Variation in reported human head tissue electrical conductivity values
  publication-title: Brain Topogr
– volume: 14
  start-page: 549
  year: 2021
  end-page: 563
  article-title: Image‐based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation
  publication-title: Brain Stimul
– volume: 107
  start-page: 127
  year: 2015
  end-page: 135
  article-title: Lead‐DBS: a toolbox for deep brain stimulation electrode localizations and visualizations
  publication-title: Neuroimage
– volume: 86
  start-page: 527
  year: 2019
  end-page: 538
  article-title: Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease
  publication-title: Ann Neurol
– volume: 100
  start-page: 590
  year: 2014
  end-page: 607
  article-title: A guideline for head volume conductor modeling in EEG and MEG
  publication-title: Neuroimage
– volume: 142
  start-page: 3086
  year: 2019
  end-page: 3098
  article-title: Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor
  publication-title: Brain
– volume: 62
  start-page: 664
  year: 2015
  end-page: 672
  article-title: Relationship between neural activation and electric field distribution during deep brain stimulation
  publication-title: IEEE Trans Biomed Eng
– volume: 11
  year: 2019
  article-title: Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments
  publication-title: EMBO Mol Med
– volume: 133
  start-page: 746
  year: 2010
  end-page: 761
  article-title: Reversing cognitive‐motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming
  publication-title: Brain
– volume: 11
  start-page: 1887
  issue: 4
  year: 2021
  end-page: 1899
  article-title: CLOVER‐DBS: algorithm‐guided deep brain stimulation‐programming based on external sensor feedback evaluated in a prospective, randomized, crossover, double‐blind, two‐center study
  publication-title: J Parkinsons Dis
– volume: 19
  start-page: 108
  year: 2013
  end-page: 117
  article-title: Evaluation of interactive visualization on mobile computing platforms for selection of deep brain stimulation parameters
  publication-title: IEEE Trans Vis Comput Graph
– volume: 3
  year: 2021
  article-title: Sign‐specific stimulation 'hot' and 'cold' spots in Parkinson's disease validated with machine learning
  publication-title: Brain Commun
– volume: 104
  start-page: 1056
  year: 2019
  end-page: 1064
  article-title: Holographic reconstruction of axonal pathways in the human brain
  publication-title: Neuron
– volume: 13
  start-page: 1040
  year: 2020
  end-page: 1050
  article-title: Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodes
  publication-title: Brain Stimul
– volume: 155
  start-page: 1647
  year: 2013
  end-page: 1654
  article-title: A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson's disease
  publication-title: Acta Neurochir
– volume: 34
  start-page: 110
  year: 2021
  end-page: 115
  article-title: Correction to: variation in reported human head tissue electrical conductivity values
  publication-title: Brain Topogr
– volume: 18
  year: 2021
  article-title: Multi‐objective data‐driven optimization for improving deep brain stimulation in Parkinson's disease
  publication-title: J Neural Eng
– volume: 15
  year: 2018
  article-title: Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes
  publication-title: J Neural Eng
– volume: 96
  start-page: 335
  year: 2018
  end-page: 341
  article-title: DiODe: directional orientation detection of segmented deep brain stimulation leads: a sequential algorithm based on CT imaging
  publication-title: Stereotact Funct Neurosurg
– volume: 85
  start-page: 735
  issue: 9
  year: 2019
  end-page: 743
  article-title: Connectivity profile predictive of effective deep brain stimulation in obsessive‐compulsive disorder
  publication-title: Biol Psychiatry
– volume: 13
  year: 2016
  article-title: Analyzing the tradeoff between electrical complexity and accuracy in patient‐specific computational models of deep brain stimulation
  publication-title: J Neural Eng
– volume: 142
  start-page: 1386
  year: 2019
  end-page: 1398
– volume: 14
  year: 2017
  article-title: Orientation selective deep brain stimulation
  publication-title: J Neural Eng
– volume: 2011
  year: 2011
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput Intell Neurosci
– volume: 26
  year: 2020
  article-title: PSA and VIM DBS efficiency in essential tremor depends on distance to the dentatorubrothalamic tract
  publication-title: NeuroImage Clin
– volume: 15
  year: 2018
  article-title: Multi‐objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways
  publication-title: J Neural Eng
– volume: 32
  start-page: 1380
  year: 2017
  end-page: 1388
  article-title: Directional DBS increases side‐effect thresholds‐a prospective, double‐blind trial
  publication-title: Mov Disord
– volume: 16
  year: 2019
  article-title: A retrospective evaluation of automated optimization of deep brain stimulation parameters
  publication-title: J Neural Eng
– volume: 349
  start-page: 1925
  year: 2003
  end-page: 1934
  article-title: Five‐year follow‐up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease
  publication-title: N Engl J Med
– year: 2021
  article-title: Sweetspot mapping in deep brain stimulation: strengths and limitations of current approaches
  publication-title: Neuromodulation
– volume: 63
  start-page: 155
  issue: Suppl 1
  year: 2016
  article-title: 134 VANTAGE trial: three‐year outcomes of a prospective, multicenter trial evaluating deep brain stimulation with a new multiple‐source, constant‐current rechargeable system in Parkinson disease
  publication-title: Neurosurgery
– volume: 162
  start-page: 1053
  year: 2020
  end-page: 1066
  article-title: The dentato‐rubro‐thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series
  publication-title: Acta Neurochir
– volume: 17
  start-page: 80
  year: 2018
  end-page: 89
  article-title: PaCER ‐ a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation
  publication-title: NeuroImage Clin
– volume: 89
  start-page: 493
  year: 2018
  end-page: 498
  article-title: Deep brain stimulation for Parkinson's disease: defining the optimal location within the subthalamic nucleus
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 184
  start-page: 293
  year: 2019
  end-page: 316
  article-title: Lead‐DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging
  publication-title: Neuroimage
– volume: 223
  year: 2020
  article-title: FastField: an open‐source toolbox for efficient approximation of deep brain stimulation electric fields
  publication-title: Neuroimage
– volume: 221
  year: 2020
  article-title: Opportunities of connectomic neuromodulation
  publication-title: Neuroimage
– volume: 134
  start-page: e98
  year: 2020
  end-page: e102
  article-title: Traditional trial and error versus Neuroanatomic 3‐dimensional image software‐assisted deep brain stimulation programming in patients with Parkinson disease
  publication-title: World Neurosurg
– volume: 63
  start-page: 359
  year: 2016
  end-page: 371
  article-title: Theoretical optimization of stimulation strategies for a directionally segmented deep brain stimulation electrode Array
  publication-title: IEEE Trans Biomed Eng
– volume: 8
  start-page: 730
  year: 2015
  end-page: 741
  article-title: Directional recording of subthalamic spectral power densities in Parkinson's disease and the effect of steering deep brain stimulation
  publication-title: Brain Stimul
– volume: 135
  start-page: 3206
  year: 2012
  end-page: 3226
  article-title: Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?
  publication-title: Brain
– volume: 16
  year: 2019
  article-title: Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation
  publication-title: J Neural Eng
– volume: 12
  year: 2017
  article-title: Creating and parameterizing patient‐specific deep brain stimulation pathway‐activation models using the hyperdirect pathway as an example
  publication-title: PLoS One
– volume: 163
  start-page: 185
  year: 2021
  end-page: 195
  article-title: Neuromodulation of the subthalamic nucleus in Parkinson's disease: the effect of fiber tract stimulation on tremor control
  publication-title: Acta Neurochir
– volume: 89
  start-page: 93
  year: 2021
  end-page: 97
  article-title: Flexible vs. standard subthalamic stimulation in Parkinson disease: a double‐blind proof‐of‐concept cross‐over trial
  publication-title: Parkinsonism Relat Disord
– volume: 42
  start-page: 1
  year: 2015
  end-page: 36
  article-title: TetGen, a delaunay‐based quality tetrahedral mesh generator
  publication-title: ACM Trans Math Software
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med Image Anal
– volume: 89
  start-page: 149
  year: 2000
  end-page: 185
  article-title: A trust region method based on interior point techniques for nonlinear programming
  publication-title: Math Program
– ident: e_1_2_9_52_1
  doi: 10.1007/s00701-020-04495-3
– ident: e_1_2_9_13_1
  doi: 10.1093/braincomms/fcab027
– ident: e_1_2_9_30_1
  doi: 10.1007/s10548-020-00807-z
– ident: e_1_2_9_16_1
  doi: 10.1093/brain/awp315
– ident: e_1_2_9_18_1
  doi: 10.1088/1741-2552/ab35b1
– ident: e_1_2_9_21_1
  doi: 10.1227/01.neu.0000489704.68466.0a
– ident: e_1_2_9_31_1
  doi: 10.15252/emmm.201809575
– ident: e_1_2_9_51_1
  doi: 10.1016/j.clineuro.2018.09.037
– ident: e_1_2_9_5_1
  doi: 10.1016/j.nicl.2016.11.019
– ident: e_1_2_9_46_1
  doi: 10.1109/TVCG.2012.92
– ident: e_1_2_9_35_1
  doi: 10.1016/j.neuroimage.2018.08.068
– ident: e_1_2_9_10_1
  doi: 10.1136/jnnp-2017-316907
– ident: e_1_2_9_29_1
  doi: 10.1007/s10548-019-00710-2
– ident: e_1_2_9_34_1
  doi: 10.1016/j.neuroimage.2014.12.002
– ident: e_1_2_9_24_1
  doi: 10.1016/j.brs.2020.03.017
– ident: e_1_2_9_47_1
  doi: 10.1016/j.wneu.2019.09.106
– ident: e_1_2_9_48_1
  doi: 10.1088/1741-2552/abf8ca
– ident: e_1_2_9_55_1
  doi: 10.1016/j.parkreldis.2021.07.003
– ident: e_1_2_9_39_1
– ident: e_1_2_9_15_1
  doi: 10.1088/1741-2552/aaa14b
– ident: e_1_2_9_26_1
  doi: 10.1088/1741-2552/aa5238
– ident: e_1_2_9_6_1
  doi: 10.1002/ana.25567
– ident: e_1_2_9_11_1
  doi: 10.1097/WCO.0000000000000679
– ident: e_1_2_9_28_1
  doi: 10.1016/j.brs.2021.03.009
– ident: e_1_2_9_4_1
  doi: 10.1016/j.biopsych.2018.12.019
– ident: e_1_2_9_49_1
  doi: 10.1007/s00701-013-1782-1
– ident: e_1_2_9_45_1
  doi: 10.1109/TBME.2014.2363494
– ident: e_1_2_9_57_1
  doi: 10.1111/ner.13356
– ident: e_1_2_9_37_1
  doi: 10.1159/000494738
– ident: e_1_2_9_38_1
  doi: 10.1016/j.nicl.2017.10.004
– ident: e_1_2_9_14_1
  doi: 10.1002/ana.25567
– ident: e_1_2_9_56_1
  doi: 10.1088/1741-2560/13/3/036023
– ident: e_1_2_9_3_1
  doi: 10.1093/brain/awz236
– ident: e_1_2_9_19_1
  doi: 10.1109/TBME.2015.2457873
– ident: e_1_2_9_7_1
  doi: 10.1002/ana.24974
– ident: e_1_2_9_44_1
  doi: 10.1007/PL00011391
– ident: e_1_2_9_50_1
  doi: 10.1007/s00701-020-04248-2
– ident: e_1_2_9_2_1
  doi: 10.1056/NEJMoa035275
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-211-33081-4_66
– ident: e_1_2_9_25_1
  doi: 10.1088/1741-2552/aae590
– ident: e_1_2_9_22_1
  doi: 10.1016/j.brs.2015.02.002
– ident: e_1_2_9_17_1
  doi: 10.1088/1741-2552/aae12f
– ident: e_1_2_9_42_1
  doi: 10.1016/j.neuroimage.2014.06.040
– ident: e_1_2_9_53_1
  doi: 10.1016/j.nicl.2020.102235
– ident: e_1_2_9_54_1
  doi: 10.1093/brain/aws023
– ident: e_1_2_9_27_1
  doi: 10.1371/journal.pone.0176132
– ident: e_1_2_9_33_1
  doi: 10.3233/JPD-202480
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neuroimage.2020.117180
– ident: e_1_2_9_41_1
  doi: 10.1155/2011/156869
– ident: e_1_2_9_8_1
  doi: 10.1093/brain/awz046
– ident: e_1_2_9_32_1
  doi: 10.1002/mds.27093
– ident: e_1_2_9_43_1
  doi: 10.1016/j.neuroimage.2020.117330
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuron.2019.09.030
– ident: e_1_2_9_9_1
  doi: 10.1016/j.neuroimage.2017.07.012
– ident: e_1_2_9_40_1
  doi: 10.1145/2629697
– ident: e_1_2_9_36_1
  doi: 10.1016/j.media.2007.06.004
SSID ssj0011516
Score 2.5133018
Snippet Background Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and...
Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly...
BackgroundFinding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 574
SubjectTerms Algorithms
Automation
DBS programming
DBS sweet spot
Deep Brain Stimulation
Electrical stimuli
Humans
image‐guided DBS
Medical personnel
Movement disorders
Neurodegenerative diseases
Neuroimaging
Parkinson Disease - therapy
Parkinson's disease
Patients
Prediction models
Solitary tract nucleus
Subthalamic nucleus
Subthalamic Nucleus - physiology
subthalamic nucleus‐deep brain stimulation
Treatment Outcome
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RkGh7qICWNhSQ-TlwCWRtx86qp4VlhZBASIDELXIcm660m10tWVW98Qg98IQ8ScdONggBVW-RPFaiGc_MN7H9DcCuxaRgmWuawWge8iSnYZZoGbY0VS2hpcysP21xLk6u-elNfDMHP2Z3YSp-iOaHm_MMH6-dg6vs7uCJNHSY3-1TdJHkHSy0EMe45U35RbOFgKlMVBAy9leEZ7RCET1opj5PRi8Q5kd4Py3G6vcvNRg8B68--_SW4FMNG0mnsvMyzJliBRbP6o3xz3B1WfaHvX75eP_QIV1Vqsf7P92Ji2SkM7gdTfrlzyFBfEo603KEINXkpGvMmBy6DhHETa7beJGL6sDWEFPaF7juHV8dnYR1w4RQM6xkQ66w-oiFsVkWs5xJHplIOUwijEFckCRMcRMlWqCckMzSxOTSWvTJOLdR3marMF-MCvMNiLBtLB11m0Y64i0rM22ymAuD5ZuUmFcD2JtpLtU1m7hrajFIKx5kmqKSU6_kALYb0XFFofGa0PpM_WntRTgiMMViwKBRAFvNMK5_t6mhCjOaOhkMQ1h0JjSAr5XZmrcwR5dPeRzATmPHf33Cnrfw2xLpWffSP6z9v-h3-EDdjQl_bG0d5svJ1GwgjimzTb9e_wL0Ke1N
  priority: 102
  providerName: Wiley-Blackwell
Title StimFit—A Data‐Driven Algorithm for Automated Deep Brain Stimulation Programming
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.28878
https://www.ncbi.nlm.nih.gov/pubmed/34837245
https://www.proquest.com/docview/2641379420
https://www.proquest.com/docview/2604019182
https://pub.dzne.de/record/164013
UnpaywallVersion submittedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1531-8257
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1531-8257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011516
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VrQTiwD80qFQucOglK6_t2NljIKwqpFYr2pXKKXIcG1bsZlfbRIie-ggceMI-CeMku6j8VFyiSJ4kVmbG8408ng_gtcOg4LgnzeCsCEVcsDCPjQoHhumBNErlrqm2OJaHE_H-LDrbgv31WRicRL-4KK0vsOhI0RDQU89Luy0jhNs92J4cj5OPLTqMmtO_bU_UQYjZjlp3D6IMU_rzPkMniq_HnD-A5F24U5dL_e2rns2uY9QmyIzu_zqq09aWfOnXVd43F791brxx_g_gXgcxSdLaxEPYsuUjuH3UbaI_htOTajofTauryx8JSXWlry6_pyu_6pFk9mmxmlaf5wSxLEnqaoGA1hYktXZJ3ng2CeIf7ii_yLgt7ppj-HsCk9G707eHYUeuEBqOWW8oNGYqkbQuzyNecCWopdrjF2ktYog45lpYGhuJclJxx2JbKOfQf6PC0WLIn0KvXJR2B4h0Q0wzzZBRQ8XAqdzYPBLSYqqnFMbgAA7Wvz8zXedxT4Axy9qeySxDTWWNpgJ4uRFdtu02_ia0u9Zh1nkcjkgMx7i4MBrA_mYYfcVvgOjSLmovg0sWJqgxC-BZq_vNV7hvrc9EFMCrjTHcNIWDxkz-LZEdpSfNzfP_euEu9KpVbV8gwqnyPbjFxBiv6Qe219n7T8TW_Bs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RkEp7QNCnC5Tt48DF4Oyudx2JSyCN0pYgJILEzVqvd9tIiROljqre-Ak98Av5JcyuHVeoD_VmaWdla8Yz3zf7mAF4bxEULHNNMxjNQ57kNMwSLcOWpqoltJSZ9actzkT_kn-6iq9W4Gh5F6aqD9EsuDnP8PHaObhbkD78VTV0kn87oOgjyQNY46IlXOpF-Xmzh4BYJioOGfs7wsu6QhE9bKbeR6PfKOZjWF8UM_XjuxqP77NXDz-9TdioeSPpVIbeghVTPIGHg3pn_CkML8rRpDcqb69vOqSrSnV7_bM7d6GMdMZfpvNR-XVCkKCSzqKcIks1OekaMyPHrkUEcZPrPl7kvDqxNUFMewaXvQ_Dk35Yd0wINcNUNuQK049YGJtlMcuZ5JGJlCMlwhgkBknCFDdRogXKCcksTUwurUWnjHMb5W32HFaLaWFeAhG2jbmjbtNIR7xlZaZNFnNhMH-TEoE1gP2l5lJdlxN3XS3GaVUImaao5NQrOYC3jeisqqHxJ6GdpfrT2o1wRCDGYsSgUQBvmmF0ALeroQozXTgZjEOYdSY0gBeV2Zq3MFcvn_I4gHeNHf_1Cfvewn-XSAfdC__w6v9F92C9Pxycpqcfzz5vwyPqrk_4M2w7sFrOF2YXSU2Zvfb_7h3H8PC5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIpX2wLs0UMA8Dr1km7UT2ytxWQir8mhV0VbqBUWJY7crdrOrJRGCU38CB35hfwlj54HKS4hbJI8Vx_bMfBOPvwF4atApGGaLZjCa-6HMqZ9JJfy-ommfKyEy47It9vjOUfj6ODpegmftXZiaH6L74WY1w9lrq-B6npvtH6yh0_xjj6KOyEtwOYwG0ib0xe868iiEOq7wKapR5O4It7xCAd3uul70Rr9AzDW4UhXz9POndDK5iF6d-xldg_ftwOuskw-9qsx66stPnI7_-2XX4WqDS8mw3kg3YEkXN2Fltzl5vwWHB-V4OhqX52ffhiROy_T87Gu8sKaSDCcns8W4PJ0SBMBkWJUzRME6J7HWc_LclqAgtnNTJ4zs1xlhU_SZt-Fo9PLwxY7fVGTwFcNQ2Q9TDG8irk2WRSxnIgx0kFrQw7VG4CElS0MdSMVRjgtmqNS5MAaVPspNkA_YOiwXs0JvAOFmgLGpGtBABWHfiEzpLAq5xvhQCHTcHmy1K5Oohq7cVs2YJDXRMk1wlhI3Sx487kTnNUfH74Q22-VNGjXFFo4-HC0SDTx41DWjgtlTk7TQs8rKoJ3DqFZSD-7U26J7C7N8_DSMPHjS7ZO_DWHLLfufJZLd-MA93P130Yewsh-Pkrev9t7cg1Vqb2e4FLlNWC4Xlb6PmKnMHjjV-A7fuBEV
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swED-hIm3igTEYkIkh8-eBl1SundjpY7ZSoUkgJKjEniLHsVm1Nq1KIgRPfIQ97BPySXZO0iI2hvYWyZfE8t35fieffwdwaDEoWO6aZnCW-UGUMT-NtPQ7mqmO0FKmtqq2OBMng-DrVXi1BHvzuzA4iXZ2nxtXYNE0RUNAT11f2mURItxuwfLg7Dz-VqPDsLr9W3OidnzMduScPYgyTOlv2gydKHoec_4Ckivwtsyn6u5WjUbPMWoVZPrvnq7q1LUlP9plkbb1_R_Mja_Ofw1WG4hJ4tom3sOSydfhzWlziL4BlxfFcNwfFo8Pv2LSU4V6fPjZm7ldj8Sj68lsWHwfE8SyJC6LCQJak5GeMVPy2XWTIO7lpuUXOa-Lu8YY_j7AoH98-eXEb5or-Jpj1usHCjOVUBibpiHPuAyoocrhF2EMYogo4iowNNIC5YTklkUmk9ai_4aZpVmXb0Irn-RmG4iwXUwzdZdRTYOOlak2aRgIg6melBiDPTiaL3-iG-Zx1wBjlNScySxBTSWVpjzYX4hOa7qNl4R25jpMGo_DEYHhGDcXRj3YWwyjr7gDEJWbSelkcMvCBDViHmzVul_8hTtqfRaEHhwsjOG1KRxVZvJvieS0d1E9fPyvD-5Aq5iV5hMinCLdbWz8NwSz-ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StimFit-A+Data-Driven+Algorithm+for+Automated+Deep+Brain+Stimulation+Programming&rft.jtitle=Movement+disorders&rft.au=Roediger%2C+Jan&rft.au=Dembek%2C+Till+A&rft.au=Wenzel%2C+Gregor&rft.au=Butenko%2C+Konstantin&rft.date=2022-03-01&rft.issn=1531-8257&rft.eissn=1531-8257&rft.volume=37&rft.issue=3&rft.spage=574&rft_id=info:doi/10.1002%2Fmds.28878&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon