StimFit—A Data‐Driven Algorithm for Automated Deep Brain Stimulation Programming
Background Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. Objective We developed an automated algorithm to identify optimal stimulation settings in Parkinson...
        Saved in:
      
    
          | Published in | Movement disorders Vol. 37; no. 3; pp. 574 - 584 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.03.2022
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0885-3185 1531-8257 1531-8257  | 
| DOI | 10.1002/mds.28878 | 
Cover
| Abstract | Background
Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.
Objective
We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging‐derived metrics.
Methods
Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross‐validation and on an independent cohort of 19 patients. We inverted the model by applying a brute‐force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice.
Results
Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10−10) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model‐based suggestions more closely matched the setting with superior motor improvement.
Conclusion
We developed and validated a data‐driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation‐induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society | 
    
|---|---|
| AbstractList | Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.BACKGROUNDFinding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics.OBJECTIVEWe developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics.Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice.METHODSElectrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice.Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10-10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement.RESULTSPredicted motor outcome correlated with observed outcome (R = 0.57, P < 10-10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement.We developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.CONCLUSIONWe developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. BackgroundFinding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.ObjectiveWe developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging‐derived metrics.MethodsElectrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross‐validation and on an independent cohort of 19 patients. We inverted the model by applying a brute‐force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice.ResultsPredicted motor outcome correlated with observed outcome (R = 0.57, P < 10−10) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model‐based suggestions more closely matched the setting with superior motor improvement.ConclusionWe developed and validated a data‐driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation‐induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society Background Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. Objective We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging‐derived metrics. Methods Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross‐validation and on an independent cohort of 19 patients. We inverted the model by applying a brute‐force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. Results Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10−10) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model‐based suggestions more closely matched the setting with superior motor improvement. Conclusion We developed and validated a data‐driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation‐induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics. Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement. We developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.  | 
    
| Author | Butenko, Konstantin Roediger, Jan Wenzel, Gregor Horn, Andreas Dembek, Till A. Kühn, Andrea A.  | 
    
| Author_xml | – sequence: 1 givenname: Jan orcidid: 0000-0003-2814-3532 surname: Roediger fullname: Roediger, Jan email: jan.roediger@charite.de organization: Charité University Medicine Berlin – sequence: 2 givenname: Till A. orcidid: 0000-0001-7023-146X surname: Dembek fullname: Dembek, Till A. organization: University of Cologne – sequence: 3 givenname: Gregor surname: Wenzel fullname: Wenzel, Gregor organization: Charité University Medicine Berlin – sequence: 4 givenname: Konstantin surname: Butenko fullname: Butenko, Konstantin organization: University of Rostock – sequence: 5 givenname: Andrea A. surname: Kühn fullname: Kühn, Andrea A. organization: DZNE, German Center for Degenerative Diseases – sequence: 6 givenname: Andreas surname: Horn fullname: Horn, Andreas organization: Charité University Medicine Berlin  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34837245$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp90M9O3DAQBnCroioL5cALVJF6gUoBO47j2ePClrYSiErAOfImk62R_yyOA9obj9BDn5AnqWG3HBDl5Mvvm_F8W2TDeYeE7DJ6wCgtDm3bHxQAEt6REROc5VAIuUFGFEDknIHYJFt9f00pY4JVH8gmL4HLohQjcnkRtT3R8eH-zySbqqge7n9Pg75Fl03M3Acdf9ms8yGbDNFbFbHNpoiL7Cgo7bLH8GBU1N5lP4OfB2WtdvOP5H2nTI8763ebXJ18vTz-np-ef_txPDnNGw4AealAClFhN5sJ3nJZUqSKVhwqRDpmAFyVSKGpkqsk7wrAVnYdk2PRdrQd823yZTV3cAu1vFPG1IugrQrLmtH6sZo6VVM_VZPw3govgr8ZsI-11X2DxiiHfkiqoiVlaW2R6OcX9NoPwaVTkioZl-OyoEl9WqthZrF9Xv2v3AQOV6AJvu8DdnWj41NZMbVnXv3j_ovEW_esp99pg8v_w_pserFK_AXV3aix | 
    
| CitedBy_id | crossref_primary_10_1038_s41467_024_48731_1 crossref_primary_10_3389_fninf_2024_1435971 crossref_primary_10_1016_j_bas_2024_102756 crossref_primary_10_1016_j_brs_2025_03_008 crossref_primary_10_2139_ssrn_4619425 crossref_primary_10_1016_j_neurom_2022_09_010 crossref_primary_10_3390_jcm12051781 crossref_primary_10_1016_j_brs_2023_06_018 crossref_primary_10_1159_000531644 crossref_primary_10_1016_S2589_7500_22_00214_X crossref_primary_10_1002_hbm_26390 crossref_primary_10_1002_mds_30169 crossref_primary_10_3389_fneur_2023_1270746 crossref_primary_10_1002_mds_30026 crossref_primary_10_1016_j_brs_2024_01_007 crossref_primary_10_1136_jnnp_2024_333947 crossref_primary_10_1007_s00415_024_12751_0 crossref_primary_10_1016_j_tins_2023_03_009 crossref_primary_10_1002_mds_29626 crossref_primary_10_1016_j_neurom_2024_11_002 crossref_primary_10_1038_s41531_022_00396_7 crossref_primary_10_3389_fnhum_2022_925283 crossref_primary_10_1016_j_nicl_2022_103185 crossref_primary_10_1038_s41582_023_00836_9  | 
    
| Cites_doi | 10.1007/s00701-020-04495-3 10.1093/braincomms/fcab027 10.1007/s10548-020-00807-z 10.1093/brain/awp315 10.1088/1741-2552/ab35b1 10.1227/01.neu.0000489704.68466.0a 10.15252/emmm.201809575 10.1016/j.clineuro.2018.09.037 10.1016/j.nicl.2016.11.019 10.1109/TVCG.2012.92 10.1016/j.neuroimage.2018.08.068 10.1136/jnnp-2017-316907 10.1007/s10548-019-00710-2 10.1016/j.neuroimage.2014.12.002 10.1016/j.brs.2020.03.017 10.1016/j.wneu.2019.09.106 10.1088/1741-2552/abf8ca 10.1016/j.parkreldis.2021.07.003 10.1088/1741-2552/aaa14b 10.1088/1741-2552/aa5238 10.1002/ana.25567 10.1097/WCO.0000000000000679 10.1016/j.brs.2021.03.009 10.1016/j.biopsych.2018.12.019 10.1007/s00701-013-1782-1 10.1109/TBME.2014.2363494 10.1111/ner.13356 10.1159/000494738 10.1016/j.nicl.2017.10.004 10.1088/1741-2560/13/3/036023 10.1093/brain/awz236 10.1109/TBME.2015.2457873 10.1002/ana.24974 10.1007/PL00011391 10.1007/s00701-020-04248-2 10.1056/NEJMoa035275 10.1007/978-3-211-33081-4_66 10.1088/1741-2552/aae590 10.1016/j.brs.2015.02.002 10.1088/1741-2552/aae12f 10.1016/j.neuroimage.2014.06.040 10.1016/j.nicl.2020.102235 10.1093/brain/aws023 10.1371/journal.pone.0176132 10.3233/JPD-202480 10.1016/j.neuroimage.2020.117180 10.1155/2011/156869 10.1093/brain/awz046 10.1002/mds.27093 10.1016/j.neuroimage.2020.117330 10.1016/j.neuron.2019.09.030 10.1016/j.neuroimage.2017.07.012 10.1145/2629697 10.1016/j.media.2007.06.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society – notice: 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1002/mds.28878 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1531-8257 | 
    
| EndPage | 584 | 
    
| ExternalDocumentID | oai:pub.dzne.de:164013 34837245 10_1002_mds_28878 MDS28878  | 
    
| Genre | article Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 424778381; TRR 295 – fundername: NeuroCure Exzellenzcluster funderid: EXC‐2049; 39068808  | 
    
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1CY 1L6 1OB 1OC 1ZS 24P 31~ 33P 3PY 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC FYBCS G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 YCJ ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3888-4a87556efbb53d3740e0a06386ee091883a4e08c6a87673f28ed7ff1795df0d93 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0885-3185 1531-8257  | 
    
| IngestDate | Sun Oct 26 04:09:44 EDT 2025 Thu Jul 10 22:58:52 EDT 2025 Tue Oct 07 06:11:28 EDT 2025 Wed Feb 19 02:26:40 EST 2025 Sat Oct 25 05:14:36 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Wed Jan 22 16:26:32 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | DBS sweet spot DBS programming image-guided DBS subthalamic nucleus-deep brain stimulation  | 
    
| Language | English | 
    
| License | Attribution-NonCommercial 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3888-4a87556efbb53d3740e0a06386ee091883a4e08c6a87673f28ed7ff1795df0d93 | 
    
| Notes | J.R., T.A.D., G.W., and K.B. have nothing to disclose. A.A.K. declares that she is on the advisory board of Boston Scientific and Medtronic and has received honoraria from Boston Scientific, Medtronic, Zambon, and Stadapharm. A.H. has received grants from the German Research Council. Relevant conflicts of interest/financial disclosures Funding agencies This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project ID 4247788381‐TRR 295 grant and under Germany's Excellence Strategy—EXC‐2049‐390688087. J.R. is a fellow of the Berlin Einstein Center for Neurosciences PhD program. T.A.D. was supported by the Cologne Clinician Scientist Program (CCSP)/Faculty of Medicine/University of Cologne. This study was funded by the German Research Foundation (DFG, FI 773/15‐1). Andrea A. Kühn and Andreas Horn contributed equally to this article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-7023-146X 0000-0003-2814-3532  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pub.dzne.de/record/164013 | 
    
| PMID | 34837245 | 
    
| PQID | 2641379420 | 
    
| PQPubID | 1016421 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_mds_28878 proquest_miscellaneous_2604019182 proquest_journals_2641379420 pubmed_primary_34837245 crossref_citationtrail_10_1002_mds_28878 crossref_primary_10_1002_mds_28878 wiley_primary_10_1002_mds_28878_MDS28878  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2022 2022-03-00 20220301  | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken  | 
    
| PublicationTitle | Movement disorders | 
    
| PublicationTitleAlternate | Mov Disord | 
    
| PublicationYear | 2022 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2017; 82 2020; 162 2019; 11 2000; 89 2019; 16 2020; 13 2021; 163 2015; 107 2018; 89 2017; 158 2013; 19 2018; 174 2021; 34 2012; 135 2015; 42 2017; 32 2013; 155 2020; 134 2021; 3 2021; 89 2019; 32 2019; 104 2008; 12 2020; 221 2020; 223 2007; 97 2019; 184 2015; 8 2016; 13 2019; 142 2021; 14 2011; 2011 2018; 17 2003; 349 2021; 11 2019; 86 2019; 85 2017; 14 2015; 62 2021 2021; 18 2017; 13 2017; 12 2010; 133 2016; 63 2020; 26 2018; 96 2014; 100 2018; 15 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1  | 
    
| References_xml | – volume: 32 start-page: 511 year: 2019 end-page: 520 article-title: The impact of modern‐day neuroimaging on the field of deep brain stimulation publication-title: Curr Opin Neurol – volume: 158 start-page: 332 year: 2017 end-page: 345 article-title: Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease publication-title: Neuroimage – volume: 174 start-page: 230 year: 2018 end-page: 232 article-title: Targeting the hot spot in a patient with essential tremor and Parkinson's disease: tractography matters publication-title: Clin Neurol Neurosurg – volume: 97 start-page: 569 year: 2007 end-page: 574 article-title: StimExplorer: deep brain stimulation parameter selection software system publication-title: Acta Neurochir Suppl – volume: 13 start-page: 164 year: 2017 end-page: 173 article-title: Probabilistic mapping of deep brain stimulation effects in essential tremor publication-title: NeuroImage Clin – volume: 82 start-page: 67 year: 2017 end-page: 78 article-title: Connectivity predicts deep brain stimulation outcome in Parkinson disease publication-title: Ann Neurol – volume: 32 start-page: 825 year: 2019 end-page: 858 article-title: Variation in reported human head tissue electrical conductivity values publication-title: Brain Topogr – volume: 14 start-page: 549 year: 2021 end-page: 563 article-title: Image‐based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation publication-title: Brain Stimul – volume: 107 start-page: 127 year: 2015 end-page: 135 article-title: Lead‐DBS: a toolbox for deep brain stimulation electrode localizations and visualizations publication-title: Neuroimage – volume: 86 start-page: 527 year: 2019 end-page: 538 article-title: Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease publication-title: Ann Neurol – volume: 100 start-page: 590 year: 2014 end-page: 607 article-title: A guideline for head volume conductor modeling in EEG and MEG publication-title: Neuroimage – volume: 142 start-page: 3086 year: 2019 end-page: 3098 article-title: Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor publication-title: Brain – volume: 62 start-page: 664 year: 2015 end-page: 672 article-title: Relationship between neural activation and electric field distribution during deep brain stimulation publication-title: IEEE Trans Biomed Eng – volume: 11 year: 2019 article-title: Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments publication-title: EMBO Mol Med – volume: 133 start-page: 746 year: 2010 end-page: 761 article-title: Reversing cognitive‐motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming publication-title: Brain – volume: 11 start-page: 1887 issue: 4 year: 2021 end-page: 1899 article-title: CLOVER‐DBS: algorithm‐guided deep brain stimulation‐programming based on external sensor feedback evaluated in a prospective, randomized, crossover, double‐blind, two‐center study publication-title: J Parkinsons Dis – volume: 19 start-page: 108 year: 2013 end-page: 117 article-title: Evaluation of interactive visualization on mobile computing platforms for selection of deep brain stimulation parameters publication-title: IEEE Trans Vis Comput Graph – volume: 3 year: 2021 article-title: Sign‐specific stimulation 'hot' and 'cold' spots in Parkinson's disease validated with machine learning publication-title: Brain Commun – volume: 104 start-page: 1056 year: 2019 end-page: 1064 article-title: Holographic reconstruction of axonal pathways in the human brain publication-title: Neuron – volume: 13 start-page: 1040 year: 2020 end-page: 1050 article-title: Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodes publication-title: Brain Stimul – volume: 155 start-page: 1647 year: 2013 end-page: 1654 article-title: A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson's disease publication-title: Acta Neurochir – volume: 34 start-page: 110 year: 2021 end-page: 115 article-title: Correction to: variation in reported human head tissue electrical conductivity values publication-title: Brain Topogr – volume: 18 year: 2021 article-title: Multi‐objective data‐driven optimization for improving deep brain stimulation in Parkinson's disease publication-title: J Neural Eng – volume: 15 year: 2018 article-title: Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes publication-title: J Neural Eng – volume: 96 start-page: 335 year: 2018 end-page: 341 article-title: DiODe: directional orientation detection of segmented deep brain stimulation leads: a sequential algorithm based on CT imaging publication-title: Stereotact Funct Neurosurg – volume: 85 start-page: 735 issue: 9 year: 2019 end-page: 743 article-title: Connectivity profile predictive of effective deep brain stimulation in obsessive‐compulsive disorder publication-title: Biol Psychiatry – volume: 13 year: 2016 article-title: Analyzing the tradeoff between electrical complexity and accuracy in patient‐specific computational models of deep brain stimulation publication-title: J Neural Eng – volume: 142 start-page: 1386 year: 2019 end-page: 1398 – volume: 14 year: 2017 article-title: Orientation selective deep brain stimulation publication-title: J Neural Eng – volume: 2011 year: 2011 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput Intell Neurosci – volume: 26 year: 2020 article-title: PSA and VIM DBS efficiency in essential tremor depends on distance to the dentatorubrothalamic tract publication-title: NeuroImage Clin – volume: 15 year: 2018 article-title: Multi‐objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways publication-title: J Neural Eng – volume: 32 start-page: 1380 year: 2017 end-page: 1388 article-title: Directional DBS increases side‐effect thresholds‐a prospective, double‐blind trial publication-title: Mov Disord – volume: 16 year: 2019 article-title: A retrospective evaluation of automated optimization of deep brain stimulation parameters publication-title: J Neural Eng – volume: 349 start-page: 1925 year: 2003 end-page: 1934 article-title: Five‐year follow‐up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease publication-title: N Engl J Med – year: 2021 article-title: Sweetspot mapping in deep brain stimulation: strengths and limitations of current approaches publication-title: Neuromodulation – volume: 63 start-page: 155 issue: Suppl 1 year: 2016 article-title: 134 VANTAGE trial: three‐year outcomes of a prospective, multicenter trial evaluating deep brain stimulation with a new multiple‐source, constant‐current rechargeable system in Parkinson disease publication-title: Neurosurgery – volume: 162 start-page: 1053 year: 2020 end-page: 1066 article-title: The dentato‐rubro‐thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series publication-title: Acta Neurochir – volume: 17 start-page: 80 year: 2018 end-page: 89 article-title: PaCER ‐ a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation publication-title: NeuroImage Clin – volume: 89 start-page: 493 year: 2018 end-page: 498 article-title: Deep brain stimulation for Parkinson's disease: defining the optimal location within the subthalamic nucleus publication-title: J Neurol Neurosurg Psychiatry – volume: 184 start-page: 293 year: 2019 end-page: 316 article-title: Lead‐DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging publication-title: Neuroimage – volume: 223 year: 2020 article-title: FastField: an open‐source toolbox for efficient approximation of deep brain stimulation electric fields publication-title: Neuroimage – volume: 221 year: 2020 article-title: Opportunities of connectomic neuromodulation publication-title: Neuroimage – volume: 134 start-page: e98 year: 2020 end-page: e102 article-title: Traditional trial and error versus Neuroanatomic 3‐dimensional image software‐assisted deep brain stimulation programming in patients with Parkinson disease publication-title: World Neurosurg – volume: 63 start-page: 359 year: 2016 end-page: 371 article-title: Theoretical optimization of stimulation strategies for a directionally segmented deep brain stimulation electrode Array publication-title: IEEE Trans Biomed Eng – volume: 8 start-page: 730 year: 2015 end-page: 741 article-title: Directional recording of subthalamic spectral power densities in Parkinson's disease and the effect of steering deep brain stimulation publication-title: Brain Stimul – volume: 135 start-page: 3206 year: 2012 end-page: 3226 article-title: Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? publication-title: Brain – volume: 16 year: 2019 article-title: Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation publication-title: J Neural Eng – volume: 12 year: 2017 article-title: Creating and parameterizing patient‐specific deep brain stimulation pathway‐activation models using the hyperdirect pathway as an example publication-title: PLoS One – volume: 163 start-page: 185 year: 2021 end-page: 195 article-title: Neuromodulation of the subthalamic nucleus in Parkinson's disease: the effect of fiber tract stimulation on tremor control publication-title: Acta Neurochir – volume: 89 start-page: 93 year: 2021 end-page: 97 article-title: Flexible vs. standard subthalamic stimulation in Parkinson disease: a double‐blind proof‐of‐concept cross‐over trial publication-title: Parkinsonism Relat Disord – volume: 42 start-page: 1 year: 2015 end-page: 36 article-title: TetGen, a delaunay‐based quality tetrahedral mesh generator publication-title: ACM Trans Math Software – volume: 12 start-page: 26 year: 2008 end-page: 41 article-title: Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med Image Anal – volume: 89 start-page: 149 year: 2000 end-page: 185 article-title: A trust region method based on interior point techniques for nonlinear programming publication-title: Math Program – ident: e_1_2_9_52_1 doi: 10.1007/s00701-020-04495-3 – ident: e_1_2_9_13_1 doi: 10.1093/braincomms/fcab027 – ident: e_1_2_9_30_1 doi: 10.1007/s10548-020-00807-z – ident: e_1_2_9_16_1 doi: 10.1093/brain/awp315 – ident: e_1_2_9_18_1 doi: 10.1088/1741-2552/ab35b1 – ident: e_1_2_9_21_1 doi: 10.1227/01.neu.0000489704.68466.0a – ident: e_1_2_9_31_1 doi: 10.15252/emmm.201809575 – ident: e_1_2_9_51_1 doi: 10.1016/j.clineuro.2018.09.037 – ident: e_1_2_9_5_1 doi: 10.1016/j.nicl.2016.11.019 – ident: e_1_2_9_46_1 doi: 10.1109/TVCG.2012.92 – ident: e_1_2_9_35_1 doi: 10.1016/j.neuroimage.2018.08.068 – ident: e_1_2_9_10_1 doi: 10.1136/jnnp-2017-316907 – ident: e_1_2_9_29_1 doi: 10.1007/s10548-019-00710-2 – ident: e_1_2_9_34_1 doi: 10.1016/j.neuroimage.2014.12.002 – ident: e_1_2_9_24_1 doi: 10.1016/j.brs.2020.03.017 – ident: e_1_2_9_47_1 doi: 10.1016/j.wneu.2019.09.106 – ident: e_1_2_9_48_1 doi: 10.1088/1741-2552/abf8ca – ident: e_1_2_9_55_1 doi: 10.1016/j.parkreldis.2021.07.003 – ident: e_1_2_9_39_1 – ident: e_1_2_9_15_1 doi: 10.1088/1741-2552/aaa14b – ident: e_1_2_9_26_1 doi: 10.1088/1741-2552/aa5238 – ident: e_1_2_9_6_1 doi: 10.1002/ana.25567 – ident: e_1_2_9_11_1 doi: 10.1097/WCO.0000000000000679 – ident: e_1_2_9_28_1 doi: 10.1016/j.brs.2021.03.009 – ident: e_1_2_9_4_1 doi: 10.1016/j.biopsych.2018.12.019 – ident: e_1_2_9_49_1 doi: 10.1007/s00701-013-1782-1 – ident: e_1_2_9_45_1 doi: 10.1109/TBME.2014.2363494 – ident: e_1_2_9_57_1 doi: 10.1111/ner.13356 – ident: e_1_2_9_37_1 doi: 10.1159/000494738 – ident: e_1_2_9_38_1 doi: 10.1016/j.nicl.2017.10.004 – ident: e_1_2_9_14_1 doi: 10.1002/ana.25567 – ident: e_1_2_9_56_1 doi: 10.1088/1741-2560/13/3/036023 – ident: e_1_2_9_3_1 doi: 10.1093/brain/awz236 – ident: e_1_2_9_19_1 doi: 10.1109/TBME.2015.2457873 – ident: e_1_2_9_7_1 doi: 10.1002/ana.24974 – ident: e_1_2_9_44_1 doi: 10.1007/PL00011391 – ident: e_1_2_9_50_1 doi: 10.1007/s00701-020-04248-2 – ident: e_1_2_9_2_1 doi: 10.1056/NEJMoa035275 – ident: e_1_2_9_20_1 doi: 10.1007/978-3-211-33081-4_66 – ident: e_1_2_9_25_1 doi: 10.1088/1741-2552/aae590 – ident: e_1_2_9_22_1 doi: 10.1016/j.brs.2015.02.002 – ident: e_1_2_9_17_1 doi: 10.1088/1741-2552/aae12f – ident: e_1_2_9_42_1 doi: 10.1016/j.neuroimage.2014.06.040 – ident: e_1_2_9_53_1 doi: 10.1016/j.nicl.2020.102235 – ident: e_1_2_9_54_1 doi: 10.1093/brain/aws023 – ident: e_1_2_9_27_1 doi: 10.1371/journal.pone.0176132 – ident: e_1_2_9_33_1 doi: 10.3233/JPD-202480 – ident: e_1_2_9_12_1 doi: 10.1016/j.neuroimage.2020.117180 – ident: e_1_2_9_41_1 doi: 10.1155/2011/156869 – ident: e_1_2_9_8_1 doi: 10.1093/brain/awz046 – ident: e_1_2_9_32_1 doi: 10.1002/mds.27093 – ident: e_1_2_9_43_1 doi: 10.1016/j.neuroimage.2020.117330 – ident: e_1_2_9_23_1 doi: 10.1016/j.neuron.2019.09.030 – ident: e_1_2_9_9_1 doi: 10.1016/j.neuroimage.2017.07.012 – ident: e_1_2_9_40_1 doi: 10.1145/2629697 – ident: e_1_2_9_36_1 doi: 10.1016/j.media.2007.06.004  | 
    
| SSID | ssj0011516 | 
    
| Score | 2.5133018 | 
    
| Snippet | Background
Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and... Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly... BackgroundFinding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and...  | 
    
| SourceID | unpaywall proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 574 | 
    
| SubjectTerms | Algorithms Automation DBS programming DBS sweet spot Deep Brain Stimulation Electrical stimuli Humans image‐guided DBS Medical personnel Movement disorders Neurodegenerative diseases Neuroimaging Parkinson Disease - therapy Parkinson's disease Patients Prediction models Solitary tract nucleus Subthalamic nucleus Subthalamic Nucleus - physiology subthalamic nucleus‐deep brain stimulation Treatment Outcome  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RkGh7qICWNhSQ-TlwCWRtx86qp4VlhZBASIDELXIcm660m10tWVW98Qg98IQ8ScdONggBVW-RPFaiGc_MN7H9DcCuxaRgmWuawWge8iSnYZZoGbY0VS2hpcysP21xLk6u-elNfDMHP2Z3YSp-iOaHm_MMH6-dg6vs7uCJNHSY3-1TdJHkHSy0EMe45U35RbOFgKlMVBAy9leEZ7RCET1opj5PRi8Q5kd4Py3G6vcvNRg8B68--_SW4FMNG0mnsvMyzJliBRbP6o3xz3B1WfaHvX75eP_QIV1Vqsf7P92Ji2SkM7gdTfrlzyFBfEo603KEINXkpGvMmBy6DhHETa7beJGL6sDWEFPaF7juHV8dnYR1w4RQM6xkQ66w-oiFsVkWs5xJHplIOUwijEFckCRMcRMlWqCckMzSxOTSWvTJOLdR3marMF-MCvMNiLBtLB11m0Y64i0rM22ymAuD5ZuUmFcD2JtpLtU1m7hrajFIKx5kmqKSU6_kALYb0XFFofGa0PpM_WntRTgiMMViwKBRAFvNMK5_t6mhCjOaOhkMQ1h0JjSAr5XZmrcwR5dPeRzATmPHf33Cnrfw2xLpWffSP6z9v-h3-EDdjQl_bG0d5svJ1GwgjimzTb9e_wL0Ke1N priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | StimFit—A Data‐Driven Algorithm for Automated Deep Brain Stimulation Programming | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.28878 https://www.ncbi.nlm.nih.gov/pubmed/34837245 https://www.proquest.com/docview/2641379420 https://www.proquest.com/docview/2604019182 https://pub.dzne.de/record/164013  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1531-8257 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1531-8257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011516 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VrQTiwD80qFQucOglK6_t2NljIKwqpFYr2pXKKXIcG1bsZlfbRIie-ggceMI-CeMku6j8VFyiSJ4kVmbG8408ng_gtcOg4LgnzeCsCEVcsDCPjQoHhumBNErlrqm2OJaHE_H-LDrbgv31WRicRL-4KK0vsOhI0RDQU89Luy0jhNs92J4cj5OPLTqMmtO_bU_UQYjZjlp3D6IMU_rzPkMniq_HnD-A5F24U5dL_e2rns2uY9QmyIzu_zqq09aWfOnXVd43F791brxx_g_gXgcxSdLaxEPYsuUjuH3UbaI_htOTajofTauryx8JSXWlry6_pyu_6pFk9mmxmlaf5wSxLEnqaoGA1hYktXZJ3ng2CeIf7ii_yLgt7ppj-HsCk9G707eHYUeuEBqOWW8oNGYqkbQuzyNecCWopdrjF2ktYog45lpYGhuJclJxx2JbKOfQf6PC0WLIn0KvXJR2B4h0Q0wzzZBRQ8XAqdzYPBLSYqqnFMbgAA7Wvz8zXedxT4Axy9qeySxDTWWNpgJ4uRFdtu02_ia0u9Zh1nkcjkgMx7i4MBrA_mYYfcVvgOjSLmovg0sWJqgxC-BZq_vNV7hvrc9EFMCrjTHcNIWDxkz-LZEdpSfNzfP_euEu9KpVbV8gwqnyPbjFxBiv6Qe219n7T8TW_Bs | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RkEp7QNCnC5Tt48DF4Oyudx2JSyCN0pYgJILEzVqvd9tIiROljqre-Ak98Av5JcyuHVeoD_VmaWdla8Yz3zf7mAF4bxEULHNNMxjNQ57kNMwSLcOWpqoltJSZ9actzkT_kn-6iq9W4Gh5F6aqD9EsuDnP8PHaObhbkD78VTV0kn87oOgjyQNY46IlXOpF-Xmzh4BYJioOGfs7wsu6QhE9bKbeR6PfKOZjWF8UM_XjuxqP77NXDz-9TdioeSPpVIbeghVTPIGHg3pn_CkML8rRpDcqb69vOqSrSnV7_bM7d6GMdMZfpvNR-XVCkKCSzqKcIks1OekaMyPHrkUEcZPrPl7kvDqxNUFMewaXvQ_Dk35Yd0wINcNUNuQK049YGJtlMcuZ5JGJlCMlwhgkBknCFDdRogXKCcksTUwurUWnjHMb5W32HFaLaWFeAhG2jbmjbtNIR7xlZaZNFnNhMH-TEoE1gP2l5lJdlxN3XS3GaVUImaao5NQrOYC3jeisqqHxJ6GdpfrT2o1wRCDGYsSgUQBvmmF0ALeroQozXTgZjEOYdSY0gBeV2Zq3MFcvn_I4gHeNHf_1Cfvewn-XSAfdC__w6v9F92C9Pxycpqcfzz5vwyPqrk_4M2w7sFrOF2YXSU2Zvfb_7h3H8PC5 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIpX2wLs0UMA8Dr1km7UT2ytxWQir8mhV0VbqBUWJY7crdrOrJRGCU38CB35hfwlj54HKS4hbJI8Vx_bMfBOPvwF4atApGGaLZjCa-6HMqZ9JJfy-ommfKyEy47It9vjOUfj6ODpegmftXZiaH6L74WY1w9lrq-B6npvtH6yh0_xjj6KOyEtwOYwG0ib0xe868iiEOq7wKapR5O4It7xCAd3uul70Rr9AzDW4UhXz9POndDK5iF6d-xldg_ftwOuskw-9qsx66stPnI7_-2XX4WqDS8mw3kg3YEkXN2Fltzl5vwWHB-V4OhqX52ffhiROy_T87Gu8sKaSDCcns8W4PJ0SBMBkWJUzRME6J7HWc_LclqAgtnNTJ4zs1xlhU_SZt-Fo9PLwxY7fVGTwFcNQ2Q9TDG8irk2WRSxnIgx0kFrQw7VG4CElS0MdSMVRjgtmqNS5MAaVPspNkA_YOiwXs0JvAOFmgLGpGtBABWHfiEzpLAq5xvhQCHTcHmy1K5Oohq7cVs2YJDXRMk1wlhI3Sx487kTnNUfH74Q22-VNGjXFFo4-HC0SDTx41DWjgtlTk7TQs8rKoJ3DqFZSD-7U26J7C7N8_DSMPHjS7ZO_DWHLLfufJZLd-MA93P130Yewsh-Pkrev9t7cg1Vqb2e4FLlNWC4Xlb6PmKnMHjjV-A7fuBEV | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swED-hIm3igTEYkIkh8-eBl1SundjpY7ZSoUkgJKjEniLHsVm1Nq1KIgRPfIQ97BPySXZO0iI2hvYWyZfE8t35fieffwdwaDEoWO6aZnCW-UGUMT-NtPQ7mqmO0FKmtqq2OBMng-DrVXi1BHvzuzA4iXZ2nxtXYNE0RUNAT11f2mURItxuwfLg7Dz-VqPDsLr9W3OidnzMduScPYgyTOlv2gydKHoec_4Ckivwtsyn6u5WjUbPMWoVZPrvnq7q1LUlP9plkbb1_R_Mja_Ofw1WG4hJ4tom3sOSydfhzWlziL4BlxfFcNwfFo8Pv2LSU4V6fPjZm7ldj8Sj68lsWHwfE8SyJC6LCQJak5GeMVPy2XWTIO7lpuUXOa-Lu8YY_j7AoH98-eXEb5or-Jpj1usHCjOVUBibpiHPuAyoocrhF2EMYogo4iowNNIC5YTklkUmk9ai_4aZpVmXb0Irn-RmG4iwXUwzdZdRTYOOlak2aRgIg6melBiDPTiaL3-iG-Zx1wBjlNScySxBTSWVpjzYX4hOa7qNl4R25jpMGo_DEYHhGDcXRj3YWwyjr7gDEJWbSelkcMvCBDViHmzVul_8hTtqfRaEHhwsjOG1KRxVZvJvieS0d1E9fPyvD-5Aq5iV5hMinCLdbWz8NwSz-ls | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StimFit-A+Data-Driven+Algorithm+for+Automated+Deep+Brain+Stimulation+Programming&rft.jtitle=Movement+disorders&rft.au=Roediger%2C+Jan&rft.au=Dembek%2C+Till+A&rft.au=Wenzel%2C+Gregor&rft.au=Butenko%2C+Konstantin&rft.date=2022-03-01&rft.issn=1531-8257&rft.eissn=1531-8257&rft.volume=37&rft.issue=3&rft.spage=574&rft_id=info:doi/10.1002%2Fmds.28878&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon |