The coax monopole antenna: A flexible end‐fed antenna for ultrahigh field transmit/receive arrays

Purpose The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. Methods Like the coax dipole antenna, an interruptio...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 1; pp. 361 - 373
Main Authors Budé, Lyanne M. I., Steensma, Bart R., Zivkovic, Irena, Raaijmakers, Alexander J. E.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30036

Cover

Abstract Purpose The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. Methods Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1+ field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1+ efficiency and to find the S‐parameters in straight and bent positions. Eight‐channel simulations and measurements are performed for prostate imaging. Results The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1+ levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1+ levels of 10–14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High‐quality images and acceptable coupling levels were achieved. Conclusion The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one‐sided feeding greatly simplifies cable routing.
AbstractList The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging. The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved. The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.
The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.PURPOSEThe coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging.METHODSLike the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging.The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved.RESULTSThe optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved.The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.CONCLUSIONThe coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.
Purpose The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. Methods Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1+ field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1+ efficiency and to find the S‐parameters in straight and bent positions. Eight‐channel simulations and measurements are performed for prostate imaging. Results The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1+ levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1+ levels of 10–14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High‐quality images and acceptable coupling levels were achieved. Conclusion The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one‐sided feeding greatly simplifies cable routing.
PurposeThe coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.MethodsLike the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1+ field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1+ efficiency and to find the S‐parameters in straight and bent positions. Eight‐channel simulations and measurements are performed for prostate imaging.ResultsThe optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1+ levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1+ levels of 10–14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High‐quality images and acceptable coupling levels were achieved.ConclusionThe coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one‐sided feeding greatly simplifies cable routing.
Author Budé, Lyanne M. I.
Raaijmakers, Alexander J. E.
Steensma, Bart R.
Zivkovic, Irena
Author_xml – sequence: 1
  givenname: Lyanne M. I.
  orcidid: 0009-0009-0507-9890
  surname: Budé
  fullname: Budé, Lyanne M. I.
  organization: Eindhoven University of Technology
– sequence: 2
  givenname: Bart R.
  orcidid: 0000-0002-4254-9937
  surname: Steensma
  fullname: Steensma, Bart R.
  organization: UMC Utrecht
– sequence: 3
  givenname: Irena
  orcidid: 0000-0001-6900-6580
  surname: Zivkovic
  fullname: Zivkovic, Irena
  organization: Eindhoven University of Technology
– sequence: 4
  givenname: Alexander J. E.
  orcidid: 0000-0001-7111-330X
  surname: Raaijmakers
  fullname: Raaijmakers, Alexander J. E.
  email: a.j.e.raaijmakers@tue.nl
  organization: UMC Utrecht
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38376359$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9OFTEUhxuDkQu68AVMEzdiMtz-mem07AhRNIGYGFxPOp1Tb0mnvbYzwt35CDyjT0L1AgsSWDWn_c6v53x7aCfEAAi9peSQEsKWYxoPOSFcvEAL2jBWsUbVO2hB2ppUnKp6F-3lfEkIUaqtX6FdLnkreKMWyFysAJuor_EYQ1xHD1iHCULQR_gYWw_Xri93EIa_f24sDPev2MaEZz8lvXI_V9g68AMuVcijm5YJDLjfJSolvcmv0UurfYY3d-c--vH508XJl-rs2-nXk-OzynApRVU3tBcDaSynRvC25bUA1hsijIGBccOEYpwRQuuBKqllawfJuFSasF5apfg--rjNncNab6609906uVGnTUdJ989UV0x1_00V-MMWXqf4a4Y8daPLBrzXAeKcO6aYlE2ZgRX0_SP0Ms4plFVKVi2UUkSQQr27o-Z-hOHh63vXBTjYAibFnBPYZ6dbPmKNm_TkYiiOnX-u48p52Dwd3Z1_P9923AJDwqzO
CitedBy_id crossref_primary_10_3390_s25061867
crossref_primary_10_1002_mrm_30464
crossref_primary_10_13104_imri_2024_0019
Cites_doi 10.1002/nbm.4106
10.1002/mrm.28297
10.1109/TMI.2020.3047354
10.1109/TMI.2021.3051390
10.1002/mrm.25504
10.1002/mrm.21120
10.1002/mrm.25596
10.1002/mrm.24844
10.1007/s10334-017-0665-5
10.1038/s41551-018-0233-y
10.1002/mrm.28983
10.1097/RMR.0000000000000202
10.1002/mrm.27005
10.1002/mrm.28382
10.1002/mrm.26487
10.1002/mrm.22886
10.1088/0031-9155/59/18/5287
10.1002/mrm.21751
10.1007/s10334-014-0473-0
10.1002/mrm.27964
10.3390/s21186000
10.1109/TAP.1955.1144302
10.1002/mrm.26153
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
DOI 10.1002/mrm.30036
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1522-2594
EndPage 373
ExternalDocumentID oai:pure.tue.nl:openaire/8f69a771-e386-4b9d-9ced-1ca05df2fc54
38376359
10_1002_mrm_30036
MRM30036
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: None.
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3886-451b6d05f31c6377346e2bc06cced23c2692320014d198a87fd82389a02b8f993
IEDL.DBID 24P
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 03:57:38 EDT 2025
Fri Jul 11 10:33:23 EDT 2025
Tue Oct 07 06:35:57 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Wed Oct 01 05:05:44 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Wed Jan 22 17:20:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Engineering
RF coil arrays
ultrahigh field MRI
Language English
License Attribution
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3886-451b6d05f31c6377346e2bc06cced23c2692320014d198a87fd82389a02b8f993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6900-6580
0009-0009-0507-9890
0000-0002-4254-9937
0000-0001-7111-330X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30036
PMID 38376359
PQID 3046999060
PQPubID 1016391
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_mrm_30036
proquest_miscellaneous_2928853462
proquest_journals_3046999060
pubmed_primary_38376359
crossref_primary_10_1002_mrm_30036
crossref_citationtrail_10_1002_mrm_30036
wiley_primary_10_1002_mrm_30036_MRM30036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 21
2015; 28
2018; 2
2022
2009; 61
2020; 84
2019; 32
2020; 83
2017; 77
2015; 74
2019; 28
2016; 75
2018; 80
2014; 59
2011; 66
2022; 87
2018; 31
2021; 40
2014; 71
2007; 57
1955; 3
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_25_1
e_1_2_6_14_1
Qu B (e_1_2_6_23_1) 2022
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 83
  start-page: 1135
  year: 2020
  end-page: 1146
  article-title: Shielded‐coaxial‐cable coils as receive and transceive array elements for 7T human MRI
  publication-title: Magn Reson Med
– volume: 40
  start-page: 1267
  year: 2021
  end-page: 1278
  article-title: Flexible multi‐turn multi‐gap coaxial RF coils: design concept and implementation for magnetic resonance imaging at 3 and 7 Tesla
  publication-title: IEEE Trans Med Imaging
– volume: 71
  start-page: 1944
  year: 2014
  end-page: 1952
  article-title: New design concept of monopole antenna array for UHF 7T MRI
  publication-title: Magn Reson Med
– volume: 84
  start-page: 3485
  year: 2020
  end-page: 3493
  article-title: Improving radiofrequency power and specific absorption rate management with bumped transmit elements in ultra‐high field MRI
  publication-title: Magn Reson Med
– volume: 31
  start-page: 7
  year: 2018
  end-page: 18
  article-title: An 8‐channel Tx/Rx dipole array combined with 16 Rx loops for high‐resolution functional cardiac imaging at 7 T
  publication-title: MAGMA
– volume: 75
  start-page: 1366
  year: 2016
  end-page: 1374
  article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla
  publication-title: Magn Reson Med
– volume: 2
  start-page: 570
  year: 2018
  end-page: 577
  article-title: A high‐impedance detector‐array glove for magnetic resonance imaging of the hand
  publication-title: Nat Biomed Eng
– volume: 40
  start-page: 1147
  year: 2021
  end-page: 1156
  article-title: Comparison of 16‐channel asymmetric sleeve antenna and dipole antenna transceiver arrays at 10.5 Tesla MRI
  publication-title: IEEE Trans Med Imaging
– volume: 84
  start-page: 2885
  year: 2020
  end-page: 2896
  article-title: Introduction of the snake antenna array: geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR
  publication-title: Magn Reson Med
– volume: 61
  start-page: 244
  year: 2009
  end-page: 248
  article-title: Whole‐body imaging at 7T: preliminary results
  publication-title: Magn Reson Med
– volume: 3
  start-page: 111
  year: 1955
  end-page: 116
  article-title: Folded unipole antennas
  publication-title: IRE Trans Antennas Propag
– volume: 59
  start-page: 5287
  year: 2014
  end-page: 5303
  article-title: Development of a new generation of high‐resolution anatomical models for medical device evaluation: the virtual population 3.0
  publication-title: Phys Med Biol
– volume: 87
  start-page: 528
  year: 2022
  end-page: 540
  article-title: The coax dipole: a fully flexible coaxial cable dipole antenna with flattened current distribution for body imaging at 7 Tesla
  publication-title: Magn Reson Med
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 77
  start-page: 884
  year: 2017
  end-page: 894
  article-title: A 16‐channel combined loop‐dipole transceiver array for 7 Tesla body MRI
  publication-title: Magn Reson Med
– volume: 28
  start-page: 357
  year: 2015
  end-page: 362
  article-title: Single‐channel, box‐shaped, monopole‐type antenna for B1+ field manipulation in conjunction with the traveling‐wave concept in 9.4 T MRI
  publication-title: MAGMA
– volume: 80
  start-page: 413
  year: 2018
  end-page: 419
  article-title: Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions
  publication-title: Magn Reson Med
– start-page: 1
  year: 2022
  end-page: 4
– volume: 77
  start-page: 434
  year: 2017
  end-page: 443
  article-title: Toward imaging the body at 10.5 Tesla
  publication-title: Magn Reson Med
– volume: 21
  year: 2021
  article-title: Evaluation of 8‐channel radiative antenna arrays for human head imaging at 10.5 Tesla
  publication-title: Sensors
– volume: 66
  start-page: 1488
  year: 2011
  end-page: 1497
  article-title: Design of a radiative surface coil array element at 7 T: the single‐side adapted dipole antenna
  publication-title: Magn Reson Med
– volume: 32
  year: 2019
  article-title: Design and characterization of an eight‐element passively fed meander‐dipole array with improved specific absorption rate efficiency for 7 T body imaging
  publication-title: NMR Biomed
– volume: 28
  start-page: 101
  year: 2019
  end-page: 124
  article-title: Evolution of UHF body imaging in the human torso at 7T
  publication-title: Top Magn Reson Imaging
– volume: 74
  start-page: 1423
  year: 2015
  end-page: 1434
  article-title: Comparison between simulated decoupling regimes for specific absorption rate prediction in parallel transmit MRI
  publication-title: Magn Reson Med
– ident: e_1_2_6_5_1
  doi: 10.1002/nbm.4106
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.28297
– ident: e_1_2_6_17_1
  doi: 10.1109/TMI.2020.3047354
– ident: e_1_2_6_15_1
  doi: 10.1109/TMI.2021.3051390
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.25504
– ident: e_1_2_6_20_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.25596
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.24844
– ident: e_1_2_6_8_1
  doi: 10.1007/s10334-017-0665-5
– ident: e_1_2_6_13_1
  doi: 10.1038/s41551-018-0233-y
– ident: e_1_2_6_12_1
  doi: 10.1002/mrm.28983
– ident: e_1_2_6_11_1
  doi: 10.1097/RMR.0000000000000202
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.27005
– ident: e_1_2_6_7_1
  doi: 10.1002/mrm.28382
– ident: e_1_2_6_10_1
  doi: 10.1002/mrm.26487
– ident: e_1_2_6_3_1
  doi: 10.1002/mrm.22886
– ident: e_1_2_6_21_1
  doi: 10.1088/0031-9155/59/18/5287
– ident: e_1_2_6_2_1
  doi: 10.1002/mrm.21751
– ident: e_1_2_6_24_1
  doi: 10.1007/s10334-014-0473-0
– ident: e_1_2_6_14_1
  doi: 10.1002/mrm.27964
– ident: e_1_2_6_22_1
  doi: 10.3390/s21186000
– ident: e_1_2_6_25_1
  doi: 10.1109/TAP.1955.1144302
– start-page: 1
  volume-title: Proceedings: 2022 16th European Conference on Antennas and Propagation (EuCAP)
  year: 2022
  ident: e_1_2_6_23_1
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.26153
SSID ssj0009974
Score 2.4798992
Snippet Purpose The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and...
The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and...
PurposeThe coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 361
SubjectTerms Antenna arrays
Coaxial cables
Computer Simulation
Coupling
Design optimization
Design parameters
Dipole antennas
Engineering
Equipment Design
Finite difference time domain method
Humans
Image Processing, Computer-Assisted - methods
Image quality
Inductors
Magnetic Resonance Imaging - instrumentation
Male
Matching
Monopole antennas
Phantoms, Imaging
Prostate
Prostate - diagnostic imaging
RF coil arrays
Simulation
ultrahigh field MRI
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BVoA48CivoILM49CLdxMndhxuK0RVIW2FECuVU-T40VZks6vdRFBO_AR-I7-EcR4rykscuEWxlXg045nP9vgbgOdcmrSIhKRGhZYm2qAfZFZSqw3HkOGcCv0F59mROJwnr4_5cX892t-F6SluTsd1g4vzcmKryeqH_auJdCJTaRpRG0tBkyIzNNPW0EirkBvHnObJZdgRHJH5CHbmR2-m7zsmTu9u2rqIGLEYRdSfDERDIZss1otx7LlZLoanXzDndbjWVCt1_lGV5UU428ajg5uwGCTp0lA-jJu6GOvPP5E8_i9Rb8GNHriSaWdpt-GSrXbh6qw_mt-FK20uqd7cAY2mR_RSfSJo4r4GgyVefVWlXpApcZ6Bs8B3tjLfvnx11gytBPEzacoa3d_ZySlpc-tI7WPp4qz2u0kWPTNR67U639yF-cGrdy8PaV_LgepY-uHzqBAm5C6OtIjTNE6EZYUOhUaRWKyZQKTp87sSE2VSydQZiWgiUyErpEMQdQ9G1bKyD4BYIzJchmnhmeaTmBVpqjLtuDU8VsyKAPYHFea6Jzr39TbKvKNoZjlqO2-1HcDTbddVx-7xu057gx3k_QTf5P5AGbF1KMIAnmybcWr68xZV2WWzyVnGJKKhRLAA7nf2s_2L3xhArJcF8GxrUH8bwn5ran_ukc_eztqHh__0wT0Y1evGPkJAVReP-3nyHbrbHl4
  priority: 102
  providerName: Unpaywall
Title The coax monopole antenna: A flexible end‐fed antenna for ultrahigh field transmit/receive arrays
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30036
https://www.ncbi.nlm.nih.gov/pubmed/38376359
https://www.proquest.com/docview/3046999060
https://www.proquest.com/docview/2928853462
https://research.tue.nl/en/publications/8f69a771-e386-4b9d-9ced-1ca05df2fc54
UnpaywallVersion submittedVersion
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVtD2gGCBEiiVeRx6CU0cx3HgtAKqCmmrqmKlcooc25GQdrPVJivaW39CfyO_hJm8SsVDXKIoniiR5_XZHn8GeBMrm-ShVL7VgfOFsRgHuVO-MzbGlFEUOqANzpNjeTQVn8_iszV43--Fafkhhgk38owmXpOD67w6uCENnS_nbyOiU7kDGyHiGDJvLk5uGHfTloI5ERRoUtHTCgX8YHj1djL6DWFuw-aqPNeX3_Vsdhu8Ntnn8AHc72AjG7d6fghrrhzB9i9kgiO4N-mWyUdwt6nrNNUjMGgGzCz0BUNzo_MQHKOuLEv9jo1ZQWyYOT5zpf1xdV0427cyxLJsNasxFOHonTV1bqymvDb_VtPMjsMoyfRyqS-rxzA9_PTlw5Hfnavgm0gp6Ys4zKUN4iIKjYySJBLS8dwE0hhneWS4RNRHtVbChqnSKimswsye6oDnqkBA8wTWy0XpngJzVqY4JDKSWN9FxPMk0akpYmfjSHMnPdjvOzgzHek4nX0xy1q6ZJ6hLrJGFx68GkTPW6aNPwnt9lrKOmerMlrcRZwbyMCDl0MzugmtfejSLVZVxlOuEJkIyT3YabU7fIUG6Yi7Ug9eD-r-1y_sN4bwd4lscjppbp79v-hz2OIIl9pC4F1Yr5cr9wLhTp3vNWaN14-nfA82pscn468_AcSj_BI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VImh7QLAUGihgHodeQhPHcZyqlwpRLdBUCLVSb5FjOxLSbrbazQp64yfwG_tLOpNXqXiIW5RMlMjz-sYefwZ4EyubFKFUvtWB84WxGAe5U74zNsaUUZY6oA3O2bEcn4qPZ_HZCuz3e2Fafohhwo08o4nX5OA0Ib17zRo6nU_fRsSncgtuCxlKKr24-HxNuZu2HMyJoEiTip5XKOC7w6s3s9FvEHMD1pbVub74pieTm-i1ST-H9-FehxvZQavoB7DiqhFs_MImOIK7WbdOPoI7TWOnWTwEg3bAzEx_Z2hvdCCCYzSWVaX32AEriQ6zwHuuspc_fpbO9k8Zglm2nNQYi7B8Z02jG6spsU2_1jS14zBMMj2f64vFJpwevj95N_a7gxV8EyklfRGHhbRBXEahkVGSREI6XphAGuMsjwyXCPuo2UrYMFVaJaVVmNpTHfBClYhoHsFqNavcFjBnZYo1kZFE-y4iXiSJTk0ZOxtHmjvpwU4_wLnpWMfp8ItJ3vIl8xx1kTe68ODVIHreUm38SWi711Leedsip9VdBLqBDDx4OTxGP6HFD1252XKR85QrhCZCcg8et9odvkJVOgKv1IPXg7r_9Qs7jSH8XSLPvmTNxZP_F30Ba-OT7Cg_-nD86Smsc8RObVfwNqzW86V7htinLp43Jn4Fig385Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qRRR6YJmWEihglkMvmWYcx7ERl4oyKstUqKJSLyhybAeqzmRGM4mgnPgJ_EZ-Cc_ZStmEuEXxi-LYb_ny_PwZ4HEkTJwOuPCNCqzPtEE_SK3wrTYRhowsU4Hb4Dza53uH7OVRdLQET9u9MDU_RJdwc5ZR-Wtn4HZmsu0z1tDJfNIPHZ_KBbjIIilcQd_uwRl5lJQ1B3PMnKeRrOUVCuh29-j5aPQLxFyFy2U-U6cf1Xh8Hr1W4Wd4Dd61Ha-rTk76ZZH29eefOB3_98uuw9UGl5KdWpFuwJLNe7D6A1thD1ZGzTp8Dy5VhaN6sQYa9YzoqfpEUJ_dgQuWuLnKc_WE7JDM0W2meM_m5tuXr5k1bStBsEzKcYG-7vj9B1IV0pHCBc7JceFSRxbdMFHzuTpdrMPh8PnbZ3t-c3CDr0MhuM-iQcpNEGXhQPMwjkPGLU11wLW2hoaacoSVrpiLmYEUSsSZEQgdpApoKjJETDdhOZ_m9hYQa7jEfy7NHa08C2kax0rqLLImChW13IOtdgIT3bCau8M1xknNx0wTHMykGkwPHnais5rK43dCm60WJI01LxK3eoxAOuCBBw-6ZrRDt7iicjstFwmVVCD0YZx6sFFrT_cWlwVAYCc9eNSp09-6sFVpx58lktHBqLq4_e-i92Hlze4wef1i_9UduEIRmtVFx5uwXMxLexehVZHeqyzoO7PmHTQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BVoA48CivoILM49CLdxMndhxuK0RVIW2FECuVU-T40VZks6vdRFBO_AR-I7-EcR4rykscuEWxlXg045nP9vgbgOdcmrSIhKRGhZYm2qAfZFZSqw3HkOGcCv0F59mROJwnr4_5cX892t-F6SluTsd1g4vzcmKryeqH_auJdCJTaRpRG0tBkyIzNNPW0EirkBvHnObJZdgRHJH5CHbmR2-m7zsmTu9u2rqIGLEYRdSfDERDIZss1otx7LlZLoanXzDndbjWVCt1_lGV5UU428ajg5uwGCTp0lA-jJu6GOvPP5E8_i9Rb8GNHriSaWdpt-GSrXbh6qw_mt-FK20uqd7cAY2mR_RSfSJo4r4GgyVefVWlXpApcZ6Bs8B3tjLfvnx11gytBPEzacoa3d_ZySlpc-tI7WPp4qz2u0kWPTNR67U639yF-cGrdy8PaV_LgepY-uHzqBAm5C6OtIjTNE6EZYUOhUaRWKyZQKTp87sSE2VSydQZiWgiUyErpEMQdQ9G1bKyD4BYIzJchmnhmeaTmBVpqjLtuDU8VsyKAPYHFea6Jzr39TbKvKNoZjlqO2-1HcDTbddVx-7xu057gx3k_QTf5P5AGbF1KMIAnmybcWr68xZV2WWzyVnGJKKhRLAA7nf2s_2L3xhArJcF8GxrUH8bwn5ran_ukc_eztqHh__0wT0Y1evGPkJAVReP-3nyHbrbHl4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+coax+monopole+antenna%3A+A+flexible+end%E2%80%90fed+antenna+for+ultrahigh+field+transmit%2Freceive+arrays&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bud%C3%A9%2C+Lyanne+M.+I.&rft.au=Steensma%2C+Bart+R.&rft.au=Zivkovic%2C+Irena&rft.au=Raaijmakers%2C+Alexander+J.+E.&rft.date=2024-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=1&rft.spage=361&rft.epage=373&rft_id=info:doi/10.1002%2Fmrm.30036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon