The coax monopole antenna: A flexible end‐fed antenna for ultrahigh field transmit/receive arrays
Purpose The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. Methods Like the coax dipole antenna, an interruptio...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 92; no. 1; pp. 361 - 373 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.30036 |
Cover
| Abstract | Purpose
The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.
Methods
Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1+ field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1+ efficiency and to find the S‐parameters in straight and bent positions. Eight‐channel simulations and measurements are performed for prostate imaging.
Results
The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1+ levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1+ levels of 10–14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High‐quality images and acceptable coupling levels were achieved.
Conclusion
The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one‐sided feeding greatly simplifies cable routing. |
|---|---|
| AbstractList | The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.
Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B
field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B
efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging.
The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B
levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S
of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B
levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved.
The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing. The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.PURPOSEThe coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging.METHODSLike the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging.The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved.RESULTSThe optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved.The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.CONCLUSIONThe coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing. Purpose The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. Methods Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1+ field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1+ efficiency and to find the S‐parameters in straight and bent positions. Eight‐channel simulations and measurements are performed for prostate imaging. Results The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1+ levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1+ levels of 10–14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High‐quality images and acceptable coupling levels were achieved. Conclusion The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one‐sided feeding greatly simplifies cable routing. PurposeThe coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject.MethodsLike the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1+ field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1+ efficiency and to find the S‐parameters in straight and bent positions. Eight‐channel simulations and measurements are performed for prostate imaging.ResultsThe optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1+ levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1+ levels of 10–14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High‐quality images and acceptable coupling levels were achieved.ConclusionThe coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one‐sided feeding greatly simplifies cable routing. |
| Author | Budé, Lyanne M. I. Raaijmakers, Alexander J. E. Steensma, Bart R. Zivkovic, Irena |
| Author_xml | – sequence: 1 givenname: Lyanne M. I. orcidid: 0009-0009-0507-9890 surname: Budé fullname: Budé, Lyanne M. I. organization: Eindhoven University of Technology – sequence: 2 givenname: Bart R. orcidid: 0000-0002-4254-9937 surname: Steensma fullname: Steensma, Bart R. organization: UMC Utrecht – sequence: 3 givenname: Irena orcidid: 0000-0001-6900-6580 surname: Zivkovic fullname: Zivkovic, Irena organization: Eindhoven University of Technology – sequence: 4 givenname: Alexander J. E. orcidid: 0000-0001-7111-330X surname: Raaijmakers fullname: Raaijmakers, Alexander J. E. email: a.j.e.raaijmakers@tue.nl organization: UMC Utrecht |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38376359$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kM9OFTEUhxuDkQu68AVMEzdiMtz-mem07AhRNIGYGFxPOp1Tb0mnvbYzwt35CDyjT0L1AgsSWDWn_c6v53x7aCfEAAi9peSQEsKWYxoPOSFcvEAL2jBWsUbVO2hB2ppUnKp6F-3lfEkIUaqtX6FdLnkreKMWyFysAJuor_EYQ1xHD1iHCULQR_gYWw_Xri93EIa_f24sDPev2MaEZz8lvXI_V9g68AMuVcijm5YJDLjfJSolvcmv0UurfYY3d-c--vH508XJl-rs2-nXk-OzynApRVU3tBcDaSynRvC25bUA1hsijIGBccOEYpwRQuuBKqllawfJuFSasF5apfg--rjNncNab6609906uVGnTUdJ989UV0x1_00V-MMWXqf4a4Y8daPLBrzXAeKcO6aYlE2ZgRX0_SP0Ms4plFVKVi2UUkSQQr27o-Z-hOHh63vXBTjYAibFnBPYZ6dbPmKNm_TkYiiOnX-u48p52Dwd3Z1_P9923AJDwqzO |
| CitedBy_id | crossref_primary_10_3390_s25061867 crossref_primary_10_1002_mrm_30464 crossref_primary_10_13104_imri_2024_0019 |
| Cites_doi | 10.1002/nbm.4106 10.1002/mrm.28297 10.1109/TMI.2020.3047354 10.1109/TMI.2021.3051390 10.1002/mrm.25504 10.1002/mrm.21120 10.1002/mrm.25596 10.1002/mrm.24844 10.1007/s10334-017-0665-5 10.1038/s41551-018-0233-y 10.1002/mrm.28983 10.1097/RMR.0000000000000202 10.1002/mrm.27005 10.1002/mrm.28382 10.1002/mrm.26487 10.1002/mrm.22886 10.1088/0031-9155/59/18/5287 10.1002/mrm.21751 10.1007/s10334-014-0473-0 10.1002/mrm.27964 10.3390/s21186000 10.1109/TAP.1955.1144302 10.1002/mrm.26153 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 ADTOC UNPAY |
| DOI | 10.1002/mrm.30036 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Physics |
| EISSN | 1522-2594 |
| EndPage | 373 |
| ExternalDocumentID | oai:pure.tue.nl:openaire/8f69a771-e386-4b9d-9ced-1ca05df2fc54 38376359 10_1002_mrm_30036 MRM30036 |
| Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: None. |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3886-451b6d05f31c6377346e2bc06cced23c2692320014d198a87fd82389a02b8f993 |
| IEDL.DBID | 24P |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 03:57:38 EDT 2025 Fri Jul 11 10:33:23 EDT 2025 Tue Oct 07 06:35:57 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Wed Oct 01 05:05:44 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Wed Jan 22 17:20:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Engineering RF coil arrays ultrahigh field MRI |
| Language | English |
| License | Attribution 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3886-451b6d05f31c6377346e2bc06cced23c2692320014d198a87fd82389a02b8f993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6900-6580 0009-0009-0507-9890 0000-0002-4254-9937 0000-0001-7111-330X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30036 |
| PMID | 38376359 |
| PQID | 3046999060 |
| PQPubID | 1016391 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_30036 proquest_miscellaneous_2928853462 proquest_journals_3046999060 pubmed_primary_38376359 crossref_primary_10_1002_mrm_30036 crossref_citationtrail_10_1002_mrm_30036 wiley_primary_10_1002_mrm_30036_MRM30036 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 2024-Jul 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 21 2015; 28 2018; 2 2022 2009; 61 2020; 84 2019; 32 2020; 83 2017; 77 2015; 74 2019; 28 2016; 75 2018; 80 2014; 59 2011; 66 2022; 87 2018; 31 2021; 40 2014; 71 2007; 57 1955; 3 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_25_1 e_1_2_6_14_1 Qu B (e_1_2_6_23_1) 2022 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
| References_xml | – volume: 83 start-page: 1135 year: 2020 end-page: 1146 article-title: Shielded‐coaxial‐cable coils as receive and transceive array elements for 7T human MRI publication-title: Magn Reson Med – volume: 40 start-page: 1267 year: 2021 end-page: 1278 article-title: Flexible multi‐turn multi‐gap coaxial RF coils: design concept and implementation for magnetic resonance imaging at 3 and 7 Tesla publication-title: IEEE Trans Med Imaging – volume: 71 start-page: 1944 year: 2014 end-page: 1952 article-title: New design concept of monopole antenna array for UHF 7T MRI publication-title: Magn Reson Med – volume: 84 start-page: 3485 year: 2020 end-page: 3493 article-title: Improving radiofrequency power and specific absorption rate management with bumped transmit elements in ultra‐high field MRI publication-title: Magn Reson Med – volume: 31 start-page: 7 year: 2018 end-page: 18 article-title: An 8‐channel Tx/Rx dipole array combined with 16 Rx loops for high‐resolution functional cardiac imaging at 7 T publication-title: MAGMA – volume: 75 start-page: 1366 year: 2016 end-page: 1374 article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla publication-title: Magn Reson Med – volume: 2 start-page: 570 year: 2018 end-page: 577 article-title: A high‐impedance detector‐array glove for magnetic resonance imaging of the hand publication-title: Nat Biomed Eng – volume: 40 start-page: 1147 year: 2021 end-page: 1156 article-title: Comparison of 16‐channel asymmetric sleeve antenna and dipole antenna transceiver arrays at 10.5 Tesla MRI publication-title: IEEE Trans Med Imaging – volume: 84 start-page: 2885 year: 2020 end-page: 2896 article-title: Introduction of the snake antenna array: geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR publication-title: Magn Reson Med – volume: 61 start-page: 244 year: 2009 end-page: 248 article-title: Whole‐body imaging at 7T: preliminary results publication-title: Magn Reson Med – volume: 3 start-page: 111 year: 1955 end-page: 116 article-title: Folded unipole antennas publication-title: IRE Trans Antennas Propag – volume: 59 start-page: 5287 year: 2014 end-page: 5303 article-title: Development of a new generation of high‐resolution anatomical models for medical device evaluation: the virtual population 3.0 publication-title: Phys Med Biol – volume: 87 start-page: 528 year: 2022 end-page: 540 article-title: The coax dipole: a fully flexible coaxial cable dipole antenna with flattened current distribution for body imaging at 7 Tesla publication-title: Magn Reson Med – volume: 57 start-page: 192 year: 2007 end-page: 200 article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field publication-title: Magn Reson Med – volume: 77 start-page: 884 year: 2017 end-page: 894 article-title: A 16‐channel combined loop‐dipole transceiver array for 7 Tesla body MRI publication-title: Magn Reson Med – volume: 28 start-page: 357 year: 2015 end-page: 362 article-title: Single‐channel, box‐shaped, monopole‐type antenna for B1+ field manipulation in conjunction with the traveling‐wave concept in 9.4 T MRI publication-title: MAGMA – volume: 80 start-page: 413 year: 2018 end-page: 419 article-title: Synthesized tissue‐equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions publication-title: Magn Reson Med – start-page: 1 year: 2022 end-page: 4 – volume: 77 start-page: 434 year: 2017 end-page: 443 article-title: Toward imaging the body at 10.5 Tesla publication-title: Magn Reson Med – volume: 21 year: 2021 article-title: Evaluation of 8‐channel radiative antenna arrays for human head imaging at 10.5 Tesla publication-title: Sensors – volume: 66 start-page: 1488 year: 2011 end-page: 1497 article-title: Design of a radiative surface coil array element at 7 T: the single‐side adapted dipole antenna publication-title: Magn Reson Med – volume: 32 year: 2019 article-title: Design and characterization of an eight‐element passively fed meander‐dipole array with improved specific absorption rate efficiency for 7 T body imaging publication-title: NMR Biomed – volume: 28 start-page: 101 year: 2019 end-page: 124 article-title: Evolution of UHF body imaging in the human torso at 7T publication-title: Top Magn Reson Imaging – volume: 74 start-page: 1423 year: 2015 end-page: 1434 article-title: Comparison between simulated decoupling regimes for specific absorption rate prediction in parallel transmit MRI publication-title: Magn Reson Med – ident: e_1_2_6_5_1 doi: 10.1002/nbm.4106 – ident: e_1_2_6_6_1 doi: 10.1002/mrm.28297 – ident: e_1_2_6_17_1 doi: 10.1109/TMI.2020.3047354 – ident: e_1_2_6_15_1 doi: 10.1109/TMI.2021.3051390 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.25504 – ident: e_1_2_6_20_1 doi: 10.1002/mrm.21120 – ident: e_1_2_6_4_1 doi: 10.1002/mrm.25596 – ident: e_1_2_6_16_1 doi: 10.1002/mrm.24844 – ident: e_1_2_6_8_1 doi: 10.1007/s10334-017-0665-5 – ident: e_1_2_6_13_1 doi: 10.1038/s41551-018-0233-y – ident: e_1_2_6_12_1 doi: 10.1002/mrm.28983 – ident: e_1_2_6_11_1 doi: 10.1097/RMR.0000000000000202 – ident: e_1_2_6_19_1 doi: 10.1002/mrm.27005 – ident: e_1_2_6_7_1 doi: 10.1002/mrm.28382 – ident: e_1_2_6_10_1 doi: 10.1002/mrm.26487 – ident: e_1_2_6_3_1 doi: 10.1002/mrm.22886 – ident: e_1_2_6_21_1 doi: 10.1088/0031-9155/59/18/5287 – ident: e_1_2_6_2_1 doi: 10.1002/mrm.21751 – ident: e_1_2_6_24_1 doi: 10.1007/s10334-014-0473-0 – ident: e_1_2_6_14_1 doi: 10.1002/mrm.27964 – ident: e_1_2_6_22_1 doi: 10.3390/s21186000 – ident: e_1_2_6_25_1 doi: 10.1109/TAP.1955.1144302 – start-page: 1 volume-title: Proceedings: 2022 16th European Conference on Antennas and Propagation (EuCAP) year: 2022 ident: e_1_2_6_23_1 – ident: e_1_2_6_9_1 doi: 10.1002/mrm.26153 |
| SSID | ssj0009974 |
| Score | 2.4798992 |
| Snippet | Purpose
The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and... The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and... PurposeThe coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable‐coil coupling and... |
| SourceID | unpaywall proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 361 |
| SubjectTerms | Antenna arrays Coaxial cables Computer Simulation Coupling Design optimization Design parameters Dipole antennas Engineering Equipment Design Finite difference time domain method Humans Image Processing, Computer-Assisted - methods Image quality Inductors Magnetic Resonance Imaging - instrumentation Male Matching Monopole antennas Phantoms, Imaging Prostate Prostate - diagnostic imaging RF coil arrays Simulation ultrahigh field MRI |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BVoA48CivoILM49CLdxMndhxuK0RVIW2FECuVU-T40VZks6vdRFBO_AR-I7-EcR4rykscuEWxlXg045nP9vgbgOdcmrSIhKRGhZYm2qAfZFZSqw3HkOGcCv0F59mROJwnr4_5cX892t-F6SluTsd1g4vzcmKryeqH_auJdCJTaRpRG0tBkyIzNNPW0EirkBvHnObJZdgRHJH5CHbmR2-m7zsmTu9u2rqIGLEYRdSfDERDIZss1otx7LlZLoanXzDndbjWVCt1_lGV5UU428ajg5uwGCTp0lA-jJu6GOvPP5E8_i9Rb8GNHriSaWdpt-GSrXbh6qw_mt-FK20uqd7cAY2mR_RSfSJo4r4GgyVefVWlXpApcZ6Bs8B3tjLfvnx11gytBPEzacoa3d_ZySlpc-tI7WPp4qz2u0kWPTNR67U639yF-cGrdy8PaV_LgepY-uHzqBAm5C6OtIjTNE6EZYUOhUaRWKyZQKTp87sSE2VSydQZiWgiUyErpEMQdQ9G1bKyD4BYIzJchmnhmeaTmBVpqjLtuDU8VsyKAPYHFea6Jzr39TbKvKNoZjlqO2-1HcDTbddVx-7xu057gx3k_QTf5P5AGbF1KMIAnmybcWr68xZV2WWzyVnGJKKhRLAA7nf2s_2L3xhArJcF8GxrUH8bwn5ran_ukc_eztqHh__0wT0Y1evGPkJAVReP-3nyHbrbHl4 priority: 102 providerName: Unpaywall |
| Title | The coax monopole antenna: A flexible end‐fed antenna for ultrahigh field transmit/receive arrays |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30036 https://www.ncbi.nlm.nih.gov/pubmed/38376359 https://www.proquest.com/docview/3046999060 https://www.proquest.com/docview/2928853462 https://research.tue.nl/en/publications/8f69a771-e386-4b9d-9ced-1ca05df2fc54 |
| UnpaywallVersion | submittedVersion |
| Volume | 92 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVtD2gGCBEiiVeRx6CU0cx3HgtAKqCmmrqmKlcooc25GQdrPVJivaW39CfyO_hJm8SsVDXKIoniiR5_XZHn8GeBMrm-ShVL7VgfOFsRgHuVO-MzbGlFEUOqANzpNjeTQVn8_iszV43--Fafkhhgk38owmXpOD67w6uCENnS_nbyOiU7kDGyHiGDJvLk5uGHfTloI5ERRoUtHTCgX8YHj1djL6DWFuw-aqPNeX3_Vsdhu8Ntnn8AHc72AjG7d6fghrrhzB9i9kgiO4N-mWyUdwt6nrNNUjMGgGzCz0BUNzo_MQHKOuLEv9jo1ZQWyYOT5zpf1xdV0427cyxLJsNasxFOHonTV1bqymvDb_VtPMjsMoyfRyqS-rxzA9_PTlw5Hfnavgm0gp6Ys4zKUN4iIKjYySJBLS8dwE0hhneWS4RNRHtVbChqnSKimswsye6oDnqkBA8wTWy0XpngJzVqY4JDKSWN9FxPMk0akpYmfjSHMnPdjvOzgzHek4nX0xy1q6ZJ6hLrJGFx68GkTPW6aNPwnt9lrKOmerMlrcRZwbyMCDl0MzugmtfejSLVZVxlOuEJkIyT3YabU7fIUG6Yi7Ug9eD-r-1y_sN4bwd4lscjppbp79v-hz2OIIl9pC4F1Yr5cr9wLhTp3vNWaN14-nfA82pscn468_AcSj_BI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VImh7QLAUGihgHodeQhPHcZyqlwpRLdBUCLVSb5FjOxLSbrbazQp64yfwG_tLOpNXqXiIW5RMlMjz-sYefwZ4EyubFKFUvtWB84WxGAe5U74zNsaUUZY6oA3O2bEcn4qPZ_HZCuz3e2Fafohhwo08o4nX5OA0Ib17zRo6nU_fRsSncgtuCxlKKr24-HxNuZu2HMyJoEiTip5XKOC7w6s3s9FvEHMD1pbVub74pieTm-i1ST-H9-FehxvZQavoB7DiqhFs_MImOIK7WbdOPoI7TWOnWTwEg3bAzEx_Z2hvdCCCYzSWVaX32AEriQ6zwHuuspc_fpbO9k8Zglm2nNQYi7B8Z02jG6spsU2_1jS14zBMMj2f64vFJpwevj95N_a7gxV8EyklfRGHhbRBXEahkVGSREI6XphAGuMsjwyXCPuo2UrYMFVaJaVVmNpTHfBClYhoHsFqNavcFjBnZYo1kZFE-y4iXiSJTk0ZOxtHmjvpwU4_wLnpWMfp8ItJ3vIl8xx1kTe68ODVIHreUm38SWi711Leedsip9VdBLqBDDx4OTxGP6HFD1252XKR85QrhCZCcg8et9odvkJVOgKv1IPXg7r_9Qs7jSH8XSLPvmTNxZP_F30Ba-OT7Cg_-nD86Smsc8RObVfwNqzW86V7htinLp43Jn4Fig385Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qRRR6YJmWEihglkMvmWYcx7ERl4oyKstUqKJSLyhybAeqzmRGM4mgnPgJ_EZ-Cc_ZStmEuEXxi-LYb_ny_PwZ4HEkTJwOuPCNCqzPtEE_SK3wrTYRhowsU4Hb4Dza53uH7OVRdLQET9u9MDU_RJdwc5ZR-Wtn4HZmsu0z1tDJfNIPHZ_KBbjIIilcQd_uwRl5lJQ1B3PMnKeRrOUVCuh29-j5aPQLxFyFy2U-U6cf1Xh8Hr1W4Wd4Dd61Ha-rTk76ZZH29eefOB3_98uuw9UGl5KdWpFuwJLNe7D6A1thD1ZGzTp8Dy5VhaN6sQYa9YzoqfpEUJ_dgQuWuLnKc_WE7JDM0W2meM_m5tuXr5k1bStBsEzKcYG-7vj9B1IV0pHCBc7JceFSRxbdMFHzuTpdrMPh8PnbZ3t-c3CDr0MhuM-iQcpNEGXhQPMwjkPGLU11wLW2hoaacoSVrpiLmYEUSsSZEQgdpApoKjJETDdhOZ_m9hYQa7jEfy7NHa08C2kax0rqLLImChW13IOtdgIT3bCau8M1xknNx0wTHMykGkwPHnais5rK43dCm60WJI01LxK3eoxAOuCBBw-6ZrRDt7iicjstFwmVVCD0YZx6sFFrT_cWlwVAYCc9eNSp09-6sFVpx58lktHBqLq4_e-i92Hlze4wef1i_9UduEIRmtVFx5uwXMxLexehVZHeqyzoO7PmHTQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BVoA48CivoILM49CLdxMndhxuK0RVIW2FECuVU-T40VZks6vdRFBO_AR-I7-EcR4rykscuEWxlXg045nP9vgbgOdcmrSIhKRGhZYm2qAfZFZSqw3HkOGcCv0F59mROJwnr4_5cX892t-F6SluTsd1g4vzcmKryeqH_auJdCJTaRpRG0tBkyIzNNPW0EirkBvHnObJZdgRHJH5CHbmR2-m7zsmTu9u2rqIGLEYRdSfDERDIZss1otx7LlZLoanXzDndbjWVCt1_lGV5UU428ajg5uwGCTp0lA-jJu6GOvPP5E8_i9Rb8GNHriSaWdpt-GSrXbh6qw_mt-FK20uqd7cAY2mR_RSfSJo4r4GgyVefVWlXpApcZ6Bs8B3tjLfvnx11gytBPEzacoa3d_ZySlpc-tI7WPp4qz2u0kWPTNR67U639yF-cGrdy8PaV_LgepY-uHzqBAm5C6OtIjTNE6EZYUOhUaRWKyZQKTp87sSE2VSydQZiWgiUyErpEMQdQ9G1bKyD4BYIzJchmnhmeaTmBVpqjLtuDU8VsyKAPYHFea6Jzr39TbKvKNoZjlqO2-1HcDTbddVx-7xu057gx3k_QTf5P5AGbF1KMIAnmybcWr68xZV2WWzyVnGJKKhRLAA7nf2s_2L3xhArJcF8GxrUH8bwn5ran_ukc_eztqHh__0wT0Y1evGPkJAVReP-3nyHbrbHl4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+coax+monopole+antenna%3A+A+flexible+end%E2%80%90fed+antenna+for+ultrahigh+field+transmit%2Freceive+arrays&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bud%C3%A9%2C+Lyanne+M.+I.&rft.au=Steensma%2C+Bart+R.&rft.au=Zivkovic%2C+Irena&rft.au=Raaijmakers%2C+Alexander+J.+E.&rft.date=2024-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=1&rft.spage=361&rft.epage=373&rft_id=info:doi/10.1002%2Fmrm.30036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |