Hybrid algorithms for SAR matrix compression and the impact of post‐processing on SAR calculation complexity

Purpose This study proposes faster virtual observation point (VOP) compression as well as post‐processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP‐based SAR calculation. Me...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 6; pp. 2696 - 2706
Main Authors Orzada, Stephan, Fiedler, Thomas M., Ladd, Mark E.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30235

Cover

Abstract Purpose This study proposes faster virtual observation point (VOP) compression as well as post‐processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP‐based SAR calculation. Methods The proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post‐processing algorithm is used to post‐process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared. Results The new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post‐processing is applied. Conclusion The new algorithms are much faster than previous algorithms. Post‐processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.
AbstractList This study proposes faster virtual observation point (VOP) compression as well as post-processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP-based SAR calculation.PURPOSEThis study proposes faster virtual observation point (VOP) compression as well as post-processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP-based SAR calculation.The proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post-processing algorithm is used to post-process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared.METHODSThe proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post-processing algorithm is used to post-process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared.The new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post-processing is applied.RESULTSThe new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post-processing is applied.The new algorithms are much faster than previous algorithms. Post-processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.CONCLUSIONThe new algorithms are much faster than previous algorithms. Post-processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.
This study proposes faster virtual observation point (VOP) compression as well as post-processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP-based SAR calculation. The proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post-processing algorithm is used to post-process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared. The new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post-processing is applied. The new algorithms are much faster than previous algorithms. Post-processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.
Purpose This study proposes faster virtual observation point (VOP) compression as well as post‐processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP‐based SAR calculation. Methods The proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post‐processing algorithm is used to post‐process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared. Results The new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post‐processing is applied. Conclusion The new algorithms are much faster than previous algorithms. Post‐processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.
PurposeThis study proposes faster virtual observation point (VOP) compression as well as post‐processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP‐based SAR calculation.MethodsThe proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post‐processing algorithm is used to post‐process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared.ResultsThe new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post‐processing is applied.ConclusionThe new algorithms are much faster than previous algorithms. Post‐processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.
Author Orzada, Stephan
Fiedler, Thomas M.
Ladd, Mark E.
Author_xml – sequence: 1
  givenname: Stephan
  orcidid: 0000-0001-9784-4354
  surname: Orzada
  fullname: Orzada, Stephan
  email: stephan.orzada@dkfz.de
  organization: German Cancer Research Center (DKFZ)
– sequence: 2
  givenname: Thomas M.
  orcidid: 0000-0002-1556-375X
  surname: Fiedler
  fullname: Fiedler, Thomas M.
  organization: German Cancer Research Center (DKFZ)
– sequence: 3
  givenname: Mark E.
  surname: Ladd
  fullname: Ladd, Mark E.
  organization: Heidelberg University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39056341$$D View this record in MEDLINE/PubMed
BookMark eNp9kN9q1jAchoNM3LfpgTcgAU-m0O2XJm3awzHUCRvC1OOSpumWkT81Sdl65iV4jV6J6b5PD4YKgZw8z5u87wHac94phF4SOCYA5YkN9phCSasnaEOqsizKqmV7aAOcQUFJy_bRQYy3ANC2nD1D-7SFqqaMbJA7X_qgByzMtQ863diIRx_w59MrbEUK-h5Lb6egYtTeYeEGnG4U1nYSMmE_4snH9PP7jyl4uTLuGmdstaUwcjYirdoaYdS9Tstz9HQUJqoXu_sQfX3_7svZeXHx6cPHs9OLQtKmqYpeMN6U0EA-kgMHVQ_DUFdQKlANlzWhTPbQt1BDoygVdc3kKMdakSwoRg_R223u7Cax3AljuiloK8LSEejW0bo8WvcwWoaPtnBu8W1WMXVWR6mMEU75OWaqYZxXlNcZff0IvfVzcLlKRwkBwhgt18BXO2rurRr-PP179gycbAEZfIxBjZ3U6WGrFIQ2f_3jm0fG__rs0u-0Ucu_we7y6nJr_AI1MLGT
CitedBy_id crossref_primary_10_1002_mrm_30306
Cites_doi 10.1002/mrm.22527
10.1002/mrm.23126
10.1002/mrm.20840
10.1002/mrm.20708
10.1002/mrm.20729
10.1002/nbm.4515
10.1002/mrm.28739
10.1002/mrm.28909
10.1002/mrm.25677
10.1016/j.neuroimage.2017.03.035
10.1002/mrm.21476
10.1002/mrm.21739
10.1002/mrm.29391
10.1002/mrm.22948
10.1007/s10334-023-01081-3
10.1002/mrm.23140
10.1371/journal.pone.0222452
10.1002/mrm.20978
10.1118/1.595995
10.1002/mrm.29434
10.1002/mrm.22927
10.1002/mrm.10353
10.1002/mrm.22978
10.1109/TBME.2012.2196797
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
DOI 10.1002/mrm.30235
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2706
ExternalDocumentID 10.1002/mrm.30235
39056341
10_1002_mrm_30235
MRM30235
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: HORIZON EUROPE Framework Programme
  funderid: 101078393 / MRItwins
– fundername: HORIZON EUROPE Framework Programme
  grantid: 101078393 / MRItwins
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3885-ba4782080080c7070e6ddd6502e0e87c6134cb0b90608e33a664cfcf6e180ce43
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Sep 07 10:41:15 EDT 2025
Fri Sep 05 08:07:36 EDT 2025
Tue Oct 07 06:41:32 EDT 2025
Mon Jul 21 06:17:43 EDT 2025
Wed Oct 01 05:05:46 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 17:14:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords VOPs
MRI
SAR
specific absorption rate
VOP compression
virtual observation points
local
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3885-ba4782080080c7070e6ddd6502e0e87c6134cb0b90608e33a664cfcf6e180ce43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1556-375X
0000-0001-9784-4354
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/mrm.30235
PMID 39056341
PQID 3110144325
PQPubID 1016391
PageCount 11
ParticipantIDs unpaywall_primary_10_1002_mrm_30235
proquest_miscellaneous_3084775376
proquest_journals_3110144325
pubmed_primary_39056341
crossref_citationtrail_10_1002_mrm_30235
crossref_primary_10_1002_mrm_30235
wiley_primary_10_1002_mrm_30235_MRM30235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1987; 14
2023; 43
2010; 64
2023; 36
2021; 86
2021; 34
2023; 89
2006; 56
2022
2017; 25
2006; 55
2018; 168
2019; 14
2016; 75
2008; 59
2011; 66
2005; 54
2003; 49
2017
2022; 88
2012; 59
2012; 67
2008; 60
Orzada S (e_1_2_8_26_1) 2023; 89
Orzada S (e_1_2_8_14_1) 2010; 64
Auerbach EJ (e_1_2_8_28_1) 2017
Bates S (e_1_2_8_4_1) 2023; 36
Orzada S (e_1_2_8_30_1) 2019; 14
Kuehne A (e_1_2_8_21_1) 2017; 25
Saekho S (e_1_2_8_11_1) 2006; 55
Eichfelder G (e_1_2_8_19_1) 2011; 66
Roschmann P (e_1_2_8_5_1) 1987; 14
Fiedler TM (e_1_2_8_24_1) 2021; 34
Le Ster C (e_1_2_8_2_1) 2022; 88
Pohmann R (e_1_2_8_3_1) 2016; 75
Homann H (e_1_2_8_27_1) 2011; 66
Lee J (e_1_2_8_20_1) 2012; 67
Gras V (e_1_2_8_25_1) 2023; 43
Van de Moortele PF (e_1_2_8_6_1) 2005; 54
Setsompop K (e_1_2_8_10_1) 2008; 60
e_1_2_8_18_1
Orzada S (e_1_2_8_23_1) 2021; 86
e_1_2_8_15_1
Metzger GJ (e_1_2_8_8_1) 2008; 59
Cloos MA (e_1_2_8_9_1) 2012; 67
Orzada S (e_1_2_8_22_1) 2021; 86
Zhu Y (e_1_2_8_17_1) 2012; 67
Collins CM (e_1_2_8_7_1) 2005; 54
Fiedler TM (e_1_2_8_16_1) 2018; 168
Katscher U (e_1_2_8_13_1) 2003; 49
Feng K (e_1_2_8_29_1) 2012; 59
Grissom W (e_1_2_8_12_1) 2006; 56
References_xml – volume: 67
  start-page: 72
  year: 2012
  end-page: 80
  article-title: kT ‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume
  publication-title: Magn Reson Med
– volume: 55
  start-page: 719
  year: 2006
  end-page: 724
  article-title: Fast‐kz three‐dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1327
  year: 2005
  end-page: 1332
  article-title: Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies
  publication-title: Magn Reson Med
– volume: 25
  start-page: 1218
  year: 2017
– volume: 36
  start-page: 211
  year: 2023
  end-page: 225
  article-title: A vision of 14 T MR for fundamental and clinical science
  publication-title: Magma
– volume: 56
  start-page: 620
  year: 2006
  end-page: 629
  article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1566
  year: 2012
  end-page: 1578
  article-title: Local SAR in parallel transmission pulse design
  publication-title: Magn Reson Med
– volume: 34
  year: 2021
  article-title: Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T
  publication-title: NMR Biomed
– volume: 64
  start-page: 327
  year: 2010
  end-page: 333
  article-title: RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high‐field MRI
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1503
  year: 2005
  end-page: 1518
  article-title: B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil
  publication-title: Magn Reson Med
– volume: 89
  start-page: 469
  year: 2023
  end-page: 476
  article-title: An investigation into the dependence of virtual observation point‐based specific absorption rate calculation complexity on number of channels
  publication-title: Magn Reson Med
– volume: 43
  year: 2023
  article-title: A mathematical analysis of clustering‐free local SAR compression algorithms for MRI safety in parallel transmission
  publication-title: IEEE Trans Med Imaging
– volume: 86
  start-page: 561
  year: 2021
  end-page: 568
  article-title: Local SAR compression algorithm with improved compression, speed, and flexibility
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1767
  year: 2011
  end-page: 1776
  article-title: Toward individualized SAR models and in vivo validation
  publication-title: Magn Reson Med
– volume: 14
  year: 2019
  article-title: A 32‐channel parallel transmit system add‐on for 7T MRI
  publication-title: PLoS One
– volume: 67
  start-page: 1367
  year: 2012
  end-page: 1378
  article-title: System and SAR characterization in parallel RF transmission
  publication-title: Magn Reson Med
– volume: 75
  start-page: 801
  year: 2016
  end-page: 809
  article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays
  publication-title: Magn Reson Med
– volume: 14
  start-page: 922
  year: 1987
  end-page: 931
  article-title: Radiofrequency penetration and absorption in the human body: limitations to high‐field whole‐body nuclear magnetic resonance imaging
  publication-title: Med Phys
– volume: 59
  start-page: 2152
  year: 2012
  end-page: 2160
  article-title: A 64‐channel transmitter for investigating parallel transmit MRI
  publication-title: IEEE Trans Biomedical Engn
– volume: 86
  start-page: 2853
  year: 2021
  end-page: 2861
  article-title: Post‐processing algorithms for specific absorption rate compression
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1468
  year: 2011
  end-page: 1476
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn Reson Med
– volume: 59
  start-page: 396
  year: 2008
  end-page: 409
  article-title: Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements
  publication-title: Magn Reson Med
– year: 2022
– volume: 60
  start-page: 1422
  year: 2008
  end-page: 1432
  article-title: Slice‐selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16‐element coil
  publication-title: Magn Reson Med
– volume: 168
  start-page: 33
  year: 2018
  end-page: 58
  article-title: SAR simulations & safety
  publication-title: Neuroimage
– year: 2017
– volume: 88
  start-page: 2131
  year: 2022
  end-page: 2138
  article-title: Magnetic field strength dependent SNR gain at the center of a spherical phantom and up to 11.7T
  publication-title: Magn Reson Med
– volume: 25
  start-page: 478
  year: 2017
  article-title: Massively accelerated VOP compression for population‐scale RF safety models
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– volume: 64
  start-page: 327
  year: 2010
  ident: e_1_2_8_14_1
  article-title: RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high‐field MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22527
– volume: 67
  start-page: 1367
  year: 2012
  ident: e_1_2_8_17_1
  article-title: System and SAR characterization in parallel RF transmission
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23126
– volume: 55
  start-page: 719
  year: 2006
  ident: e_1_2_8_11_1
  article-title: Fast‐kz three‐dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20840
– volume: 54
  start-page: 1503
  year: 2005
  ident: e_1_2_8_6_1
  article-title: B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20708
– volume: 54
  start-page: 1327
  year: 2005
  ident: e_1_2_8_7_1
  article-title: Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20729
– volume: 34
  year: 2021
  ident: e_1_2_8_24_1
  article-title: Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4515
– volume: 86
  start-page: 561
  year: 2021
  ident: e_1_2_8_22_1
  article-title: Local SAR compression algorithm with improved compression, speed, and flexibility
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28739
– volume: 86
  start-page: 2853
  year: 2021
  ident: e_1_2_8_23_1
  article-title: Post‐processing algorithms for specific absorption rate compression
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28909
– volume: 75
  start-page: 801
  year: 2016
  ident: e_1_2_8_3_1
  article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25677
– volume: 168
  start-page: 33
  year: 2018
  ident: e_1_2_8_16_1
  article-title: SAR simulations & safety
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.035
– volume: 59
  start-page: 396
  year: 2008
  ident: e_1_2_8_8_1
  article-title: Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21476
– volume: 60
  start-page: 1422
  year: 2008
  ident: e_1_2_8_10_1
  article-title: Slice‐selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16‐element coil
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21739
– volume: 88
  start-page: 2131
  year: 2022
  ident: e_1_2_8_2_1
  article-title: Magnetic field strength dependent SNR gain at the center of a spherical phantom and up to 11.7T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29391
– volume: 43
  year: 2023
  ident: e_1_2_8_25_1
  article-title: A mathematical analysis of clustering‐free local SAR compression algorithms for MRI safety in parallel transmission
  publication-title: IEEE Trans Med Imaging
– volume: 66
  start-page: 1767
  year: 2011
  ident: e_1_2_8_27_1
  article-title: Toward individualized SAR models and in vivo validation
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22948
– volume: 36
  start-page: 211
  year: 2023
  ident: e_1_2_8_4_1
  article-title: A vision of 14 T MR for fundamental and clinical science
  publication-title: Magma
  doi: 10.1007/s10334-023-01081-3
– volume: 25
  start-page: 478
  year: 2017
  ident: e_1_2_8_21_1
  article-title: Massively accelerated VOP compression for population‐scale RF safety models
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 67
  start-page: 1566
  year: 2012
  ident: e_1_2_8_20_1
  article-title: Local SAR in parallel transmission pulse design
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23140
– volume: 14
  year: 2019
  ident: e_1_2_8_30_1
  article-title: A 32‐channel parallel transmit system add‐on for 7T MRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0222452
– volume: 56
  start-page: 620
  year: 2006
  ident: e_1_2_8_12_1
  article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20978
– volume: 14
  start-page: 922
  year: 1987
  ident: e_1_2_8_5_1
  article-title: Radiofrequency penetration and absorption in the human body: limitations to high‐field whole‐body nuclear magnetic resonance imaging
  publication-title: Med Phys
  doi: 10.1118/1.595995
– start-page: 1218
  volume-title: Proc Intl Soc Mag Reson Med
  year: 2017
  ident: e_1_2_8_28_1
– ident: e_1_2_8_18_1
– ident: e_1_2_8_15_1
– volume: 89
  start-page: 469
  year: 2023
  ident: e_1_2_8_26_1
  article-title: An investigation into the dependence of virtual observation point‐based specific absorption rate calculation complexity on number of channels
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29434
– volume: 66
  start-page: 1468
  year: 2011
  ident: e_1_2_8_19_1
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22927
– volume: 49
  start-page: 144
  year: 2003
  ident: e_1_2_8_13_1
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10353
– volume: 67
  start-page: 72
  year: 2012
  ident: e_1_2_8_9_1
  article-title: kT ‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22978
– volume: 59
  start-page: 2152
  year: 2012
  ident: e_1_2_8_29_1
  article-title: A 64‐channel transmitter for investigating parallel transmit MRI
  publication-title: IEEE Trans Biomedical Engn
  doi: 10.1109/TBME.2012.2196797
SSID ssj0009974
Score 2.486498
Snippet Purpose This study proposes faster virtual observation point (VOP) compression as well as post‐processing algorithms for specific absorption rate (SAR) matrix...
This study proposes faster virtual observation point (VOP) compression as well as post-processing algorithms for specific absorption rate (SAR) matrix...
PurposeThis study proposes faster virtual observation point (VOP) compression as well as post‐processing algorithms for specific absorption rate (SAR) matrix...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2696
SubjectTerms Algorithms
Arrays
Brain - diagnostic imaging
Channels
Coils
Compression
Data Compression - methods
Humans
Image Processing, Computer-Assisted - methods
local
Magnetic Resonance Imaging - methods
MRI
Phantoms, Imaging
Reproducibility of Results
SAR
specific absorption rate
virtual observation points
VOP compression
VOPs
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61RW3pAdEUStqAlschF1Pbu7HX6qlCVBFSEOpDys3aV8ohsaM6EeTGT-A38kuY8TquKqDiZmln7ZW_nZ3P3p1vAN5lEjk9hrrAploEQmcqwLDAAy1i5TKunYwoUXj0ORlei0_jwXgDTte5MF4fov3hRp5Rr9fk4EpXJ3eiobPb2XuqeDPYhEcR8hia3rH4cqe4m3kJ5lTQQpOJtaxQGJ-0Xe8Hoz8Y5h7sLou5Wn1T0-l98lpHn_On8KShjezM47wPG67owM6o2RjvwHZ9ktNUB1AMV5SExdT0psQP_6-ziiEvZZdnF2xGcvzfGZ0i96dfC6YKy5ACMp8sycoJm5fV4tePn3OfQICBjaEZ9UYwTVPrq74FKWkuVs_g-vzj1Ydh0BRVCAyXchBoJUgiTxJVNCk6vEustcjTYhc6mRoM78LoUCOAoXScqyQRZmImiYuwgxP8OWwVZeFeAEt9nq3MrNDCSKOI21mdaosoWxF1ob9-u7lpFMep8MU091rJcY5A5DUQXXjTms69zMbfjHpriPLG06qcR1RtWPAYm1-3zegjtPGhClcu0SbEGJyScE0XDj207VN4hhSQ02Dftlg_NIR-PQv-bZGPLkb1xdH_mx7D4xi5kj8l04Otxe3SvUSus9Cv6jn9G4gl-NY
  priority: 102
  providerName: Wiley-Blackwell
Title Hybrid algorithms for SAR matrix compression and the impact of post‐processing on SAR calculation complexity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30235
https://www.ncbi.nlm.nih.gov/pubmed/39056341
https://www.proquest.com/docview/3110144325
https://www.proquest.com/docview/3084775376
https://doi.org/10.1002/mrm.30235
UnpaywallVersion publishedVersion
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NThsxEB5BEP050JYWmkKRKT1w2TSxnV3vMSqgqFIQCkSC08p_KajJbpRs1KanPkKfsU_S8XoTSEtRLytLHnstz9jzSZ75BuB9LBDTo6sLTKR4wFUsA3QLLFCcShszZUXDJQp3TsN2j3-6bF6uwP48F2b5_Z5-GI6HNVfXprkKa2ET4XYF1nqnZ60rT6_p7pCi2CG6IRoglOdz9qC7Y5d9zl9A8ik8nqYjOfsqB4NljFo4mZNnt6k6PrbkS22aq5r-_gdz44Prfw4bJcQkLW8TL2DFppvwqFM-om_CehH1qScvIW3PXMIWkYPP2fgmvx5OCGJYct7qkqGj7v9GXMS5j5RNiUwNQbhIfGIlyfpklE3yXz9-jnyyATpBgmJuNCpel3XBiikc62Y-ewW9k-OLj-2gLMAQaCZEM1CSOzo94WCljvBysKExBjEdtXUrIo1QgGtVV6jsurCMyTDkuq_7oW3gAMvZFlTSLLWvgUQ-J1fEhiuuhZYOBxoVKYMWYXijCodzFSW6ZCd3RTIGiedVpgnuZFLsZBXeLURHnpLjPqHduZ6T8lROEtZwlYk5o9i9v-jG8-QeSWRqsynK1NFfR47kpgrb3j4Wf2ExwkXmFnuwMJiHlnBYmNK_JZJOt1M03vzXhDvwhCKk8sE0u1DJx1P7FiFRrvZglfIz_B516V55QH4D_KgHIw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RUAscKkophFK6fRy4GGzvxl5LvSBUlLYYVRQkbta-Qg-JHZFENLf-BH4jv6QzXscI9aHeLO2sbfnz7Hxez3wD8D6TyOkx1AU21SIQOlMBhgUeaBErl3HtZESFwvlp0rsQny-7lwvwYV4L4_Uh2g038ox6vSYHpw3pg3vV0OH1cJ9a3nQfwZJIooQ-vWLx9V5yN_MazKmglSYTc12hMD5opz6MRr9RzFVYnpYjNbtRg8FD9lqHn-M1eNrwRnbogX4GC65chyd582d8HR7XqZxm_BzK3oyqsJgaXFX45f99OGZITNm3wzM2JD3-H4zSyH36a8lUaRlyQOarJVnVZ6NqPLn7eTvyFQQY2Ria0WxE0zTNvupTkJTmZLYBF8cfz496QdNVITBcym6glSCNPElc0aTo8S6x1iJRi13oZGowvgujQ40IhtJxrpJEmL7pJy7CCU7wF7BYVqXbApb6QluZWaGFkUYRubM61RZhtiLqwN786RamkRynzheDwoslxwUCUdRAdOBtazryOht_MtqZQ1Q0rjYueETthgWPcfhNO4xOQn8-VOmqKdqEGIRTUq7pwKaHtr0Kz5ADcrrZdy3W_7qFvfot-LtFkZ_l9cH2_5u-huXeeX5SnHw6_fISVmIkTj5lZgcWJ9dT9wqJz0Tv1u_3L_h0_EI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIlo48CgFAgUW6KEXp453Y-9KXCpKFB6pUKBSL8jaVwCR2FbiCMKJn8Bv5Jcw67VdlZcQN0uetdf2NzufvDPfAOwKjpweQ11gEsUCpoQMMCzQQLFIWkGV5T1XKDw6iofH7PlJ_2QNHje1MF4fov3h5jyjWq-dg9vCTPZPVUNn81nXtbzpn4PzrC-4S-g7HJ-KRwnhNZgT5lYawRpdoTDab4eejUa_UMxLsLnMCrn6JKfTs-y1Cj-DK_C2mbjPOvnYXZaqq7_8pOn4v092FS7XvJQceCBdgzWbbcHGqN5534ILVaqoXlyHbLhyVV5ETt_l8w_l-9mCIPElrw_GZOb0_j8Tl6bu02szIjNDkGMSX41J8gkp8kX5_eu3wlcoYOQkaOZGI1p03UysuoST6ixX23A8ePrmyTCouzYEmnLeD5RkToOPOy6qE1xRbGyMQSIY2dDyRCN_YFqFChESckupjGOmJ3oS2x4OsIzegPUsz-wtIIkv5OXCMMU019KRR6MSZRBGhvU6sNd8vVTXkuaus8Y09WLMUYpvMq3eZAcetqaF1_H4ndFOA4G0duVFSnuunTGjEZ5-0J5GJ3Q7KzKz-RJtQgzyiVPG6cBND532LlQgx6Ruso9aLP1tCnsVNP5skY7Go-rg9r-b3oeNV4eD9OWzoxd34GKEvMxn5OzAejlf2rvIq0p1r3KfH25GHJI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RIAocoKU8wqMybQ9cNiRrZ9d7jBAoqhRUAZHoaeVXCiLZjZKNIJz4CfxGfgnj9SZtoEW9reQZr-UZez7JM98AfIs4YnoMdZ4OJfOYjISHYYF6kvnCRFQaXrOFwq3ToNlm3y_rl3OwP6mFmX2_9w97g17F9rWpv4P5oI5wuwTz7dMfjZ-OXtPeIXmzQwxDvodQnk3Yg_7UnY05r4DkMiyOkr4Y34pudxaj5kHmZPV3qY7LLbmpjDJZUfcvmBvfXP8HWCkgJmk4n_gIcyZZg_et4hF9DRbyrE81_ARJc2wLtojo_koH19lVb0gQw5LzxhnpWer-O2Izzl2mbEJEognCReIKK0naIf10mD09PPZdsQEGQYJiVhsNr4q-YPkUlnUzG69D--T44qjpFQ0YPEU5r3tSMEunxy2sVCFeDibQWiOm803V8FAhFGBKViUau8oNpSIImOqoTmBqqGAY3YBSkiZmC0joanJ5pJlkiithcaCWodToEZrVynAwMVGsCnZy2ySjGzteZT_GnYzznSzDl6lo31Fy_E1od2LnuDiVw5jWbGdiRn0c3p8O43myjyQiMekIZaoYr0NLclOGTecf07_QCOEitYv9OnWYt5ZwkLvSvyXi1lkr_9j-rwl3YMlHSOWSaXahlA1GZg8hUSY_F4fiGbjKBWM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+algorithms+for+SAR+matrix+compression+and+the+impact+of+post%E2%80%90processing+on+SAR+calculation+complexity&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Orzada%2C+Stephan&rft.au=Fiedler%2C+Thomas+M.&rft.au=Ladd%2C+Mark+E.&rft.date=2024-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.30235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon