miR‐29c‐3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson's disease
Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐2...
Saved in:
Published in | Genes to cells : devoted to molecular & cellular mechanisms Vol. 25; no. 6; pp. 364 - 374 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1356-9597 1365-2443 1365-2443 |
DOI | 10.1111/gtc.12764 |
Cover
Abstract | Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)‐stimulated BV‐2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR‐29c in LPS‐induced BV‐2 cells. Over‐expression of miR‐29c suppressed LPS‐triggered Iba‐1 increment, pro‐inflammatory cytokine release, and NF‐кB and TXNIP/NLRP3 inflammasome activation. Silence of miR‐29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR‐29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR‐29c inhibitor. Thus, these findings suggest that miR‐29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD.
miR‐29c protects against microglial activation of PD. miR‐29c suppresses NLRP3 inflammasome activation by targeting NFAT5. |
---|---|
AbstractList | Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)‐stimulated BV‐2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR‐29c in LPS‐induced BV‐2 cells. Over‐expression of miR‐29c suppressed LPS‐triggered Iba‐1 increment, pro‐inflammatory cytokine release, and NF‐кB and TXNIP/NLRP3 inflammasome activation. Silence of miR‐29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR‐29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR‐29c inhibitor. Thus, these findings suggest that miR‐29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD. Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR-29c-3p (miR-29c) exhibited anti-inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR-29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)-stimulated BV-2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR-29c in LPS-induced BV-2 cells. Over-expression of miR-29c suppressed LPS-triggered Iba-1 increment, pro-inflammatory cytokine release, and NF-кB and TXNIP/NLRP3 inflammasome activation. Silence of miR-29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR-29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR-29c inhibitor. Thus, these findings suggest that miR-29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD.Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR-29c-3p (miR-29c) exhibited anti-inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR-29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)-stimulated BV-2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR-29c in LPS-induced BV-2 cells. Over-expression of miR-29c suppressed LPS-triggered Iba-1 increment, pro-inflammatory cytokine release, and NF-кB and TXNIP/NLRP3 inflammasome activation. Silence of miR-29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR-29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR-29c inhibitor. Thus, these findings suggest that miR-29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD. Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)‐stimulated BV‐2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR‐29c in LPS‐induced BV‐2 cells. Over‐expression of miR‐29c suppressed LPS‐triggered Iba‐1 increment, pro‐inflammatory cytokine release, and NF‐кB and TXNIP/NLRP3 inflammasome activation. Silence of miR‐29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR‐29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR‐29c inhibitor. Thus, these findings suggest that miR‐29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD. miR‐29c protects against microglial activation of PD. miR‐29c suppresses NLRP3 inflammasome activation by targeting NFAT5. |
Author | Li, Chen Wang, Ruili Ma, Qiaoya He, Ya Li, Qing Yang, Ying |
Author_xml | – sequence: 1 givenname: Ruili surname: Wang fullname: Wang, Ruili organization: The Second Affiliated Hospital of Xi’an Jiaotong University – sequence: 2 givenname: Qing surname: Li fullname: Li, Qing organization: The Second Affiliated Hospital of Xi’an Jiaotong University – sequence: 3 givenname: Ya surname: He fullname: He, Ya organization: The Second Affiliated Hospital of Xi’an Jiaotong University – sequence: 4 givenname: Ying surname: Yang fullname: Yang, Ying organization: The Second Affiliated Hospital of Xi’an Jiaotong University – sequence: 5 givenname: Qiaoya surname: Ma fullname: Ma, Qiaoya organization: The Second Affiliated Hospital of Xi’an Jiaotong University – sequence: 6 givenname: Chen orcidid: 0000-0002-6050-4775 surname: Li fullname: Li, Chen email: cfine818xjtu@126.com organization: The Second Affiliated Hospital of Xi’an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32160394$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctKAzEYhYMo3he-gARcqIvR3CYzXZbiDYqK1HXIJJmaOpOpSap05yP4jD6Jqa0b0SzyB_Kdw885O2Dddc4AcIDRGU7nfBzVGSYFZ2tgG1OeZ4Qxur545zzr5b1iC-yEMEEIU4LyTbBFCeaI9tg2mLT24fP9g_RUuukUWvdkKxsDbK3y3bixsoG3w4d7mn7qRratDF1roFTRvspoOwerOYzSj020bgxvL_ujPKHwXvpn60LnjgPUNhgZzB7YqGUTzP5q7oLHy4vR4Dob3l3dDPrDTNGyZJnG3FSE1azQGGtMaUU0ISWnNGcVqlXFEVdFhSQqtUG1ZhKpNCSRjHNtDN0FJ0vfqe9eZiZE0dqgTNNIZ7pZEIQWvKAIlyShR7_QSTfzLm0nCMMopwlaUIcrala1Roupt630c_GTYgLOl0CKLARvaqFs_E4nemkbgZFY9CRST-K7p6Q4_aX4Mf2LXbm_2cbM_wfF1WiwVHwBL_yiBg |
CitedBy_id | crossref_primary_10_1007_s13258_021_01084_1 crossref_primary_10_3389_fphar_2022_1034072 crossref_primary_10_2147_DDDT_S255828 crossref_primary_10_1007_s10753_024_02125_z crossref_primary_10_1080_21655979_2022_2033014 crossref_primary_10_2174_1567201820666230707161206 crossref_primary_10_3892_ijmm_2023_5253 crossref_primary_10_1111_cns_14763 crossref_primary_10_3389_fncel_2024_1391537 crossref_primary_10_3389_fimmu_2024_1475195 crossref_primary_10_1016_j_brainresbull_2021_09_010 crossref_primary_10_1007_s13258_021_01210_z crossref_primary_10_3389_fgene_2021_784996 crossref_primary_10_1007_s11064_024_04106_y crossref_primary_10_3389_fnins_2021_660379 crossref_primary_10_1186_s13052_023_01500_0 crossref_primary_10_3389_fendo_2021_573143 crossref_primary_10_3389_fphar_2021_707696 crossref_primary_10_3389_fnmol_2021_744942 crossref_primary_10_1016_j_prp_2023_155023 crossref_primary_10_1016_j_toxlet_2021_12_014 crossref_primary_10_1002_jcp_30932 crossref_primary_10_3390_ph17040426 crossref_primary_10_3233_JPD_223338 crossref_primary_10_3389_fgene_2021_651971 crossref_primary_10_3389_fnagi_2022_975248 crossref_primary_10_1016_j_freeradbiomed_2021_10_007 crossref_primary_10_1007_s10571_022_01285_6 crossref_primary_10_1016_j_jchemneu_2023_102236 crossref_primary_10_1002_brb3_2784 crossref_primary_10_1007_s12264_023_01023_y crossref_primary_10_1007_s11064_022_03795_7 crossref_primary_10_3390_ijms232314663 crossref_primary_10_1002_dad2_12251 crossref_primary_10_1007_s11011_023_01180_z crossref_primary_10_3390_ijms23094718 crossref_primary_10_1155_2023_7759053 crossref_primary_10_1080_01616412_2022_2129754 crossref_primary_10_1186_s12967_024_05535_7 crossref_primary_10_1111_gtc_12877 crossref_primary_10_1007_s12035_023_03849_z crossref_primary_10_1038_s41531_024_00791_2 crossref_primary_10_3892_mmr_2021_12461 crossref_primary_10_1016_j_mad_2023_111800 crossref_primary_10_3390_ijms22094872 crossref_primary_10_3389_fncel_2022_995997 crossref_primary_10_1186_s12929_021_00775_x crossref_primary_10_3389_fncel_2024_1429977 crossref_primary_10_3389_fvets_2022_865415 crossref_primary_10_1016_j_neuropharm_2024_110200 crossref_primary_10_3390_ijms25116078 |
Cites_doi | 10.1096/fj.201601349R 10.1007/s00441-004-0956-9 10.1016/j.pbb.2019.01.004 10.1159/000493789 10.3389/fimmu.2019.00535 10.1111/1440-1681.13212 10.3389/fimmu.2019.00936 10.1016/j.ceca.2017.01.014 10.1371/journal.pone.0165653 10.1002/jcp.28907 10.1016/j.fct.2011.01.002 10.3892/mmr.2015.3728 10.1016/j.ebiom.2017.03.039 10.1007/s11064-017-2185-0 10.1038/ni.1831 10.1016/S0092-8674(00)81698-0 10.1007/s10753-017-0667-5 10.1016/j.phymed.2018.12.008 10.1093/hmg/ddu377 10.1097/01.wnr.0000136175.51954.ce 10.1146/annurev-pathol-011110-130242 10.1002/art.30229 10.1038/s41598-017-03887-3 10.4049/jimmunol.165.9.4884 10.1016/j.febslet.2011.08.033 10.18632/oncotarget.6158 10.1038/ncb816 10.1002/mds.27874 10.1002/glia.20467 10.3390/ijms18102043 10.1186/s13024-017-0158-z 10.1007/s12035-013-8475-x 10.1155/2015/628192 10.1038/nrn3638 10.1016/j.neuroscience.2018.07.019 10.1186/gm566 10.1186/s12964-019-0406-7 10.1002/jnr.23377 10.1016/j.neuron.2009.05.007 10.12659/MSM.911835 10.1016/j.cell.2016.12.012 |
ContentType | Journal Article |
Copyright | 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd – notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. |
DBID | AAYXX CITATION NPM 7TK 7TM 8FD FR3 M7N P64 RC3 7X8 |
DOI | 10.1111/gtc.12764 |
DatabaseName | CrossRef PubMed Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2443 |
EndPage | 374 |
ExternalDocumentID | 32160394 10_1111_gtc_12764 GTC12764 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Health Project of the Health and Family Planning Commission, Shaanxi Province funderid: 2018D060 – fundername: Key Research and Development of Shaanxi Province funderid: 2018SF‐143 – fundername: Science and Technology Project of Xi’an funderid: 201805099YX7SF33(2) – fundername: Health Project of the Health and Family Planning Commission, Shaanxi Province grantid: 2018D060 – fundername: Science and Technology Project of Xi'an grantid: 201805099YX7SF33(2) – fundername: Key Research and Development of Shaanxi Province grantid: 2018SF-143 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 18M 1OC 24P 29H 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAKAS AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN ESX F00 F01 F04 F5P G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OEB OIG OK1 OVD P2P P2W P2X P4D Q.N Q11 QB0 Q~Q R.K ROL RX1 SUPJJ SV3 TEORI TKC TR2 TUS UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WQJ WRC WXSBR WYISQ X7M XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7TK 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3884-d16eb24f47d11d133b2d22863354b0fcb606c7b0a08de0fd4a0c0fda2a466dee3 |
IEDL.DBID | DR2 |
ISSN | 1356-9597 1365-2443 |
IngestDate | Fri Jul 11 03:06:43 EDT 2025 Fri Jul 25 12:13:28 EDT 2025 Wed Feb 19 02:31:04 EST 2025 Tue Jul 01 04:00:09 EDT 2025 Thu Apr 24 22:59:16 EDT 2025 Wed Jan 22 16:33:26 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | NFAT5 Parkinson's disease NLRP3 inflammasome microglia miR-29c-3p |
Language | English |
License | 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3884-d16eb24f47d11d133b2d22863354b0fcb606c7b0a08de0fd4a0c0fda2a466dee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6050-4775 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gtc.12764 |
PMID | 32160394 |
PQID | 2410531822 |
PQPubID | 1066354 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2376730182 proquest_journals_2410531822 pubmed_primary_32160394 crossref_citationtrail_10_1111_gtc_12764 crossref_primary_10_1111_gtc_12764 wiley_primary_10_1111_gtc_12764_GTC12764 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo |
PublicationTitle | Genes to cells : devoted to molecular & cellular mechanisms |
PublicationTitleAlternate | Genes Cells |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 12 2010; 11 2017; 7 2017; 42 2017; 63 2014; 92 2015; 6 2013; 48 2009; 62 2019; 10 2018; 388 2019; 35 2019; 59 2019; 17 2002; 4 2018; 41 2018; 40 2007; 55 2011; 6 2014; 23 2016; 11 2017; 31 2004; 15 2017; 12 2019; 25 2019; 47 2015; 2015 2014; 15 2019 2011; 63 2019; 179 2019; 234 2017; 18 2000; 165 2004; 318 1998; 95 2011; 49 2017; 168 2014; 6 2011; 585 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 Yang H. (e_1_2_7_39_1) 2019 |
References_xml | – volume: 40 start-page: 289 year: 2018 end-page: 300 article-title: NFAT5 has a job in the brain publication-title: Developmental Neuroscience – volume: 49 start-page: 963 year: 2011 end-page: 973 article-title: Protective effect of Linne against 1‐methyl‐4‐phenylpridinium ion and lipopolysaccharide‐induced cytotoxicity in cellular model of Parkinson's disease publication-title: Food and Chemical Toxicology – volume: 55 start-page: 453 year: 2007 end-page: 462 article-title: Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration publication-title: Glia – volume: 41 start-page: 93 year: 2018 end-page: 103 article-title: NLRP3 inflammasome activation in a transgenic amyotrophic lateral sclerosis model publication-title: Inflammation – year: 2019 article-title: Oridonin attenuates carrageenan‐induced pleurisy via activation of the KEAP‐1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF‐kappaB pathway in mice publication-title: Inflammopharmacology – volume: 234 start-page: 23379 year: 2019 end-page: 23387 article-title: MicroRNA‐190 alleviates neuronal damage and inhibits neuroinflammation via Nlrp3 in MPTP‐induced Parkinson's disease mouse model publication-title: Journal of Cellular Physiology – volume: 18 start-page: 2043 issue: 10 year: 2017 article-title: Licochalcone A prevents the loss of dopaminergic neurons by inhibiting microglial activation in lipopolysaccharide (LPS)‐induced Parkinson’s disease models publication-title: International Journal of Molecular Sciences – volume: 35 start-page: 20 issue: 1 year: 2019 end-page: 33 article-title: Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease publication-title: Movement Disorders – volume: 15 start-page: 84 year: 2014 end-page: 97 article-title: Inflammasomes in the CNS publication-title: Nature Reviews Neuroscience – volume: 168 start-page: 37 year: 2017 end-page: 57 article-title: 30 years of NF‐kappaB: A blossoming of relevance to human pathobiology publication-title: Cell – volume: 4 start-page: 540 year: 2002 end-page: 544 article-title: The role of NFAT transcription factors in integrin‐mediated carcinoma invasion publication-title: Nature Cell Biology – volume: 92 start-page: 1071 year: 2014 end-page: 1077 article-title: Identification of blood serum micro‐RNAs associated with idiopathic and LRRK2 Parkinson's disease publication-title: Journal of Neuroscience Research – volume: 6 start-page: 37043 year: 2015 end-page: 37053 article-title: Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease publication-title: Oncotarget – volume: 12 start-page: 3081 year: 2015 end-page: 3088 article-title: MicroRNA‐29c targets beta‐site amyloid precursor protein‐cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo publication-title: Molecular Medicine Reports – volume: 585 start-page: 3798 year: 2011 end-page: 3805 article-title: Role of microglia in CNS inflammation publication-title: FEBS Letters – volume: 10 start-page: 936 year: 2019 article-title: Naringenin produces neuroprotection against LPS‐induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation publication-title: Frontiers in Immunology – volume: 18 start-page: 261 year: 2017 end-page: 273 article-title: Suppression of NFAT5‐mediated inflammation and chronic arthritis by novel kappaB‐binding inhibitors publication-title: EBioMedicine – volume: 388 start-page: 118 year: 2018 end-page: 127 article-title: Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson's disease via regulating miR‐7/NLRP3 pathway publication-title: Neuroscience – volume: 179 start-page: 142 year: 2019 end-page: 149 article-title: Chronic unpredictable mild stress accelerates lipopolysaccharide‐ induced microglia activation and damage of dopaminergic neurons in rats publication-title: Pharmacology, Biochemistry, and Behavior – volume: 59 start-page: 152785 year: 2019 article-title: Bavachin attenuates LPS‐induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages publication-title: Phytomedicine – volume: 63 start-page: 1843 year: 2011 end-page: 1852 article-title: NF‐AT5 is a critical regulator of inflammatory arthritis publication-title: Arthritis and Rheumatism – volume: 15 start-page: 1715 year: 2004 end-page: 1718 article-title: The expression of PARP, NF‐kappa B and parvalbumin is increased in Parkinson disease publication-title: NeuroReport – volume: 48 start-page: 875 year: 2013 end-page: 882 article-title: The NLRP3 inflammasome in Alzheimer's disease publication-title: Molecular Neurobiology – volume: 11 year: 2016 article-title: P2Y1 receptor signaling contributes to high salt‐induced priming of the NLRP3 inflammasome in retinal pigment epithelial cells publication-title: PLoS ONE – volume: 6 start-page: 48 year: 2014 article-title: Genetics and genomics of Parkinson's disease publication-title: Genome Medicine – volume: 2015 start-page: 628192 year: 2015 article-title: Insights into neuroinflammation in Parkinson's disease: From biomarkers to anti‐inflammatory based therapies publication-title: BioMed Research International – volume: 165 start-page: 4884 year: 2000 end-page: 4894 article-title: The NFAT‐related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin‐dependent manner publication-title: The Journal of Immunology – volume: 62 start-page: 655 year: 2009 end-page: 669 article-title: Neural activity regulates synaptic properties and dendritic structure in vivo through calcineurin/NFAT signaling publication-title: Neuron – volume: 25 start-page: 5594 year: 2019 end-page: 5605 article-title: Cerebellar fastigial nucleus stimulation in a chronic unpredictable mild stress rat model reduces post‐stroke depression by suppressing brain inflammation via the microRNA‐29c/TNFRSF1A signaling pathway publication-title: Medical Science Monitor – volume: 31 start-page: 3497 year: 2017 end-page: 3511 article-title: Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy publication-title: The FASEB Journal – volume: 23 start-page: 6567 year: 2014 end-page: 6574 article-title: A calcineurin‐ and NFAT‐dependent pathway is involved in alpha‐synuclein‐induced degeneration of midbrain dopaminergic neurons publication-title: Human Molecular Genetics – volume: 17 start-page: 102 year: 2019 article-title: NFAT5 mediates hypertonic stress‐induced atherosclerosis via activating NLRP3 inflammasome in endothelium publication-title: Cell Communication and Signaling – volume: 10 start-page: 535 year: 2019 article-title: Regulation of inflammatory functions of macrophages and T lymphocytes by NFAT5 publication-title: Frontiers in Immunology – volume: 42 start-page: 1104 year: 2017 end-page: 1115 article-title: The NLRP3 inflammasome is involved in the pathogenesis of Parkinson's disease in rats publication-title: Neurochemical Research – volume: 11 start-page: 136 year: 2010 end-page: 140 article-title: Thioredoxin‐interacting protein links oxidative stress to inflammasome activation publication-title: Nature Immunology – volume: 318 start-page: 121 year: 2004 end-page: 134 article-title: Stages in the development of Parkinson's disease‐related pathology publication-title: Cell and Tissue Research – volume: 63 start-page: 66 year: 2017 end-page: 69 article-title: Calcium‐NFAT transcriptional signalling in T cell activation and T cell exhaustion publication-title: Cell Calcium – volume: 12 start-page: 17 year: 2017 article-title: Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system mice publication-title: Molecular Neurodegeneration – volume: 95 start-page: 749 year: 1998 end-page: 758 article-title: Structure of an IkappaBalpha/NF‐kappaB complex publication-title: Cell – volume: 6 start-page: 193 year: 2011 end-page: 222 article-title: Parkinson's disease: Genetics and pathogenesis publication-title: Annual Review of Pathology – volume: 47 start-page: 372 issue: 3 year: 2019 end-page: 382 article-title: MiR‐29c protects against inflammation and apoptosis in Parkinson's disease model in vivo and in vitro by targeting SP1 publication-title: Clinical and Experimental Pharmacology and Physiology – volume: 7 start-page: 5411 year: 2017 article-title: Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease publication-title: Scientific Reports – ident: e_1_2_7_8_1 doi: 10.1096/fj.201601349R – ident: e_1_2_7_5_1 doi: 10.1007/s00441-004-0956-9 – ident: e_1_2_7_20_1 doi: 10.1016/j.pbb.2019.01.004 – ident: e_1_2_7_40_1 doi: 10.1159/000493789 – ident: e_1_2_7_2_1 doi: 10.3389/fimmu.2019.00535 – ident: e_1_2_7_37_1 doi: 10.1111/1440-1681.13212 – ident: e_1_2_7_7_1 doi: 10.3389/fimmu.2019.00936 – ident: e_1_2_7_14_1 doi: 10.1016/j.ceca.2017.01.014 – ident: e_1_2_7_26_1 doi: 10.1371/journal.pone.0165653 – ident: e_1_2_7_32_1 doi: 10.1002/jcp.28907 – ident: e_1_2_7_19_1 doi: 10.1016/j.fct.2011.01.002 – ident: e_1_2_7_38_1 doi: 10.3892/mmr.2015.3728 – ident: e_1_2_7_12_1 doi: 10.1016/j.ebiom.2017.03.039 – ident: e_1_2_7_25_1 doi: 10.1007/s11064-017-2185-0 – ident: e_1_2_7_43_1 doi: 10.1038/ni.1831 – ident: e_1_2_7_17_1 doi: 10.1016/S0092-8674(00)81698-0 – ident: e_1_2_7_10_1 doi: 10.1007/s10753-017-0667-5 – ident: e_1_2_7_16_1 doi: 10.1016/j.phymed.2018.12.008 – ident: e_1_2_7_22_1 doi: 10.1093/hmg/ddu377 – ident: e_1_2_7_31_1 doi: 10.1097/01.wnr.0000136175.51954.ce – ident: e_1_2_7_30_1 doi: 10.1146/annurev-pathol-011110-130242 – ident: e_1_2_7_41_1 doi: 10.1002/art.30229 – ident: e_1_2_7_3_1 doi: 10.1038/s41598-017-03887-3 – ident: e_1_2_7_34_1 doi: 10.4049/jimmunol.165.9.4884 – ident: e_1_2_7_9_1 doi: 10.1016/j.febslet.2011.08.033 – ident: e_1_2_7_11_1 doi: 10.18632/oncotarget.6158 – ident: e_1_2_7_18_1 doi: 10.1038/ncb816 – ident: e_1_2_7_13_1 doi: 10.1002/mds.27874 – ident: e_1_2_7_27_1 doi: 10.1002/glia.20467 – ident: e_1_2_7_15_1 doi: 10.3390/ijms18102043 – ident: e_1_2_7_24_1 doi: 10.1186/s13024-017-0158-z – ident: e_1_2_7_33_1 doi: 10.1007/s12035-013-8475-x – ident: e_1_2_7_28_1 doi: 10.1155/2015/628192 – ident: e_1_2_7_35_1 doi: 10.1038/nrn3638 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroscience.2018.07.019 – ident: e_1_2_7_21_1 doi: 10.1186/gm566 – ident: e_1_2_7_23_1 doi: 10.1186/s12964-019-0406-7 – ident: e_1_2_7_4_1 doi: 10.1002/jnr.23377 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuron.2009.05.007 – year: 2019 ident: e_1_2_7_39_1 article-title: Oridonin attenuates carrageenan‐induced pleurisy via activation of the KEAP‐1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF‐kappaB pathway in mice publication-title: Inflammopharmacology – ident: e_1_2_7_36_1 doi: 10.12659/MSM.911835 – ident: e_1_2_7_42_1 doi: 10.1016/j.cell.2016.12.012 |
SSID | ssj0013205 |
Score | 2.5175354 |
Snippet | Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p... Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR-29c-3p... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 364 |
SubjectTerms | Animal models Inflammasomes Inflammation Lipopolysaccharides Microglia miR‐29c‐3p Movement disorders Neurodegenerative diseases NFAT5 NLRP3 inflammasome Parkinson's disease Therapeutic applications |
Title | miR‐29c‐3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson's disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgtc.12764 https://www.ncbi.nlm.nih.gov/pubmed/32160394 https://www.proquest.com/docview/2410531822 https://www.proquest.com/docview/2376730182 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhIdBLk_S5TbqoodBcvFgPyzY5hW23aVOWsmxgDwWjl9Nts94Qew_JKT-hv7G_pCP5QdIHlFxsg8aWLM1IM9LMNwi9lhERLkt0ECotAm5oGkhh4yBXhgK_KK6s9_KdiONT_nEezTfQYRsLU-NDdBtuTjL8fO0EXKrylpCfVXpIaCwcFihhwuHmv53SWycI3n2RsEgEKWjNDaqQ8-Lp3ry7Fv2hYN7VV_2CM95CX9qm1n4m34frSg319W8ojvf8l230sFFE8VHNOTtowxaP0GadmvLqMfq2XEx_3vygqYYru8CL4utCLaoSL50H39k5sC2efJp-ZlCSA1ctZblaWuzCJOpNXqyucO1mDosjnoyPZhGQYhdl7QPO3pS4ORx6gk7H72aj46DJyxBoliQ8MESAPc5zHhtCDBi5ihpKE8FYxFWYawVGkY5VKMPE2DA3XIYabpJKLoSxlj1FvWJV2OcIp4yDShTlguSE56BaacEjK1IVS8nS0PbRQTtCmW5Ay13ujPOsNV6g6zLfdX2035Fe1EgdfyPaa4c5a4S1zKhzdYW5jdI-etUVg5i5sxNZ2NUaaBzqDUyGCdA8q9mjq4VRl6s7hY8f-EH-d_XZ-9nIP7z4f9Jd9IA6G9_v_OyhXnW5ti9BEarUADj-w8nA8_0vyFgEzg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgSXllfpQgGDkOglq8R2nETiUhWWBZYVWm2lXlDkV8rSbrbqZg_lxE_ob-SXMHYeanlIiEsSyZM4iWfsb8bzAHgh40i4KtFBqLQIuKFZIIVNgkIZivyiuLLey3cshgf8_WF8uAav2liYOj9EZ3BzkuHnayfgziB9ScqPKt2PaCL4NbjOEWg41ev1hF7aQ_AOjBGLRZAhbm7yCjk_nu7Wq6vRbxDzKmL1S85gEz63L1t7mhz3V5Xq62-_5HH836-5DRsNFiV7NfPcgTVb3oUbdXXK83vwdT6b_Ph-QTONR3ZKZuWXmZpVSzJ3TnxHJ8i5ZDyafGLYUiBjzeVyMbfERUrUdl6izkntaY7rIxkP9qYxkhIXaO1jzl4uSbM_dB8OBm-m-8OgKc0QaJamPDCRQJWcFzwxUWRQz1XUUJoKxmKuwkIr1It0okIZpsaGheEy1HiSVHIhjLVsC9bLRWm3gWSMIyqKCxEVES8QXWnBYysylUjJstD2YLcdolw3ectd-YyTvNVf8Nfl_tf14HlHelon6_gT0U47znkjr8ucOm9XnN4o7cGzrhklzW2fyNIuVkjjEt_gfJgizYOaP7peGHXlujN8-K4f5b93n7-d7vuLh_9O-hRuDqcfR_no3fjDI7hFncrvDUE7sF6drexjxEWVeuLZ_yfrOQf0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAX3oWFAgYh0UtWie04iThVhaVAtapWW6kHpMjPstDNrtjsoZz4CfxGfglj56GWh4S4JJE8iR17xv7GngfAc5kmwmeJjmKlRcQNLSIpbBY5ZSjyi-LKBivfsdg_4u-O0-MNeNn5wjTxIfoNNy8ZYb72Ar407pyQn9R6mNBM8EtwmQtEEh4RTei5I4Rgv5iwVEQFwuY2rJA34-lfvbgY_YYwLwLWsOKMbsCHrq2Nocnn4bpWQ_31lzCO__kzN-F6i0TJbsM6t2DDVrfhSpOb8uwOfJrPJj--faeFxitbkln1caZm9YrMvQnfySnyLRkfTA4Zljhkq7lcLeaWeD-JZpeXqDPS2Jnj6kjGo91piqTEu1kHj7MXK9KeDt2Fo9Hr6d5-1CZmiDTLcx6ZRKBCzh3PTJIY1HIVNZTmgrGUq9hphVqRzlQs49zY2BkuY403SSUXwljLtmCzWlT2PpCCccREqROJS7hDbKUFT60oVCYlK2I7gJ1uhErdRi33yTNOy057wa4rQ9cN4FlPumxCdfyJaLsb5rKV1lVJva0rTm6UDuBpX4xy5g9PZGUXa6TxYW9wNsyR5l7DHn0tjPpk3QV-fCcM8t-rL99M98LDg38nfQJXD1-NyoO34_cP4Rr1-n7YBdqGzfrL2j5CUFSrx4H5fwLSOQaj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-29c-3p+inhibits+microglial+NLRP3+inflammasome+activation+by+targeting+NFAT5+in+Parkinson%27s+disease&rft.jtitle=Genes+to+cells+%3A+devoted+to+molecular+%26+cellular+mechanisms&rft.au=Wang%2C+Ruili&rft.au=Li%2C+Qing&rft.au=He%2C+Ya&rft.au=Yang%2C+Ying&rft.date=2020-06-01&rft.eissn=1365-2443&rft_id=info:doi/10.1111%2Fgtc.12764&rft_id=info%3Apmid%2F32160394&rft.externalDocID=32160394 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1356-9597&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1356-9597&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1356-9597&client=summon |