miR‐29c‐3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson's disease

Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐2...

Full description

Saved in:
Bibliographic Details
Published inGenes to cells : devoted to molecular & cellular mechanisms Vol. 25; no. 6; pp. 364 - 374
Main Authors Wang, Ruili, Li, Qing, He, Ya, Yang, Ying, Ma, Qiaoya, Li, Chen
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text
ISSN1356-9597
1365-2443
1365-2443
DOI10.1111/gtc.12764

Cover

Abstract Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)‐stimulated BV‐2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR‐29c in LPS‐induced BV‐2 cells. Over‐expression of miR‐29c suppressed LPS‐triggered Iba‐1 increment, pro‐inflammatory cytokine release, and NF‐кB and TXNIP/NLRP3 inflammasome activation. Silence of miR‐29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR‐29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR‐29c inhibitor. Thus, these findings suggest that miR‐29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD. miR‐29c protects against microglial activation of PD. miR‐29c suppresses NLRP3 inflammasome activation by targeting NFAT5.
AbstractList Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)‐stimulated BV‐2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR‐29c in LPS‐induced BV‐2 cells. Over‐expression of miR‐29c suppressed LPS‐triggered Iba‐1 increment, pro‐inflammatory cytokine release, and NF‐кB and TXNIP/NLRP3 inflammasome activation. Silence of miR‐29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR‐29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR‐29c inhibitor. Thus, these findings suggest that miR‐29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD.
Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR-29c-3p (miR-29c) exhibited anti-inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR-29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)-stimulated BV-2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR-29c in LPS-induced BV-2 cells. Over-expression of miR-29c suppressed LPS-triggered Iba-1 increment, pro-inflammatory cytokine release, and NF-кB and TXNIP/NLRP3 inflammasome activation. Silence of miR-29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR-29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR-29c inhibitor. Thus, these findings suggest that miR-29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD.Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR-29c-3p (miR-29c) exhibited anti-inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR-29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)-stimulated BV-2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR-29c in LPS-induced BV-2 cells. Over-expression of miR-29c suppressed LPS-triggered Iba-1 increment, pro-inflammatory cytokine release, and NF-кB and TXNIP/NLRP3 inflammasome activation. Silence of miR-29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR-29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR-29c inhibitor. Thus, these findings suggest that miR-29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD.
Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p (miR‐29c) exhibited anti‐inflammatory properties in PD animal and neuronal models. However, the specific role and regulatory mechanism of miR‐29c played in microglia are still unclear. In this study, lipopolysaccharide (LPS)‐stimulated BV‐2 cells were used to establish a cellular model of microglial activation for investigating PD. The results showed a decreased expression of miR‐29c in LPS‐induced BV‐2 cells. Over‐expression of miR‐29c suppressed LPS‐triggered Iba‐1 increment, pro‐inflammatory cytokine release, and NF‐кB and TXNIP/NLRP3 inflammasome activation. Silence of miR‐29c induced similar effects with LPS on microglial inflammation. In addition, we found that NFAT5 was negatively correlated with miR‐29c. Knockdown of NFAT5 blocked the aggravated inflammation in microglia treated by miR‐29c inhibitor. Thus, these findings suggest that miR‐29c modulates NLRP3 inflammasome to impair microglial inflammatory responses by targeting NFAT5, which represents a promising therapeutic target for PD. miR‐29c protects against microglial activation of PD. miR‐29c suppresses NLRP3 inflammasome activation by targeting NFAT5.
Author Li, Chen
Wang, Ruili
Ma, Qiaoya
He, Ya
Li, Qing
Yang, Ying
Author_xml – sequence: 1
  givenname: Ruili
  surname: Wang
  fullname: Wang, Ruili
  organization: The Second Affiliated Hospital of Xi’an Jiaotong University
– sequence: 2
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: The Second Affiliated Hospital of Xi’an Jiaotong University
– sequence: 3
  givenname: Ya
  surname: He
  fullname: He, Ya
  organization: The Second Affiliated Hospital of Xi’an Jiaotong University
– sequence: 4
  givenname: Ying
  surname: Yang
  fullname: Yang, Ying
  organization: The Second Affiliated Hospital of Xi’an Jiaotong University
– sequence: 5
  givenname: Qiaoya
  surname: Ma
  fullname: Ma, Qiaoya
  organization: The Second Affiliated Hospital of Xi’an Jiaotong University
– sequence: 6
  givenname: Chen
  orcidid: 0000-0002-6050-4775
  surname: Li
  fullname: Li, Chen
  email: cfine818xjtu@126.com
  organization: The Second Affiliated Hospital of Xi’an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32160394$$D View this record in MEDLINE/PubMed
BookMark eNp1kctKAzEYhYMo3he-gARcqIvR3CYzXZbiDYqK1HXIJJmaOpOpSap05yP4jD6Jqa0b0SzyB_Kdw885O2Dddc4AcIDRGU7nfBzVGSYFZ2tgG1OeZ4Qxur545zzr5b1iC-yEMEEIU4LyTbBFCeaI9tg2mLT24fP9g_RUuukUWvdkKxsDbK3y3bixsoG3w4d7mn7qRratDF1roFTRvspoOwerOYzSj020bgxvL_ujPKHwXvpn60LnjgPUNhgZzB7YqGUTzP5q7oLHy4vR4Dob3l3dDPrDTNGyZJnG3FSE1azQGGtMaUU0ISWnNGcVqlXFEVdFhSQqtUG1ZhKpNCSRjHNtDN0FJ0vfqe9eZiZE0dqgTNNIZ7pZEIQWvKAIlyShR7_QSTfzLm0nCMMopwlaUIcrala1Roupt630c_GTYgLOl0CKLARvaqFs_E4nemkbgZFY9CRST-K7p6Q4_aX4Mf2LXbm_2cbM_wfF1WiwVHwBL_yiBg
CitedBy_id crossref_primary_10_1007_s13258_021_01084_1
crossref_primary_10_3389_fphar_2022_1034072
crossref_primary_10_2147_DDDT_S255828
crossref_primary_10_1007_s10753_024_02125_z
crossref_primary_10_1080_21655979_2022_2033014
crossref_primary_10_2174_1567201820666230707161206
crossref_primary_10_3892_ijmm_2023_5253
crossref_primary_10_1111_cns_14763
crossref_primary_10_3389_fncel_2024_1391537
crossref_primary_10_3389_fimmu_2024_1475195
crossref_primary_10_1016_j_brainresbull_2021_09_010
crossref_primary_10_1007_s13258_021_01210_z
crossref_primary_10_3389_fgene_2021_784996
crossref_primary_10_1007_s11064_024_04106_y
crossref_primary_10_3389_fnins_2021_660379
crossref_primary_10_1186_s13052_023_01500_0
crossref_primary_10_3389_fendo_2021_573143
crossref_primary_10_3389_fphar_2021_707696
crossref_primary_10_3389_fnmol_2021_744942
crossref_primary_10_1016_j_prp_2023_155023
crossref_primary_10_1016_j_toxlet_2021_12_014
crossref_primary_10_1002_jcp_30932
crossref_primary_10_3390_ph17040426
crossref_primary_10_3233_JPD_223338
crossref_primary_10_3389_fgene_2021_651971
crossref_primary_10_3389_fnagi_2022_975248
crossref_primary_10_1016_j_freeradbiomed_2021_10_007
crossref_primary_10_1007_s10571_022_01285_6
crossref_primary_10_1016_j_jchemneu_2023_102236
crossref_primary_10_1002_brb3_2784
crossref_primary_10_1007_s12264_023_01023_y
crossref_primary_10_1007_s11064_022_03795_7
crossref_primary_10_3390_ijms232314663
crossref_primary_10_1002_dad2_12251
crossref_primary_10_1007_s11011_023_01180_z
crossref_primary_10_3390_ijms23094718
crossref_primary_10_1155_2023_7759053
crossref_primary_10_1080_01616412_2022_2129754
crossref_primary_10_1186_s12967_024_05535_7
crossref_primary_10_1111_gtc_12877
crossref_primary_10_1007_s12035_023_03849_z
crossref_primary_10_1038_s41531_024_00791_2
crossref_primary_10_3892_mmr_2021_12461
crossref_primary_10_1016_j_mad_2023_111800
crossref_primary_10_3390_ijms22094872
crossref_primary_10_3389_fncel_2022_995997
crossref_primary_10_1186_s12929_021_00775_x
crossref_primary_10_3389_fncel_2024_1429977
crossref_primary_10_3389_fvets_2022_865415
crossref_primary_10_1016_j_neuropharm_2024_110200
crossref_primary_10_3390_ijms25116078
Cites_doi 10.1096/fj.201601349R
10.1007/s00441-004-0956-9
10.1016/j.pbb.2019.01.004
10.1159/000493789
10.3389/fimmu.2019.00535
10.1111/1440-1681.13212
10.3389/fimmu.2019.00936
10.1016/j.ceca.2017.01.014
10.1371/journal.pone.0165653
10.1002/jcp.28907
10.1016/j.fct.2011.01.002
10.3892/mmr.2015.3728
10.1016/j.ebiom.2017.03.039
10.1007/s11064-017-2185-0
10.1038/ni.1831
10.1016/S0092-8674(00)81698-0
10.1007/s10753-017-0667-5
10.1016/j.phymed.2018.12.008
10.1093/hmg/ddu377
10.1097/01.wnr.0000136175.51954.ce
10.1146/annurev-pathol-011110-130242
10.1002/art.30229
10.1038/s41598-017-03887-3
10.4049/jimmunol.165.9.4884
10.1016/j.febslet.2011.08.033
10.18632/oncotarget.6158
10.1038/ncb816
10.1002/mds.27874
10.1002/glia.20467
10.3390/ijms18102043
10.1186/s13024-017-0158-z
10.1007/s12035-013-8475-x
10.1155/2015/628192
10.1038/nrn3638
10.1016/j.neuroscience.2018.07.019
10.1186/gm566
10.1186/s12964-019-0406-7
10.1002/jnr.23377
10.1016/j.neuron.2009.05.007
10.12659/MSM.911835
10.1016/j.cell.2016.12.012
ContentType Journal Article
Copyright 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
– notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
DBID AAYXX
CITATION
NPM
7TK
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/gtc.12764
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Genetics Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2443
EndPage 374
ExternalDocumentID 32160394
10_1111_gtc_12764
GTC12764
Genre article
Journal Article
GrantInformation_xml – fundername: Health Project of the Health and Family Planning Commission, Shaanxi Province
  funderid: 2018D060
– fundername: Key Research and Development of Shaanxi Province
  funderid: 2018SF‐143
– fundername: Science and Technology Project of Xi’an
  funderid: 201805099YX7SF33(2)
– fundername: Health Project of the Health and Family Planning Commission, Shaanxi Province
  grantid: 2018D060
– fundername: Science and Technology Project of Xi'an
  grantid: 201805099YX7SF33(2)
– fundername: Key Research and Development of Shaanxi Province
  grantid: 2018SF-143
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
18M
1OC
24P
29H
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAKAS
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
Q~Q
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TKC
TR2
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WQJ
WRC
WXSBR
WYISQ
X7M
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TK
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3884-d16eb24f47d11d133b2d22863354b0fcb606c7b0a08de0fd4a0c0fda2a466dee3
IEDL.DBID DR2
ISSN 1356-9597
1365-2443
IngestDate Fri Jul 11 03:06:43 EDT 2025
Fri Jul 25 12:13:28 EDT 2025
Wed Feb 19 02:31:04 EST 2025
Tue Jul 01 04:00:09 EDT 2025
Thu Apr 24 22:59:16 EDT 2025
Wed Jan 22 16:33:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords NFAT5
Parkinson's disease
NLRP3 inflammasome
microglia
miR-29c-3p
Language English
License 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3884-d16eb24f47d11d133b2d22863354b0fcb606c7b0a08de0fd4a0c0fda2a466dee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6050-4775
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gtc.12764
PMID 32160394
PQID 2410531822
PQPubID 1066354
PageCount 11
ParticipantIDs proquest_miscellaneous_2376730182
proquest_journals_2410531822
pubmed_primary_32160394
crossref_citationtrail_10_1111_gtc_12764
crossref_primary_10_1111_gtc_12764
wiley_primary_10_1111_gtc_12764_GTC12764
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
PublicationTitle Genes to cells : devoted to molecular & cellular mechanisms
PublicationTitleAlternate Genes Cells
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2010; 11
2017; 7
2017; 42
2017; 63
2014; 92
2015; 6
2013; 48
2009; 62
2019; 10
2018; 388
2019; 35
2019; 59
2019; 17
2002; 4
2018; 41
2018; 40
2007; 55
2011; 6
2014; 23
2016; 11
2017; 31
2004; 15
2017; 12
2019; 25
2019; 47
2015; 2015
2014; 15
2019
2011; 63
2019; 179
2019; 234
2017; 18
2000; 165
2004; 318
1998; 95
2011; 49
2017; 168
2014; 6
2011; 585
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Yang H. (e_1_2_7_39_1) 2019
References_xml – volume: 40
  start-page: 289
  year: 2018
  end-page: 300
  article-title: NFAT5 has a job in the brain
  publication-title: Developmental Neuroscience
– volume: 49
  start-page: 963
  year: 2011
  end-page: 973
  article-title: Protective effect of Linne against 1‐methyl‐4‐phenylpridinium ion and lipopolysaccharide‐induced cytotoxicity in cellular model of Parkinson's disease
  publication-title: Food and Chemical Toxicology
– volume: 55
  start-page: 453
  year: 2007
  end-page: 462
  article-title: Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration
  publication-title: Glia
– volume: 41
  start-page: 93
  year: 2018
  end-page: 103
  article-title: NLRP3 inflammasome activation in a transgenic amyotrophic lateral sclerosis model
  publication-title: Inflammation
– year: 2019
  article-title: Oridonin attenuates carrageenan‐induced pleurisy via activation of the KEAP‐1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF‐kappaB pathway in mice
  publication-title: Inflammopharmacology
– volume: 234
  start-page: 23379
  year: 2019
  end-page: 23387
  article-title: MicroRNA‐190 alleviates neuronal damage and inhibits neuroinflammation via Nlrp3 in MPTP‐induced Parkinson's disease mouse model
  publication-title: Journal of Cellular Physiology
– volume: 18
  start-page: 2043
  issue: 10
  year: 2017
  article-title: Licochalcone A prevents the loss of dopaminergic neurons by inhibiting microglial activation in lipopolysaccharide (LPS)‐induced Parkinson’s disease models
  publication-title: International Journal of Molecular Sciences
– volume: 35
  start-page: 20
  issue: 1
  year: 2019
  end-page: 33
  article-title: Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease
  publication-title: Movement Disorders
– volume: 15
  start-page: 84
  year: 2014
  end-page: 97
  article-title: Inflammasomes in the CNS
  publication-title: Nature Reviews Neuroscience
– volume: 168
  start-page: 37
  year: 2017
  end-page: 57
  article-title: 30 years of NF‐kappaB: A blossoming of relevance to human pathobiology
  publication-title: Cell
– volume: 4
  start-page: 540
  year: 2002
  end-page: 544
  article-title: The role of NFAT transcription factors in integrin‐mediated carcinoma invasion
  publication-title: Nature Cell Biology
– volume: 92
  start-page: 1071
  year: 2014
  end-page: 1077
  article-title: Identification of blood serum micro‐RNAs associated with idiopathic and LRRK2 Parkinson's disease
  publication-title: Journal of Neuroscience Research
– volume: 6
  start-page: 37043
  year: 2015
  end-page: 37053
  article-title: Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease
  publication-title: Oncotarget
– volume: 12
  start-page: 3081
  year: 2015
  end-page: 3088
  article-title: MicroRNA‐29c targets beta‐site amyloid precursor protein‐cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo
  publication-title: Molecular Medicine Reports
– volume: 585
  start-page: 3798
  year: 2011
  end-page: 3805
  article-title: Role of microglia in CNS inflammation
  publication-title: FEBS Letters
– volume: 10
  start-page: 936
  year: 2019
  article-title: Naringenin produces neuroprotection against LPS‐induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation
  publication-title: Frontiers in Immunology
– volume: 18
  start-page: 261
  year: 2017
  end-page: 273
  article-title: Suppression of NFAT5‐mediated inflammation and chronic arthritis by novel kappaB‐binding inhibitors
  publication-title: EBioMedicine
– volume: 388
  start-page: 118
  year: 2018
  end-page: 127
  article-title: Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson's disease via regulating miR‐7/NLRP3 pathway
  publication-title: Neuroscience
– volume: 179
  start-page: 142
  year: 2019
  end-page: 149
  article-title: Chronic unpredictable mild stress accelerates lipopolysaccharide‐ induced microglia activation and damage of dopaminergic neurons in rats
  publication-title: Pharmacology, Biochemistry, and Behavior
– volume: 59
  start-page: 152785
  year: 2019
  article-title: Bavachin attenuates LPS‐induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages
  publication-title: Phytomedicine
– volume: 63
  start-page: 1843
  year: 2011
  end-page: 1852
  article-title: NF‐AT5 is a critical regulator of inflammatory arthritis
  publication-title: Arthritis and Rheumatism
– volume: 15
  start-page: 1715
  year: 2004
  end-page: 1718
  article-title: The expression of PARP, NF‐kappa B and parvalbumin is increased in Parkinson disease
  publication-title: NeuroReport
– volume: 48
  start-page: 875
  year: 2013
  end-page: 882
  article-title: The NLRP3 inflammasome in Alzheimer's disease
  publication-title: Molecular Neurobiology
– volume: 11
  year: 2016
  article-title: P2Y1 receptor signaling contributes to high salt‐induced priming of the NLRP3 inflammasome in retinal pigment epithelial cells
  publication-title: PLoS ONE
– volume: 6
  start-page: 48
  year: 2014
  article-title: Genetics and genomics of Parkinson's disease
  publication-title: Genome Medicine
– volume: 2015
  start-page: 628192
  year: 2015
  article-title: Insights into neuroinflammation in Parkinson's disease: From biomarkers to anti‐inflammatory based therapies
  publication-title: BioMed Research International
– volume: 165
  start-page: 4884
  year: 2000
  end-page: 4894
  article-title: The NFAT‐related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin‐dependent manner
  publication-title: The Journal of Immunology
– volume: 62
  start-page: 655
  year: 2009
  end-page: 669
  article-title: Neural activity regulates synaptic properties and dendritic structure in vivo through calcineurin/NFAT signaling
  publication-title: Neuron
– volume: 25
  start-page: 5594
  year: 2019
  end-page: 5605
  article-title: Cerebellar fastigial nucleus stimulation in a chronic unpredictable mild stress rat model reduces post‐stroke depression by suppressing brain inflammation via the microRNA‐29c/TNFRSF1A signaling pathway
  publication-title: Medical Science Monitor
– volume: 31
  start-page: 3497
  year: 2017
  end-page: 3511
  article-title: Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy
  publication-title: The FASEB Journal
– volume: 23
  start-page: 6567
  year: 2014
  end-page: 6574
  article-title: A calcineurin‐ and NFAT‐dependent pathway is involved in alpha‐synuclein‐induced degeneration of midbrain dopaminergic neurons
  publication-title: Human Molecular Genetics
– volume: 17
  start-page: 102
  year: 2019
  article-title: NFAT5 mediates hypertonic stress‐induced atherosclerosis via activating NLRP3 inflammasome in endothelium
  publication-title: Cell Communication and Signaling
– volume: 10
  start-page: 535
  year: 2019
  article-title: Regulation of inflammatory functions of macrophages and T lymphocytes by NFAT5
  publication-title: Frontiers in Immunology
– volume: 42
  start-page: 1104
  year: 2017
  end-page: 1115
  article-title: The NLRP3 inflammasome is involved in the pathogenesis of Parkinson's disease in rats
  publication-title: Neurochemical Research
– volume: 11
  start-page: 136
  year: 2010
  end-page: 140
  article-title: Thioredoxin‐interacting protein links oxidative stress to inflammasome activation
  publication-title: Nature Immunology
– volume: 318
  start-page: 121
  year: 2004
  end-page: 134
  article-title: Stages in the development of Parkinson's disease‐related pathology
  publication-title: Cell and Tissue Research
– volume: 63
  start-page: 66
  year: 2017
  end-page: 69
  article-title: Calcium‐NFAT transcriptional signalling in T cell activation and T cell exhaustion
  publication-title: Cell Calcium
– volume: 12
  start-page: 17
  year: 2017
  article-title: Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system mice
  publication-title: Molecular Neurodegeneration
– volume: 95
  start-page: 749
  year: 1998
  end-page: 758
  article-title: Structure of an IkappaBalpha/NF‐kappaB complex
  publication-title: Cell
– volume: 6
  start-page: 193
  year: 2011
  end-page: 222
  article-title: Parkinson's disease: Genetics and pathogenesis
  publication-title: Annual Review of Pathology
– volume: 47
  start-page: 372
  issue: 3
  year: 2019
  end-page: 382
  article-title: MiR‐29c protects against inflammation and apoptosis in Parkinson's disease model in vivo and in vitro by targeting SP1
  publication-title: Clinical and Experimental Pharmacology and Physiology
– volume: 7
  start-page: 5411
  year: 2017
  article-title: Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease
  publication-title: Scientific Reports
– ident: e_1_2_7_8_1
  doi: 10.1096/fj.201601349R
– ident: e_1_2_7_5_1
  doi: 10.1007/s00441-004-0956-9
– ident: e_1_2_7_20_1
  doi: 10.1016/j.pbb.2019.01.004
– ident: e_1_2_7_40_1
  doi: 10.1159/000493789
– ident: e_1_2_7_2_1
  doi: 10.3389/fimmu.2019.00535
– ident: e_1_2_7_37_1
  doi: 10.1111/1440-1681.13212
– ident: e_1_2_7_7_1
  doi: 10.3389/fimmu.2019.00936
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ceca.2017.01.014
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0165653
– ident: e_1_2_7_32_1
  doi: 10.1002/jcp.28907
– ident: e_1_2_7_19_1
  doi: 10.1016/j.fct.2011.01.002
– ident: e_1_2_7_38_1
  doi: 10.3892/mmr.2015.3728
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ebiom.2017.03.039
– ident: e_1_2_7_25_1
  doi: 10.1007/s11064-017-2185-0
– ident: e_1_2_7_43_1
  doi: 10.1038/ni.1831
– ident: e_1_2_7_17_1
  doi: 10.1016/S0092-8674(00)81698-0
– ident: e_1_2_7_10_1
  doi: 10.1007/s10753-017-0667-5
– ident: e_1_2_7_16_1
  doi: 10.1016/j.phymed.2018.12.008
– ident: e_1_2_7_22_1
  doi: 10.1093/hmg/ddu377
– ident: e_1_2_7_31_1
  doi: 10.1097/01.wnr.0000136175.51954.ce
– ident: e_1_2_7_30_1
  doi: 10.1146/annurev-pathol-011110-130242
– ident: e_1_2_7_41_1
  doi: 10.1002/art.30229
– ident: e_1_2_7_3_1
  doi: 10.1038/s41598-017-03887-3
– ident: e_1_2_7_34_1
  doi: 10.4049/jimmunol.165.9.4884
– ident: e_1_2_7_9_1
  doi: 10.1016/j.febslet.2011.08.033
– ident: e_1_2_7_11_1
  doi: 10.18632/oncotarget.6158
– ident: e_1_2_7_18_1
  doi: 10.1038/ncb816
– ident: e_1_2_7_13_1
  doi: 10.1002/mds.27874
– ident: e_1_2_7_27_1
  doi: 10.1002/glia.20467
– ident: e_1_2_7_15_1
  doi: 10.3390/ijms18102043
– ident: e_1_2_7_24_1
  doi: 10.1186/s13024-017-0158-z
– ident: e_1_2_7_33_1
  doi: 10.1007/s12035-013-8475-x
– ident: e_1_2_7_28_1
  doi: 10.1155/2015/628192
– ident: e_1_2_7_35_1
  doi: 10.1038/nrn3638
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroscience.2018.07.019
– ident: e_1_2_7_21_1
  doi: 10.1186/gm566
– ident: e_1_2_7_23_1
  doi: 10.1186/s12964-019-0406-7
– ident: e_1_2_7_4_1
  doi: 10.1002/jnr.23377
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuron.2009.05.007
– year: 2019
  ident: e_1_2_7_39_1
  article-title: Oridonin attenuates carrageenan‐induced pleurisy via activation of the KEAP‐1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF‐kappaB pathway in mice
  publication-title: Inflammopharmacology
– ident: e_1_2_7_36_1
  doi: 10.12659/MSM.911835
– ident: e_1_2_7_42_1
  doi: 10.1016/j.cell.2016.12.012
SSID ssj0013205
Score 2.5175354
Snippet Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR‐29c‐3p...
Microglial inflammation is identified as a key process associated with Parkinson's disease (PD) pathogenesis. Our previous study showed that miR-29c-3p...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 364
SubjectTerms Animal models
Inflammasomes
Inflammation
Lipopolysaccharides
Microglia
miR‐29c‐3p
Movement disorders
Neurodegenerative diseases
NFAT5
NLRP3 inflammasome
Parkinson's disease
Therapeutic applications
Title miR‐29c‐3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson's disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgtc.12764
https://www.ncbi.nlm.nih.gov/pubmed/32160394
https://www.proquest.com/docview/2410531822
https://www.proquest.com/docview/2376730182
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhIdBLk_S5TbqoodBcvFgPyzY5hW23aVOWsmxgDwWjl9Nts94Qew_JKT-hv7G_pCP5QdIHlFxsg8aWLM1IM9LMNwi9lhERLkt0ECotAm5oGkhh4yBXhgK_KK6s9_KdiONT_nEezTfQYRsLU-NDdBtuTjL8fO0EXKrylpCfVXpIaCwcFihhwuHmv53SWycI3n2RsEgEKWjNDaqQ8-Lp3ry7Fv2hYN7VV_2CM95CX9qm1n4m34frSg319W8ojvf8l230sFFE8VHNOTtowxaP0GadmvLqMfq2XEx_3vygqYYru8CL4utCLaoSL50H39k5sC2efJp-ZlCSA1ctZblaWuzCJOpNXqyucO1mDosjnoyPZhGQYhdl7QPO3pS4ORx6gk7H72aj46DJyxBoliQ8MESAPc5zHhtCDBi5ihpKE8FYxFWYawVGkY5VKMPE2DA3XIYabpJKLoSxlj1FvWJV2OcIp4yDShTlguSE56BaacEjK1IVS8nS0PbRQTtCmW5Ay13ujPOsNV6g6zLfdX2035Fe1EgdfyPaa4c5a4S1zKhzdYW5jdI-etUVg5i5sxNZ2NUaaBzqDUyGCdA8q9mjq4VRl6s7hY8f-EH-d_XZ-9nIP7z4f9Jd9IA6G9_v_OyhXnW5ti9BEarUADj-w8nA8_0vyFgEzg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgSXllfpQgGDkOglq8R2nETiUhWWBZYVWm2lXlDkV8rSbrbqZg_lxE_ob-SXMHYeanlIiEsSyZM4iWfsb8bzAHgh40i4KtFBqLQIuKFZIIVNgkIZivyiuLLey3cshgf8_WF8uAav2liYOj9EZ3BzkuHnayfgziB9ScqPKt2PaCL4NbjOEWg41ev1hF7aQ_AOjBGLRZAhbm7yCjk_nu7Wq6vRbxDzKmL1S85gEz63L1t7mhz3V5Xq62-_5HH836-5DRsNFiV7NfPcgTVb3oUbdXXK83vwdT6b_Ph-QTONR3ZKZuWXmZpVSzJ3TnxHJ8i5ZDyafGLYUiBjzeVyMbfERUrUdl6izkntaY7rIxkP9qYxkhIXaO1jzl4uSbM_dB8OBm-m-8OgKc0QaJamPDCRQJWcFzwxUWRQz1XUUJoKxmKuwkIr1It0okIZpsaGheEy1HiSVHIhjLVsC9bLRWm3gWSMIyqKCxEVES8QXWnBYysylUjJstD2YLcdolw3ectd-YyTvNVf8Nfl_tf14HlHelon6_gT0U47znkjr8ucOm9XnN4o7cGzrhklzW2fyNIuVkjjEt_gfJgizYOaP7peGHXlujN8-K4f5b93n7-d7vuLh_9O-hRuDqcfR_no3fjDI7hFncrvDUE7sF6drexjxEWVeuLZ_yfrOQf0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAX3oWFAgYh0UtWie04iThVhaVAtapWW6kHpMjPstDNrtjsoZz4CfxGfglj56GWh4S4JJE8iR17xv7GngfAc5kmwmeJjmKlRcQNLSIpbBY5ZSjyi-LKBivfsdg_4u-O0-MNeNn5wjTxIfoNNy8ZYb72Ar407pyQn9R6mNBM8EtwmQtEEh4RTei5I4Rgv5iwVEQFwuY2rJA34-lfvbgY_YYwLwLWsOKMbsCHrq2Nocnn4bpWQ_31lzCO__kzN-F6i0TJbsM6t2DDVrfhSpOb8uwOfJrPJj--faeFxitbkln1caZm9YrMvQnfySnyLRkfTA4Zljhkq7lcLeaWeD-JZpeXqDPS2Jnj6kjGo91piqTEu1kHj7MXK9KeDt2Fo9Hr6d5-1CZmiDTLcx6ZRKBCzh3PTJIY1HIVNZTmgrGUq9hphVqRzlQs49zY2BkuY403SSUXwljLtmCzWlT2PpCCccREqROJS7hDbKUFT60oVCYlK2I7gJ1uhErdRi33yTNOy057wa4rQ9cN4FlPumxCdfyJaLsb5rKV1lVJva0rTm6UDuBpX4xy5g9PZGUXa6TxYW9wNsyR5l7DHn0tjPpk3QV-fCcM8t-rL99M98LDg38nfQJXD1-NyoO34_cP4Rr1-n7YBdqGzfrL2j5CUFSrx4H5fwLSOQaj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-29c-3p+inhibits+microglial+NLRP3+inflammasome+activation+by+targeting+NFAT5+in+Parkinson%27s+disease&rft.jtitle=Genes+to+cells+%3A+devoted+to+molecular+%26+cellular+mechanisms&rft.au=Wang%2C+Ruili&rft.au=Li%2C+Qing&rft.au=He%2C+Ya&rft.au=Yang%2C+Ying&rft.date=2020-06-01&rft.eissn=1365-2443&rft_id=info:doi/10.1111%2Fgtc.12764&rft_id=info%3Apmid%2F32160394&rft.externalDocID=32160394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1356-9597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1356-9597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1356-9597&client=summon