A new coupling of a GPU‐resident large‐eddy simulation code with a multiphysics wind turbine simulation tool

The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (...

Full description

Saved in:
Bibliographic Details
Published inWind energy (Chichester, England) Vol. 27; no. 11; pp. 1152 - 1172
Main Authors Taschner, Emanuel, Folkersma, Mikko, A Martínez‐Tossas, Luis, Verzijlbergh, Remco, Wingerden, Jan‐Willem
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.11.2024
Wiley
Subjects
Online AccessGet full text
ISSN1095-4244
1099-1824
DOI10.1002/we.2844

Cover

Abstract The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (LES) code GRASP and the multiphysics wind turbine simulation tool OpenFAST via an actuator line model (ALM). In addition, the implementation of the recently proposed filtered actuator line model (FALM) within the coupling is described. The new ALM implementation is cross‐verified with results from four other commonly used research LES codes. The results for the blade loads and the near wake obtained with the new coupling are consistent with the other codes. Deviations are observed in the far wake. The results further indicate that the FALM is able to reduce the lift and power overprediction from which the traditional ALM suffers on coarse LES grids. This new simulation environment paves the way for future wind farm simulations under realistic weather conditions by leveraging GRASP's ability to impose data from large‐scale meteorological models as boundary conditions.
AbstractList The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (LES) code GRASP and the multiphysics wind turbine simulation tool OpenFAST via an actuator line model (ALM). In addition, the implementation of the recently proposed filtered actuator line model (FALM) within the coupling is described. The new ALM implementation is cross‐verified with results from four other commonly used research LES codes. The results for the blade loads and the near wake obtained with the new coupling are consistent with the other codes. Deviations are observed in the far wake. The results further indicate that the FALM is able to reduce the lift and power overprediction from which the traditional ALM suffers on coarse LES grids. This new simulation environment paves the way for future wind farm simulations under realistic weather conditions by leveraging GRASP's ability to impose data from large‐scale meteorological models as boundary conditions.
Abstract The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (LES) code GRASP and the multiphysics wind turbine simulation tool OpenFAST via an actuator line model (ALM). In addition, the implementation of the recently proposed filtered actuator line model (FALM) within the coupling is described. The new ALM implementation is cross‐verified with results from four other commonly used research LES codes. The results for the blade loads and the near wake obtained with the new coupling are consistent with the other codes. Deviations are observed in the far wake. The results further indicate that the FALM is able to reduce the lift and power overprediction from which the traditional ALM suffers on coarse LES grids. This new simulation environment paves the way for future wind farm simulations under realistic weather conditions by leveraging GRASP's ability to impose data from large‐scale meteorological models as boundary conditions.
Author Wingerden, Jan‐Willem
A Martínez‐Tossas, Luis
Folkersma, Mikko
Taschner, Emanuel
Verzijlbergh, Remco
Author_xml – sequence: 1
  givenname: Emanuel
  orcidid: 0000-0002-0296-8168
  surname: Taschner
  fullname: Taschner, Emanuel
  email: e.taschner@tudelft.nl
  organization: Delft University of Technology
– sequence: 2
  givenname: Mikko
  surname: Folkersma
  fullname: Folkersma, Mikko
  organization: Whiffle Weather Forecasting
– sequence: 3
  givenname: Luis
  orcidid: 0000-0003-2353-4999
  surname: A Martínez‐Tossas
  fullname: A Martínez‐Tossas, Luis
  organization: National Renewable Energy Laboratory
– sequence: 4
  givenname: Remco
  surname: Verzijlbergh
  fullname: Verzijlbergh, Remco
  organization: Whiffle Weather Forecasting
– sequence: 5
  givenname: Jan‐Willem
  orcidid: 0000-0003-3061-7442
  surname: Wingerden
  fullname: Wingerden, Jan‐Willem
  organization: Delft University of Technology
BookMark eNp1kU1qHDEQhUVwILZjfAVBFlmEtvU7rV4a4zgGg72IyVKopeqxhrbUkdQ0s_MRcsacJPJMCCHEqyoe33tVVB2hgxADIHRKyRklhJ0vcMaUEG_QISVd11DFxMGul41gQrxDRzlvCKGEUnWIpgscYME2ztPowxrHARt8ff_w8_lHguwdhIJHk9ZQBXBui7N_mkdTfAzV5AAvvjxWSxWLnx632dtcteBwmVPvA_xtKDGO79HbwYwZTn7XY_Tw-err5Zfm9u765vLitrFcKdG0UnVcct4L5ejQKUKBciIJJ71xyhkhVi2zbc-gb13nFPRWyq66eOso6y0_Rjf7XBfNRk_JP5m01dF4vRNiWmuTircjaL5aWQDJFVNEmEEaKnvbWrMCw-jQspr1YZ81pfh9hlz0Js4p1PU1p7TlXHCmKvVxT9kUc04w_JlKiX55jV5Av7ymks0_pPVld6KSjB__w3_a84sfYftarP52taN_AaOwoZc
CitedBy_id crossref_primary_10_1088_1742_6596_2767_3_032023
crossref_primary_10_1007_s42417_024_01752_y
crossref_primary_10_1002_we_2872
Cites_doi 10.5194/wes-4-369-2019
10.5194/wes-2022-24
10.5194/gmd-3-415-2010
10.1002/we.2456
10.1016/j.renene.2017.08.072
10.1002/we.1747
10.1016/j.euromechflu.2015.10.006
10.1175/MWR-D-14-00293.1
10.1016/j.jweia.2014.07.002
10.5194/wes-7-323-2022
10.1007/s10546-019-00473-0
10.1016/j.renene.2021.02.140
10.1017/jfm.2015.70
10.1002/we.2130
10.5194/wes-6-983-2021
10.1088/1742-6596/1452/1/012071
10.2514/6.2022-1921
10.1080/14685248.2012.668191
10.2514/6.2013-202
10.1063/1.3291077
10.1146/annurev-fluid-122109-160801
10.5194/wes-7-1305-2022
10.1175/BAMS-D-11-00059.1
10.5194/wes-2-603-2017
10.1063/1.5004710
10.1002/we.2513
10.1175/BAMS-D-14-00114.1
10.1115/1.1471361
10.1002/we.2081
10.1002/we.1722
10.5194/wes-7-53-2022
10.1002/we.2452
10.1175/JAS-D-11-0317.1
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
10.1002/we.458
10.1002/we.95
10.2514/6.2017-1998
10.1002/we.2419
10.1063/1.3589857
10.1002/we.345
10.1016/j.renene.2022.05.110
10.1002/we.1976
10.2172/947422
10.1126/science.aau2027
10.1146/annurev.fl.25.010193.000555
10.1146/annurev-fluid-010816-060206
10.1017/jfm.2018.994
10.1002/we.1525
10.1049/rpg2.12160
10.1016/j.jweia.2021.104868
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
C1K
SOI
DOA
DOI 10.1002/we.2844
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef

Environment Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1824
EndPage 1172
ExternalDocumentID oai_doaj_org_article_366cee5382804af5a15bc7ca6ea21f72
10_1002_we_2844
WE2844
Genre article
GroupedDBID 05W
0R~
123
1OC
24P
31~
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANHP
AAONW
AAZKR
ABCUV
ABIJN
ABJCF
ACBWZ
ACCFJ
ACCMX
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HVGLF
HZ~
I-F
IAO
ITC
IX1
LATKE
LAW
LITHE
LOXES
LUTES
LYRES
M7S
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P4E
PATMY
PCBAR
PTHSS
PYCSY
QRW
R.K
ROL
RX1
RYL
SUPJJ
UCJ
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WYISQ
WYJ
XPP
XV2
ZZTAW
AAYXX
AGQPQ
CITATION
IVC
PHGZM
PHGZT
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
PQGLB
SOI
WIN
PUEGO
ID FETCH-LOGICAL-c3884-75893533b48d1f9801e1305030bad8da44672c7b2eb7d9d8ebc55975837d12bc3
IEDL.DBID DR2
ISSN 1095-4244
IngestDate Wed Aug 27 01:02:41 EDT 2025
Wed Aug 13 03:45:02 EDT 2025
Thu Apr 24 23:04:26 EDT 2025
Tue Jul 01 01:58:39 EDT 2025
Wed Jan 22 17:13:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3884-75893533b48d1f9801e1305030bad8da44672c7b2eb7d9d8ebc55975837d12bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2353-4999
0000-0003-3061-7442
0000-0002-0296-8168
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2844
PQID 3117334328
PQPubID 1006436
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_366cee5382804af5a15bc7ca6ea21f72
proquest_journals_3117334328
crossref_primary_10_1002_we_2844
crossref_citationtrail_10_1002_we_2844
wiley_primary_10_1002_we_2844_WE2844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Wind energy (Chichester, England)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1993; 25
2017; 20
2021; 6
2019; 4
2017; 2
2022; 194
2010; 13
2015; 18
2016; 19
2017; 49
2002; 130
2015; 96
2015; 143
2019; 863
2009
2019; 366
2015; 768
2011; 14
2014; 133
2012; 13
2020; 1452
2016; 55
2010; 22
2022; 222
2012; 93
2021; 15
2013; 16
2001
2020; 174
2022
2018; 116
2003; 6
2022; 7
2002; 124
1963; 91
2019
2011; 43
2017
2021; 172
2020; 23
2011; 23
2015
2013
2010; 3
2012; 69
2018; 10
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Pope S (e_1_2_9_16_1) 2001
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 7
  start-page: 2271
  year: 2022
  end-page: 2306
  article-title: Wind farm flow control: prospects and challenges
  publication-title: Wind Energy Sci Discuss
– volume: 14
  start-page: 799
  issue: 7
  year: 2011
  end-page: 819
  article-title: Review of computational fluid dynamics for wind turbine wake aerodynamics: review of CFD for wind turbine wake aerodynamics
  publication-title: Wind Energy
– volume: 20
  start-page: 1927
  issue: 12
  year: 2017
  end-page: 1939
  article-title: Effect of tower and nacelle on the flow past a wind turbine: effect of tower and nacelle on the flow past a wind turbine
  publication-title: Wind Energy
– volume: 194
  start-page: 582
  year: 2022
  end-page: 595
  article-title: On the load impact of dynamic wind farm wake mixing strategies
  publication-title: Renew Energy
– year: 2001
– volume: 13
  start-page: 86
  issue: 1
  year: 2010
  end-page: 99
  article-title: Numerical simulations of wake characteristics of a wind turbine in uniform inflow
  publication-title: Wind Energy
– volume: 4
  start-page: 369
  issue: 2
  year: 2019
  end-page: 383
  article-title: A vortex‐based tip/smearing correction for the actuator line
  publication-title: Wind Energy Sci
– volume: 3
  start-page: 415
  issue: 2
  year: 2010
  end-page: 444
  article-title: Formulation of the Dutch atmospheric large‐eddy simulation (DALES) and overview of its applications
  publication-title: Geosci Model Dev
– volume: 69
  start-page: 2682
  issue: 9
  year: 2012
  end-page: 2698
  article-title: Influence of the subcloud layer on the development of a deep convective ensemble
  publication-title: J Atmos Sci
– volume: 7
  start-page: 323
  issue: 1
  year: 2022
  end-page: 344
  article-title: Validation of a coupled atmospheric‐aeroelastic model system for wind turbine power and load calculations
  publication-title: Wind Energy Sci
– volume: 43
  start-page: 427
  issue: 1
  year: 2011
  end-page: 448
  article-title: Aerodynamic aspects of wind energy conversion
  publication-title: Annu Rev Fluid Mech
– volume: 6
  start-page: 229
  issue: 3
  year: 2003
  end-page: 244
  article-title: Wind turbine control for load reduction
  publication-title: Wind Energy
– volume: 133
  start-page: 1
  year: 2014
  end-page: 17
  article-title: Large eddy simulation of wind farm aerodynamics: a review
  publication-title: J Wind Eng Ind Aerodyn
– volume: 49
  start-page: 311
  issue: 1
  year: 2017
  end-page: 339
  article-title: Flow structure and turbulence in wind farms
  publication-title: Annu Rev Fluid Mech
– volume: 222
  year: 2022
  article-title: Large‐eddy simulation of a wind turbine using a filtered actuator line model
  publication-title: J Wind Eng Ind Aerodyn
– year: 2022
– volume: 18
  start-page: 1047
  issue: 6
  year: 2015
  end-page: 1060
  article-title: Large eddy simulations of the flow past wind turbines: actuator line and disk modeling
  publication-title: Wind Energy
– volume: 863
  start-page: 269
  year: 2019
  end-page: 292
  article-title: Filtered lifting line theory and application to the actuator line model
  publication-title: J Fluid Mech
– volume: 93
  start-page: 307
  issue: 3
  year: 2012
  end-page: 314
  article-title: High‐performance simulations of turbulent clouds on a desktop PC: exploiting the GPU
  publication-title: Bull Am Meteorol Soc
– volume: 174
  start-page: 1
  issue: 1
  year: 2020
  end-page: 59
  article-title: Wind‐turbine and wind‐farm flows: a review
  publication-title: Bound‐Layer Meteorol
– volume: 6
  start-page: 983
  issue: 4
  year: 2021
  end-page: 996
  article-title: Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year‐long large‐eddy simulation over the North Sea
  publication-title: Wind Energy Sci
– volume: 7
  start-page: 1305
  issue: 3
  year: 2022
  end-page: 1320
  article-title: Experimental analysis of the effect of dynamic induction control on a wind turbine wake
  publication-title: Wind Energy Sci
– volume: 23
  start-page: 148
  issue: 2
  year: 2020
  end-page: 160
  article-title: A new tip correction for actuator line computations
  publication-title: Wind Energy
– year: 2019
– year: 2015
– volume: 16
  start-page: 845
  issue: 6
  year: 2013
  end-page: 864
  article-title: Large eddy simulation of dynamically controlled wind turbines in an offshore environment
  publication-title: Wind Energy
– volume: 23
  start-page: 691
  issue: 3
  year: 2020
  end-page: 710
  article-title: One‐way mesoscale‐microscale coupling for simulating a wind farm in North Texas: assessment against SCADA and LiDAR data
  publication-title: Wind Energy
– volume: 768
  start-page: 5
  year: 2015
  end-page: 50
  article-title: Optimal control of energy extraction in wind‐farm boundary layers
  publication-title: J Fluid Mech
– volume: 20
  start-page: 1083
  issue: 6
  year: 2017
  end-page: 1096
  article-title: Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution
  publication-title: Wind Energy
– volume: 96
  start-page: 715
  issue: 5
  year: 2015
  end-page: 723
  article-title: Weather forecasting using GPU‐based large‐eddy simulations
  publication-title: Bull Am Meteorol Soc
– volume: 23
  start-page: 884
  issue: 4
  year: 2020
  end-page: 897
  article-title: Statistical post‐processing of turbulence‐resolving weather forecasts for offshore wind power forecasting
  publication-title: Wind Energy
– volume: 172
  start-page: 263
  year: 2021
  end-page: 275
  article-title: Modelling the nacelle wake of a horizontal‐axis wind turbine under different yaw conditions
  publication-title: Renew Energy
– volume: 130
  start-page: 2088
  issue: 8
  year: 2002
  end-page: 2097
  article-title: Time‐splitting methods for elastic models using forward time schemes
  publication-title: Mon Weather Rev
– volume: 7
  start-page: 53
  issue: 1
  year: 2022
  end-page: 73
  article-title: A reference open‐source controller for fixed and floating offshore wind turbines
  publication-title: Wind Energy Sci
– volume: 2
  start-page: 603
  issue: 2
  year: 2017
  end-page: 614
  article-title: Transient LES of an offshore wind turbine
  publication-title: Wind Energy Sci
– volume: 124
  start-page: 393
  issue: 2
  year: 2002
  end-page: 399
  article-title: Numerical modeling of wind turbine wakes
  publication-title: J Fluids Eng
– volume: 15
  start-page: 2085
  issue: 10
  year: 2021
  end-page: 2108
  article-title: Wind farm control—part I: a review on control system concepts and structures
  publication-title: IET Renew Power Gener
– volume: 55
  start-page: 242
  year: 2016
  end-page: 245
  article-title: On the suitability of second‐order accurate discretizations for turbulent flow simulations
  publication-title: Eur J Mech ‐ B/Fluids
– volume: 23
  start-page: 1739
  issue: 8
  year: 2020
  end-page: 1751
  article-title: The helix approach: using dynamic individual pitch control to enhance wake mixing in wind farms
  publication-title: Wind Energy
– volume: 13
  year: 2012
  article-title: A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics
  publication-title: J Turbul
– volume: 10
  issue: 3
  year: 2018
  article-title: Comparison of four large‐eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator‐line‐based wind turbine modeling
  publication-title: J Renew Sustain Energy
– volume: 19
  start-page: 2205
  issue: 12
  year: 2016
  end-page: 2221
  article-title: Fluid‐structure interaction computations for geometrically resolved rotor simulations using CFD: fluid‐structure interaction computations for geometrically resolved rotor simulations using CFD
  publication-title: Wind Energy
– volume: 116
  start-page: 470
  year: 2018
  end-page: 478
  article-title: Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments
  publication-title: Renew Energy
– volume: 18
  start-page: 699
  issue: 4
  year: 2015
  end-page: 711
  article-title: An actuator sector method for efficient transient wind turbine simulation
  publication-title: Wind Energy
– volume: 91
  start-page: 99
  issue: 3
  year: 1963
  end-page: 164
  article-title: General circulation experiments with the primitive equations: I. The basic experiment
  publication-title: Mon Weather Rev
– volume: 22
  issue: 1
  year: 2010
  article-title: Large eddy simulation study of fully developed wind‐turbine array boundary layers
  publication-title: Phys Fluids
– year: 2017
– volume: 143
  start-page: 828
  issue: 3
  year: 2015
  end-page: 844
  article-title: A year‐long large‐eddy simulation of the weather over Cabauw: an overview
  publication-title: Mon Weather Rev
– volume: 366
  issue: 6464
  year: 2019
  article-title: Grand challenges in the science of wind energy
  publication-title: Science
– volume: 25
  start-page: 115
  issue: 1
  year: 1993
  end-page: 149
  article-title: Aerodynamics of horizontal‐axis wind turbines
  publication-title: Annu Rev Fluid Mech
– volume: 23
  issue: 6
  year: 2011
  article-title: Large‐eddy simulation of a very large wind farm in a stable atmospheric boundary layer
  publication-title: Phys Fluids
– year: 2013
– volume: 1452
  issue: 1
  year: 2020
  article-title: ExaWind: a multifidelity modeling and simulation environment for wind energy
  publication-title: J Phys Conf Ser
– ident: e_1_2_9_23_1
  doi: 10.5194/wes-4-369-2019
– ident: e_1_2_9_9_1
  doi: 10.5194/wes-2022-24
– ident: e_1_2_9_39_1
  doi: 10.5194/gmd-3-415-2010
– ident: e_1_2_9_25_1
– ident: e_1_2_9_45_1
  doi: 10.1002/we.2456
– ident: e_1_2_9_58_1
  doi: 10.1016/j.renene.2017.08.072
– ident: e_1_2_9_56_1
  doi: 10.1002/we.1747
– ident: e_1_2_9_57_1
  doi: 10.1016/j.euromechflu.2015.10.006
– ident: e_1_2_9_47_1
  doi: 10.1175/MWR-D-14-00293.1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jweia.2014.07.002
– ident: e_1_2_9_36_1
  doi: 10.5194/wes-7-323-2022
– ident: e_1_2_9_51_1
– ident: e_1_2_9_6_1
  doi: 10.1007/s10546-019-00473-0
– ident: e_1_2_9_53_1
  doi: 10.1016/j.renene.2021.02.140
– ident: e_1_2_9_10_1
  doi: 10.1017/jfm.2015.70
– ident: e_1_2_9_52_1
  doi: 10.1002/we.2130
– ident: e_1_2_9_46_1
  doi: 10.5194/wes-6-983-2021
– ident: e_1_2_9_38_1
  doi: 10.1088/1742-6596/1452/1/012071
– ident: e_1_2_9_28_1
  doi: 10.2514/6.2022-1921
– ident: e_1_2_9_33_1
  doi: 10.1080/14685248.2012.668191
– ident: e_1_2_9_29_1
  doi: 10.2514/6.2013-202
– ident: e_1_2_9_14_1
  doi: 10.1063/1.3291077
– ident: e_1_2_9_30_1
– ident: e_1_2_9_3_1
  doi: 10.1146/annurev-fluid-122109-160801
– ident: e_1_2_9_11_1
  doi: 10.5194/wes-7-1305-2022
– ident: e_1_2_9_40_1
  doi: 10.1175/BAMS-D-11-00059.1
– ident: e_1_2_9_48_1
  doi: 10.5194/wes-2-603-2017
– ident: e_1_2_9_54_1
  doi: 10.1063/1.5004710
– ident: e_1_2_9_12_1
  doi: 10.1002/we.2513
– ident: e_1_2_9_41_1
  doi: 10.1175/BAMS-D-14-00114.1
– ident: e_1_2_9_19_1
  doi: 10.1115/1.1471361
– ident: e_1_2_9_22_1
  doi: 10.1002/we.2081
– volume-title: Turbulent Flows
  year: 2001
  ident: e_1_2_9_16_1
– ident: e_1_2_9_34_1
  doi: 10.1002/we.1722
– ident: e_1_2_9_31_1
  doi: 10.5194/wes-7-53-2022
– ident: e_1_2_9_49_1
  doi: 10.1002/we.2452
– ident: e_1_2_9_42_1
  doi: 10.1175/JAS-D-11-0317.1
– ident: e_1_2_9_43_1
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– ident: e_1_2_9_44_1
  doi: 10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
– ident: e_1_2_9_17_1
  doi: 10.1002/we.458
– ident: e_1_2_9_7_1
  doi: 10.1002/we.95
– ident: e_1_2_9_21_1
  doi: 10.2514/6.2017-1998
– ident: e_1_2_9_24_1
  doi: 10.1002/we.2419
– ident: e_1_2_9_15_1
  doi: 10.1063/1.3589857
– ident: e_1_2_9_20_1
  doi: 10.1002/we.345
– ident: e_1_2_9_13_1
  doi: 10.1016/j.renene.2022.05.110
– ident: e_1_2_9_35_1
  doi: 10.1002/we.1976
– ident: e_1_2_9_55_1
  doi: 10.2172/947422
– ident: e_1_2_9_4_1
  doi: 10.1126/science.aau2027
– ident: e_1_2_9_2_1
  doi: 10.1146/annurev.fl.25.010193.000555
– ident: e_1_2_9_5_1
  doi: 10.1146/annurev-fluid-010816-060206
– ident: e_1_2_9_26_1
  doi: 10.1017/jfm.2018.994
– ident: e_1_2_9_32_1
  doi: 10.1002/we.1525
– ident: e_1_2_9_8_1
  doi: 10.1049/rpg2.12160
– ident: e_1_2_9_37_1
– ident: e_1_2_9_50_1
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jweia.2021.104868
SSID ssj0010118
Score 2.433665
Snippet The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines...
Abstract The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1152
SubjectTerms actuator line model
Actuators
Boundary conditions
Coupling
filtered actuator line model
Large eddy simulation
LES simulation
Simulation
Turbines
Vortices
Weather
Wind farms
Wind power
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5LB4qzZp06ZHFR94EA8uegt5irBuxd1l8eZP8Df6S5xpurIi4sVTIU0hzCPzTZn5hpBeVRidsqDBeF2R5AHSHSlDniBRi80lelRTIHtdXPbzq3txPzfqC2vCIj1wFNxRVhRwj4NbcpnmOgjNhLGl1YXXnIWyuX3TKp0lU7PZBYzFJrhKJNjKFdtlkW70aOoP4UrOv8Whhq7_G8acR6pNqDlfIcstRqTH8WyrZMEP18jSHHPgOnk-poCHqa0n2FH7QOtANb246X-8vUP-jINCx3SARd6w4J17paPHp3ZQF8Uudor_X-GTWE_Y6GoEa0NHIQRBsuznPxjX9WCD9M_Pbk8vk3Z4QmIzKUHYApAIYDmTS8dCBYHIQ7gS4NNGO-k0pIElt6Xh3pSuctIbi8mFgITVMW5stkk6w3rotwh1QnjPTWp48ICeuAk8M8I5SEW8CJXukoOZKJVtmcVxwMVARU5krqZeocy7hH5tfI5kGj-3nKAuvl4j-3WzADahWptQf9lEl-zONKlalxypjLEywzZa2SW9Rru_nUHdneFj-z-OskMWOcCg2L24Szrjl4nfAxgzNvuNxX4C1KfxXw
  priority: 102
  providerName: Directory of Open Access Journals
Title A new coupling of a GPU‐resident large‐eddy simulation code with a multiphysics wind turbine simulation tool
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2844
https://www.proquest.com/docview/3117334328
https://doaj.org/article/366cee5382804af5a15bc7ca6ea21f72
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BucCBf0SgRHuouDnNrr32-thCSsWhiioiKi6r_a0QIa4aRxWceASekSdhZu2EFISEOFla70q2Z2bnm_XMNwB7dWnNmEeDyuvLrIgY7igVi4yIWlyhyKJSguxJeTwr3p7Js61WXx0_xObAjSwj7ddk4MYu93-Rhl6FEW6txATK85JY81-fboijONVTpv-ctcyolKsrl6WV-_26a34o0fVfw5jbSDW5mqN78GH9kF2GyafRqrUj9_U3_sb_eov7cLcHoOyg05gHcCMsHsKdLVrCR3BxwBBsM9esqFz3nDWRGfZmOvvx7TsG59SFtGVzyiDHgeD9F7b8-LnvAsaoRJ7R4S4u6ZIVkyIscWzhGfo3jMTD9oK2aeaPYXY0effqOOs7M2QuVwolKRHmIFC0hfI81ujlAvpCiRuGNV55gzFmJVxlRbCVr70K1lHkIjEa9lxYlz-BnUWzCE-BeSlDEHZsRQwIzYSNIrfSe4xzgoy1GcDLtZy062nLqXvGXHeEy0JfBU2fcABsM_GiY-r4c8ohCXpzm6i100Bzea57S9V5WSJwQD8g1LgwURouraucKYMRPFZiALtrNdG9vS91znmVU42uGsBekvffnkG_n9Dl2b9New63BaKorvhxF3bay1V4gSiotUO4KYrpEG4dTk6mp8N0ljBMRvATMy8Jxg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VOEAPVctDXUpbHxC3lI0TJ85xW0G35SEOBFAvlp-o0naD2EWIW39Cf2N_SWcSsyxClThFcjxS5PF4vnFmvgHYrgqj-2nQuHldkeQBwx0pQ54QUYvNJVlUmyB7XAzr_PuFuIhZlVQL0_FDzC7cyDLa85oMnC6kdx9YQ2_9Jzxb8wVYEuhHcXcvDc7qH_XsHwLVVLb_OiuRUDlXVzJLwrtR9JEvain7H-HMebTaupv91_Aq4kQ26BT7Bl748Sq8nGMPXIOrAUNMzGxzQ1W1l6wJTLOvJ_Xf338whqZmoVM2okRvHPDO3bHJz1-xWRejSnZGd7Ao0uUUtvqa4NjYMXRDGDD7eYFp04zWod7fO_0yTGIDhcRmUuKCC0QjiOdMLl0aKnRGHl2WQLs22kmnMRQsuS0N96Z0lZPeWAowBAatLuXGZhuwOG7G_i0wJ4T33PQNDx4RFDeBZ0Y4h-GIF6HSPdi5X0plI7s4NbkYqY4Xmatbr2jNe8BmE686Qo2nUz6TLmaviQG7HWiuL1U0KJUVBfp3PK657Oc6CJ0KY0urC695Gkreg617TapolhOVpWmZUSmt7MF2q93_fYM636PH5vOmfYTl4enRoTr8dnzwDlY4Ap-uXnELFqfXN_49Apep-RB36D_Mw-wd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB4VKlVwQJRSdQttfUC9BTaOnThH2rKlLUJ76Apuln9RpWWzYheh3voIfUaehBknLItQpZ4iOR4p8sx4vok93wDs1aU1_TwaNF5fZiJiuqNUFBkRtTihyKPSBdnT8ngkvp_L86VWXy0_xOKHG3lG2q_Jwac-HjyQht6EfdxaxQo8F2h1ZNxcDBcHCFRQmQ46a5lRLVdbL0uiB53go0CU-PofgcxlqJpizWATNjqQyA5brb6EZ2GyBetL1IGvYHrIEBAz11xTSe0FayIz7OtwdPvnLybQ1Cl0zsZ0yxsHgve_2ezXZdepi1EZO6MfsCjSXihMyprh2MQzjEGYLYdlgXnTjLdhNDj6-fk467onZK5QCldbIhRBMGeF8nmsMRIFjFcSndoar7zBPLDirrI82MrXXgXrKLuQmLH6nFtXvIbVSTMJb4B5KUPgtm95DAifuI28sNJ7zEWCjLXpwcf7pdSuoxanDhdj3ZIic30TNK15D9hi4rRl03g65RPpYvGa6K_TQHN1oTtv0kVZYnDHvZqrvjBRmlxaVzlTBsPzWPEe7N5rUnc-OdNFnlcF1dGqHuwl7f7rG_TZET3e_t-0D_Bi-GWgT76d_tiBNY6gp61V3IXV-dV1eIegZW7fJ_O8AwoF6YE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+coupling+of+a+GPU%E2%80%90resident+large%E2%80%90eddy+simulation+code+with+a+multiphysics+wind+turbine+simulation+tool&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Taschner%2C+Emanuel&rft.au=Folkersma%2C+Mikko&rft.au=A+Mart%C3%ADnez%E2%80%90Tossas%2C+Luis&rft.au=Verzijlbergh%2C+Remco&rft.date=2024-11-01&rft.issn=1095-4244&rft.eissn=1099-1824&rft.volume=27&rft.issue=11&rft.spage=1152&rft.epage=1172&rft_id=info:doi/10.1002%2Fwe.2844&rft.externalDBID=10.1002%252Fwe.2844&rft.externalDocID=WE2844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon