A new coupling of a GPU‐resident large‐eddy simulation code with a multiphysics wind turbine simulation tool
The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (...
Saved in:
Published in | Wind energy (Chichester, England) Vol. 27; no. 11; pp. 1152 - 1172 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.11.2024
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1095-4244 1099-1824 |
DOI | 10.1002/we.2844 |
Cover
Abstract | The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (LES) code GRASP and the multiphysics wind turbine simulation tool OpenFAST via an actuator line model (ALM). In addition, the implementation of the recently proposed filtered actuator line model (FALM) within the coupling is described. The new ALM implementation is cross‐verified with results from four other commonly used research LES codes. The results for the blade loads and the near wake obtained with the new coupling are consistent with the other codes. Deviations are observed in the far wake. The results further indicate that the FALM is able to reduce the lift and power overprediction from which the traditional ALM suffers on coarse LES grids. This new simulation environment paves the way for future wind farm simulations under realistic weather conditions by leveraging GRASP's ability to impose data from large‐scale meteorological models as boundary conditions. |
---|---|
AbstractList | The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (LES) code GRASP and the multiphysics wind turbine simulation tool OpenFAST via an actuator line model (ALM). In addition, the implementation of the recently proposed filtered actuator line model (FALM) within the coupling is described. The new ALM implementation is cross‐verified with results from four other commonly used research LES codes. The results for the blade loads and the near wake obtained with the new coupling are consistent with the other codes. Deviations are observed in the far wake. The results further indicate that the FALM is able to reduce the lift and power overprediction from which the traditional ALM suffers on coarse LES grids. This new simulation environment paves the way for future wind farm simulations under realistic weather conditions by leveraging GRASP's ability to impose data from large‐scale meteorological models as boundary conditions. Abstract The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines within one simulation environment. In this work, we present such an environment by developing a new coupling between the large‐eddy simulation (LES) code GRASP and the multiphysics wind turbine simulation tool OpenFAST via an actuator line model (ALM). In addition, the implementation of the recently proposed filtered actuator line model (FALM) within the coupling is described. The new ALM implementation is cross‐verified with results from four other commonly used research LES codes. The results for the blade loads and the near wake obtained with the new coupling are consistent with the other codes. Deviations are observed in the far wake. The results further indicate that the FALM is able to reduce the lift and power overprediction from which the traditional ALM suffers on coarse LES grids. This new simulation environment paves the way for future wind farm simulations under realistic weather conditions by leveraging GRASP's ability to impose data from large‐scale meteorological models as boundary conditions. |
Author | Wingerden, Jan‐Willem A Martínez‐Tossas, Luis Folkersma, Mikko Taschner, Emanuel Verzijlbergh, Remco |
Author_xml | – sequence: 1 givenname: Emanuel orcidid: 0000-0002-0296-8168 surname: Taschner fullname: Taschner, Emanuel email: e.taschner@tudelft.nl organization: Delft University of Technology – sequence: 2 givenname: Mikko surname: Folkersma fullname: Folkersma, Mikko organization: Whiffle Weather Forecasting – sequence: 3 givenname: Luis orcidid: 0000-0003-2353-4999 surname: A Martínez‐Tossas fullname: A Martínez‐Tossas, Luis organization: National Renewable Energy Laboratory – sequence: 4 givenname: Remco surname: Verzijlbergh fullname: Verzijlbergh, Remco organization: Whiffle Weather Forecasting – sequence: 5 givenname: Jan‐Willem orcidid: 0000-0003-3061-7442 surname: Wingerden fullname: Wingerden, Jan‐Willem organization: Delft University of Technology |
BookMark | eNp1kU1qHDEQhUVwILZjfAVBFlmEtvU7rV4a4zgGg72IyVKopeqxhrbUkdQ0s_MRcsacJPJMCCHEqyoe33tVVB2hgxADIHRKyRklhJ0vcMaUEG_QISVd11DFxMGul41gQrxDRzlvCKGEUnWIpgscYME2ztPowxrHARt8ff_w8_lHguwdhIJHk9ZQBXBui7N_mkdTfAzV5AAvvjxWSxWLnx632dtcteBwmVPvA_xtKDGO79HbwYwZTn7XY_Tw-err5Zfm9u765vLitrFcKdG0UnVcct4L5ejQKUKBciIJJ71xyhkhVi2zbc-gb13nFPRWyq66eOso6y0_Rjf7XBfNRk_JP5m01dF4vRNiWmuTircjaL5aWQDJFVNEmEEaKnvbWrMCw-jQspr1YZ81pfh9hlz0Js4p1PU1p7TlXHCmKvVxT9kUc04w_JlKiX55jV5Av7ymks0_pPVld6KSjB__w3_a84sfYftarP52taN_AaOwoZc |
CitedBy_id | crossref_primary_10_1088_1742_6596_2767_3_032023 crossref_primary_10_1007_s42417_024_01752_y crossref_primary_10_1002_we_2872 |
Cites_doi | 10.5194/wes-4-369-2019 10.5194/wes-2022-24 10.5194/gmd-3-415-2010 10.1002/we.2456 10.1016/j.renene.2017.08.072 10.1002/we.1747 10.1016/j.euromechflu.2015.10.006 10.1175/MWR-D-14-00293.1 10.1016/j.jweia.2014.07.002 10.5194/wes-7-323-2022 10.1007/s10546-019-00473-0 10.1016/j.renene.2021.02.140 10.1017/jfm.2015.70 10.1002/we.2130 10.5194/wes-6-983-2021 10.1088/1742-6596/1452/1/012071 10.2514/6.2022-1921 10.1080/14685248.2012.668191 10.2514/6.2013-202 10.1063/1.3291077 10.1146/annurev-fluid-122109-160801 10.5194/wes-7-1305-2022 10.1175/BAMS-D-11-00059.1 10.5194/wes-2-603-2017 10.1063/1.5004710 10.1002/we.2513 10.1175/BAMS-D-14-00114.1 10.1115/1.1471361 10.1002/we.2081 10.1002/we.1722 10.5194/wes-7-53-2022 10.1002/we.2452 10.1175/JAS-D-11-0317.1 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2 10.1002/we.458 10.1002/we.95 10.2514/6.2017-1998 10.1002/we.2419 10.1063/1.3589857 10.1002/we.345 10.1016/j.renene.2022.05.110 10.1002/we.1976 10.2172/947422 10.1126/science.aau2027 10.1146/annurev.fl.25.010193.000555 10.1146/annurev-fluid-010816-060206 10.1017/jfm.2018.994 10.1002/we.1525 10.1049/rpg2.12160 10.1016/j.jweia.2021.104868 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST C1K SOI DOA |
DOI | 10.1002/we.2844 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Environment Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1824 |
EndPage | 1172 |
ExternalDocumentID | oai_doaj_org_article_366cee5382804af5a15bc7ca6ea21f72 10_1002_we_2844 WE2844 |
Genre | article |
GroupedDBID | 05W 0R~ 123 1OC 24P 31~ 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANHP AAONW AAZKR ABCUV ABIJN ABJCF ACBWZ ACCFJ ACCMX ACGFS ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BOGZA BRXPI CCPQU CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HF~ HVGLF HZ~ I-F IAO ITC IX1 LATKE LAW LITHE LOXES LUTES LYRES M7S MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 P2P P2W P4E PATMY PCBAR PTHSS PYCSY QRW R.K ROL RX1 RYL SUPJJ UCJ W99 WBKPD WIH WIK WOHZO WUPDE WYISQ WYJ XPP XV2 ZZTAW AAYXX AGQPQ CITATION IVC PHGZM PHGZT 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K PQGLB SOI WIN PUEGO |
ID | FETCH-LOGICAL-c3884-75893533b48d1f9801e1305030bad8da44672c7b2eb7d9d8ebc55975837d12bc3 |
IEDL.DBID | DR2 |
ISSN | 1095-4244 |
IngestDate | Wed Aug 27 01:02:41 EDT 2025 Wed Aug 13 03:45:02 EDT 2025 Thu Apr 24 23:04:26 EDT 2025 Tue Jul 01 01:58:39 EDT 2025 Wed Jan 22 17:13:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3884-75893533b48d1f9801e1305030bad8da44672c7b2eb7d9d8ebc55975837d12bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2353-4999 0000-0003-3061-7442 0000-0002-0296-8168 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2844 |
PQID | 3117334328 |
PQPubID | 1006436 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_366cee5382804af5a15bc7ca6ea21f72 proquest_journals_3117334328 crossref_primary_10_1002_we_2844 crossref_citationtrail_10_1002_we_2844 wiley_primary_10_1002_we_2844_WE2844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Wind energy (Chichester, England) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1993; 25 2017; 20 2021; 6 2019; 4 2017; 2 2022; 194 2010; 13 2015; 18 2016; 19 2017; 49 2002; 130 2015; 96 2015; 143 2019; 863 2009 2019; 366 2015; 768 2011; 14 2014; 133 2012; 13 2020; 1452 2016; 55 2010; 22 2022; 222 2012; 93 2021; 15 2013; 16 2001 2020; 174 2022 2018; 116 2003; 6 2022; 7 2002; 124 1963; 91 2019 2011; 43 2017 2021; 172 2020; 23 2011; 23 2015 2013 2010; 3 2012; 69 2018; 10 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Pope S (e_1_2_9_16_1) 2001 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 7 start-page: 2271 year: 2022 end-page: 2306 article-title: Wind farm flow control: prospects and challenges publication-title: Wind Energy Sci Discuss – volume: 14 start-page: 799 issue: 7 year: 2011 end-page: 819 article-title: Review of computational fluid dynamics for wind turbine wake aerodynamics: review of CFD for wind turbine wake aerodynamics publication-title: Wind Energy – volume: 20 start-page: 1927 issue: 12 year: 2017 end-page: 1939 article-title: Effect of tower and nacelle on the flow past a wind turbine: effect of tower and nacelle on the flow past a wind turbine publication-title: Wind Energy – volume: 194 start-page: 582 year: 2022 end-page: 595 article-title: On the load impact of dynamic wind farm wake mixing strategies publication-title: Renew Energy – year: 2001 – volume: 13 start-page: 86 issue: 1 year: 2010 end-page: 99 article-title: Numerical simulations of wake characteristics of a wind turbine in uniform inflow publication-title: Wind Energy – volume: 4 start-page: 369 issue: 2 year: 2019 end-page: 383 article-title: A vortex‐based tip/smearing correction for the actuator line publication-title: Wind Energy Sci – volume: 3 start-page: 415 issue: 2 year: 2010 end-page: 444 article-title: Formulation of the Dutch atmospheric large‐eddy simulation (DALES) and overview of its applications publication-title: Geosci Model Dev – volume: 69 start-page: 2682 issue: 9 year: 2012 end-page: 2698 article-title: Influence of the subcloud layer on the development of a deep convective ensemble publication-title: J Atmos Sci – volume: 7 start-page: 323 issue: 1 year: 2022 end-page: 344 article-title: Validation of a coupled atmospheric‐aeroelastic model system for wind turbine power and load calculations publication-title: Wind Energy Sci – volume: 43 start-page: 427 issue: 1 year: 2011 end-page: 448 article-title: Aerodynamic aspects of wind energy conversion publication-title: Annu Rev Fluid Mech – volume: 6 start-page: 229 issue: 3 year: 2003 end-page: 244 article-title: Wind turbine control for load reduction publication-title: Wind Energy – volume: 133 start-page: 1 year: 2014 end-page: 17 article-title: Large eddy simulation of wind farm aerodynamics: a review publication-title: J Wind Eng Ind Aerodyn – volume: 49 start-page: 311 issue: 1 year: 2017 end-page: 339 article-title: Flow structure and turbulence in wind farms publication-title: Annu Rev Fluid Mech – volume: 222 year: 2022 article-title: Large‐eddy simulation of a wind turbine using a filtered actuator line model publication-title: J Wind Eng Ind Aerodyn – year: 2022 – volume: 18 start-page: 1047 issue: 6 year: 2015 end-page: 1060 article-title: Large eddy simulations of the flow past wind turbines: actuator line and disk modeling publication-title: Wind Energy – volume: 863 start-page: 269 year: 2019 end-page: 292 article-title: Filtered lifting line theory and application to the actuator line model publication-title: J Fluid Mech – volume: 93 start-page: 307 issue: 3 year: 2012 end-page: 314 article-title: High‐performance simulations of turbulent clouds on a desktop PC: exploiting the GPU publication-title: Bull Am Meteorol Soc – volume: 174 start-page: 1 issue: 1 year: 2020 end-page: 59 article-title: Wind‐turbine and wind‐farm flows: a review publication-title: Bound‐Layer Meteorol – volume: 6 start-page: 983 issue: 4 year: 2021 end-page: 996 article-title: Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year‐long large‐eddy simulation over the North Sea publication-title: Wind Energy Sci – volume: 7 start-page: 1305 issue: 3 year: 2022 end-page: 1320 article-title: Experimental analysis of the effect of dynamic induction control on a wind turbine wake publication-title: Wind Energy Sci – volume: 23 start-page: 148 issue: 2 year: 2020 end-page: 160 article-title: A new tip correction for actuator line computations publication-title: Wind Energy – year: 2019 – year: 2015 – volume: 16 start-page: 845 issue: 6 year: 2013 end-page: 864 article-title: Large eddy simulation of dynamically controlled wind turbines in an offshore environment publication-title: Wind Energy – volume: 23 start-page: 691 issue: 3 year: 2020 end-page: 710 article-title: One‐way mesoscale‐microscale coupling for simulating a wind farm in North Texas: assessment against SCADA and LiDAR data publication-title: Wind Energy – volume: 768 start-page: 5 year: 2015 end-page: 50 article-title: Optimal control of energy extraction in wind‐farm boundary layers publication-title: J Fluid Mech – volume: 20 start-page: 1083 issue: 6 year: 2017 end-page: 1096 article-title: Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution publication-title: Wind Energy – volume: 96 start-page: 715 issue: 5 year: 2015 end-page: 723 article-title: Weather forecasting using GPU‐based large‐eddy simulations publication-title: Bull Am Meteorol Soc – volume: 23 start-page: 884 issue: 4 year: 2020 end-page: 897 article-title: Statistical post‐processing of turbulence‐resolving weather forecasts for offshore wind power forecasting publication-title: Wind Energy – volume: 172 start-page: 263 year: 2021 end-page: 275 article-title: Modelling the nacelle wake of a horizontal‐axis wind turbine under different yaw conditions publication-title: Renew Energy – volume: 130 start-page: 2088 issue: 8 year: 2002 end-page: 2097 article-title: Time‐splitting methods for elastic models using forward time schemes publication-title: Mon Weather Rev – volume: 7 start-page: 53 issue: 1 year: 2022 end-page: 73 article-title: A reference open‐source controller for fixed and floating offshore wind turbines publication-title: Wind Energy Sci – volume: 2 start-page: 603 issue: 2 year: 2017 end-page: 614 article-title: Transient LES of an offshore wind turbine publication-title: Wind Energy Sci – volume: 124 start-page: 393 issue: 2 year: 2002 end-page: 399 article-title: Numerical modeling of wind turbine wakes publication-title: J Fluids Eng – volume: 15 start-page: 2085 issue: 10 year: 2021 end-page: 2108 article-title: Wind farm control—part I: a review on control system concepts and structures publication-title: IET Renew Power Gener – volume: 55 start-page: 242 year: 2016 end-page: 245 article-title: On the suitability of second‐order accurate discretizations for turbulent flow simulations publication-title: Eur J Mech ‐ B/Fluids – volume: 23 start-page: 1739 issue: 8 year: 2020 end-page: 1751 article-title: The helix approach: using dynamic individual pitch control to enhance wake mixing in wind farms publication-title: Wind Energy – volume: 13 year: 2012 article-title: A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics publication-title: J Turbul – volume: 10 issue: 3 year: 2018 article-title: Comparison of four large‐eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator‐line‐based wind turbine modeling publication-title: J Renew Sustain Energy – volume: 19 start-page: 2205 issue: 12 year: 2016 end-page: 2221 article-title: Fluid‐structure interaction computations for geometrically resolved rotor simulations using CFD: fluid‐structure interaction computations for geometrically resolved rotor simulations using CFD publication-title: Wind Energy – volume: 116 start-page: 470 year: 2018 end-page: 478 article-title: Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments publication-title: Renew Energy – volume: 18 start-page: 699 issue: 4 year: 2015 end-page: 711 article-title: An actuator sector method for efficient transient wind turbine simulation publication-title: Wind Energy – volume: 91 start-page: 99 issue: 3 year: 1963 end-page: 164 article-title: General circulation experiments with the primitive equations: I. The basic experiment publication-title: Mon Weather Rev – volume: 22 issue: 1 year: 2010 article-title: Large eddy simulation study of fully developed wind‐turbine array boundary layers publication-title: Phys Fluids – year: 2017 – volume: 143 start-page: 828 issue: 3 year: 2015 end-page: 844 article-title: A year‐long large‐eddy simulation of the weather over Cabauw: an overview publication-title: Mon Weather Rev – volume: 366 issue: 6464 year: 2019 article-title: Grand challenges in the science of wind energy publication-title: Science – volume: 25 start-page: 115 issue: 1 year: 1993 end-page: 149 article-title: Aerodynamics of horizontal‐axis wind turbines publication-title: Annu Rev Fluid Mech – volume: 23 issue: 6 year: 2011 article-title: Large‐eddy simulation of a very large wind farm in a stable atmospheric boundary layer publication-title: Phys Fluids – year: 2013 – volume: 1452 issue: 1 year: 2020 article-title: ExaWind: a multifidelity modeling and simulation environment for wind energy publication-title: J Phys Conf Ser – ident: e_1_2_9_23_1 doi: 10.5194/wes-4-369-2019 – ident: e_1_2_9_9_1 doi: 10.5194/wes-2022-24 – ident: e_1_2_9_39_1 doi: 10.5194/gmd-3-415-2010 – ident: e_1_2_9_25_1 – ident: e_1_2_9_45_1 doi: 10.1002/we.2456 – ident: e_1_2_9_58_1 doi: 10.1016/j.renene.2017.08.072 – ident: e_1_2_9_56_1 doi: 10.1002/we.1747 – ident: e_1_2_9_57_1 doi: 10.1016/j.euromechflu.2015.10.006 – ident: e_1_2_9_47_1 doi: 10.1175/MWR-D-14-00293.1 – ident: e_1_2_9_18_1 doi: 10.1016/j.jweia.2014.07.002 – ident: e_1_2_9_36_1 doi: 10.5194/wes-7-323-2022 – ident: e_1_2_9_51_1 – ident: e_1_2_9_6_1 doi: 10.1007/s10546-019-00473-0 – ident: e_1_2_9_53_1 doi: 10.1016/j.renene.2021.02.140 – ident: e_1_2_9_10_1 doi: 10.1017/jfm.2015.70 – ident: e_1_2_9_52_1 doi: 10.1002/we.2130 – ident: e_1_2_9_46_1 doi: 10.5194/wes-6-983-2021 – ident: e_1_2_9_38_1 doi: 10.1088/1742-6596/1452/1/012071 – ident: e_1_2_9_28_1 doi: 10.2514/6.2022-1921 – ident: e_1_2_9_33_1 doi: 10.1080/14685248.2012.668191 – ident: e_1_2_9_29_1 doi: 10.2514/6.2013-202 – ident: e_1_2_9_14_1 doi: 10.1063/1.3291077 – ident: e_1_2_9_30_1 – ident: e_1_2_9_3_1 doi: 10.1146/annurev-fluid-122109-160801 – ident: e_1_2_9_11_1 doi: 10.5194/wes-7-1305-2022 – ident: e_1_2_9_40_1 doi: 10.1175/BAMS-D-11-00059.1 – ident: e_1_2_9_48_1 doi: 10.5194/wes-2-603-2017 – ident: e_1_2_9_54_1 doi: 10.1063/1.5004710 – ident: e_1_2_9_12_1 doi: 10.1002/we.2513 – ident: e_1_2_9_41_1 doi: 10.1175/BAMS-D-14-00114.1 – ident: e_1_2_9_19_1 doi: 10.1115/1.1471361 – ident: e_1_2_9_22_1 doi: 10.1002/we.2081 – volume-title: Turbulent Flows year: 2001 ident: e_1_2_9_16_1 – ident: e_1_2_9_34_1 doi: 10.1002/we.1722 – ident: e_1_2_9_31_1 doi: 10.5194/wes-7-53-2022 – ident: e_1_2_9_49_1 doi: 10.1002/we.2452 – ident: e_1_2_9_42_1 doi: 10.1175/JAS-D-11-0317.1 – ident: e_1_2_9_43_1 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – ident: e_1_2_9_44_1 doi: 10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2 – ident: e_1_2_9_17_1 doi: 10.1002/we.458 – ident: e_1_2_9_7_1 doi: 10.1002/we.95 – ident: e_1_2_9_21_1 doi: 10.2514/6.2017-1998 – ident: e_1_2_9_24_1 doi: 10.1002/we.2419 – ident: e_1_2_9_15_1 doi: 10.1063/1.3589857 – ident: e_1_2_9_20_1 doi: 10.1002/we.345 – ident: e_1_2_9_13_1 doi: 10.1016/j.renene.2022.05.110 – ident: e_1_2_9_35_1 doi: 10.1002/we.1976 – ident: e_1_2_9_55_1 doi: 10.2172/947422 – ident: e_1_2_9_4_1 doi: 10.1126/science.aau2027 – ident: e_1_2_9_2_1 doi: 10.1146/annurev.fl.25.010193.000555 – ident: e_1_2_9_5_1 doi: 10.1146/annurev-fluid-010816-060206 – ident: e_1_2_9_26_1 doi: 10.1017/jfm.2018.994 – ident: e_1_2_9_32_1 doi: 10.1002/we.1525 – ident: e_1_2_9_8_1 doi: 10.1049/rpg2.12160 – ident: e_1_2_9_37_1 – ident: e_1_2_9_50_1 – ident: e_1_2_9_27_1 doi: 10.1016/j.jweia.2021.104868 |
SSID | ssj0010118 |
Score | 2.433665 |
Snippet | The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual turbines... Abstract The development of new wind farm control strategies can benefit from combined analysis of flow dynamics in the farm and the behavior of individual... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1152 |
SubjectTerms | actuator line model Actuators Boundary conditions Coupling filtered actuator line model Large eddy simulation LES simulation Simulation Turbines Vortices Weather Wind farms Wind power Wind turbines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5LB4qzZp06ZHFR94EA8uegt5irBuxd1l8eZP8Df6S5xpurIi4sVTIU0hzCPzTZn5hpBeVRidsqDBeF2R5AHSHSlDniBRi80lelRTIHtdXPbzq3txPzfqC2vCIj1wFNxRVhRwj4NbcpnmOgjNhLGl1YXXnIWyuX3TKp0lU7PZBYzFJrhKJNjKFdtlkW70aOoP4UrOv8Whhq7_G8acR6pNqDlfIcstRqTH8WyrZMEP18jSHHPgOnk-poCHqa0n2FH7QOtANb246X-8vUP-jINCx3SARd6w4J17paPHp3ZQF8Uudor_X-GTWE_Y6GoEa0NHIQRBsuznPxjX9WCD9M_Pbk8vk3Z4QmIzKUHYApAIYDmTS8dCBYHIQ7gS4NNGO-k0pIElt6Xh3pSuctIbi8mFgITVMW5stkk6w3rotwh1QnjPTWp48ICeuAk8M8I5SEW8CJXukoOZKJVtmcVxwMVARU5krqZeocy7hH5tfI5kGj-3nKAuvl4j-3WzADahWptQf9lEl-zONKlalxypjLEywzZa2SW9Rru_nUHdneFj-z-OskMWOcCg2L24Szrjl4nfAxgzNvuNxX4C1KfxXw priority: 102 providerName: Directory of Open Access Journals |
Title | A new coupling of a GPU‐resident large‐eddy simulation code with a multiphysics wind turbine simulation tool |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2844 https://www.proquest.com/docview/3117334328 https://doaj.org/article/366cee5382804af5a15bc7ca6ea21f72 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BucCBf0SgRHuouDnNrr32-thCSsWhiioiKi6r_a0QIa4aRxWceASekSdhZu2EFISEOFla70q2Z2bnm_XMNwB7dWnNmEeDyuvLrIgY7igVi4yIWlyhyKJSguxJeTwr3p7Js61WXx0_xObAjSwj7ddk4MYu93-Rhl6FEW6txATK85JY81-fboijONVTpv-ctcyolKsrl6WV-_26a34o0fVfw5jbSDW5mqN78GH9kF2GyafRqrUj9_U3_sb_eov7cLcHoOyg05gHcCMsHsKdLVrCR3BxwBBsM9esqFz3nDWRGfZmOvvx7TsG59SFtGVzyiDHgeD9F7b8-LnvAsaoRJ7R4S4u6ZIVkyIscWzhGfo3jMTD9oK2aeaPYXY0effqOOs7M2QuVwolKRHmIFC0hfI81ujlAvpCiRuGNV55gzFmJVxlRbCVr70K1lHkIjEa9lxYlz-BnUWzCE-BeSlDEHZsRQwIzYSNIrfSe4xzgoy1GcDLtZy062nLqXvGXHeEy0JfBU2fcABsM_GiY-r4c8ohCXpzm6i100Bzea57S9V5WSJwQD8g1LgwURouraucKYMRPFZiALtrNdG9vS91znmVU42uGsBekvffnkG_n9Dl2b9New63BaKorvhxF3bay1V4gSiotUO4KYrpEG4dTk6mp8N0ljBMRvATMy8Jxg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VOEAPVctDXUpbHxC3lI0TJ85xW0G35SEOBFAvlp-o0naD2EWIW39Cf2N_SWcSsyxClThFcjxS5PF4vnFmvgHYrgqj-2nQuHldkeQBwx0pQ54QUYvNJVlUmyB7XAzr_PuFuIhZlVQL0_FDzC7cyDLa85oMnC6kdx9YQ2_9Jzxb8wVYEuhHcXcvDc7qH_XsHwLVVLb_OiuRUDlXVzJLwrtR9JEvain7H-HMebTaupv91_Aq4kQ26BT7Bl748Sq8nGMPXIOrAUNMzGxzQ1W1l6wJTLOvJ_Xf338whqZmoVM2okRvHPDO3bHJz1-xWRejSnZGd7Ao0uUUtvqa4NjYMXRDGDD7eYFp04zWod7fO_0yTGIDhcRmUuKCC0QjiOdMLl0aKnRGHl2WQLs22kmnMRQsuS0N96Z0lZPeWAowBAatLuXGZhuwOG7G_i0wJ4T33PQNDx4RFDeBZ0Y4h-GIF6HSPdi5X0plI7s4NbkYqY4Xmatbr2jNe8BmE686Qo2nUz6TLmaviQG7HWiuL1U0KJUVBfp3PK657Oc6CJ0KY0urC695Gkreg617TapolhOVpWmZUSmt7MF2q93_fYM636PH5vOmfYTl4enRoTr8dnzwDlY4Ap-uXnELFqfXN_49Apep-RB36D_Mw-wd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB4VKlVwQJRSdQttfUC9BTaOnThH2rKlLUJ76Apuln9RpWWzYheh3voIfUaehBknLItQpZ4iOR4p8sx4vok93wDs1aU1_TwaNF5fZiJiuqNUFBkRtTihyKPSBdnT8ngkvp_L86VWXy0_xOKHG3lG2q_Jwac-HjyQht6EfdxaxQo8F2h1ZNxcDBcHCFRQmQ46a5lRLVdbL0uiB53go0CU-PofgcxlqJpizWATNjqQyA5brb6EZ2GyBetL1IGvYHrIEBAz11xTSe0FayIz7OtwdPvnLybQ1Cl0zsZ0yxsHgve_2ezXZdepi1EZO6MfsCjSXihMyprh2MQzjEGYLYdlgXnTjLdhNDj6-fk467onZK5QCldbIhRBMGeF8nmsMRIFjFcSndoar7zBPLDirrI82MrXXgXrKLuQmLH6nFtXvIbVSTMJb4B5KUPgtm95DAifuI28sNJ7zEWCjLXpwcf7pdSuoxanDhdj3ZIic30TNK15D9hi4rRl03g65RPpYvGa6K_TQHN1oTtv0kVZYnDHvZqrvjBRmlxaVzlTBsPzWPEe7N5rUnc-OdNFnlcF1dGqHuwl7f7rG_TZET3e_t-0D_Bi-GWgT76d_tiBNY6gp61V3IXV-dV1eIegZW7fJ_O8AwoF6YE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+coupling+of+a+GPU%E2%80%90resident+large%E2%80%90eddy+simulation+code+with+a+multiphysics+wind+turbine+simulation+tool&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Taschner%2C+Emanuel&rft.au=Folkersma%2C+Mikko&rft.au=A+Mart%C3%ADnez%E2%80%90Tossas%2C+Luis&rft.au=Verzijlbergh%2C+Remco&rft.date=2024-11-01&rft.issn=1095-4244&rft.eissn=1099-1824&rft.volume=27&rft.issue=11&rft.spage=1152&rft.epage=1172&rft_id=info:doi/10.1002%2Fwe.2844&rft.externalDBID=10.1002%252Fwe.2844&rft.externalDocID=WE2844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon |