Getting the phase consistent: The importance of phase description in balanced steady‐state free precession MRI of multi‐compartment systems

Purpose Determine the correct mathematical phase description for balanced steady‐state free precession (bSSFP) signals in multi‐compartment systems. Theory and Methods Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other pr...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 1; pp. 215 - 225
Main Authors Plähn, Nils M. J., Poli, Simone, Peper, Eva S., Açikgöz, Berk C., Kreis, Roland, Ganter, Carl, Bastiaansen, Jessica A. M.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30033

Cover

Abstract Purpose Determine the correct mathematical phase description for balanced steady‐state free precession (bSSFP) signals in multi‐compartment systems. Theory and Methods Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi‐compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase‐cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone‐water mixtures. Results Based on the choice of phase description, the simulated bSSFP profiles of water‐acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water‐acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi‐compartment bSSFP profiles, which is consistent with the Bloch equations. Conclusion The study emphasizes that consistent phase descriptions are crucial for accurately describing multi‐compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.
AbstractList Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems.PURPOSEDetermine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems.Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures.THEORY AND METHODSBased on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures.Based on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations.RESULTSBased on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations.The study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.CONCLUSIONThe study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.
Purpose Determine the correct mathematical phase description for balanced steady‐state free precession (bSSFP) signals in multi‐compartment systems. Theory and Methods Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi‐compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase‐cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone‐water mixtures. Results Based on the choice of phase description, the simulated bSSFP profiles of water‐acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water‐acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi‐compartment bSSFP profiles, which is consistent with the Bloch equations. Conclusion The study emphasizes that consistent phase descriptions are crucial for accurately describing multi‐compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.
Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems. Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures. Based on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations. The study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.
PurposeDetermine the correct mathematical phase description for balanced steady‐state free precession (bSSFP) signals in multi‐compartment systems.Theory and MethodsBased on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi‐compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase‐cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone‐water mixtures.ResultsBased on the choice of phase description, the simulated bSSFP profiles of water‐acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water‐acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi‐compartment bSSFP profiles, which is consistent with the Bloch equations.ConclusionThe study emphasizes that consistent phase descriptions are crucial for accurately describing multi‐compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.
Author Peper, Eva S.
Kreis, Roland
Açikgöz, Berk C.
Ganter, Carl
Bastiaansen, Jessica A. M.
Plähn, Nils M. J.
Poli, Simone
Author_xml – sequence: 1
  givenname: Nils M. J.
  orcidid: 0009-0002-2624-5412
  surname: Plähn
  fullname: Plähn, Nils M. J.
  organization: University of Bern
– sequence: 2
  givenname: Simone
  surname: Poli
  fullname: Poli, Simone
  organization: University of Bern
– sequence: 3
  givenname: Eva S.
  surname: Peper
  fullname: Peper, Eva S.
  organization: Swiss Institute for Translational and Entrepreneurial Medicine
– sequence: 4
  givenname: Berk C.
  surname: Açikgöz
  fullname: Açikgöz, Berk C.
  organization: University of Bern
– sequence: 5
  givenname: Roland
  orcidid: 0000-0002-8618-6875
  surname: Kreis
  fullname: Kreis, Roland
  organization: University of Bern
– sequence: 6
  givenname: Carl
  orcidid: 0000-0002-6735-7448
  surname: Ganter
  fullname: Ganter, Carl
  organization: TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich
– sequence: 7
  givenname: Jessica A. M.
  orcidid: 0000-0002-5485-1308
  surname: Bastiaansen
  fullname: Bastiaansen, Jessica A. M.
  email: jbastiaansen.mri@gmail.com
  organization: Swiss Institute for Translational and Entrepreneurial Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38321594$$D View this record in MEDLINE/PubMed
BookMark eNp90c1qVDEUB_AgFTutLnwBCbjRxW3zdT_iTorWQgeh1HXI5J7YlJvkmuQis_MN9Bl9EjPO6KKgq0Dy-58k55ygoxADIPSckjNKCDv3yZ9xQjh_hFa0ZaxhrRRHaEV6QRpOpThGJznfE0Kk7MUTdMwHzmg1K_T9Ekpx4TMud4DnO50BmxiyywVCeYNv667zc0xFBwM42oMZIZvk5uJiwC7gjZ525yOuMT1uf377kYsugG2CWjWBgZx3dH1ztavhl6m4ikz0s07F16tw3tasz0_RY6unDM8O6yn69P7d7cWH5vrj5dXF2-vG8GHgDcge2kFyaxjvh5FYtrFWSMq45JQMRGorWdvSFjqgFlohBeWio227sb2llp-iV_u6c4pfFshFeZcNTPUfEJesmGScs46SvtKXD-h9XFKor1OciE5KSbqhqhcHtWw8jGpOzuu0VX9aXcHrPTAp5pzA_iWUqN0YVR2j-j3Gas8fWONqQ2sLS9Ju-l_iq5tg--_San2z3id-ARw1sL4
CitedBy_id crossref_primary_10_1002_mrm_30388
Cites_doi 10.1002/mrm.29813
10.1088/0957‐0233/20/10/104035
10.1093/oso/9780198556473.001.0001
10.1002/jmri.21090
10.4329/wjr.v10.i4.30
10.1002/mrm.27860
10.1103/Physrev.70.460
10.1002/mrm.26717
10.1002/mrm.20736
10.1002/(SICI)1522‐2594(200001)43:1<82::AID‐MRM10>3.0.CO;2‐9
10.1002/mrm.25098
10.1002/mrm.21413
10.1002/jmri.21849
10.1148/radiol.2021203071
10.1002/mrm.27040
10.1002/mrm.21720
10.1002/jmri.24163
10.1002/mrm.26384
10.1002/mrm.27491
10.1002/mrm.26150
10.1063/1.1719961
10.1002/mrm.21692
10.1002/cmr.a.20138
10.1002/mrm.10351
10.1002/mrm.22249
10.1002/mrm.26836
10.1002/mrm.1910060206
10.1002/mrm.29086
10.1016/j.jmr.2016.12.002
10.1016/0022‐2364(71)90047‐3
10.1109/TMI.2021.3102852
10.1006/jmre.1997.1244
10.1002/mrm.22212
10.1016/0022‐2364(87)90154‐5
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30033
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 225
ExternalDocumentID 38321594
10_1002_mrm_30033
MRM30033
Genre technicalNote
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: PCEFP2_194296
– fundername: Swiss National Science Foundation
  grantid: PCEFP2_194296
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3883-e97e5893fc2378d0f2bff491239310809af925515e6e1fe54941346155bf7f1f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 05:26:14 EDT 2025
Fri Jul 25 09:35:57 EDT 2025
Thu Apr 03 07:06:50 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Tue Jul 01 04:27:09 EDT 2025
Wed Jan 22 17:20:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords balanced steady-state free precession
signal model
asymmetries
phase-cycled bSSFP
multi-compartment
phase definition
Language English
License Attribution
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-e97e5893fc2378d0f2bff491239310809af925515e6e1fe54941346155bf7f1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5485-1308
0009-0002-2624-5412
0000-0002-6735-7448
0000-0002-8618-6875
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30033
PMID 38321594
PQID 3046999068
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_2923326107
proquest_journals_3046999068
pubmed_primary_38321594
crossref_primary_10_1002_mrm_30033
crossref_citationtrail_10_1002_mrm_30033
wiley_primary_10_1002_mrm_30033_MRM30033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1966; 37
2009; 20
1987; 72
2006; 55
2000; 43
2018; 80
2022; 41
2022; 87
2017; 275
2010; 63
2007; 58
2009; 34A
2009; 30
2019; 82
2019; 81
1946; 70
1997; 129
2013; 38
1990
2021; 299
1988; 6
2017; 77
1969; 4
2017; 78
2018
2003; 49
2023; 90
2018; 10
2008; 60
2014; 71
2007; 26
2018; 79
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 49
  start-page: 395
  year: 2003
  end-page: 397
  article-title: Is TrueFISP a gradient‐echo or a spin‐echo sequence?
  publication-title: Magn Reson Med
– volume: 34A
  start-page: 133
  year: 2009
  end-page: 143
  article-title: Analytical characterization of RF phase‐cycled balanced steady‐state free precession
  publication-title: Concepts Magn Reson
– volume: 78
  start-page: 518
  year: 2017
  end-page: 526
  article-title: Motion‐insensitive rapid configuration relaxometry
  publication-title: Magn Reson Med
– volume: 38
  start-page: 2
  year: 2013
  end-page: 11
  article-title: Fundamentals of balanced steady state free precession MRI
  publication-title: J Magn Reson Imaging
– volume: 82
  start-page: 1725
  year: 2019
  end-page: 1740
  article-title: Investigation of the influence of drift on the performance of the PLANET method and an algorithm for drift correction
  publication-title: Magn Reson Med
– volume: 63
  start-page: 385
  year: 2010
  end-page: 395
  article-title: Asymmetries of the balanced SSFP profile. Part I: theory and observation: balanced SSFP asymmetry: theory
  publication-title: Magn Reson Med
– year: 2018
– year: 1990
– volume: 30
  start-page: 411
  year: 2009
  end-page: 417
  article-title: Transverse relaxation time (T ) mapping in the brain with off‐resonance correction using phase‐cycled steady‐state free precession imaging
  publication-title: J Magn Reson Imaging
– volume: 37
  start-page: 93
  year: 1966
  end-page: 102
  article-title: Application of Fourier transform spectroscopy to magnetic resonance
  publication-title: Rev Sci Instru
– volume: 81
  start-page: 1534
  year: 2019
  end-page: 1552
  article-title: On the accuracy and precision of PLANET for multiparametric MRI using phase‐cycled bSSFP imaging
  publication-title: Magn Reson Med
– volume: 275
  start-page: 55
  year: 2017
  end-page: 67
  article-title: Balanced steady‐state free precession (bSSFP) from an effective field perspective: application to the detection of chemical exchange (bSSFPX)
  publication-title: J Magn Reson
– volume: 129
  start-page: 35
  year: 1997
  end-page: 43
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J Magn Reson
– volume: 299
  start-page: 3
  year: 2021
  end-page: 26
  article-title: Susceptibility‐weighted imaging: technical essentials and clinical neurologic applications
  publication-title: Radiology
– volume: 80
  start-page: 767
  year: 2018
  end-page: 779
  article-title: Extended phase graph formalism for systems with magnetization transfer and exchange
  publication-title: Magn Reson Med
– volume: 79
  start-page: 1901
  year: 2018
  end-page: 1910
  article-title: True constructive interference in the steady state (trueCISS)
  publication-title: Magn Reson Med
– volume: 26
  start-page: 1153
  year: 2007
  end-page: 1161
  article-title: Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation
  publication-title: J Magn Reson Imaging
– volume: 71
  start-page: 927
  year: 2014
  end-page: 933
  article-title: Banding artifact removal for bSSFP imaging with an elliptical signal model: banding artifact removal for bSSFP imaging
  publication-title: Magn Reson Med
– volume: 63
  start-page: 396
  year: 2010
  end-page: 406
  article-title: Asymmetries of the balanced SSFP profile. Part II: white matter
  publication-title: Magn Reson Med
– volume: 55
  start-page: 98
  year: 2006
  end-page: 107
  article-title: Steady state of gradient echo sequences with radiofrequency phase cycling: analytical solution, contrast enhancement with partial spoiling
  publication-title: Magn Reson Med
– volume: 72
  start-page: 502
  year: 1987
  end-page: 508
  article-title: Localized proton spectroscopy using stimulated echoes
  publication-title: J Magn Reson (1969)
– volume: 20
  year: 2009
  article-title: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package
  publication-title: Meas Sci Technol
– volume: 60
  start-page: 479
  year: 2008
  end-page: 484
  article-title: Fat‐water separation with alternating repetition time balanced SSFP
  publication-title: Magn Reson Med
– volume: 6
  start-page: 175
  year: 1988
  end-page: 193
  article-title: An analysis of fast imaging sequences with steady‐state transverse magnetization refocusing
  publication-title: Mag Res Med
– volume: 87
  start-page: 1886
  year: 2022
  end-page: 1893
  article-title: Pure balanced steady‐state free precession imaging (pure bSSFP)
  publication-title: Mag Res Med
– volume: 79
  start-page: 711
  year: 2018
  end-page: 722
  article-title: PLANET: an ellipse fitting approach for simultaneous T and T mapping using phase‐cycled balanced steady‐state free precession
  publication-title: Magn Reson Med
– volume: 70
  start-page: 460
  year: 1946
  end-page: 474
  article-title: Nuclear induction
  publication-title: Phys Rev
– volume: 41
  start-page: 14
  year: 2022
  end-page: 26
  article-title: Constrained ellipse fitting for efficient parameter mapping with phase‐cycled bSSFP MRI
  publication-title: IEEE Trans Med Imaging
– volume: 4
  start-page: 366
  year: 1969
  end-page: 383
  article-title: Phase and intensity anomalies in fourier transform NMR
  publication-title: J Magn Reson
– volume: 58
  start-page: 1216
  year: 2007
  end-page: 1223
  article-title: Enhanced spectral shaping in steady‐state free precession imaging
  publication-title: Magn Reson Med
– volume: 77
  start-page: 644
  year: 2017
  end-page: 654
  article-title: Combined geometric and algebraic solutions for removal of bSSFP banding artifacts with performance comparisons
  publication-title: Magn Reson Med
– volume: 60
  start-page: 732
  year: 2008
  end-page: 738
  article-title: Multiple‐profile homogeneous image combination: application to phase‐cycled SSFP and multicoil imaging
  publication-title: Magn Reson Med
– volume: 90
  start-page: 2348
  year: 2023
  end-page: 2361
  article-title: SPARCQ: a new approach for fat fraction mapping using asymmetries in the phase‐cycled balanced SSFP signal profile
  publication-title: Mag Res Med
– volume: 43
  start-page: 82
  year: 2000
  end-page: 90
  article-title: Linear combination steady‐state free precession MRI
  publication-title: Magn Reson Med
– volume: 10
  start-page: 30
  year: 2018
  end-page: 45
  article-title: Susceptibility weighted imaging: clinical applications and future directions
  publication-title: WJR
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.29813
– ident: e_1_2_9_34_1
  doi: 10.1088/0957‐0233/20/10/104035
– ident: e_1_2_9_25_1
  doi: 10.1093/oso/9780198556473.001.0001
– ident: e_1_2_9_36_1
  doi: 10.1002/jmri.21090
– ident: e_1_2_9_32_1
  doi: 10.4329/wjr.v10.i4.30
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.27860
– ident: e_1_2_9_23_1
  doi: 10.1103/Physrev.70.460
– ident: e_1_2_9_11_1
  doi: 10.1002/mrm.26717
– ident: e_1_2_9_18_1
  doi: 10.1002/mrm.20736
– ident: e_1_2_9_5_1
  doi: 10.1002/(SICI)1522‐2594(200001)43:1<82::AID‐MRM10>3.0.CO;2‐9
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.25098
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.21413
– ident: e_1_2_9_4_1
  doi: 10.1002/jmri.21849
– ident: e_1_2_9_31_1
  doi: 10.1148/radiol.2021203071
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.27040
– ident: e_1_2_9_7_1
  doi: 10.1002/mrm.21720
– ident: e_1_2_9_2_1
  doi: 10.1002/jmri.24163
– ident: e_1_2_9_10_1
  doi: 10.1002/mrm.26384
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.27491
– ident: e_1_2_9_9_1
  doi: 10.1002/mrm.26150
– ident: e_1_2_9_24_1
– ident: e_1_2_9_20_1
  doi: 10.1063/1.1719961
– ident: e_1_2_9_37_1
  doi: 10.1002/mrm.21692
– ident: e_1_2_9_17_1
  doi: 10.1002/cmr.a.20138
– ident: e_1_2_9_26_1
  doi: 10.1002/mrm.10351
– ident: e_1_2_9_22_1
  doi: 10.1002/mrm.22249
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.26836
– ident: e_1_2_9_3_1
  doi: 10.1002/mrm.1910060206
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.29086
– ident: e_1_2_9_30_1
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jmr.2016.12.002
– ident: e_1_2_9_16_1
  doi: 10.1016/0022‐2364(71)90047‐3
– ident: e_1_2_9_14_1
  doi: 10.1109/TMI.2021.3102852
– ident: e_1_2_9_35_1
  doi: 10.1006/jmre.1997.1244
– ident: e_1_2_9_21_1
  doi: 10.1002/mrm.22212
– ident: e_1_2_9_33_1
  doi: 10.1016/0022‐2364(87)90154‐5
SSID ssj0009974
Score 2.4651475
Snippet Purpose Determine the correct mathematical phase description for balanced steady‐state free precession (bSSFP) signals in multi‐compartment systems. Theory and...
Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems. Based on published...
PurposeDetermine the correct mathematical phase description for balanced steady‐state free precession (bSSFP) signals in multi‐compartment systems.Theory and...
Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems.PURPOSEDetermine...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 215
SubjectTerms Acetone
asymmetries
balanced steady‐state free precession
Chemical equilibrium
Descriptions
Interference
Mathematical models
Mixtures
multi‐compartment
phase definition
phase‐cycled bSSFP
Precession
signal model
Title Getting the phase consistent: The importance of phase description in balanced steady‐state free precession MRI of multi‐compartment systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30033
https://www.ncbi.nlm.nih.gov/pubmed/38321594
https://www.proquest.com/docview/3046999068
https://www.proquest.com/docview/2923326107
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VSiAuBQqUlFItiAMXp_bu-mPhhIBSkIxQRKUekCzveldUEKeKkwOc-AfwG_klzOzarsqHhLhFysR2nDezbzPPbwAe6kaYXNbUU89rGmGWR8qlTZRJZRNHBlV-HFD5Jjs6lq9P0pMNeDI8CxP8IcY_3CgzfL2mBK91d3BuGjpfzqeCRpFh_U1ERr75z2fn1lFKBQfmXFKdUXJwFYr5wfjJi2vRbwTzIl_1C87hNXg_XGrQmXycrld6ar784uL4n9_lOmz1RJQ9Dci5ARu23YYrZd9q34bLXhtqupvw7aX14miGXJGdfcBljxmS1SI-2tVjhkBjp3NP4xFAbOH6mMaOFYmdtkyThtLYhnlYff7x9bt_lom5pcWjYt0NBiGsnL2iY3ihIwYFjbyXwrPgOt3dguPDF--eHUX9HIfIiKIQkVW5TZEXOcNFXjSx49o5qRJyXyOJo6qdwp1NktoM8WFxx4orq6SGqXa5S5y4DZvtorV3gFmuybpU1DTR3QinDNLNIrexlbbgOp7Ao-EXrUxvck6zNj5VwZ6ZV3irK3-rJ_BgDD0Lzh5_CtobYFH1yd1V1ExGXh1nxQTuj29jWlKvpW7tYt1VHIkzMmPcXE9gJ8BpPIug6VCpknixHhR_P31Vzkr_YvffQ-_CVY7EK0iK92BztVzbe0icVnofLnH5dt_nyU-LtBZb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9RAFL1BiMqLKCIsoI7GB1-6dDvTbcfwQoi4KOVhAwkvZtJOZyKR7ZL9eNAn_gH8Rn-J9860JfiRGN-a9G6_9tyZM72n5wK8KUquE5FTTT3JqYVZEkgbl0FfSNOzZFDl2gFlx_3Bqfh4Fp8twG7zLYz3h2hfuFFmuPGaEpxeSO_cuoaOJqMup15k92DJ1eeIEg1vzaOk9B7MiaCRRorGVyiMdtqf3p2NfqOYdxmrm3IOVuBzc7FeafK1O58VXf39Fx_H_72bx_Co5qJsz4PnCSyYahUeZHW1fRXuO3monj6F6w_G6aMZ0kV2-QVnPqZJWYsQqWbvGGKNnY8ck0cMsbGtY0rTDkrsvGIFySi1KZlD1rcfVzfucyZmJwaPikOv9whh2fCQjuG0jhjkZfJODc-88fR0DU4P3p_sD4K6lUOgeZrywMjExEiNrI54kpahjQprheyRARupHGVuJS5uerHpI0QMLlpxchVUMy1sYnuWP4PFalyZDWAmKsi9lOfU1F1zKzUyzjQxoREmjYqwA2-bv1Tp2uec2m1cKO_QHCl81Mo96g68bkMvvbnHn4K2G1yoOr-niurJSK3DftqBV-1uzEwqt-SVGc-nKkLujOQY19cdWPd4as_CqUFULAVerEPF30-vsmHmNjb_PfQlPBycZEfq6PD40xYsR8jDvMJ4GxZnk7l5jjxqVrxw6fITTv8Zog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VIiouCAq0CwUM4sAlNGs7m7icELC0QKqqolJvVuKM1UpsdrW7PXDjD-Ab-ZLO2NlUFSBxW2lnk1Xe2H7OPL8BeFk3yuW64pp6XnELszwxPmuSkTY49GxQFdoBlYej_RP96TQ7XYM3q7Mw0R-if-HGIyPM1zzAZ43fvTINncwnrxW3IrsBNzXlHae31EdXjrsmWjDnmicao1e2Qqnc7X96fTH6g2FeJ6xhxRnfhTsdVRRvI7b3YA3bTdgou2L4JtwK6k23uA8_P2KQLwtic2J2RguTcCx8JQTb5Z6gVBDnk0C0CWIx9V1Mg_2cIc5bUbPK0WEjAvDff__4FU4bCT9HuirNjNHCQ5THB3yNIEWkoKhiD2J1EX2hFw_gZPzh67v9pOu0kDhVFCpBk2NGzMU7qfKiSb2svddmyP5oLEI0lTe09xhmOCIEkfaUtPZpLmnWPvdDrx7CejttcRsEyprNRVXFPded8sYRISxyTFFjIet0AK9Wj9y6zoacu2F8s9FAWVpCxwZ0BvCiD51F742_Be2scLPd8FtYLvcS801HxQCe91_TwOFqSNXi9GJhJVFb4q60_R3AVsS7v4vi_k2Z0fRnQwL8-_a2PC7Dh0f_H_oMNo7ej-2Xg8PPj-G2JJYU9b87sL6cX-ATYjnL-mnI5ksp7fgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Getting+the+phase+consistent%3A+The+importance+of+phase+description+in+balanced+steady-state+free+precession+MRI+of+multi-compartment+systems&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pl%C3%A4hn%2C+Nils+M+J&rft.au=Poli%2C+Simone&rft.au=Peper%2C+Eva+S&rft.au=A%C3%A7ikg%C3%B6z%2C+Berk+C&rft.date=2024-07-01&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.30033&rft_id=info%3Apmid%2F38321594&rft.externalDocID=38321594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon