The role of AI classifiers in skin cancer images
Background The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these...
Saved in:
| Published in | Skin research and technology Vol. 25; no. 5; pp. 750 - 757 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
John Wiley & Sons, Inc
01.09.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0909-752X 1600-0846 1600-0846 |
| DOI | 10.1111/srt.12713 |
Cover
| Abstract | Background
The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.
Materials and methods
The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.
Results
The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.
Conclusion
Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome. |
|---|---|
| AbstractList | The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.
The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.
The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.
Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome. BackgroundThe use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.Materials and methodsThe bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.ResultsThe search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.ConclusionDifferent imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome. The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.BACKGROUNDThe use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.MATERIALS AND METHODSThe bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.RESULTSThe search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.CONCLUSIONDifferent imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome. Background The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities. Materials and methods The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods. Results The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision. Conclusion Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome. |
| Author | Mendes, Joaquim Vardasca, Ricardo Magalhaes, Carolina |
| Author_xml | – sequence: 1 givenname: Carolina orcidid: 0000-0001-5602-718X surname: Magalhaes fullname: Magalhaes, Carolina organization: Universidade do Porto – sequence: 2 givenname: Joaquim orcidid: 0000-0003-4254-1879 surname: Mendes fullname: Mendes, Joaquim organization: Universidade do Porto – sequence: 3 givenname: Ricardo orcidid: 0000-0003-4217-2882 surname: Vardasca fullname: Vardasca, Ricardo email: rvardasca@fe.up.pt organization: Universidade do Porto |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31106913$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtKAzEYRoMo9qILX0AG3KgwbS5zySxL8VIoCFrBXUjSjKamk5rMUPr2pk51UdQskizO_-U76YHDylYKgDMEByisoXf1AOEckQPQRRmEMaRJdgi6sIBFnKf4pQN63i8ghGmByDHoEIRgFq5dAGdvKnLWqMiW0WgSScO916VWzke6ivx72CSvpHKRXvJX5U_AUcmNV6e7sw-eb29m4_t4-nA3GY-msSSUkpgTKnJESSJoDgVNaYlEglOKciEULzJcUEnninNJkjkvaJ4VIuGyxBJDTpOc9MF1m9tUK75Zc2PYyoUKbsMQZFttFrTZl3aAL1t45exHo3zNltpLZQyvlG08w5hgGMoQFNCLPXRhG1cFlUDRBJE0TbaB5zuqEUs1_3n6--MCMGwB6az3TpVM6prX2la149r82vFqb-I_n136Whu1-RtkT4-zduITMRGZPg |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2021_102872 crossref_primary_10_2174_1573405619666230217100130 crossref_primary_10_1016_j_ad_2022_04_015 crossref_primary_10_3390_s21010252 crossref_primary_10_2174_1874372202014010006 crossref_primary_10_1088_1361_6579_ac0fbd crossref_primary_10_1097_ICU_0000000000000791 crossref_primary_10_3389_fdgth_2022_886615 crossref_primary_10_1101_cshperspect_a037127 crossref_primary_10_1177_11795972221138470 crossref_primary_10_1080_17686733_2023_2256998 crossref_primary_10_1016_j_ad_2022_04_018 |
| Cites_doi | 10.1016/j.compmedimag.2015.02.011 10.1016/j.eswa.2011.05.079 10.1111/bjd.12550 10.1109/FSKD.2016.7603521 10.1504/IJBET.2016.075427 10.1016/j.compmedimag.2009.10.003 10.1111/j.1600-0625.2011.01285.x 10.1109/ICSMC.2012.6378186 10.1016/j.compbiomed.2017.07.001 10.1111/j.1365-4632.2010.04474.x 10.1007/s00521-012-0864-y 10.1111/j.1468-3083.2010.03834.x 10.1109/INFOSCI.2016.7845307 10.1016/j.eswa.2016.05.017 10.1109/NER.2015.7146798 10.1007/s13755-017-0033-x 10.1142/S0219519410003514 10.1016/j.compmedimag.2007.01.003 10.1007/978-3-642-21729-6_71 10.3390/computers5030013 10.1002/cncr.21910 10.1080/08839514.2012.701450 10.1155/2016/4381972 10.1118/1.1538230 10.1088/0031-9155/50/8/004 10.1109/EMBC.2016.7590781 10.1007/s11517-015-1281-z 10.1109/TMI.2016.2633551 10.1016/j.compbiomed.2015.12.024 10.1371/journal.pmed.1000100 10.1147/JRD.2017.2708299 10.1016/j.compmedimag.2011.02.007 10.1097/01.cco.0000152627.36243.26 10.20344/amp.9375 10.1109/IEMBS.2006.260056 10.1109/ICCICCT.2014.6993162 10.1109/IPAS.2016.7880148 10.1111/srt.12008 10.1111/j.1600-0846.2012.00630.x 10.1016/j.jaad.2015.07.028 10.1111/j.1600-0846.2009.00361.x 10.1109/TTHZ.2015.2485208 10.1109/ICIP.2016.7532837 10.1109/EMBC.2016.7590959 10.1109/JBHI.2016.2637342 10.1111/j.1600-0846.2008.00303.x 10.1111/j.1600-0846.2012.00617.x 10.1016/j.compmedimag.2016.05.002 10.1109/42.918473 10.1016/j.pdpdt.2017.03.014 10.1002/ima.20261 10.1186/1471-2342-14-36 10.1063/1.4968145 10.1109/TBME.2014.2365518 10.1016/j.jvcir.2016.06.014 10.1109/ICRTIT.2016.7569538 10.1016/S0933-3657(01)00077-X 10.1007/s13555-016-0165-y 10.1109/CCECE.2016.7726666 10.1109/JSYST.2013.2271540 10.1109/CIBEC.2008.4786081 10.1007/978-1-4939-0437-2 10.1016/j.cmpb.2016.09.012 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 ADTOC UNPAY |
| DOI | 10.1111/srt.12713 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1600-0846 |
| EndPage | 757 |
| ExternalDocumentID | oai:comum.rcaap.pt:10400.26/30128 31106913 10_1111_srt_12713 SRT12713 |
| Genre | article Systematic Review Journal Article |
| GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia funderid: LAETA ‐ UID/EMS/50022/2013 – fundername: Fundação para a Ciência e a Tecnologia grantid: LAETA - UID/EMS/50022/2013 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANHP AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACGFS ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADPDF ADXAS ADZCM ADZMN AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFKRA AFPWT AFRAH AFZJQ AHEFC AHMBA AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BROTX BRXPI BY8 CAG CCPQU COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA H.X HF~ HMCUK HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPM RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3883-a38b71834b870b858f1b425817bbea96298c8deaac34da98769b4acf2c20a8473 |
| IEDL.DBID | UNPAY |
| ISSN | 0909-752X 1600-0846 |
| IngestDate | Sun Oct 26 03:44:23 EDT 2025 Sun Sep 28 08:24:18 EDT 2025 Tue Oct 07 06:24:01 EDT 2025 Thu Apr 03 07:06:22 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Wed Oct 01 01:44:20 EDT 2025 Wed Jan 22 16:41:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | algorithms skin cancer image processing and computer vision machine learning |
| Language | English |
| License | 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3883-a38b71834b870b858f1b425817bbea96298c8deaac34da98769b4acf2c20a8473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0003-4254-1879 0000-0001-5602-718X 0000-0003-4217-2882 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10400.26/30128 |
| PMID | 31106913 |
| PQID | 2284135543 |
| PQPubID | 1106343 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1111_srt_12713 proquest_miscellaneous_2232083431 proquest_journals_2284135543 pubmed_primary_31106913 crossref_citationtrail_10_1111_srt_12713 crossref_primary_10_1111_srt_12713 wiley_primary_10_1111_srt_12713_SRT12713 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2019 2019-09-00 2019-Sep 20190901 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Copenhagen |
| PublicationTitle | Skin research and technology |
| PublicationTitleAlternate | Skin Res Technol |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 5 2017; 7 2017; 86 2010; 10 2013; 22 2015; 73 2017; 88 2013; 169 2016; 2016 2016; 70 2007; 31 2013; 19 2010; 20 2017; 36 2015; 43 2011; 20 2014; 14 2016; 40 2011; 25 2012; 26 2014; 8 2018; 31 2016; 9693 2009; 15 2010; 34 2017; 61 2015; 5 2012 2011 2015; 51 2015; 53 2017; 21 2008; 14 2008 2016; 52 2006 2011; 35 2001; 23 2011; 38 2016; 16 2003; 30 2001; 20 2016; 5 2010; 49 2017; 14 2015; 62 2010; 406–413 2016; 20 2017 2016 2017; 19 2016; 61 2009; 6 2015 2014 2016; 137 2005; 50 2005; 17 2006; 107 2015; 9443 2003; 67 e_1_2_7_3_1 Takruri M (e_1_2_7_61_1) 2017 Lubam MC (e_1_2_7_5_1) 2003; 67 e_1_2_7_7_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Eslava J (e_1_2_7_60_1) 2015 Grzesiak‐Kopeć K (e_1_2_7_12_1) 2016; 9693 e_1_2_7_28_1 Gui C (e_1_2_7_9_1) 2017; 86 Castillejos‐fernández H (e_1_2_7_20_1) 2017; 14 Rastgoo M (e_1_2_7_22_1) 2015 Almansour E (e_1_2_7_27_1) 2016; 16 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Masood A (e_1_2_7_34_1) 2015 e_1_2_7_6_1 e_1_2_7_4_1 Schaefer G (e_1_2_7_19_1) 2014 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 Przystalski K (e_1_2_7_69_1) 2010; 406 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_44_1 e_1_2_7_65_1 Labatut V (e_1_2_7_8_1) 2011 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_53_1 e_1_2_7_76_1 Jaworek‐Korjakowska J (e_1_2_7_30_1) 2016; 2016 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 Moher D (e_1_2_7_11_1) 2009; 6 e_1_2_7_38_1 |
| References_xml | – year: 2011 – volume: 10 start-page: 467 issue: 03 year: 2010 end-page: 477 article-title: New characterization methodology for skin tumors classification publication-title: J Mech Med Biol – volume: 15 start-page: 237 issue: 2 year: 2009 end-page: 241 article-title: Correlation of image analysis features and visual morphology in melanocytic skin tumours using in vivo confocal laser scanning microscopy publication-title: Ski Res Technol – volume: 5 start-page: 990 issue: 6 year: 2015 end-page: 998 article-title: The potential of the double debye parameters to discriminate between basal cell carcinoma and normal skin publication-title: IEEE Trans Terahertz Sci Technol – volume: 20 start-page: 243 issue: 3 year: 2016 article-title: Wavelet‐based energy features for diagnosis of melanoma from dermoscopic images publication-title: Int J Biomed Eng Technol – volume: 31 start-page: 362 issue: 6 year: 2007 end-page: 373 article-title: A methodological approach to the classification of dermoscopy images publication-title: Comput Med Imaging Graph – volume: 19 start-page: 45 year: 2017 end-page: 50 article-title: Fluorescence spectroscopy as a tool to in vivo discrimination of distinctive skin disorders publication-title: Photodiagnosis Photodyn Ther – volume: 22 start-page: 1049 issue: 6 year: 2013 end-page: 1062 article-title: Computer‐aided diagnosis (CAD) of the skin disease based on an intelligent classification of sonogram using neural network publication-title: Neural Comput Appl – volume: 25 start-page: 554 issue: 5 year: 2011 end-page: 558 article-title: In vivo reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours publication-title: J Eur Acad Dermatology Venereol – volume: 52 start-page: 89 year: 2016 end-page: 103 article-title: Skin lesion image segmentation using Delaunay Triangulation for melanoma detection publication-title: Comput Med Imaging Graph – volume: 5 start-page: 13 issue: 3 year: 2016 article-title: Prediction of dermoscopy patterns for recognition of both melanocytic and non‐melanocytic skin lesions publication-title: Computers – volume: 21 start-page: 1675 issue: 6 year: 2017 end-page: 1684 article-title: Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification publication-title: IEEE J Biomed Health Inform – volume: 169 start-page: 1034 issue: 5 year: 2013 end-page: 1040 article-title: Incorporating clinical metadata with digital image features for automated identification of cutaneous melanoma publication-title: Br J Dermatol – volume: 49 start-page: 978 issue: 9 year: 2010 end-page: 986 article-title: Ultraviolet radiation and skin cancer publication-title: Int J Dermatol – year: 2014 – volume: 14 start-page: 169 issue: 3 year: 2017 end-page: 185 article-title: An intelligent system for the diagnosis of skin cancer on digital images taken with dermoscopy publication-title: Acta Polytechnica Hungarica – volume: 86 start-page: 77 issue: 2 year: 2017 end-page: 78 article-title: Machine learning in medicine publication-title: Univ West Ont Med J – volume: 50 start-page: 1675 issue: 8 year: 2005 end-page: 1687 article-title: Automated melanoma detection with a novel multispectral imaging system: Results of a prospective study publication-title: Phys Med Biol – volume: 14 start-page: 1 issue: 1 year: 2014 end-page: 12 article-title: Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system publication-title: BMC Med Imaging – volume: 19 start-page: 113 issue: 1 year: 2013 end-page: 122 article-title: Improving the diagnostic accuracy of dysplastic and melanoma lesions using the decision template combination method publication-title: Ski Res Technol – volume: 73 start-page: 769 issue: 5 year: 2015 end-page: 776 article-title: Computer‐aided classification of melanocytic lesions using dermoscopic images publication-title: J Am Acad Dermatol – volume: 6 start-page: e1000100 issue: 7 year: 2009 article-title: The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care interventions: explanation and elaboration publication-title: PLoS Medicine – volume: 26 start-page: 696 issue: 7 year: 2012 end-page: 713 article-title: Evaluating fluorescence illumination techniques for skin lesion diagnosis publication-title: Appl Artif Intell – volume: 17 start-page: 147 issue: 2 year: 2005 end-page: 153 article-title: Dermoscopy for skin cancer detection publication-title: Curr Opin Oncol – volume: 43 start-page: 44 year: 2015 end-page: 52 article-title: Automatic differentiation of melanoma from dysplastic nevi publication-title: Comput Med Imaging Graph – year: 2008 – volume: 2016 start-page: 1 year: 2016 end-page: 8 article-title: Computer‐aided diagnosis of micro‐malignant melanoma lesions applying support vector machines publication-title: Biomed Res Int – volume: 38 start-page: 15217 issue: 12 year: 2011 end-page: 15223 article-title: A decision support system for the diagnosis of melanoma: A comparative approach publication-title: Expert Syst Appl – volume: 62 start-page: 820 issue: 3 year: 2015 end-page: 831 article-title: High‐level intuitive features (HLIFs) for intuitive skin lesion description publication-title: IEEE Trans Biomed Eng – volume: 16 start-page: 135 issue: 4 year: 2016 end-page: 139 article-title: Classification of dermoscopic skin cancer images using color and hybrid texture features publication-title: IJCSNS Int J Comput Sci Netw Secur – volume: 406–413 year: 2010 article-title: Decision support system for skin cancer diagnosis publication-title: Oper Res – volume: 14 start-page: 359 issue: 3 year: 2008 end-page: 363 article-title: Diagnostic image analysis of malignant melanoma in in vivo confocal laser‐scanning microscopy: a preliminary study publication-title: Ski Res Technol – volume: 8 start-page: 965 issue: 3 year: 2014 end-page: 979 article-title: Two systems for the detection of melanomas in dermoscopy images using texture and color features publication-title: IEEE Syst J – year: 2015 – volume: 9443 year: 2015 – volume: 107 start-page: 193 issue: 1 year: 2006 end-page: 200 article-title: Sensitivity and specificity of confocal laser‐scanning microscopy for in vivo diagnosis of malignant skin tumors publication-title: Cancer – volume: 30 start-page: 212 issue: 2 year: 2003 end-page: 221 article-title: Automated melanoma detection: Multispectral imaging and neural network approach for classification publication-title: Med Phys – volume: 5 start-page: 10 issue: 1 year: 2017 article-title: Combined empirical mode decomposition and texture features for skin lesion classification using quadratic support vector machine publication-title: Heal Inf Sci Syst – volume: 61 start-page: 5:1 issue: 4/5 year: 2017 end-page: 5:15 article-title: Deep learning ensembles for melanoma recognition in dermoscopy images publication-title: IBM J Res Dev – volume: 23 start-page: 89 issue: 1 year: 2001 end-page: 109 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif Intell Med – volume: 61 start-page: 53 year: 2016 end-page: 63 article-title: A computational approach for detecting pigmented skin lesions in macroscopic images publication-title: Expert Syst Appl – volume: 19 start-page: 75 issue: 2 year: 2013 end-page: 83 article-title: Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma publication-title: Ski Res Technol – volume: 20 start-page: 648 issue: 8 year: 2011 end-page: 652 article-title: Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma publication-title: Exp Dermatol – volume: 20 start-page: 233 issue: 3 year: 2001 end-page: 239 article-title: Automated melanoma recognition publication-title: IEEE Trans Med Imaging – volume: 40 start-page: 128 year: 2016 end-page: 148 article-title: Computer assisted diagnosis of basal cell carcinoma using Z‐transform features publication-title: J Vis Commun Image Represent – volume: 6 start-page: 1 issue: 7 year: 2009 end-page: 6 article-title: Preferred reporting items for systematic reviews and meta‐analyses: The PRISMA statement publication-title: PLoS ONE – volume: 9693 start-page: 169 year: 2016 end-page: 178 article-title: Computational classification of melanocytic skin lesions publication-title: Artif Intell Soft Computing – volume: 19 start-page: 217 issue: 1 year: 2013 end-page: 222 article-title: Analysis of clinical and dermoscopic features for basal cell carcinoma neural network classification publication-title: Ski Res Technol – volume: 67 start-page: 729 issue: 4 year: 2003 end-page: 738 article-title: Benign skin tumors publication-title: Am Fam Physician – volume: 36 start-page: 849 issue: 3 year: 2017 end-page: 858 article-title: Melanoma classification on dermoscopy images using a neural network ensemble model publication-title: IEEE Trans Med Imaging – year: 2016 – year: 2012 – start-page: 291 year: 2014 end-page: 298 – volume: 70 start-page: 23 year: 2016 end-page: 39 article-title: Differential diagnosis of squamous cell carcinoma in situ using skin histopathological images publication-title: Comput Biol Med – volume: 51 start-page: 1401 year: 2015 end-page: 1404 – volume: 137 start-page: 311 year: 2016 end-page: 319 article-title: A comparison of classification methods as diagnostic system: a case study on skin lesions publication-title: Comput Methods Programs Biomed – volume: 20 start-page: 316 issue: 4 year: 2010 end-page: 322 article-title: Learning methods for melanoma recognition publication-title: Int J Imaging Syst Technol – start-page: 89 year: 2014 end-page: 103 – year: 2006 – volume: 31 start-page: 238 issue: 5 year: 2018 article-title: Sobre o significado da significância estatística publication-title: Acta Med Port – volume: 7 start-page: 5 issue: 1 year: 2017 end-page: 19 article-title: Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches publication-title: Dermatol Ther (Heidelb) – volume: 35 start-page: 481 issue: 6 year: 2011 end-page: 491 article-title: Automated prescreening of pigmented skin lesions using standard cameras publication-title: Comput Med Imaging Graph – volume: 53 start-page: 961 issue: 10 year: 2015 end-page: 974 article-title: Combination of 3D skin surface texture features and 2D ABCD features for improved melanoma diagnosis publication-title: Med Biol Eng Comput – volume: 34 start-page: 479 issue: 6 year: 2010 end-page: 486 article-title: An integrated and interactive decision support system for automated melanoma recognition of dermoscopic images publication-title: Comput Med Imaging Graph – year: 2017 – volume: 88 start-page: 50 year: 2017 end-page: 59 article-title: Automatic discrimination of actinic keratoses from clinical photographs publication-title: Comput Biol Med – ident: e_1_2_7_23_1 doi: 10.1016/j.compmedimag.2015.02.011 – ident: e_1_2_7_15_1 doi: 10.1016/j.eswa.2011.05.079 – ident: e_1_2_7_53_1 doi: 10.1111/bjd.12550 – ident: e_1_2_7_29_1 doi: 10.1109/FSKD.2016.7603521 – ident: e_1_2_7_16_1 doi: 10.1504/IJBET.2016.075427 – ident: e_1_2_7_13_1 doi: 10.1016/j.compmedimag.2009.10.003 – ident: e_1_2_7_57_1 doi: 10.1111/j.1600-0625.2011.01285.x – ident: e_1_2_7_66_1 doi: 10.1109/ICSMC.2012.6378186 – ident: e_1_2_7_63_1 doi: 10.1016/j.compbiomed.2017.07.001 – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-4632.2010.04474.x – ident: e_1_2_7_75_1 doi: 10.1007/s00521-012-0864-y – ident: e_1_2_7_49_1 doi: 10.1111/j.1468-3083.2010.03834.x – volume: 406 year: 2010 ident: e_1_2_7_69_1 article-title: Decision support system for skin cancer diagnosis publication-title: Oper Res – ident: e_1_2_7_38_1 doi: 10.1109/INFOSCI.2016.7845307 – ident: e_1_2_7_62_1 doi: 10.1016/j.eswa.2016.05.017 – ident: e_1_2_7_18_1 doi: 10.1109/NER.2015.7146798 – ident: e_1_2_7_35_1 doi: 10.1007/s13755-017-0033-x – volume-title: In SPIE Sixth International Conference on Graphic and Image Processing (ICGIP 2014) year: 2015 ident: e_1_2_7_34_1 – ident: e_1_2_7_39_1 doi: 10.1142/S0219519410003514 – volume-title: Accuracy measures for the comparison of classifiers year: 2011 ident: e_1_2_7_8_1 – ident: e_1_2_7_33_1 doi: 10.1016/j.compmedimag.2007.01.003 – ident: e_1_2_7_65_1 doi: 10.1007/978-3-642-21729-6_71 – ident: e_1_2_7_25_1 doi: 10.3390/computers5030013 – start-page: 291 volume-title: Advanced Machine Learning Technologies and Applications year: 2014 ident: e_1_2_7_19_1 – ident: e_1_2_7_46_1 doi: 10.1002/cncr.21910 – ident: e_1_2_7_50_1 doi: 10.1080/08839514.2012.701450 – volume: 2016 start-page: 1 year: 2016 ident: e_1_2_7_30_1 article-title: Computer‐aided diagnosis of micro‐malignant melanoma lesions applying support vector machines publication-title: Biomed Res Int doi: 10.1155/2016/4381972 – ident: e_1_2_7_55_1 doi: 10.1118/1.1538230 – ident: e_1_2_7_54_1 doi: 10.1088/0031-9155/50/8/004 – ident: e_1_2_7_73_1 doi: 10.1109/EMBC.2016.7590781 – ident: e_1_2_7_76_1 doi: 10.1007/s11517-015-1281-z – ident: e_1_2_7_24_1 doi: 10.1109/TMI.2016.2633551 – volume: 86 start-page: 77 issue: 2 year: 2017 ident: e_1_2_7_9_1 article-title: Machine learning in medicine publication-title: Univ West Ont Med J – ident: e_1_2_7_72_1 doi: 10.1016/j.compbiomed.2015.12.024 – volume: 6 start-page: 1 issue: 7 year: 2009 ident: e_1_2_7_11_1 article-title: Preferred reporting items for systematic reviews and meta‐analyses: The PRISMA statement publication-title: PLoS ONE – ident: e_1_2_7_10_1 doi: 10.1371/journal.pmed.1000100 – ident: e_1_2_7_32_1 doi: 10.1147/JRD.2017.2708299 – ident: e_1_2_7_70_1 doi: 10.1016/j.compmedimag.2011.02.007 – volume-title: Ensemble approach for differentiation of malignant melanoma year: 2015 ident: e_1_2_7_22_1 – ident: e_1_2_7_6_1 doi: 10.1097/01.cco.0000152627.36243.26 – ident: e_1_2_7_77_1 doi: 10.20344/amp.9375 – ident: e_1_2_7_36_1 doi: 10.1109/IEMBS.2006.260056 – ident: e_1_2_7_40_1 doi: 10.1109/ICCICCT.2014.6993162 – ident: e_1_2_7_64_1 doi: 10.1109/IPAS.2016.7880148 – ident: e_1_2_7_56_1 doi: 10.1111/srt.12008 – ident: e_1_2_7_41_1 doi: 10.1111/j.1600-0846.2012.00630.x – ident: e_1_2_7_42_1 doi: 10.1016/j.jaad.2015.07.028 – ident: e_1_2_7_47_1 doi: 10.1111/j.1600-0846.2009.00361.x – ident: e_1_2_7_74_1 doi: 10.1109/TTHZ.2015.2485208 – volume-title: Multi‐classifier decision fusion for enhancing melanoma recognition accuracy year: 2017 ident: e_1_2_7_61_1 – ident: e_1_2_7_68_1 doi: 10.1109/ICIP.2016.7532837 – volume: 9693 start-page: 169 year: 2016 ident: e_1_2_7_12_1 article-title: Computational classification of melanocytic skin lesions publication-title: Artif Intell Soft Computing – ident: e_1_2_7_59_1 doi: 10.1109/EMBC.2016.7590959 – start-page: 1401 volume-title: IFMBE Proceedings year: 2015 ident: e_1_2_7_60_1 – volume: 14 start-page: 169 issue: 3 year: 2017 ident: e_1_2_7_20_1 article-title: An intelligent system for the diagnosis of skin cancer on digital images taken with dermoscopy publication-title: Acta Polytechnica Hungarica – ident: e_1_2_7_44_1 doi: 10.1109/JBHI.2016.2637342 – ident: e_1_2_7_48_1 doi: 10.1111/j.1600-0846.2008.00303.x – ident: e_1_2_7_21_1 doi: 10.1111/j.1600-0846.2012.00617.x – ident: e_1_2_7_14_1 doi: 10.1016/j.compmedimag.2016.05.002 – ident: e_1_2_7_45_1 doi: 10.1109/42.918473 – ident: e_1_2_7_58_1 doi: 10.1016/j.pdpdt.2017.03.014 – ident: e_1_2_7_31_1 doi: 10.1002/ima.20261 – ident: e_1_2_7_52_1 doi: 10.1186/1471-2342-14-36 – ident: e_1_2_7_28_1 doi: 10.1063/1.4968145 – ident: e_1_2_7_26_1 doi: 10.1109/TBME.2014.2365518 – volume: 16 start-page: 135 issue: 4 year: 2016 ident: e_1_2_7_27_1 article-title: Classification of dermoscopic skin cancer images using color and hybrid texture features publication-title: IJCSNS Int J Comput Sci Netw Secur – ident: e_1_2_7_71_1 doi: 10.1016/j.jvcir.2016.06.014 – ident: e_1_2_7_37_1 doi: 10.1109/ICRTIT.2016.7569538 – ident: e_1_2_7_7_1 doi: 10.1016/S0933-3657(01)00077-X – ident: e_1_2_7_4_1 doi: 10.1007/s13555-016-0165-y – ident: e_1_2_7_43_1 doi: 10.1109/CCECE.2016.7726666 – volume: 67 start-page: 729 issue: 4 year: 2003 ident: e_1_2_7_5_1 article-title: Benign skin tumors publication-title: Am Fam Physician – ident: e_1_2_7_17_1 doi: 10.1109/JSYST.2013.2271540 – ident: e_1_2_7_67_1 doi: 10.1109/CIBEC.2008.4786081 – ident: e_1_2_7_2_1 doi: 10.1007/978-1-4939-0437-2 – ident: e_1_2_7_51_1 doi: 10.1016/j.cmpb.2016.09.012 |
| SSID | ssj0005913 |
| Score | 2.333207 |
| SecondaryResourceType | review_article |
| Snippet | Background
The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features... The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the... BackgroundThe use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features... |
| SourceID | unpaywall proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 750 |
| SubjectTerms | Algorithms Artificial Intelligence Bibliographies Cancer Classification Computer vision Dermoscopy - methods Diagnosis Forecasting Humans Image analysis Image classification Image processing image processing and computer vision Information processing Information retrieval machine learning Medical diagnosis Medical imaging Medical personnel Melanoma Microscopy - methods Photography - methods Physicians Screening Skin cancer Skin Neoplasms - diagnosis Spectrum Analysis - methods Support vector machines |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDrQcgEILC7Qy0AOXrDZ-JLY4IQSileiBh7SHSpHtdaQVSxZtdoXg1zN2HjxbVb1EkTxOHM_rczyeAfiOED7hRvAo51pHaPB4pKSzkRUDa3RKrQin0s5-JadX_Gdf9OfgoDkLU-WHaH-4ec0I9toruDblMyUvJ9NuTNNQsTZmSVhOnT-ljhKqKo2seipKBe3XWYV8FE_b86UvegMwF-HDrLjV93d6NHqJXYPzOVmG382wq5iT6-5sarr24VVGx__8rhVYqkEpOayk6BPMuWIVFp-lKlyFhbN6E34NeihaxEclknFODn8Q6wH4MPc1tcmwIOU1XqwXpgkZ3qC5Kj_D1cnx5dFpVBdeiCyTkkWaSYM-i3GD2mykkHlsULdlnBrjtEqoklYOnNaW8YFWaFCV4drm1NKeRnfHvsB8MS7cBhCnc2lZnPvtQS4GqaIGuzCVKJeKvBd3YL9hQWbrrOS-OMYoa1YnOB9ZmI8O7Lakt1UqjveIths-ZrU2lhlFHxx7YIXNO20z6pHfHNGFG888DaMIRxFPdWC94n_7FoYYKVH-4XutQPxtCPuBv3-myC7OL8PN5r-TbsFHxGp1eNs2zE8nM_cV8dDUfAuC_wiGyALl priority: 102 providerName: Wiley-Blackwell |
| Title | The role of AI classifiers in skin cancer images |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12713 https://www.ncbi.nlm.nih.gov/pubmed/31106913 https://www.proquest.com/docview/2284135543 https://www.proquest.com/docview/2232083431 http://hdl.handle.net/10400.26/30128 |
| UnpaywallVersion | submittedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1600-0846 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1600-0846 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: OVEED dateStart: 19960201 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0909-752X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1600-0846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005913 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja-MwFH5kUpihh-kyW0obNDM99OLU1mbpGEpLO9BSOg2kJyMpMoRmnJKF0vn1fXLs0J1ejEHPsuy3fULS9wB2EcJLbgWPcm5MhAGPR1p5FzkxcNak1InyVNrpmTzu8T990W9AXVHwCb1AEkysQ-U-C3H0A6xIgYi7CSu9s_PuVUmjF-soFbQf5lUyLmlKZUUgFDbsTCezTkLThD1OO8-w5Cp8mhc35u7WjEaPYWqZZ47W4LA-rbPYXnLdmc9sx_1_Tt745iesw-cKaJLuwjI2oOGLTVh9QD-4CR9Pq4X1LxCjuZCw05CMc9I9IS6A6mEe6mSTYUGm13hxwUAmZPgPQ9D0K_SODi8PjqOqmELkmFIsMkxZzEOMW_RQq4TKE4v-qpLUWm-0pFo5NfDGOMYHRmOQ1JYbl1NHY4MpjH2DZjEu_A8g3uTKsSQPS35cDFJNLT7CtNQ-FXmctGCv_teZq5jGQ8GLUVbPOFAtWamWFvxait4s6DVeEtquFZZVHjbNKObVJIAlbP65bEbfCAsepvDjeZBhFCEmYqQWfF8oevkWhrhH6tD576Xm3xrCXmkTr0tkfy8uy5utd3W4Dc3ZZO53ENHMbBux_AVtV2Z9D39r78Q |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hJo3xABuMUeiYB3vgJVXjj8SWeEFoqGyUB1akvkyR7TpS1S5F_dC0_fWc8wUdG5p4iSLlnDj2_Xw_2-c7gE9I4SNuBA9SrnWAAx4PlHQ2sGJgjY6pFfmptO5V1LnhX_qivwIn1VmYIj5EveDmkZGP1x7gfkH6Acpn03krpLFPWfuCRzhP8ZTo-j54lFBFcmTVVkEsaL-MK-T9eOqiy9boEcVch7VFdqt__dTj8TJ7zc3P-SZ8rypeeJ2MWou5adnff8R0fO6fvYaNkpeS00KR3sCKy7Zg_UG0wi142S334behjdpFvGMimaTk9IJYz8GHqU-rTYYZmY3wYr0-TcnwB45Ys7dwc_65d9YJytwLgWVSskAzadBsMW4Q0EYKmYYG4S3D2BinVUSVtHLgtLaMD7TCMVUZrm1KLW1rtHhsB1azSeZ2gTidSsvC1O8QcjGIFTVYhKlIuVik7bABx1UfJLYMTO7zY4yTaoKC7ZHk7dGAw1r0tojG8TehZtWRSQnIWULRDIeeW-Hjj_VjhJLfH9GZmyy8DKPISJFSNeBdoQD1VxjSpEj5lx_VGvFUFY7zDv63RPLtupff7P2_6AdY6_S6l8nlxdXXfXiF1K30dmvC6ny6cO-RHs3NQY6CO8TfBwY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4hKtHyQAstZVta3OOBl6w2PhJb4gWVrjgKqihI-1JFtmNLK7bZ1R6qyq9nnAvopaovUaSME8eeb-ZLPJ4BeI8UPuFG8MhzrSM0eDxS0tnIitwanVIryl1pp2fJ4SU_HojBEuw1e2Gq_BDtD7eAjNJeB4C7Se7voHw2nXdjmoaStQ-4UDIE9B2c3yaPEqoqjqx6KkoFHdR5hUIcT9v0vjf6hWKuwsNFMdE_vuvR6D57Ld1P_zF8bTpeRZ1cdRdz07XXP-V0_N83ewJrNS8l-5UircOSKzZg9U62wg1YOa3X4Z9CD7WLhMBEMvZk_4jYwMGHPpTVJsOCzK7wYIM-TcnwG1qs2TO47H-8-HAY1bUXIsukZJFm0qDbYtwgoI0U0scG4S3j1BinVUKVtDJ3WlvGc63QpirDtfXU0p5Gj8c2YbkYF24LiNNeWhb7sELIRZ4qarAJU4lyqfC9uAO7zRxktk5MHupjjLLmAwXHIyvHowNvW9FJlY3jd0LbzURmNSBnGUU3HAduhZfftJcRSmF9RBduvAgyjCIjRUrVgeeVArRPYUiTEhVu_q7ViL91Ybec4D9LZF_OL8qTF_8uugMrnw_62aejs5OX8AiZWx3stg3L8-nCvUJ2NDevSxDcAGNdBoo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD50CWz0od16TWmHdnnoi1NbN0uPoaR0hZaxNZA9GUmRITR1Si6U9tf3yLFD7-zFGHQsyz63T0j6DsBPhPCSW8GjnBsTYcDjkVbeRU4MnDUpdaI8lXZ-IU97_Kwv-itQVxR8Ri-QBBNrU3nEQhz9AE0pEHE3oNm7-N35V9LoxTpKBe2HeZWMS5pSWREIhQ0708msndA0YU_TzgssuQqf5sWNubs1o9FTmFrmmZN16NandRbbS67a85ltu_uX5I3vfsJnWKuAJuksLOMLrPhiA1Yf0Q9uwMfzamF9E2I0FxJ2GpJxTjq_iAugepiHOtlkWJDpFV5cMJAJGV5jCJpuQe-ke3l8GlXFFCLHlGKRYcpiHmLcoodaJVSeWPRXlaTWeqMl1cqpgTfGMT4wGoOktty4nDoaG0xhbBsaxbjwu0C8yZVjSR6W_LgYpJpafIRpqX0q8jhpwWH9rzNXMY2HghejrJ5xoFqyUi0t-L4UvVnQa7wmtF8rLKs8bJpRzKtJAEvY_G3ZjL4RFjxM4cfzIMMoQkzESC3YWSh6-RaGuEfq0PmPpebfG8JhaRNvS2R__1yWN3v_1eE-NGaTuT9ARDOzXyuDfgDmZe7b |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+AI+classifiers+in+skin+cancer+images&rft.jtitle=Skin+research+and+technology&rft.au=Magalhaes%2C+Carolina&rft.au=Mendes%2C+Joaquim&rft.au=Vardasca%2C+Ricardo&rft.date=2019-09-01&rft.issn=1600-0846&rft.eissn=1600-0846&rft.volume=25&rft.issue=5&rft.spage=750&rft_id=info:doi/10.1111%2Fsrt.12713&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon |