The role of AI classifiers in skin cancer images

Background The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these...

Full description

Saved in:
Bibliographic Details
Published inSkin research and technology Vol. 25; no. 5; pp. 750 - 757
Main Authors Magalhaes, Carolina, Mendes, Joaquim, Vardasca, Ricardo
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.09.2019
Subjects
Online AccessGet full text
ISSN0909-752X
1600-0846
1600-0846
DOI10.1111/srt.12713

Cover

Abstract Background The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities. Materials and methods The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods. Results The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision. Conclusion Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.
AbstractList The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities. The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods. The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision. Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.
BackgroundThe use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.Materials and methodsThe bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.ResultsThe search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.ConclusionDifferent imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.
The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.BACKGROUNDThe use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.MATERIALS AND METHODSThe bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.RESULTSThe search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.CONCLUSIONDifferent imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.
Background The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities. Materials and methods The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods. Results The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision. Conclusion Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.
Author Mendes, Joaquim
Vardasca, Ricardo
Magalhaes, Carolina
Author_xml – sequence: 1
  givenname: Carolina
  orcidid: 0000-0001-5602-718X
  surname: Magalhaes
  fullname: Magalhaes, Carolina
  organization: Universidade do Porto
– sequence: 2
  givenname: Joaquim
  orcidid: 0000-0003-4254-1879
  surname: Mendes
  fullname: Mendes, Joaquim
  organization: Universidade do Porto
– sequence: 3
  givenname: Ricardo
  orcidid: 0000-0003-4217-2882
  surname: Vardasca
  fullname: Vardasca, Ricardo
  email: rvardasca@fe.up.pt
  organization: Universidade do Porto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31106913$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEYRoMo9qILX0AG3KgwbS5zySxL8VIoCFrBXUjSjKamk5rMUPr2pk51UdQskizO_-U76YHDylYKgDMEByisoXf1AOEckQPQRRmEMaRJdgi6sIBFnKf4pQN63i8ghGmByDHoEIRgFq5dAGdvKnLWqMiW0WgSScO916VWzke6ivx72CSvpHKRXvJX5U_AUcmNV6e7sw-eb29m4_t4-nA3GY-msSSUkpgTKnJESSJoDgVNaYlEglOKciEULzJcUEnninNJkjkvaJ4VIuGyxBJDTpOc9MF1m9tUK75Zc2PYyoUKbsMQZFttFrTZl3aAL1t45exHo3zNltpLZQyvlG08w5hgGMoQFNCLPXRhG1cFlUDRBJE0TbaB5zuqEUs1_3n6--MCMGwB6az3TpVM6prX2la149r82vFqb-I_n136Whu1-RtkT4-zduITMRGZPg
CitedBy_id crossref_primary_10_1016_j_bspc_2021_102872
crossref_primary_10_2174_1573405619666230217100130
crossref_primary_10_1016_j_ad_2022_04_015
crossref_primary_10_3390_s21010252
crossref_primary_10_2174_1874372202014010006
crossref_primary_10_1088_1361_6579_ac0fbd
crossref_primary_10_1097_ICU_0000000000000791
crossref_primary_10_3389_fdgth_2022_886615
crossref_primary_10_1101_cshperspect_a037127
crossref_primary_10_1177_11795972221138470
crossref_primary_10_1080_17686733_2023_2256998
crossref_primary_10_1016_j_ad_2022_04_018
Cites_doi 10.1016/j.compmedimag.2015.02.011
10.1016/j.eswa.2011.05.079
10.1111/bjd.12550
10.1109/FSKD.2016.7603521
10.1504/IJBET.2016.075427
10.1016/j.compmedimag.2009.10.003
10.1111/j.1600-0625.2011.01285.x
10.1109/ICSMC.2012.6378186
10.1016/j.compbiomed.2017.07.001
10.1111/j.1365-4632.2010.04474.x
10.1007/s00521-012-0864-y
10.1111/j.1468-3083.2010.03834.x
10.1109/INFOSCI.2016.7845307
10.1016/j.eswa.2016.05.017
10.1109/NER.2015.7146798
10.1007/s13755-017-0033-x
10.1142/S0219519410003514
10.1016/j.compmedimag.2007.01.003
10.1007/978-3-642-21729-6_71
10.3390/computers5030013
10.1002/cncr.21910
10.1080/08839514.2012.701450
10.1155/2016/4381972
10.1118/1.1538230
10.1088/0031-9155/50/8/004
10.1109/EMBC.2016.7590781
10.1007/s11517-015-1281-z
10.1109/TMI.2016.2633551
10.1016/j.compbiomed.2015.12.024
10.1371/journal.pmed.1000100
10.1147/JRD.2017.2708299
10.1016/j.compmedimag.2011.02.007
10.1097/01.cco.0000152627.36243.26
10.20344/amp.9375
10.1109/IEMBS.2006.260056
10.1109/ICCICCT.2014.6993162
10.1109/IPAS.2016.7880148
10.1111/srt.12008
10.1111/j.1600-0846.2012.00630.x
10.1016/j.jaad.2015.07.028
10.1111/j.1600-0846.2009.00361.x
10.1109/TTHZ.2015.2485208
10.1109/ICIP.2016.7532837
10.1109/EMBC.2016.7590959
10.1109/JBHI.2016.2637342
10.1111/j.1600-0846.2008.00303.x
10.1111/j.1600-0846.2012.00617.x
10.1016/j.compmedimag.2016.05.002
10.1109/42.918473
10.1016/j.pdpdt.2017.03.014
10.1002/ima.20261
10.1186/1471-2342-14-36
10.1063/1.4968145
10.1109/TBME.2014.2365518
10.1016/j.jvcir.2016.06.014
10.1109/ICRTIT.2016.7569538
10.1016/S0933-3657(01)00077-X
10.1007/s13555-016-0165-y
10.1109/CCECE.2016.7726666
10.1109/JSYST.2013.2271540
10.1109/CIBEC.2008.4786081
10.1007/978-1-4939-0437-2
10.1016/j.cmpb.2016.09.012
ContentType Journal Article
Copyright 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ADTOC
UNPAY
DOI 10.1111/srt.12713
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1600-0846
EndPage 757
ExternalDocumentID oai:comum.rcaap.pt:10400.26/30128
31106913
10_1111_srt_12713
SRT12713
Genre article
Systematic Review
Journal Article
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  funderid: LAETA ‐ UID/EMS/50022/2013
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: LAETA - UID/EMS/50022/2013
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADPDF
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
HF~
HMCUK
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3883-a38b71834b870b858f1b425817bbea96298c8deaac34da98769b4acf2c20a8473
IEDL.DBID UNPAY
ISSN 0909-752X
1600-0846
IngestDate Sun Oct 26 03:44:23 EDT 2025
Sun Sep 28 08:24:18 EDT 2025
Tue Oct 07 06:24:01 EDT 2025
Thu Apr 03 07:06:22 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Wed Oct 01 01:44:20 EDT 2025
Wed Jan 22 16:41:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords algorithms
skin cancer
image processing and computer vision
machine learning
Language English
License 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-a38b71834b870b858f1b425817bbea96298c8deaac34da98769b4acf2c20a8473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-4254-1879
0000-0001-5602-718X
0000-0003-4217-2882
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10400.26/30128
PMID 31106913
PQID 2284135543
PQPubID 1106343
PageCount 8
ParticipantIDs unpaywall_primary_10_1111_srt_12713
proquest_miscellaneous_2232083431
proquest_journals_2284135543
pubmed_primary_31106913
crossref_citationtrail_10_1111_srt_12713
crossref_primary_10_1111_srt_12713
wiley_primary_10_1111_srt_12713_SRT12713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
2019-Sep
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Copenhagen
PublicationTitle Skin research and technology
PublicationTitleAlternate Skin Res Technol
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2017; 7
2017; 86
2010; 10
2013; 22
2015; 73
2017; 88
2013; 169
2016; 2016
2016; 70
2007; 31
2013; 19
2010; 20
2017; 36
2015; 43
2011; 20
2014; 14
2016; 40
2011; 25
2012; 26
2014; 8
2018; 31
2016; 9693
2009; 15
2010; 34
2017; 61
2015; 5
2012
2011
2015; 51
2015; 53
2017; 21
2008; 14
2008
2016; 52
2006
2011; 35
2001; 23
2011; 38
2016; 16
2003; 30
2001; 20
2016; 5
2010; 49
2017; 14
2015; 62
2010; 406–413
2016; 20
2017
2016
2017; 19
2016; 61
2009; 6
2015
2014
2016; 137
2005; 50
2005; 17
2006; 107
2015; 9443
2003; 67
e_1_2_7_3_1
Takruri M (e_1_2_7_61_1) 2017
Lubam MC (e_1_2_7_5_1) 2003; 67
e_1_2_7_7_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Eslava J (e_1_2_7_60_1) 2015
Grzesiak‐Kopeć K (e_1_2_7_12_1) 2016; 9693
e_1_2_7_28_1
Gui C (e_1_2_7_9_1) 2017; 86
Castillejos‐fernández H (e_1_2_7_20_1) 2017; 14
Rastgoo M (e_1_2_7_22_1) 2015
Almansour E (e_1_2_7_27_1) 2016; 16
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Masood A (e_1_2_7_34_1) 2015
e_1_2_7_6_1
e_1_2_7_4_1
Schaefer G (e_1_2_7_19_1) 2014
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
Przystalski K (e_1_2_7_69_1) 2010; 406
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_44_1
e_1_2_7_65_1
Labatut V (e_1_2_7_8_1) 2011
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_53_1
e_1_2_7_76_1
Jaworek‐Korjakowska J (e_1_2_7_30_1) 2016; 2016
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
Moher D (e_1_2_7_11_1) 2009; 6
e_1_2_7_38_1
References_xml – year: 2011
– volume: 10
  start-page: 467
  issue: 03
  year: 2010
  end-page: 477
  article-title: New characterization methodology for skin tumors classification
  publication-title: J Mech Med Biol
– volume: 15
  start-page: 237
  issue: 2
  year: 2009
  end-page: 241
  article-title: Correlation of image analysis features and visual morphology in melanocytic skin tumours using in vivo confocal laser scanning microscopy
  publication-title: Ski Res Technol
– volume: 5
  start-page: 990
  issue: 6
  year: 2015
  end-page: 998
  article-title: The potential of the double debye parameters to discriminate between basal cell carcinoma and normal skin
  publication-title: IEEE Trans Terahertz Sci Technol
– volume: 20
  start-page: 243
  issue: 3
  year: 2016
  article-title: Wavelet‐based energy features for diagnosis of melanoma from dermoscopic images
  publication-title: Int J Biomed Eng Technol
– volume: 31
  start-page: 362
  issue: 6
  year: 2007
  end-page: 373
  article-title: A methodological approach to the classification of dermoscopy images
  publication-title: Comput Med Imaging Graph
– volume: 19
  start-page: 45
  year: 2017
  end-page: 50
  article-title: Fluorescence spectroscopy as a tool to in vivo discrimination of distinctive skin disorders
  publication-title: Photodiagnosis Photodyn Ther
– volume: 22
  start-page: 1049
  issue: 6
  year: 2013
  end-page: 1062
  article-title: Computer‐aided diagnosis (CAD) of the skin disease based on an intelligent classification of sonogram using neural network
  publication-title: Neural Comput Appl
– volume: 25
  start-page: 554
  issue: 5
  year: 2011
  end-page: 558
  article-title: In vivo reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours
  publication-title: J Eur Acad Dermatology Venereol
– volume: 52
  start-page: 89
  year: 2016
  end-page: 103
  article-title: Skin lesion image segmentation using Delaunay Triangulation for melanoma detection
  publication-title: Comput Med Imaging Graph
– volume: 5
  start-page: 13
  issue: 3
  year: 2016
  article-title: Prediction of dermoscopy patterns for recognition of both melanocytic and non‐melanocytic skin lesions
  publication-title: Computers
– volume: 21
  start-page: 1675
  issue: 6
  year: 2017
  end-page: 1684
  article-title: Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification
  publication-title: IEEE J Biomed Health Inform
– volume: 169
  start-page: 1034
  issue: 5
  year: 2013
  end-page: 1040
  article-title: Incorporating clinical metadata with digital image features for automated identification of cutaneous melanoma
  publication-title: Br J Dermatol
– volume: 49
  start-page: 978
  issue: 9
  year: 2010
  end-page: 986
  article-title: Ultraviolet radiation and skin cancer
  publication-title: Int J Dermatol
– year: 2014
– volume: 14
  start-page: 169
  issue: 3
  year: 2017
  end-page: 185
  article-title: An intelligent system for the diagnosis of skin cancer on digital images taken with dermoscopy
  publication-title: Acta Polytechnica Hungarica
– volume: 86
  start-page: 77
  issue: 2
  year: 2017
  end-page: 78
  article-title: Machine learning in medicine
  publication-title: Univ West Ont Med J
– volume: 50
  start-page: 1675
  issue: 8
  year: 2005
  end-page: 1687
  article-title: Automated melanoma detection with a novel multispectral imaging system: Results of a prospective study
  publication-title: Phys Med Biol
– volume: 14
  start-page: 1
  issue: 1
  year: 2014
  end-page: 12
  article-title: Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system
  publication-title: BMC Med Imaging
– volume: 19
  start-page: 113
  issue: 1
  year: 2013
  end-page: 122
  article-title: Improving the diagnostic accuracy of dysplastic and melanoma lesions using the decision template combination method
  publication-title: Ski Res Technol
– volume: 73
  start-page: 769
  issue: 5
  year: 2015
  end-page: 776
  article-title: Computer‐aided classification of melanocytic lesions using dermoscopic images
  publication-title: J Am Acad Dermatol
– volume: 6
  start-page: e1000100
  issue: 7
  year: 2009
  article-title: The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care interventions: explanation and elaboration
  publication-title: PLoS Medicine
– volume: 26
  start-page: 696
  issue: 7
  year: 2012
  end-page: 713
  article-title: Evaluating fluorescence illumination techniques for skin lesion diagnosis
  publication-title: Appl Artif Intell
– volume: 17
  start-page: 147
  issue: 2
  year: 2005
  end-page: 153
  article-title: Dermoscopy for skin cancer detection
  publication-title: Curr Opin Oncol
– volume: 43
  start-page: 44
  year: 2015
  end-page: 52
  article-title: Automatic differentiation of melanoma from dysplastic nevi
  publication-title: Comput Med Imaging Graph
– year: 2008
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Computer‐aided diagnosis of micro‐malignant melanoma lesions applying support vector machines
  publication-title: Biomed Res Int
– volume: 38
  start-page: 15217
  issue: 12
  year: 2011
  end-page: 15223
  article-title: A decision support system for the diagnosis of melanoma: A comparative approach
  publication-title: Expert Syst Appl
– volume: 62
  start-page: 820
  issue: 3
  year: 2015
  end-page: 831
  article-title: High‐level intuitive features (HLIFs) for intuitive skin lesion description
  publication-title: IEEE Trans Biomed Eng
– volume: 16
  start-page: 135
  issue: 4
  year: 2016
  end-page: 139
  article-title: Classification of dermoscopic skin cancer images using color and hybrid texture features
  publication-title: IJCSNS Int J Comput Sci Netw Secur
– volume: 406–413
  year: 2010
  article-title: Decision support system for skin cancer diagnosis
  publication-title: Oper Res
– volume: 14
  start-page: 359
  issue: 3
  year: 2008
  end-page: 363
  article-title: Diagnostic image analysis of malignant melanoma in in vivo confocal laser‐scanning microscopy: a preliminary study
  publication-title: Ski Res Technol
– volume: 8
  start-page: 965
  issue: 3
  year: 2014
  end-page: 979
  article-title: Two systems for the detection of melanomas in dermoscopy images using texture and color features
  publication-title: IEEE Syst J
– year: 2015
– volume: 9443
  year: 2015
– volume: 107
  start-page: 193
  issue: 1
  year: 2006
  end-page: 200
  article-title: Sensitivity and specificity of confocal laser‐scanning microscopy for in vivo diagnosis of malignant skin tumors
  publication-title: Cancer
– volume: 30
  start-page: 212
  issue: 2
  year: 2003
  end-page: 221
  article-title: Automated melanoma detection: Multispectral imaging and neural network approach for classification
  publication-title: Med Phys
– volume: 5
  start-page: 10
  issue: 1
  year: 2017
  article-title: Combined empirical mode decomposition and texture features for skin lesion classification using quadratic support vector machine
  publication-title: Heal Inf Sci Syst
– volume: 61
  start-page: 5:1
  issue: 4/5
  year: 2017
  end-page: 5:15
  article-title: Deep learning ensembles for melanoma recognition in dermoscopy images
  publication-title: IBM J Res Dev
– volume: 23
  start-page: 89
  issue: 1
  year: 2001
  end-page: 109
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif Intell Med
– volume: 61
  start-page: 53
  year: 2016
  end-page: 63
  article-title: A computational approach for detecting pigmented skin lesions in macroscopic images
  publication-title: Expert Syst Appl
– volume: 19
  start-page: 75
  issue: 2
  year: 2013
  end-page: 83
  article-title: Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma
  publication-title: Ski Res Technol
– volume: 20
  start-page: 648
  issue: 8
  year: 2011
  end-page: 652
  article-title: Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma
  publication-title: Exp Dermatol
– volume: 20
  start-page: 233
  issue: 3
  year: 2001
  end-page: 239
  article-title: Automated melanoma recognition
  publication-title: IEEE Trans Med Imaging
– volume: 40
  start-page: 128
  year: 2016
  end-page: 148
  article-title: Computer assisted diagnosis of basal cell carcinoma using Z‐transform features
  publication-title: J Vis Commun Image Represent
– volume: 6
  start-page: 1
  issue: 7
  year: 2009
  end-page: 6
  article-title: Preferred reporting items for systematic reviews and meta‐analyses: The PRISMA statement
  publication-title: PLoS ONE
– volume: 9693
  start-page: 169
  year: 2016
  end-page: 178
  article-title: Computational classification of melanocytic skin lesions
  publication-title: Artif Intell Soft Computing
– volume: 19
  start-page: 217
  issue: 1
  year: 2013
  end-page: 222
  article-title: Analysis of clinical and dermoscopic features for basal cell carcinoma neural network classification
  publication-title: Ski Res Technol
– volume: 67
  start-page: 729
  issue: 4
  year: 2003
  end-page: 738
  article-title: Benign skin tumors
  publication-title: Am Fam Physician
– volume: 36
  start-page: 849
  issue: 3
  year: 2017
  end-page: 858
  article-title: Melanoma classification on dermoscopy images using a neural network ensemble model
  publication-title: IEEE Trans Med Imaging
– year: 2016
– year: 2012
– start-page: 291
  year: 2014
  end-page: 298
– volume: 70
  start-page: 23
  year: 2016
  end-page: 39
  article-title: Differential diagnosis of squamous cell carcinoma in situ using skin histopathological images
  publication-title: Comput Biol Med
– volume: 51
  start-page: 1401
  year: 2015
  end-page: 1404
– volume: 137
  start-page: 311
  year: 2016
  end-page: 319
  article-title: A comparison of classification methods as diagnostic system: a case study on skin lesions
  publication-title: Comput Methods Programs Biomed
– volume: 20
  start-page: 316
  issue: 4
  year: 2010
  end-page: 322
  article-title: Learning methods for melanoma recognition
  publication-title: Int J Imaging Syst Technol
– start-page: 89
  year: 2014
  end-page: 103
– year: 2006
– volume: 31
  start-page: 238
  issue: 5
  year: 2018
  article-title: Sobre o significado da significância estatística
  publication-title: Acta Med Port
– volume: 7
  start-page: 5
  issue: 1
  year: 2017
  end-page: 19
  article-title: Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches
  publication-title: Dermatol Ther (Heidelb)
– volume: 35
  start-page: 481
  issue: 6
  year: 2011
  end-page: 491
  article-title: Automated prescreening of pigmented skin lesions using standard cameras
  publication-title: Comput Med Imaging Graph
– volume: 53
  start-page: 961
  issue: 10
  year: 2015
  end-page: 974
  article-title: Combination of 3D skin surface texture features and 2D ABCD features for improved melanoma diagnosis
  publication-title: Med Biol Eng Comput
– volume: 34
  start-page: 479
  issue: 6
  year: 2010
  end-page: 486
  article-title: An integrated and interactive decision support system for automated melanoma recognition of dermoscopic images
  publication-title: Comput Med Imaging Graph
– year: 2017
– volume: 88
  start-page: 50
  year: 2017
  end-page: 59
  article-title: Automatic discrimination of actinic keratoses from clinical photographs
  publication-title: Comput Biol Med
– ident: e_1_2_7_23_1
  doi: 10.1016/j.compmedimag.2015.02.011
– ident: e_1_2_7_15_1
  doi: 10.1016/j.eswa.2011.05.079
– ident: e_1_2_7_53_1
  doi: 10.1111/bjd.12550
– ident: e_1_2_7_29_1
  doi: 10.1109/FSKD.2016.7603521
– ident: e_1_2_7_16_1
  doi: 10.1504/IJBET.2016.075427
– ident: e_1_2_7_13_1
  doi: 10.1016/j.compmedimag.2009.10.003
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1600-0625.2011.01285.x
– ident: e_1_2_7_66_1
  doi: 10.1109/ICSMC.2012.6378186
– ident: e_1_2_7_63_1
  doi: 10.1016/j.compbiomed.2017.07.001
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-4632.2010.04474.x
– ident: e_1_2_7_75_1
  doi: 10.1007/s00521-012-0864-y
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1468-3083.2010.03834.x
– volume: 406
  year: 2010
  ident: e_1_2_7_69_1
  article-title: Decision support system for skin cancer diagnosis
  publication-title: Oper Res
– ident: e_1_2_7_38_1
  doi: 10.1109/INFOSCI.2016.7845307
– ident: e_1_2_7_62_1
  doi: 10.1016/j.eswa.2016.05.017
– ident: e_1_2_7_18_1
  doi: 10.1109/NER.2015.7146798
– ident: e_1_2_7_35_1
  doi: 10.1007/s13755-017-0033-x
– volume-title: In SPIE Sixth International Conference on Graphic and Image Processing (ICGIP 2014)
  year: 2015
  ident: e_1_2_7_34_1
– ident: e_1_2_7_39_1
  doi: 10.1142/S0219519410003514
– volume-title: Accuracy measures for the comparison of classifiers
  year: 2011
  ident: e_1_2_7_8_1
– ident: e_1_2_7_33_1
  doi: 10.1016/j.compmedimag.2007.01.003
– ident: e_1_2_7_65_1
  doi: 10.1007/978-3-642-21729-6_71
– ident: e_1_2_7_25_1
  doi: 10.3390/computers5030013
– start-page: 291
  volume-title: Advanced Machine Learning Technologies and Applications
  year: 2014
  ident: e_1_2_7_19_1
– ident: e_1_2_7_46_1
  doi: 10.1002/cncr.21910
– ident: e_1_2_7_50_1
  doi: 10.1080/08839514.2012.701450
– volume: 2016
  start-page: 1
  year: 2016
  ident: e_1_2_7_30_1
  article-title: Computer‐aided diagnosis of micro‐malignant melanoma lesions applying support vector machines
  publication-title: Biomed Res Int
  doi: 10.1155/2016/4381972
– ident: e_1_2_7_55_1
  doi: 10.1118/1.1538230
– ident: e_1_2_7_54_1
  doi: 10.1088/0031-9155/50/8/004
– ident: e_1_2_7_73_1
  doi: 10.1109/EMBC.2016.7590781
– ident: e_1_2_7_76_1
  doi: 10.1007/s11517-015-1281-z
– ident: e_1_2_7_24_1
  doi: 10.1109/TMI.2016.2633551
– volume: 86
  start-page: 77
  issue: 2
  year: 2017
  ident: e_1_2_7_9_1
  article-title: Machine learning in medicine
  publication-title: Univ West Ont Med J
– ident: e_1_2_7_72_1
  doi: 10.1016/j.compbiomed.2015.12.024
– volume: 6
  start-page: 1
  issue: 7
  year: 2009
  ident: e_1_2_7_11_1
  article-title: Preferred reporting items for systematic reviews and meta‐analyses: The PRISMA statement
  publication-title: PLoS ONE
– ident: e_1_2_7_10_1
  doi: 10.1371/journal.pmed.1000100
– ident: e_1_2_7_32_1
  doi: 10.1147/JRD.2017.2708299
– ident: e_1_2_7_70_1
  doi: 10.1016/j.compmedimag.2011.02.007
– volume-title: Ensemble approach for differentiation of malignant melanoma
  year: 2015
  ident: e_1_2_7_22_1
– ident: e_1_2_7_6_1
  doi: 10.1097/01.cco.0000152627.36243.26
– ident: e_1_2_7_77_1
  doi: 10.20344/amp.9375
– ident: e_1_2_7_36_1
  doi: 10.1109/IEMBS.2006.260056
– ident: e_1_2_7_40_1
  doi: 10.1109/ICCICCT.2014.6993162
– ident: e_1_2_7_64_1
  doi: 10.1109/IPAS.2016.7880148
– ident: e_1_2_7_56_1
  doi: 10.1111/srt.12008
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1600-0846.2012.00630.x
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jaad.2015.07.028
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1600-0846.2009.00361.x
– ident: e_1_2_7_74_1
  doi: 10.1109/TTHZ.2015.2485208
– volume-title: Multi‐classifier decision fusion for enhancing melanoma recognition accuracy
  year: 2017
  ident: e_1_2_7_61_1
– ident: e_1_2_7_68_1
  doi: 10.1109/ICIP.2016.7532837
– volume: 9693
  start-page: 169
  year: 2016
  ident: e_1_2_7_12_1
  article-title: Computational classification of melanocytic skin lesions
  publication-title: Artif Intell Soft Computing
– ident: e_1_2_7_59_1
  doi: 10.1109/EMBC.2016.7590959
– start-page: 1401
  volume-title: IFMBE Proceedings
  year: 2015
  ident: e_1_2_7_60_1
– volume: 14
  start-page: 169
  issue: 3
  year: 2017
  ident: e_1_2_7_20_1
  article-title: An intelligent system for the diagnosis of skin cancer on digital images taken with dermoscopy
  publication-title: Acta Polytechnica Hungarica
– ident: e_1_2_7_44_1
  doi: 10.1109/JBHI.2016.2637342
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1600-0846.2008.00303.x
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1600-0846.2012.00617.x
– ident: e_1_2_7_14_1
  doi: 10.1016/j.compmedimag.2016.05.002
– ident: e_1_2_7_45_1
  doi: 10.1109/42.918473
– ident: e_1_2_7_58_1
  doi: 10.1016/j.pdpdt.2017.03.014
– ident: e_1_2_7_31_1
  doi: 10.1002/ima.20261
– ident: e_1_2_7_52_1
  doi: 10.1186/1471-2342-14-36
– ident: e_1_2_7_28_1
  doi: 10.1063/1.4968145
– ident: e_1_2_7_26_1
  doi: 10.1109/TBME.2014.2365518
– volume: 16
  start-page: 135
  issue: 4
  year: 2016
  ident: e_1_2_7_27_1
  article-title: Classification of dermoscopic skin cancer images using color and hybrid texture features
  publication-title: IJCSNS Int J Comput Sci Netw Secur
– ident: e_1_2_7_71_1
  doi: 10.1016/j.jvcir.2016.06.014
– ident: e_1_2_7_37_1
  doi: 10.1109/ICRTIT.2016.7569538
– ident: e_1_2_7_7_1
  doi: 10.1016/S0933-3657(01)00077-X
– ident: e_1_2_7_4_1
  doi: 10.1007/s13555-016-0165-y
– ident: e_1_2_7_43_1
  doi: 10.1109/CCECE.2016.7726666
– volume: 67
  start-page: 729
  issue: 4
  year: 2003
  ident: e_1_2_7_5_1
  article-title: Benign skin tumors
  publication-title: Am Fam Physician
– ident: e_1_2_7_17_1
  doi: 10.1109/JSYST.2013.2271540
– ident: e_1_2_7_67_1
  doi: 10.1109/CIBEC.2008.4786081
– ident: e_1_2_7_2_1
  doi: 10.1007/978-1-4939-0437-2
– ident: e_1_2_7_51_1
  doi: 10.1016/j.cmpb.2016.09.012
SSID ssj0005913
Score 2.333207
SecondaryResourceType review_article
Snippet Background The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features...
The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the...
BackgroundThe use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 750
SubjectTerms Algorithms
Artificial Intelligence
Bibliographies
Cancer
Classification
Computer vision
Dermoscopy - methods
Diagnosis
Forecasting
Humans
Image analysis
Image classification
Image processing
image processing and computer vision
Information processing
Information retrieval
machine learning
Medical diagnosis
Medical imaging
Medical personnel
Melanoma
Microscopy - methods
Photography - methods
Physicians
Screening
Skin cancer
Skin Neoplasms - diagnosis
Spectrum Analysis - methods
Support vector machines
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDrQcgEILC7Qy0AOXrDZ-JLY4IQSileiBh7SHSpHtdaQVSxZtdoXg1zN2HjxbVb1EkTxOHM_rczyeAfiOED7hRvAo51pHaPB4pKSzkRUDa3RKrQin0s5-JadX_Gdf9OfgoDkLU-WHaH-4ec0I9toruDblMyUvJ9NuTNNQsTZmSVhOnT-ljhKqKo2seipKBe3XWYV8FE_b86UvegMwF-HDrLjV93d6NHqJXYPzOVmG382wq5iT6-5sarr24VVGx__8rhVYqkEpOayk6BPMuWIVFp-lKlyFhbN6E34NeihaxEclknFODn8Q6wH4MPc1tcmwIOU1XqwXpgkZ3qC5Kj_D1cnx5dFpVBdeiCyTkkWaSYM-i3GD2mykkHlsULdlnBrjtEqoklYOnNaW8YFWaFCV4drm1NKeRnfHvsB8MS7cBhCnc2lZnPvtQS4GqaIGuzCVKJeKvBd3YL9hQWbrrOS-OMYoa1YnOB9ZmI8O7Lakt1UqjveIths-ZrU2lhlFHxx7YIXNO20z6pHfHNGFG888DaMIRxFPdWC94n_7FoYYKVH-4XutQPxtCPuBv3-myC7OL8PN5r-TbsFHxGp1eNs2zE8nM_cV8dDUfAuC_wiGyALl
  priority: 102
  providerName: Wiley-Blackwell
Title The role of AI classifiers in skin cancer images
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12713
https://www.ncbi.nlm.nih.gov/pubmed/31106913
https://www.proquest.com/docview/2284135543
https://www.proquest.com/docview/2232083431
http://hdl.handle.net/10400.26/30128
UnpaywallVersion submittedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: OVEED
  dateStart: 19960201
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0909-752X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja-MwFH5kUpihh-kyW0obNDM99OLU1mbpGEpLO9BSOg2kJyMpMoRmnJKF0vn1fXLs0J1ejEHPsuy3fULS9wB2EcJLbgWPcm5MhAGPR1p5FzkxcNak1InyVNrpmTzu8T990W9AXVHwCb1AEkysQ-U-C3H0A6xIgYi7CSu9s_PuVUmjF-soFbQf5lUyLmlKZUUgFDbsTCezTkLThD1OO8-w5Cp8mhc35u7WjEaPYWqZZ47W4LA-rbPYXnLdmc9sx_1_Tt745iesw-cKaJLuwjI2oOGLTVh9QD-4CR9Pq4X1LxCjuZCw05CMc9I9IS6A6mEe6mSTYUGm13hxwUAmZPgPQ9D0K_SODi8PjqOqmELkmFIsMkxZzEOMW_RQq4TKE4v-qpLUWm-0pFo5NfDGOMYHRmOQ1JYbl1NHY4MpjH2DZjEu_A8g3uTKsSQPS35cDFJNLT7CtNQ-FXmctGCv_teZq5jGQ8GLUVbPOFAtWamWFvxait4s6DVeEtquFZZVHjbNKObVJIAlbP65bEbfCAsepvDjeZBhFCEmYqQWfF8oevkWhrhH6tD576Xm3xrCXmkTr0tkfy8uy5utd3W4Dc3ZZO53ENHMbBux_AVtV2Z9D39r78Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hJo3xABuMUeiYB3vgJVXjj8SWeEFoqGyUB1akvkyR7TpS1S5F_dC0_fWc8wUdG5p4iSLlnDj2_Xw_2-c7gE9I4SNuBA9SrnWAAx4PlHQ2sGJgjY6pFfmptO5V1LnhX_qivwIn1VmYIj5EveDmkZGP1x7gfkH6Acpn03krpLFPWfuCRzhP8ZTo-j54lFBFcmTVVkEsaL-MK-T9eOqiy9boEcVch7VFdqt__dTj8TJ7zc3P-SZ8rypeeJ2MWou5adnff8R0fO6fvYaNkpeS00KR3sCKy7Zg_UG0wi142S334behjdpFvGMimaTk9IJYz8GHqU-rTYYZmY3wYr0-TcnwB45Ys7dwc_65d9YJytwLgWVSskAzadBsMW4Q0EYKmYYG4S3D2BinVUSVtHLgtLaMD7TCMVUZrm1KLW1rtHhsB1azSeZ2gTidSsvC1O8QcjGIFTVYhKlIuVik7bABx1UfJLYMTO7zY4yTaoKC7ZHk7dGAw1r0tojG8TehZtWRSQnIWULRDIeeW-Hjj_VjhJLfH9GZmyy8DKPISJFSNeBdoQD1VxjSpEj5lx_VGvFUFY7zDv63RPLtupff7P2_6AdY6_S6l8nlxdXXfXiF1K30dmvC6ny6cO-RHs3NQY6CO8TfBwY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4hKtHyQAstZVta3OOBl6w2PhJb4gWVrjgKqihI-1JFtmNLK7bZ1R6qyq9nnAvopaovUaSME8eeb-ZLPJ4BeI8UPuFG8MhzrSM0eDxS0tnIitwanVIryl1pp2fJ4SU_HojBEuw1e2Gq_BDtD7eAjNJeB4C7Se7voHw2nXdjmoaStQ-4UDIE9B2c3yaPEqoqjqx6KkoFHdR5hUIcT9v0vjf6hWKuwsNFMdE_vuvR6D57Ld1P_zF8bTpeRZ1cdRdz07XXP-V0_N83ewJrNS8l-5UircOSKzZg9U62wg1YOa3X4Z9CD7WLhMBEMvZk_4jYwMGHPpTVJsOCzK7wYIM-TcnwG1qs2TO47H-8-HAY1bUXIsukZJFm0qDbYtwgoI0U0scG4S3j1BinVUKVtDJ3WlvGc63QpirDtfXU0p5Gj8c2YbkYF24LiNNeWhb7sELIRZ4qarAJU4lyqfC9uAO7zRxktk5MHupjjLLmAwXHIyvHowNvW9FJlY3jd0LbzURmNSBnGUU3HAduhZfftJcRSmF9RBduvAgyjCIjRUrVgeeVArRPYUiTEhVu_q7ViL91Ybec4D9LZF_OL8qTF_8uugMrnw_62aejs5OX8AiZWx3stg3L8-nCvUJ2NDevSxDcAGNdBoo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD50CWz0od16TWmHdnnoi1NbN0uPoaR0hZaxNZA9GUmRITR1Si6U9tf3yLFD7-zFGHQsyz63T0j6DsBPhPCSW8GjnBsTYcDjkVbeRU4MnDUpdaI8lXZ-IU97_Kwv-itQVxR8Ri-QBBNrU3nEQhz9AE0pEHE3oNm7-N35V9LoxTpKBe2HeZWMS5pSWREIhQ0708msndA0YU_TzgssuQqf5sWNubs1o9FTmFrmmZN16NandRbbS67a85ltu_uX5I3vfsJnWKuAJuksLOMLrPhiA1Yf0Q9uwMfzamF9E2I0FxJ2GpJxTjq_iAugepiHOtlkWJDpFV5cMJAJGV5jCJpuQe-ke3l8GlXFFCLHlGKRYcpiHmLcoodaJVSeWPRXlaTWeqMl1cqpgTfGMT4wGoOktty4nDoaG0xhbBsaxbjwu0C8yZVjSR6W_LgYpJpafIRpqX0q8jhpwWH9rzNXMY2HghejrJ5xoFqyUi0t-L4UvVnQa7wmtF8rLKs8bJpRzKtJAEvY_G3ZjL4RFjxM4cfzIMMoQkzESC3YWSh6-RaGuEfq0PmPpebfG8JhaRNvS2R__1yWN3v_1eE-NGaTuT9ARDOzXyuDfgDmZe7b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+AI+classifiers+in+skin+cancer+images&rft.jtitle=Skin+research+and+technology&rft.au=Magalhaes%2C+Carolina&rft.au=Mendes%2C+Joaquim&rft.au=Vardasca%2C+Ricardo&rft.date=2019-09-01&rft.issn=1600-0846&rft.eissn=1600-0846&rft.volume=25&rft.issue=5&rft.spage=750&rft_id=info:doi/10.1111%2Fsrt.12713&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon