Graph neural networks for image‐guided disease diagnosis: A review
Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regula...
Saved in:
| Published in | iRadiology (Online) Vol. 1; no. 2; pp. 151 - 166 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Beijing
John Wiley & Sons, Inc
01.06.2023
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2834-2879 2834-2860 2834-2879 |
| DOI | 10.1002/ird3.20 |
Cover
| Abstract | Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis.
Graph Neural Network (GNN)‐based algorithms have achieved promising results in the detection of various diseases, due to the ability of capturing the hidden spatial patterns in irregular structures, by aggregating the node features, edge features, and graph structure information. This paper systematically reviews common‐used GNN‐based algorithms for image‐based disease diagnosis, including general workflow, limitations and further directions. |
|---|---|
| AbstractList | Abstract Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis. Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis. Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis. Graph Neural Network (GNN)‐based algorithms have achieved promising results in the detection of various diseases, due to the ability of capturing the hidden spatial patterns in irregular structures, by aggregating the node features, edge features, and graph structure information. This paper systematically reviews common‐used GNN‐based algorithms for image‐based disease diagnosis, including general workflow, limitations and further directions. |
| Author | Zhang, Lin Zhao, Yan Wang, Xiuying Che, Tongtong Li, Shuyu |
| Author_xml | – sequence: 1 givenname: Lin orcidid: 0009-0004-5215-1721 surname: Zhang fullname: Zhang, Lin organization: The University of Sydney – sequence: 2 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: Beihang University – sequence: 3 givenname: Tongtong surname: Che fullname: Che, Tongtong organization: Beihang University – sequence: 4 givenname: Shuyu surname: Li fullname: Li, Shuyu organization: Beijing Normal University – sequence: 5 givenname: Xiuying orcidid: 0000-0001-7160-5929 surname: Wang fullname: Wang, Xiuying email: xiu.wang@sydney.edu.au organization: The University of Sydney |
| BookMark | eNp1kN9qFDEUh4NUsNbiKwx4oSBTTzLJJvGutFoXCkKp1-FscmbNOk7WZMZl73wEn9EncdYpUsRe_Q6Hj-_8ecqO-tQTY885nHEA8Sbm0JwJeMSOhWlkLYy2R_fqJ-y0lA0ANMBBanXMLq8ybj9XPY0ZuymGXcpfStWmXMWvuKZfP36uxxgoVCEWwkJT4rpPJZa31XmV6Xuk3TP2uMWu0OldnrBP79_dXnyorz9eLS_Or2vfGAO15cpzMH7hTfBk0C-EVCupEFTrSeqgUAMYs_JSr7y3UmruwQbd6KAV980JW87ekHDjtnnaMO9dwuj-NFJeO8xD9B250AYhsG1xJa0UyiJYgsChDZLsgtTkejW7xn6L-x123V8hB3d4pjs80wmY0Bczus3p20hlcJs05n661DVgp4WtgoOwnimfUymZWufjgENM_ZAxdv-xvvyHf3j-65ncxY72D2FueXPZTPRv6SKf_g |
| CitedBy_id | crossref_primary_10_1038_s41575_024_00900_9 crossref_primary_10_1049_ipr2_13102 crossref_primary_10_1007_s00415_024_12651_3 crossref_primary_10_1002_hbm_70008 crossref_primary_10_1016_j_compbiomed_2025_109874 crossref_primary_10_3390_app15010277 crossref_primary_10_3390_electronics13040746 crossref_primary_10_1007_s10278_024_01251_2 |
| Cites_doi | 10.1016/s1474-4422(13)70264-3 10.1609/aaai.v36i8.20871 10.1109/ICARCV50220.2020.9305487 10.1371/journal.pcbi.1002885 10.1109/EMBC48229.2022.9871118 10.1016/j.media.2020.101947 10.1109/tmi.2022.3202037 10.1109/IJCNN.2005.1555942 10.1016/j.inffus.2020.10.004 10.1007/978-3-031-16452-1_36 10.3389/fncom.2013.00169 10.1038/s41598-022-21491-y 10.3390/s21144758 10.1109/tnnls.2022.3154755 10.1109/tnnls.2021.3070843 10.1016/j.patter.2022.100657 10.1016/j.neuroimage.2021.118252 10.1140/epjds/s13688-017-0109-5 10.1016/j.patcog.2022.109031 10.1088/0031-9155/60/12/4893 10.1016/j.compbiomed.2021.104963 10.1109/tmi.2022.3222093 10.1016/j.bbadis.2016.01.015 10.1186/s41747-022-00312-x 10.1002/advs.202104538 10.1016/j.ejmech.2021.113320 10.1146/annurev-bioeng-071516-044442 10.1016/j.media.2021.102267 10.21037/tp.2019.09.09 10.1093/schbul/sbac047 10.1145/3219819.3219890 10.1109/tmi.2021.3049498 10.1002/acm2.13746 10.1016/j.compbiomed.2022.105823 10.1109/tmi.2018.2831261 10.1109/CVPR.2015.7298990 10.1016/j.aiopen.2021.01.001 10.1109/tmi.2022.3226575 10.1109/CISP-BMEI56279.2022.9980159 10.1093/cercor/bhac513 10.1007/s41109-019-0179-3 10.1007/978-3-030-20351-1_6 10.1016/j.artmed.2022.102382 10.1016/j.neuroimage.2017.12.052 10.1093/brain/aww194 10.1016/j.ipm.2020.102439 10.1109/jbhi.2021.3067333 10.1109/tpami.2021.3137605 10.1016/j.media.2018.11.006 10.1137/20m1355896 10.1016/j.patcog.2021.108113 10.1016/j.compbiomed.2022.105961 10.1109/tnnls.2020.2978386 10.1016/j.media.2018.06.001 10.1007/978-1-349-03521-2 10.1109/jbhi.2021.3109119 10.1109/jbhi.2021.3053568 10.1117/12.2549451 10.3390/math8050770 10.1016/j.neunet.2022.06.035 10.1016/j.patcog.2022.109106 10.1038/s41467-020-17419-7 10.3389/fninf.2021.802305 10.1136/jnnp-2016-314005 10.1109/EMBC.2016.7590913 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Tsinghua University Press. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Tsinghua University Press. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.1002/ird3.20 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2834-2879 |
| EndPage | 166 |
| ExternalDocumentID | oai_doaj_org_article_dfd22affab494259a09e0d10fd4e96e5 10.1002/ird3.20 10_1002_ird3_20 IRD320 |
| Genre | reviewArticle |
| GroupedDBID | 0R~ 24P ACCMX ADPDF AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN BENPR CCPQU EBS GROUPED_DOAJ M~E OVD PIMPY TEORI AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION EBC PHGZM PHGZT PUEGO WIN ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3880-915c108c6c8dce8ac6245b45a05fce47d5a70088bc47bcc94471c09d737d751c3 |
| IEDL.DBID | BENPR |
| ISSN | 2834-2879 2834-2860 |
| IngestDate | Fri Oct 03 12:52:04 EDT 2025 Tue Aug 19 21:35:25 EDT 2025 Sat Jul 26 02:43:29 EDT 2025 Wed Oct 01 05:08:15 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Jan 22 16:19:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3880-915c108c6c8dce8ac6245b45a05fce47d5a70088bc47bcc94471c09d737d751c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-5215-1721 0000-0001-7160-5929 |
| OpenAccessLink | https://www.proquest.com/docview/3090889505?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3090889505 |
| PQPubID | 6860397 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dfd22affab494259a09e0d10fd4e96e5 unpaywall_primary_10_1002_ird3_20 proquest_journals_3090889505 crossref_citationtrail_10_1002_ird3_20 crossref_primary_10_1002_ird3_20 wiley_primary_10_1002_ird3_20_IRD320 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing |
| PublicationTitle | iRadiology (Online) |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 69 2021; 25 2017; 6 2022; 132 2021; 26 2021; 21 2021; 67 2023; 4 2019; 52 2017; 88 2018; 169 2022; 23 1976 2021; 120 2020; 11 2013; 7 2018; 48 2013; 9 2020; 8 2020; 2 2020; 1 2021; 33 2021; 238 2023; 134 2023; 133 2020; 9 2014; 13 2022; 76 2022; 33 2021; 40 2018; 37 2022; 154 2019; 4 2021; 45 2022; 48 2005 2016; 1862 2022; 42 2020; 33 2020; 32 2021; 58 2015; 60 2022 2021 2020 2022; 6 2021; 139 2021; 216 2022; 9 2022; 12 2019 2018 2017 2022; 15 2017; 19 2016; 139 2016 2015 2014 2021; 63 2022; 148 Jia Z (e_1_2_13_34_1) 2020; 2 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_68_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_66_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_64_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_62_1 e_1_2_13_60_1 e_1_2_13_6_1 Hamilton W (e_1_2_13_19_1) 2017 e_1_2_13_13_1 e_1_2_13_59_1 e_1_2_13_15_1 Veličković P (e_1_2_13_18_1) 2018 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_11_1 e_1_2_13_53_1 e_1_2_13_76_1 Bessadok A (e_1_2_13_27_1) 2022 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_30_1 e_1_2_13_70_1 Wang X (e_1_2_13_67_1) 2022 e_1_2_13_4_1 e_1_2_13_2_1 You Y (e_1_2_13_36_1) 2020; 33 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 Gilmer J (e_1_2_13_35_1) 2017 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_75_1 Arya D (e_1_2_13_52_1) 2020 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_71_1 Ying Z (e_1_2_13_72_1) 2019 Bruna J (e_1_2_13_17_1) 2014 e_1_2_13_5_1 e_1_2_13_3_1 Yun S (e_1_2_13_29_1) 2019 e_1_2_13_28_1 |
| References_xml | – volume: 88 start-page: 132 issue: 2 year: 2017 end-page: 6 article-title: Brain lesion distribution criteria distinguish MS from AQP4‐antibody NMOSD and MOG‐antibody disease publication-title: J Neurol Neurosurg Psychiatry – volume: 23 issue: 12 year: 2022 article-title: Semi‐supervised classification of fundus images combined with CNN and GCN publication-title: J Appl Clin Med Phys – volume: 154 start-page: 56 year: 2022 end-page: 67 article-title: Deep reinforcement learning guided graph neural networks for brain network analysis publication-title: Neural Network – volume: 2 start-page: 187 year: 2020 end-page: 98 article-title: Improving the accuracy, scalability, and performance of graph neural networks with Roc publication-title: Proc Mach Learn Syst – year: 2005 – volume: 40 start-page: 1196 issue: 4 year: 2021 end-page: 206 article-title: Contrast‐attentive thoracic disease recognition with dual‐weighting graph reasoning publication-title: IEEE Trans Med Imag – volume: 42 start-page: 380 issue: 2 year: 2022 end-page: 90 article-title: Diagnosis of glioblastoma multiforme progression via interpretable structure‐constrained graph neural networks publication-title: IEEE Trans Med Imag – year: 2021 – volume: 52 start-page: 80 year: 2019 end-page: 96 article-title: Multimodal hyper‐connectivity of functional networks using functionally‐weighted LASSO for MCI classification publication-title: Med Image Anal – volume: 134 year: 2023 article-title: Multi‐scale enhanced graph convolutional network for mild cognitive impairment detection publication-title: Pattern Recogn – volume: 21 issue: 14 year: 2021 article-title: Graph‐based deep learning for medical diagnosis and analysis: past, present and future publication-title: Sensors – volume: 139 year: 2021 article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial‐constrained sparse functional brain networks publication-title: Comput Biol Med – volume: 13 start-page: 206 issue: 2 year: 2014 end-page: 16 article-title: Connectivity‐based approaches in stroke and recovery of function publication-title: Lancet Neurol – year: 2018 – year: 2014 – volume: 11 issue: 1 year: 2020 article-title: Improving the accuracy of medical diagnosis with causal machine learning publication-title: Nat Commun – volume: 48 start-page: 881 issue: 4 year: 2022 end-page: 92 article-title: Graph convolutional networks reveal network‐level functional dysconnectivity in schizophrenia publication-title: Schizophr Bull – volume: 37 start-page: 1537 issue: 7 year: 2018 end-page: 50 article-title: Connectivity in fMRI: blind spots and breakthroughs publication-title: IEEE Trans Med Imag – volume: 63 start-page: 435 issue: 3 year: 2021 end-page: 85 article-title: The why, how, and when of representations for complex systems publication-title: SIAM Rev – volume: 42 start-page: 557 issue: 2 year: 2022 end-page: 67 article-title: Structural attention graph neural network for diagnosis and prediction of COVID‐19 severity publication-title: IEEE Trans Med Imag – volume: 25 start-page: 1873 issue: 6 year: 2021 end-page: 80 article-title: Integration of CNN, CBMIR, and visualization techniques for diagnosis and quantification of covid‐19 disease publication-title: IEEE J Biomed Health Inform – year: 2022 – volume: 4 issue: 1 year: 2023 article-title: Topological data analysis of thoracic radiographic images shows improved radiomics‐based lung tumor histology prediction publication-title: Patterns (N Y) – volume: 12 issue: 1 year: 2022 article-title: On the limits of graph neural networks for the early diagnosis of Alzheimer's disease publication-title: Sci Rep – volume: 148 year: 2022 article-title: A multi‐channel deep convolutional neural network for multi‐classifying thyroid diseases publication-title: Comput Biol Med – volume: 9 start-page: S55 issue: Suppl 1 year: 2020 end-page: 65 article-title: Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation publication-title: Transl Pediatr – volume: 169 start-page: 431 year: 2018 end-page: 42 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: Neuroimage – volume: 9 issue: 12 year: 2022 article-title: Regional radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild cognitive impairment publication-title: Adv Sci – start-page: 1 year: 2022 end-page: 12 article-title: Adversarial learning based node‐edge graph attention networks for autism spectrum disorder identification publication-title: IEEE Transact Neural Networks Learn Syst – year: 1976 – year: 2019 – volume: 133 year: 2023 article-title: Transformed domain convolutional neural network for Alzheimer's disease diagnosis using structural MRI publication-title: Pattern Recogn – volume: 6 start-page: 1 year: 2017 end-page: 38 article-title: A roadmap for the computation of persistent homology publication-title: EPJ Data Sci – volume: 120 year: 2021 article-title: GGAC: multi‐relational image gated GCN with attention convolutional binary neural tree for identifying disease with chest X‐rays publication-title: Pattern Recogn – year: 2015 – start-page: 1 year: 2022 end-page: 14 – volume: 76 year: 2022 article-title: Dynamic topology analysis for spatial patterns of multifocal lesions on MRI publication-title: Med Image Anal – volume: 33 start-page: 6407 issue: 10 year: 2022 end-page: 19 article-title: Brain functional activity‐based classification of autism spectrum disorder using an attention‐based graph neural network combined with gene expression publication-title: Cerebr Cortex – volume: 25 start-page: 3141 issue: 8 year: 2021 end-page: 52 article-title: Auto‐metric graph neural network based on a meta‐learning strategy for the diagnosis of Alzheimer's disease publication-title: IEEE J Biomed Health Inform – volume: 8 issue: 5 year: 2020 article-title: Towards personalized diagnosis of glioblastoma in fluid‐attenuated inversion recovery (FLAIR) by topological interpretable machine learning publication-title: Mathematics – volume: 45 start-page: 1 issue: 1 year: 2021 end-page: 26 article-title: A comprehensive survey of scene graphs: generation and application publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 9 issue: 1 year: 2013 article-title: The human functional brain network demonstrates structural and dynamical resilience to targeted attack publication-title: PLoS Comput Biol – volume: 4 start-page: 1 issue: 1 year: 2019 end-page: 28 article-title: Persistence homology of networks: methods and applications publication-title: Appl Netw Sci – volume: 60 start-page: 4893 issue: 12 year: 2015 end-page: 914 article-title: Topology polymorphism graph for lung tumor segmentation in PET‐CT images publication-title: Phys Med Biol – volume: 42 start-page: 456 issue: 2 year: 2022 end-page: 66 article-title: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation publication-title: IEEE Trans Med Imag – volume: 58 issue: 2 year: 2021 article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network publication-title: Inf Process Manag – year: 2016 – volume: 15 year: 2022 article-title: Multi‐scale graph representation learning for autism identification with functional MRI publication-title: Front Neuroinf – volume: 6 start-page: 1 issue: 1 year: 2022 end-page: 9 article-title: Algebraic topology‐based machine learning using MRI predicts outcomes in primary sclerosing cholangitis publication-title: Eur Radiol Exp – volume: 238 year: 2021 article-title: Decomposition of individual‐specific and individual‐shared components from resting‐state functional connectivity using a multi‐task machine learning method publication-title: Neuroimage – volume: 48 start-page: 117 year: 2018 end-page: 30 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease publication-title: Med Image Anal – volume: 148 year: 2022 article-title: MAMF‐GCN: multi‐scale adaptive multi‐channel fusion deep graph convolutional network for predicting mental disorder publication-title: Comput Biol Med – volume: 132 year: 2022 article-title: CheXGAT: a disease correlation‐aware network for thorax disease diagnosis from chest X‐ray images publication-title: Artif Intell Med – volume: 33 start-page: 5812 year: 2020 end-page: 23 article-title: Graph contrastive learning with augmentations publication-title: Adv Neural Inf Process Syst – volume: 216 year: 2021 article-title: Alzheimer's disease and its treatment by different approaches: a review publication-title: Eur J Med Chem – volume: 7 year: 2013 article-title: Defining nodes in complex brain networks publication-title: Front Comput Neurosci – volume: 1 start-page: 57 year: 2020 end-page: 81 article-title: Graph neural networks: a review of methods and applications publication-title: AI open – year: 2020 – volume: 33 start-page: 494 issue: 2 year: 2021 end-page: 514 article-title: A survey on knowledge graphs: representation, acquisition, and applications publication-title: IEEE Transact Neural Networks Learn Syst – volume: 19 start-page: 221 issue: 1 year: 2017 end-page: 48 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng – year: 2017 – volume: 1862 start-page: 915 issue: 5 year: 2016 end-page: 25 article-title: Stroke injury, cognitive impairment and vascular dementia publication-title: Biochim Biophys Acta Mol Basis Dis – volume: 26 start-page: 1196 issue: 3 year: 2021 end-page: 207 article-title: Deep attention and graphical neural network for multiple sclerosis lesion segmentation from MR imaging sequences publication-title: IEEE J Biomed Health Inform – volume: 32 start-page: 4 issue: 1 year: 2020 end-page: 24 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transact Neural Networks Learn Syst – volume: 139 start-page: 3063 issue: Pt 12 year: 2016 end-page: 83 article-title: Brain networks under attack: robustness properties and the impact of lesions publication-title: Brain – volume: 69 year: 2021 article-title: Graph convolution network with similarity awareness and adaptive calibration for disease‐induced deterioration prediction publication-title: Med Image Anal – volume: 67 start-page: 208 year: 2021 end-page: 29 article-title: Covid‐19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network publication-title: Inf Fusion – ident: e_1_2_13_10_1 doi: 10.1016/s1474-4422(13)70264-3 – ident: e_1_2_13_30_1 doi: 10.1609/aaai.v36i8.20871 – ident: e_1_2_13_13_1 doi: 10.1109/ICARCV50220.2020.9305487 – ident: e_1_2_13_8_1 doi: 10.1371/journal.pcbi.1002885 – ident: e_1_2_13_63_1 doi: 10.1109/EMBC48229.2022.9871118 – ident: e_1_2_13_37_1 doi: 10.1016/j.media.2020.101947 – ident: e_1_2_13_56_1 doi: 10.1109/tmi.2022.3202037 – ident: e_1_2_13_31_1 doi: 10.1109/IJCNN.2005.1555942 – ident: e_1_2_13_55_1 doi: 10.1016/j.inffus.2020.10.004 – ident: e_1_2_13_21_1 doi: 10.1007/978-3-031-16452-1_36 – ident: e_1_2_13_39_1 doi: 10.3389/fncom.2013.00169 – ident: e_1_2_13_61_1 doi: 10.1038/s41598-022-21491-y – ident: e_1_2_13_16_1 doi: 10.3390/s21144758 – ident: e_1_2_13_59_1 doi: 10.1109/tnnls.2022.3154755 – ident: e_1_2_13_79_1 doi: 10.1109/tnnls.2021.3070843 – ident: e_1_2_13_6_1 doi: 10.1016/j.patter.2022.100657 – volume-title: International conference on learning representations (ICLR2014) year: 2014 ident: e_1_2_13_17_1 – ident: e_1_2_13_43_1 doi: 10.1016/j.neuroimage.2021.118252 – ident: e_1_2_13_78_1 doi: 10.1140/epjds/s13688-017-0109-5 – volume: 2 start-page: 187 year: 2020 ident: e_1_2_13_34_1 article-title: Improving the accuracy, scalability, and performance of graph neural networks with Roc publication-title: Proc Mach Learn Syst – ident: e_1_2_13_68_1 doi: 10.1016/j.patcog.2022.109031 – ident: e_1_2_13_14_1 doi: 10.1088/0031-9155/60/12/4893 – ident: e_1_2_13_44_1 doi: 10.1016/j.compbiomed.2021.104963 – ident: e_1_2_13_62_1 doi: 10.1109/tmi.2022.3222093 – ident: e_1_2_13_46_1 doi: 10.1016/j.bbadis.2016.01.015 – ident: e_1_2_13_74_1 doi: 10.1186/s41747-022-00312-x – ident: e_1_2_13_41_1 doi: 10.1002/advs.202104538 – ident: e_1_2_13_60_1 doi: 10.1016/j.ejmech.2021.113320 – ident: e_1_2_13_3_1 doi: 10.1146/annurev-bioeng-071516-044442 – ident: e_1_2_13_5_1 doi: 10.1016/j.media.2021.102267 – volume: 33 start-page: 5812 year: 2020 ident: e_1_2_13_36_1 article-title: Graph contrastive learning with augmentations publication-title: Adv Neural Inf Process Syst – ident: e_1_2_13_51_1 doi: 10.21037/tp.2019.09.09 – ident: e_1_2_13_65_1 doi: 10.1093/schbul/sbac047 – ident: e_1_2_13_33_1 doi: 10.1145/3219819.3219890 – ident: e_1_2_13_71_1 – volume-title: International conference on learning representations (ICLR) year: 2018 ident: e_1_2_13_18_1 – ident: e_1_2_13_23_1 doi: 10.1109/tmi.2021.3049498 – ident: e_1_2_13_7_1 doi: 10.1002/acm2.13746 – ident: e_1_2_13_47_1 – ident: e_1_2_13_20_1 doi: 10.1016/j.compbiomed.2022.105823 – ident: e_1_2_13_76_1 doi: 10.1109/tmi.2018.2831261 – ident: e_1_2_13_80_1 doi: 10.1109/CVPR.2015.7298990 – ident: e_1_2_13_32_1 doi: 10.1016/j.aiopen.2021.01.001 – ident: e_1_2_13_66_1 doi: 10.1109/tmi.2022.3226575 – ident: e_1_2_13_40_1 doi: 10.1109/CISP-BMEI56279.2022.9980159 – ident: e_1_2_13_45_1 doi: 10.1093/cercor/bhac513 – ident: e_1_2_13_49_1 doi: 10.1007/s41109-019-0179-3 – ident: e_1_2_13_28_1 doi: 10.1007/978-3-030-20351-1_6 – ident: e_1_2_13_22_1 doi: 10.1016/j.artmed.2022.102382 – ident: e_1_2_13_38_1 doi: 10.1016/j.neuroimage.2017.12.052 – ident: e_1_2_13_9_1 doi: 10.1093/brain/aww194 – ident: e_1_2_13_64_1 doi: 10.1016/j.ipm.2020.102439 – ident: e_1_2_13_70_1 doi: 10.1109/jbhi.2021.3067333 – ident: e_1_2_13_24_1 doi: 10.1109/tpami.2021.3137605 – ident: e_1_2_13_77_1 doi: 10.1016/j.media.2018.11.006 – ident: e_1_2_13_25_1 doi: 10.1137/20m1355896 – volume-title: International conference on machine learning year: 2017 ident: e_1_2_13_35_1 – ident: e_1_2_13_54_1 doi: 10.1016/j.patcog.2021.108113 – ident: e_1_2_13_69_1 doi: 10.1016/j.compbiomed.2022.105961 – ident: e_1_2_13_26_1 doi: 10.1109/tnnls.2020.2978386 – ident: e_1_2_13_11_1 doi: 10.1016/j.media.2018.06.001 – ident: e_1_2_13_12_1 doi: 10.1007/978-1-349-03521-2 – ident: e_1_2_13_48_1 doi: 10.1109/jbhi.2021.3109119 – ident: e_1_2_13_73_1 – ident: e_1_2_13_50_1 doi: 10.1109/jbhi.2021.3053568 – start-page: 1 volume-title: An evolving graph convolutional network for dynamic functional brain network year: 2022 ident: e_1_2_13_67_1 – volume-title: Advances in neural information processing systems year: 2019 ident: e_1_2_13_72_1 – volume-title: Graph neural networks in network neuroscience year: 2022 ident: e_1_2_13_27_1 – ident: e_1_2_13_57_1 doi: 10.1117/12.2549451 – volume-title: Proceedings of NeurIPS year: 2019 ident: e_1_2_13_29_1 – ident: e_1_2_13_75_1 doi: 10.3390/math8050770 – ident: e_1_2_13_53_1 doi: 10.1016/j.neunet.2022.06.035 – ident: e_1_2_13_42_1 doi: 10.1016/j.patcog.2022.109106 – volume-title: Medical imaging with deep learning year: 2020 ident: e_1_2_13_52_1 – ident: e_1_2_13_2_1 doi: 10.1038/s41467-020-17419-7 – volume-title: Advances in neural information processing systems year: 2017 ident: e_1_2_13_19_1 – ident: e_1_2_13_58_1 doi: 10.3389/fninf.2021.802305 – ident: e_1_2_13_4_1 doi: 10.1136/jnnp-2016-314005 – ident: e_1_2_13_15_1 doi: 10.1109/EMBC.2016.7590913 |
| SSID | ssj0003010475 |
| Score | 2.3115108 |
| SecondaryResourceType | review_article |
| Snippet | Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided... Abstract Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 151 |
| SubjectTerms | Algorithms Alzheimer's disease Brain research Deep learning Disease disease diagnosis graph neural networks Graph representations Medical diagnosis medical imaging Multiple sclerosis Neural networks review |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LSgMxFIaDuNGNKCpWq0Qo7kaTTDJJ3Hm_gC5EwV3IJBmp1LG0FnHnI_iMPom5TEtFxI2rgUkW4Zwk58_MyXcA6LBQEMnHhazgjmXUn90yKa3JhGU4fGfgMiKFrq6L8zt6ec_up0p9hZywhAdOhtuzlSVEV5UuqfTzS2okHbIYVZY6WbhIL0VCTh2mHpPORzRSdn34pBkRBUo3ZgNxdK87sPluqPA9FYoisf-bzJwb1X399qp7ve_CNUae00Ww0EhGeJCGugRmXL0Mjs8CaRoGHKVvq1My9xB6CQq7T36P-Hz_eBh1rbOw-QXjnzGprjvchwcw3VhZAXenJ7dH51lTESEzAdridyZmMBKmMMIaJ7QpCGUlZRqxyjjKLdPcB3VRGspLYyT1occgaXnOLWfY5Ktgtn6u3RqApCg5tl5hOVz6bkRoJk2JKyykwYUWLbAzNo4yDS48VK3oqQQ6JipYURHUAnDSsZ8IGT-7HAbrTpoD0jq-8I5WjaPVX45ugfbYN6pZZ0OVo5in5WVcC2xP_PX7ODrRj7-1q4ub45yg9f8Y7gaYD5XpU1ZZG8y-DEZu0-uXl3IrTtUvsvDsPA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA66ffBJKyqutBKh-DZ1kkkmSd_W1loFi4gL9SnkNmXpOl32guiTP8Hf2F_Sk0sXVymITzNMMkMmyTnnS3LOdxDa4zEhEtiFqhWBVwzWbpVS3lXScxL3GYRKlEIfTtuTMXt_xs-Kb06Mhcn8EOsNtygZSV9HAZ_5Luv5crpPX03mvoE13l201XKA4gO0NT79OPoSE8rJhlVUpijhci9UDpr9_c0Na5RI-zeQ5r1VPzPfv5npdBO7JuNz_CBnWF0kzsLoc3Kxv1rafffjD0bH__6vbXS_wFI8yvPoIboT-kfo6G1ks8aR8hLK-uwwvsAAc_HkK-ihq5-_zlcTHzwuxzxwTY57k8UBHuEcFfMYjY_ffD48qUrWhcpFYhjQftyRWrrWSe-CNK6ljFvGTc07F5jw3AgADtI6JqxzioF5c7XyohFecOKaJ2jQX_bhKcK0tYJ4QHGBWKhGpeHKWdIRqRxpjRyilze9r12hJI-ZMaY6kylTHTtC03qI8LriLLNw_F3ldRy-dXGkzU4PLufnukihho6m1HSdsUyBslIGmlZ7UneeBdUGPkQ7N4OviywvdFMnXzCAikP0Yj0hbm_HXhrd28r1u09HDa2f_cOndtBgOV-FXUA9S_u8zO1rhToDMw priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-DnoRRcX1RQTxVmzSpGm8-X6AIqLgLeRVWVi7susi3vwJ_kZ_iZO0VhcRPBWaCYRMZuZLMvkGoW0eCiJBXEhy4XnCYO-WSOlsUjhOwjmDkJFS6PIqP7tjF_f8_kepr5ofoj1wC5YR_XUwcG2Gu9-kod2By2B_N4mmCaCYsLgpu26PV7LIOxMSGCF-sgT2BbJ-Mht67zZ9x2JRpOwfw5kzo-pJv77oXm8cucbQczKP5hrMiPdrJS-gCV8toqPTQDWNAx8ltFV1NvcQAwbF3UdwEh9v7w-jrvMON3cw8I1Zdd3hHt7H9ZOVJXR3cnx7eJY0JRESG1hbwDVxS9LC5rZw1hfa5pRxw7hOeWk9E45rAVG9MJYJY61kEHtsKp3IhBOc2GwZTVX9yq8gTHMjiAOI5YkBMVpoLq0hJSmkJbkuOmjna3KUbfjCQ9mKnqqZjqkKs6ho2kG4FXyqKTJ-ixyE2W2bA6d1_NEfPKjGRJQrHaW6LLVhEjyJ1DC01JG0dMzL3PMOWv_SjWoMbaiyNCZqAY7roK1WX3-PYzvq8a92dX5zlNF09X9ia2g2FJ-vE8fW0dTzYOQ3AKI8m824GD8BkCbhRg priority: 102 providerName: Wiley-Blackwell |
| Title | Graph neural networks for image‐guided disease diagnosis: A review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fird3.20 https://www.proquest.com/docview/3090889505 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ird3.20 https://doaj.org/article/dfd22affab494259a09e0d10fd4e96e5 |
| UnpaywallVersion | publishedVersion |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2834-2879 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003010475 issn: 2834-2860 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2834-2879 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003010475 issn: 2834-2860 databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2834-2879 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003010475 issn: 2834-2860 databaseCode: BENPR dateStart: 20230301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2834-2879 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003010475 issn: 2834-2860 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3RahQxFA3t9kFfRFFxa10iFN_GJplkkggiW7u1Cl2W4kJ9CpkkUxbW2XW3i_gifoLf6JeYm5lZLVJfZiAJzJCb3HOT3JyD0KEAQaSIC1khg8h4XLtlWnuXKS8o7DNInSiFzsfF2ZR_uBSXO2jc3YWBtMrOJyZH7RcO9siPcpIyciJgv1l-yUA1Ck5XOwkN20or-NeJYmwX7TFgxuqhvePReHKx3XXJEx0N5DVGWOUZUwVpbtICE-nRbOXzl6D8_RdEJSb_G-HnnU29tN--2vn8ZkCbEOn0PrrXhpJ42Nj-AdoJ9UN08g4YqDHQVMa6uknyXuMYmuLZ5-g7fv34ebWZ-eBxezQT3ynZbrZ-hYe4ucnyCE1PRx_fnmWtUkLmgMwleizhKFGucMq7oKwrGBclF5aIygUuvbAygr0qHZelc5pHSHJEe5lLLwV1-WPUqxd1eIIwK0pJfYy8Ai1jM6as0K6kFVXa0cKqPnrRdY5xLY04qFnMTUOAzAz0omGkj_C24bJhzvi3yTH07rYaqK5TwWJ1ZdqZY3zlGbNVZUuuo4PRNv4a8ZRUngddBNFHB51tTDv_1ubPaOmj51t73f4fh8mOt9Wb9xcnOSP7___SU3QXtOibPLID1LtebcKzGLFclwO0y_hk0A7GQVr3x-f591Esm44nw0-_AfOn7bo |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dThQxFG4QLvDGaNS4CloT9G5kptNOWxNiwAV3BTaGQMJd7bQdssk6u-yyIdz5CD6RD-OTeNrpLBCDd1xNMm1mmp6en7bnfB9CG8wTIoFfSAruWEJh75ZIaU0iLMv8OQOXAVLocFD0TujXU3a6hH63tTA-rbK1icFQ27HxZ-SbeRoycsBhf5qcJ541yt-uthQaOlIr2K0AMRYLO_bd1SVs4WZb_S7I-x0he7vHn3tJZBlIjAdCAW1nJkuFKYywxgltCkJZSZlOWWUc5ZZpDo5SlIby0hhJwZybVFqec8tZZnL47gO0QnMqYfO3srM7-Ha0OOXJA_yNz6MEN04TIoq0qdz1yKebw6nNP3im8RsuMTAH3Ap3V-f1RF9d6tHodgAdPODeY_Qohq54u1lrT9CSq5-i7hePeI09LCa01U1S-QxDKIyHP8BW_fn562w-tM7ieBUEz5DcN5x9xNu4qZx5hk7uZc6eo-V6XLsXCJOi5JmFSM9lJXQjQjNpyqzKhDRZoUUHvW8nR5kIW-7ZM0aqAVwmys-iImkH4UXHSYPU8W-XHT-7i2YPrR1ejKdnKmqqspUlRFeVLqkEgyY1DC21WVpZ6mThWAettbJRUd9n6np1dtDbhbzuHsdGkONd7ap_1M1J-vL_f3qDVnvHhwfqoD_Yf4UeEoi-mhy2NbR8MZ27dYiWLsrXcUli9P2-teAvLColaA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS8MwEA86QX0RRcXp1AjiW7Fpk6bxTZ3zv4go-BbSJB2DWcfmEN_8CH5GP4mXtFaGCD4VmguEXO_ul_TudwjtMtcQCeJCkHDLAgpnt0AIo4PUMOLuGbjwlELXN8nZA714ZI9VVqWrhSn5IeoLN2cZ3l87A7cDk-__sIb2hiaGA940mqEM4qBjdaa39f1K7IlnXAYjBFAawMFAlDWzbvZ-NXciGHnO_gmgOTcuBurtVfX7k9DVx57OIlqoQCM-LLW8hKZssYzap45rGjtCShgrynTuEQYQintP4CU-3z-6456xBlc_YeDp0-p6owN8iMualRX00Dm5Pz4Lqp4IgXa0LeCbmCZhqhOdGm1TpZOIsowyFbJcW8oNUxzCepppyjOtBYXgo0NheMwNZ0THq6hRPBd2DeEoyTgxgLEsyUAsShUTOiM5SYUmiUqbaO97c6SuCMNd34q-LKmOI-l2UUZhE-FacFByZPwWOXK7Ww87Umv_4nnYlZWNSJObKFJ5rjIqwJUIBUsLDQlzQ61ILGui1rduZGVpIxmHPlMLgFwT7dT6-nsdu16Pf43L87t2HIXr_xPbRrO37Y68Or-53EDzrhF9mUTWQo2X4dhuAlx5ybb8d_kFnFHkQQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA66ffBJKyqutBKh-DZ1kkkmSd_W1loFi4gL9SnkNmXpOl32guiTP8Hf2F_Sk0sXVymITzNMMkMmyTnnS3LOdxDa4zEhEtiFqhWBVwzWbpVS3lXScxL3GYRKlEIfTtuTMXt_xs-Kb06Mhcn8EOsNtygZSV9HAZ_5Luv5crpPX03mvoE13l201XKA4gO0NT79OPoSE8rJhlVUpijhci9UDpr9_c0Na5RI-zeQ5r1VPzPfv5npdBO7JuNz_CBnWF0kzsLoc3Kxv1rafffjD0bH__6vbXS_wFI8yvPoIboT-kfo6G1ks8aR8hLK-uwwvsAAc_HkK-ihq5-_zlcTHzwuxzxwTY57k8UBHuEcFfMYjY_ffD48qUrWhcpFYhjQftyRWrrWSe-CNK6ljFvGTc07F5jw3AgADtI6JqxzioF5c7XyohFecOKaJ2jQX_bhKcK0tYJ4QHGBWKhGpeHKWdIRqRxpjRyilze9r12hJI-ZMaY6kylTHTtC03qI8LriLLNw_F3ldRy-dXGkzU4PLufnukihho6m1HSdsUyBslIGmlZ7UneeBdUGPkQ7N4OviywvdFMnXzCAikP0Yj0hbm_HXhrd28r1u09HDa2f_cOndtBgOV-FXUA9S_u8zO1rhToDMw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+networks+for+image%E2%80%90guided+disease+diagnosis%3A+A+review&rft.jtitle=iRadiology+%28Online%29&rft.au=Zhang%2C+Lin&rft.au=Zhao%2C+Yan&rft.au=Che%2C+Tongtong&rft.au=Li%2C+Shuyu&rft.date=2023-06-01&rft.issn=2834-2860&rft.eissn=2834-2879&rft.volume=1&rft.issue=2&rft.spage=151&rft.epage=166&rft_id=info:doi/10.1002%2Fird3.20&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ird3_20 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2834-2879&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2834-2879&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2834-2879&client=summon |