Graph neural networks for image‐guided disease diagnosis: A review

Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regula...

Full description

Saved in:
Bibliographic Details
Published iniRadiology (Online) Vol. 1; no. 2; pp. 151 - 166
Main Authors Zhang, Lin, Zhao, Yan, Che, Tongtong, Li, Shuyu, Wang, Xiuying
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects
Online AccessGet full text
ISSN2834-2879
2834-2860
2834-2879
DOI10.1002/ird3.20

Cover

Abstract Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis. Graph Neural Network (GNN)‐based algorithms have achieved promising results in the detection of various diseases, due to the ability of capturing the hidden spatial patterns in irregular structures, by aggregating the node features, edge features, and graph structure information. This paper systematically reviews common‐used GNN‐based algorithms for image‐based disease diagnosis, including general workflow, limitations and further directions.
AbstractList Abstract Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis.
Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis.
Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided automatic disease diagnosis. Most of the methods have harnessed conventional convolutional neural networks, which are directly applied in the regular image domain. However, some irregular spatial patterns revealed in medical images are also critical to disease diagnosis, since they can describe latent relations in different image regions of a subject (e.g., different focal lesions in an image) or between different groups (e.g., Alzheimer's disease and healthy control). Therefore, how to exploit and analyze irregular spatial patterns and their relations has become a research challenge in the field of image‐guided disease diagnosis. To address this challenge, graph neural networks (GNNs) are proposed to perform the convolution operation on graphs. Graphs can naturally represent irregular spatial structures. Because of their ability to aggregate node features, edge features, and graph structure information to capture and learn hidden spatial patterns in irregular structures, GNN‐based algorithms have achieved promising results in the detection of various diseases. In this paper, we introduce commonly used GNN‐based algorithms and systematically review their applications to disease diagnosis. We summarize the workflow of GNN‐based applications in disease diagnosis, ranging from localizing the regions of interest and edge construction to modeling. Furthermore, we discuss the limitations and outline potential research directions for GNNs in disease diagnosis. Graph Neural Network (GNN)‐based algorithms have achieved promising results in the detection of various diseases, due to the ability of capturing the hidden spatial patterns in irregular structures, by aggregating the node features, edge features, and graph structure information. This paper systematically reviews common‐used GNN‐based algorithms for image‐based disease diagnosis, including general workflow, limitations and further directions.
Author Zhang, Lin
Zhao, Yan
Wang, Xiuying
Che, Tongtong
Li, Shuyu
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0009-0004-5215-1721
  surname: Zhang
  fullname: Zhang, Lin
  organization: The University of Sydney
– sequence: 2
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  organization: Beihang University
– sequence: 3
  givenname: Tongtong
  surname: Che
  fullname: Che, Tongtong
  organization: Beihang University
– sequence: 4
  givenname: Shuyu
  surname: Li
  fullname: Li, Shuyu
  organization: Beijing Normal University
– sequence: 5
  givenname: Xiuying
  orcidid: 0000-0001-7160-5929
  surname: Wang
  fullname: Wang, Xiuying
  email: xiu.wang@sydney.edu.au
  organization: The University of Sydney
BookMark eNp1kN9qFDEUh4NUsNbiKwx4oSBTTzLJJvGutFoXCkKp1-FscmbNOk7WZMZl73wEn9EncdYpUsRe_Q6Hj-_8ecqO-tQTY885nHEA8Sbm0JwJeMSOhWlkLYy2R_fqJ-y0lA0ANMBBanXMLq8ybj9XPY0ZuymGXcpfStWmXMWvuKZfP36uxxgoVCEWwkJT4rpPJZa31XmV6Xuk3TP2uMWu0OldnrBP79_dXnyorz9eLS_Or2vfGAO15cpzMH7hTfBk0C-EVCupEFTrSeqgUAMYs_JSr7y3UmruwQbd6KAV980JW87ekHDjtnnaMO9dwuj-NFJeO8xD9B250AYhsG1xJa0UyiJYgsChDZLsgtTkejW7xn6L-x123V8hB3d4pjs80wmY0Bczus3p20hlcJs05n661DVgp4WtgoOwnimfUymZWufjgENM_ZAxdv-xvvyHf3j-65ncxY72D2FueXPZTPRv6SKf_g
CitedBy_id crossref_primary_10_1038_s41575_024_00900_9
crossref_primary_10_1049_ipr2_13102
crossref_primary_10_1007_s00415_024_12651_3
crossref_primary_10_1002_hbm_70008
crossref_primary_10_1016_j_compbiomed_2025_109874
crossref_primary_10_3390_app15010277
crossref_primary_10_3390_electronics13040746
crossref_primary_10_1007_s10278_024_01251_2
Cites_doi 10.1016/s1474-4422(13)70264-3
10.1609/aaai.v36i8.20871
10.1109/ICARCV50220.2020.9305487
10.1371/journal.pcbi.1002885
10.1109/EMBC48229.2022.9871118
10.1016/j.media.2020.101947
10.1109/tmi.2022.3202037
10.1109/IJCNN.2005.1555942
10.1016/j.inffus.2020.10.004
10.1007/978-3-031-16452-1_36
10.3389/fncom.2013.00169
10.1038/s41598-022-21491-y
10.3390/s21144758
10.1109/tnnls.2022.3154755
10.1109/tnnls.2021.3070843
10.1016/j.patter.2022.100657
10.1016/j.neuroimage.2021.118252
10.1140/epjds/s13688-017-0109-5
10.1016/j.patcog.2022.109031
10.1088/0031-9155/60/12/4893
10.1016/j.compbiomed.2021.104963
10.1109/tmi.2022.3222093
10.1016/j.bbadis.2016.01.015
10.1186/s41747-022-00312-x
10.1002/advs.202104538
10.1016/j.ejmech.2021.113320
10.1146/annurev-bioeng-071516-044442
10.1016/j.media.2021.102267
10.21037/tp.2019.09.09
10.1093/schbul/sbac047
10.1145/3219819.3219890
10.1109/tmi.2021.3049498
10.1002/acm2.13746
10.1016/j.compbiomed.2022.105823
10.1109/tmi.2018.2831261
10.1109/CVPR.2015.7298990
10.1016/j.aiopen.2021.01.001
10.1109/tmi.2022.3226575
10.1109/CISP-BMEI56279.2022.9980159
10.1093/cercor/bhac513
10.1007/s41109-019-0179-3
10.1007/978-3-030-20351-1_6
10.1016/j.artmed.2022.102382
10.1016/j.neuroimage.2017.12.052
10.1093/brain/aww194
10.1016/j.ipm.2020.102439
10.1109/jbhi.2021.3067333
10.1109/tpami.2021.3137605
10.1016/j.media.2018.11.006
10.1137/20m1355896
10.1016/j.patcog.2021.108113
10.1016/j.compbiomed.2022.105961
10.1109/tnnls.2020.2978386
10.1016/j.media.2018.06.001
10.1007/978-1-349-03521-2
10.1109/jbhi.2021.3109119
10.1109/jbhi.2021.3053568
10.1117/12.2549451
10.3390/math8050770
10.1016/j.neunet.2022.06.035
10.1016/j.patcog.2022.109106
10.1038/s41467-020-17419-7
10.3389/fninf.2021.802305
10.1136/jnnp-2016-314005
10.1109/EMBC.2016.7590913
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Tsinghua University Press.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Tsinghua University Press.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1002/ird3.20
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2834-2879
EndPage 166
ExternalDocumentID oai_doaj_org_article_dfd22affab494259a09e0d10fd4e96e5
10.1002/ird3.20
10_1002_ird3_20
IRD320
Genre reviewArticle
GroupedDBID 0R~
24P
ACCMX
ADPDF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
EBS
GROUPED_DOAJ
M~E
OVD
PIMPY
TEORI
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
EBC
PHGZM
PHGZT
PUEGO
WIN
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c3880-915c108c6c8dce8ac6245b45a05fce47d5a70088bc47bcc94471c09d737d751c3
IEDL.DBID BENPR
ISSN 2834-2879
2834-2860
IngestDate Fri Oct 03 12:52:04 EDT 2025
Tue Aug 19 21:35:25 EDT 2025
Sat Jul 26 02:43:29 EDT 2025
Wed Oct 01 05:08:15 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Jan 22 16:19:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-915c108c6c8dce8ac6245b45a05fce47d5a70088bc47bcc94471c09d737d751c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-5215-1721
0000-0001-7160-5929
OpenAccessLink https://www.proquest.com/docview/3090889505?pq-origsite=%requestingapplication%&accountid=15518
PQID 3090889505
PQPubID 6860397
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_dfd22affab494259a09e0d10fd4e96e5
unpaywall_primary_10_1002_ird3_20
proquest_journals_3090889505
crossref_citationtrail_10_1002_ird3_20
crossref_primary_10_1002_ird3_20
wiley_primary_10_1002_ird3_20_IRD320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle iRadiology (Online)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 69
2021; 25
2017; 6
2022; 132
2021; 26
2021; 21
2021; 67
2023; 4
2019; 52
2017; 88
2018; 169
2022; 23
1976
2021; 120
2020; 11
2013; 7
2018; 48
2013; 9
2020; 8
2020; 2
2020; 1
2021; 33
2021; 238
2023; 134
2023; 133
2020; 9
2014; 13
2022; 76
2022; 33
2021; 40
2018; 37
2022; 154
2019; 4
2021; 45
2022; 48
2005
2016; 1862
2022; 42
2020; 33
2020; 32
2021; 58
2015; 60
2022
2021
2020
2022; 6
2021; 139
2021; 216
2022; 9
2022; 12
2019
2018
2017
2022; 15
2017; 19
2016; 139
2016
2015
2014
2021; 63
2022; 148
Jia Z (e_1_2_13_34_1) 2020; 2
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_68_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_66_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_64_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_62_1
e_1_2_13_60_1
e_1_2_13_6_1
Hamilton W (e_1_2_13_19_1) 2017
e_1_2_13_13_1
e_1_2_13_59_1
e_1_2_13_15_1
Veličković P (e_1_2_13_18_1) 2018
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_11_1
e_1_2_13_53_1
e_1_2_13_76_1
Bessadok A (e_1_2_13_27_1) 2022
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_30_1
e_1_2_13_70_1
Wang X (e_1_2_13_67_1) 2022
e_1_2_13_4_1
e_1_2_13_2_1
You Y (e_1_2_13_36_1) 2020; 33
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_80_1
Gilmer J (e_1_2_13_35_1) 2017
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_75_1
Arya D (e_1_2_13_52_1) 2020
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_71_1
Ying Z (e_1_2_13_72_1) 2019
Bruna J (e_1_2_13_17_1) 2014
e_1_2_13_5_1
e_1_2_13_3_1
Yun S (e_1_2_13_29_1) 2019
e_1_2_13_28_1
References_xml – volume: 88
  start-page: 132
  issue: 2
  year: 2017
  end-page: 6
  article-title: Brain lesion distribution criteria distinguish MS from AQP4‐antibody NMOSD and MOG‐antibody disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 23
  issue: 12
  year: 2022
  article-title: Semi‐supervised classification of fundus images combined with CNN and GCN
  publication-title: J Appl Clin Med Phys
– volume: 154
  start-page: 56
  year: 2022
  end-page: 67
  article-title: Deep reinforcement learning guided graph neural networks for brain network analysis
  publication-title: Neural Network
– volume: 2
  start-page: 187
  year: 2020
  end-page: 98
  article-title: Improving the accuracy, scalability, and performance of graph neural networks with Roc
  publication-title: Proc Mach Learn Syst
– year: 2005
– volume: 40
  start-page: 1196
  issue: 4
  year: 2021
  end-page: 206
  article-title: Contrast‐attentive thoracic disease recognition with dual‐weighting graph reasoning
  publication-title: IEEE Trans Med Imag
– volume: 42
  start-page: 380
  issue: 2
  year: 2022
  end-page: 90
  article-title: Diagnosis of glioblastoma multiforme progression via interpretable structure‐constrained graph neural networks
  publication-title: IEEE Trans Med Imag
– year: 2021
– volume: 52
  start-page: 80
  year: 2019
  end-page: 96
  article-title: Multimodal hyper‐connectivity of functional networks using functionally‐weighted LASSO for MCI classification
  publication-title: Med Image Anal
– volume: 134
  year: 2023
  article-title: Multi‐scale enhanced graph convolutional network for mild cognitive impairment detection
  publication-title: Pattern Recogn
– volume: 21
  issue: 14
  year: 2021
  article-title: Graph‐based deep learning for medical diagnosis and analysis: past, present and future
  publication-title: Sensors
– volume: 139
  year: 2021
  article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial‐constrained sparse functional brain networks
  publication-title: Comput Biol Med
– volume: 13
  start-page: 206
  issue: 2
  year: 2014
  end-page: 16
  article-title: Connectivity‐based approaches in stroke and recovery of function
  publication-title: Lancet Neurol
– year: 2018
– year: 2014
– volume: 11
  issue: 1
  year: 2020
  article-title: Improving the accuracy of medical diagnosis with causal machine learning
  publication-title: Nat Commun
– volume: 48
  start-page: 881
  issue: 4
  year: 2022
  end-page: 92
  article-title: Graph convolutional networks reveal network‐level functional dysconnectivity in schizophrenia
  publication-title: Schizophr Bull
– volume: 37
  start-page: 1537
  issue: 7
  year: 2018
  end-page: 50
  article-title: Connectivity in fMRI: blind spots and breakthroughs
  publication-title: IEEE Trans Med Imag
– volume: 63
  start-page: 435
  issue: 3
  year: 2021
  end-page: 85
  article-title: The why, how, and when of representations for complex systems
  publication-title: SIAM Rev
– volume: 42
  start-page: 557
  issue: 2
  year: 2022
  end-page: 67
  article-title: Structural attention graph neural network for diagnosis and prediction of COVID‐19 severity
  publication-title: IEEE Trans Med Imag
– volume: 25
  start-page: 1873
  issue: 6
  year: 2021
  end-page: 80
  article-title: Integration of CNN, CBMIR, and visualization techniques for diagnosis and quantification of covid‐19 disease
  publication-title: IEEE J Biomed Health Inform
– year: 2022
– volume: 4
  issue: 1
  year: 2023
  article-title: Topological data analysis of thoracic radiographic images shows improved radiomics‐based lung tumor histology prediction
  publication-title: Patterns (N Y)
– volume: 12
  issue: 1
  year: 2022
  article-title: On the limits of graph neural networks for the early diagnosis of Alzheimer's disease
  publication-title: Sci Rep
– volume: 148
  year: 2022
  article-title: A multi‐channel deep convolutional neural network for multi‐classifying thyroid diseases
  publication-title: Comput Biol Med
– volume: 9
  start-page: S55
  issue: Suppl 1
  year: 2020
  end-page: 65
  article-title: Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation
  publication-title: Transl Pediatr
– volume: 169
  start-page: 431
  year: 2018
  end-page: 42
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: Neuroimage
– volume: 9
  issue: 12
  year: 2022
  article-title: Regional radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild cognitive impairment
  publication-title: Adv Sci
– start-page: 1
  year: 2022
  end-page: 12
  article-title: Adversarial learning based node‐edge graph attention networks for autism spectrum disorder identification
  publication-title: IEEE Transact Neural Networks Learn Syst
– year: 1976
– year: 2019
– volume: 133
  year: 2023
  article-title: Transformed domain convolutional neural network for Alzheimer's disease diagnosis using structural MRI
  publication-title: Pattern Recogn
– volume: 6
  start-page: 1
  year: 2017
  end-page: 38
  article-title: A roadmap for the computation of persistent homology
  publication-title: EPJ Data Sci
– volume: 120
  year: 2021
  article-title: GGAC: multi‐relational image gated GCN with attention convolutional binary neural tree for identifying disease with chest X‐rays
  publication-title: Pattern Recogn
– year: 2015
– start-page: 1
  year: 2022
  end-page: 14
– volume: 76
  year: 2022
  article-title: Dynamic topology analysis for spatial patterns of multifocal lesions on MRI
  publication-title: Med Image Anal
– volume: 33
  start-page: 6407
  issue: 10
  year: 2022
  end-page: 19
  article-title: Brain functional activity‐based classification of autism spectrum disorder using an attention‐based graph neural network combined with gene expression
  publication-title: Cerebr Cortex
– volume: 25
  start-page: 3141
  issue: 8
  year: 2021
  end-page: 52
  article-title: Auto‐metric graph neural network based on a meta‐learning strategy for the diagnosis of Alzheimer's disease
  publication-title: IEEE J Biomed Health Inform
– volume: 8
  issue: 5
  year: 2020
  article-title: Towards personalized diagnosis of glioblastoma in fluid‐attenuated inversion recovery (FLAIR) by topological interpretable machine learning
  publication-title: Mathematics
– volume: 45
  start-page: 1
  issue: 1
  year: 2021
  end-page: 26
  article-title: A comprehensive survey of scene graphs: generation and application
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 9
  issue: 1
  year: 2013
  article-title: The human functional brain network demonstrates structural and dynamical resilience to targeted attack
  publication-title: PLoS Comput Biol
– volume: 4
  start-page: 1
  issue: 1
  year: 2019
  end-page: 28
  article-title: Persistence homology of networks: methods and applications
  publication-title: Appl Netw Sci
– volume: 60
  start-page: 4893
  issue: 12
  year: 2015
  end-page: 914
  article-title: Topology polymorphism graph for lung tumor segmentation in PET‐CT images
  publication-title: Phys Med Biol
– volume: 42
  start-page: 456
  issue: 2
  year: 2022
  end-page: 66
  article-title: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation
  publication-title: IEEE Trans Med Imag
– volume: 58
  issue: 2
  year: 2021
  article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network
  publication-title: Inf Process Manag
– year: 2016
– volume: 15
  year: 2022
  article-title: Multi‐scale graph representation learning for autism identification with functional MRI
  publication-title: Front Neuroinf
– volume: 6
  start-page: 1
  issue: 1
  year: 2022
  end-page: 9
  article-title: Algebraic topology‐based machine learning using MRI predicts outcomes in primary sclerosing cholangitis
  publication-title: Eur Radiol Exp
– volume: 238
  year: 2021
  article-title: Decomposition of individual‐specific and individual‐shared components from resting‐state functional connectivity using a multi‐task machine learning method
  publication-title: Neuroimage
– volume: 48
  start-page: 117
  year: 2018
  end-page: 30
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease
  publication-title: Med Image Anal
– volume: 148
  year: 2022
  article-title: MAMF‐GCN: multi‐scale adaptive multi‐channel fusion deep graph convolutional network for predicting mental disorder
  publication-title: Comput Biol Med
– volume: 132
  year: 2022
  article-title: CheXGAT: a disease correlation‐aware network for thorax disease diagnosis from chest X‐ray images
  publication-title: Artif Intell Med
– volume: 33
  start-page: 5812
  year: 2020
  end-page: 23
  article-title: Graph contrastive learning with augmentations
  publication-title: Adv Neural Inf Process Syst
– volume: 216
  year: 2021
  article-title: Alzheimer's disease and its treatment by different approaches: a review
  publication-title: Eur J Med Chem
– volume: 7
  year: 2013
  article-title: Defining nodes in complex brain networks
  publication-title: Front Comput Neurosci
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  article-title: Graph neural networks: a review of methods and applications
  publication-title: AI open
– year: 2020
– volume: 33
  start-page: 494
  issue: 2
  year: 2021
  end-page: 514
  article-title: A survey on knowledge graphs: representation, acquisition, and applications
  publication-title: IEEE Transact Neural Networks Learn Syst
– volume: 19
  start-page: 221
  issue: 1
  year: 2017
  end-page: 48
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
– year: 2017
– volume: 1862
  start-page: 915
  issue: 5
  year: 2016
  end-page: 25
  article-title: Stroke injury, cognitive impairment and vascular dementia
  publication-title: Biochim Biophys Acta Mol Basis Dis
– volume: 26
  start-page: 1196
  issue: 3
  year: 2021
  end-page: 207
  article-title: Deep attention and graphical neural network for multiple sclerosis lesion segmentation from MR imaging sequences
  publication-title: IEEE J Biomed Health Inform
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  end-page: 24
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transact Neural Networks Learn Syst
– volume: 139
  start-page: 3063
  issue: Pt 12
  year: 2016
  end-page: 83
  article-title: Brain networks under attack: robustness properties and the impact of lesions
  publication-title: Brain
– volume: 69
  year: 2021
  article-title: Graph convolution network with similarity awareness and adaptive calibration for disease‐induced deterioration prediction
  publication-title: Med Image Anal
– volume: 67
  start-page: 208
  year: 2021
  end-page: 29
  article-title: Covid‐19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
  publication-title: Inf Fusion
– ident: e_1_2_13_10_1
  doi: 10.1016/s1474-4422(13)70264-3
– ident: e_1_2_13_30_1
  doi: 10.1609/aaai.v36i8.20871
– ident: e_1_2_13_13_1
  doi: 10.1109/ICARCV50220.2020.9305487
– ident: e_1_2_13_8_1
  doi: 10.1371/journal.pcbi.1002885
– ident: e_1_2_13_63_1
  doi: 10.1109/EMBC48229.2022.9871118
– ident: e_1_2_13_37_1
  doi: 10.1016/j.media.2020.101947
– ident: e_1_2_13_56_1
  doi: 10.1109/tmi.2022.3202037
– ident: e_1_2_13_31_1
  doi: 10.1109/IJCNN.2005.1555942
– ident: e_1_2_13_55_1
  doi: 10.1016/j.inffus.2020.10.004
– ident: e_1_2_13_21_1
  doi: 10.1007/978-3-031-16452-1_36
– ident: e_1_2_13_39_1
  doi: 10.3389/fncom.2013.00169
– ident: e_1_2_13_61_1
  doi: 10.1038/s41598-022-21491-y
– ident: e_1_2_13_16_1
  doi: 10.3390/s21144758
– ident: e_1_2_13_59_1
  doi: 10.1109/tnnls.2022.3154755
– ident: e_1_2_13_79_1
  doi: 10.1109/tnnls.2021.3070843
– ident: e_1_2_13_6_1
  doi: 10.1016/j.patter.2022.100657
– volume-title: International conference on learning representations (ICLR2014)
  year: 2014
  ident: e_1_2_13_17_1
– ident: e_1_2_13_43_1
  doi: 10.1016/j.neuroimage.2021.118252
– ident: e_1_2_13_78_1
  doi: 10.1140/epjds/s13688-017-0109-5
– volume: 2
  start-page: 187
  year: 2020
  ident: e_1_2_13_34_1
  article-title: Improving the accuracy, scalability, and performance of graph neural networks with Roc
  publication-title: Proc Mach Learn Syst
– ident: e_1_2_13_68_1
  doi: 10.1016/j.patcog.2022.109031
– ident: e_1_2_13_14_1
  doi: 10.1088/0031-9155/60/12/4893
– ident: e_1_2_13_44_1
  doi: 10.1016/j.compbiomed.2021.104963
– ident: e_1_2_13_62_1
  doi: 10.1109/tmi.2022.3222093
– ident: e_1_2_13_46_1
  doi: 10.1016/j.bbadis.2016.01.015
– ident: e_1_2_13_74_1
  doi: 10.1186/s41747-022-00312-x
– ident: e_1_2_13_41_1
  doi: 10.1002/advs.202104538
– ident: e_1_2_13_60_1
  doi: 10.1016/j.ejmech.2021.113320
– ident: e_1_2_13_3_1
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: e_1_2_13_5_1
  doi: 10.1016/j.media.2021.102267
– volume: 33
  start-page: 5812
  year: 2020
  ident: e_1_2_13_36_1
  article-title: Graph contrastive learning with augmentations
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_13_51_1
  doi: 10.21037/tp.2019.09.09
– ident: e_1_2_13_65_1
  doi: 10.1093/schbul/sbac047
– ident: e_1_2_13_33_1
  doi: 10.1145/3219819.3219890
– ident: e_1_2_13_71_1
– volume-title: International conference on learning representations (ICLR)
  year: 2018
  ident: e_1_2_13_18_1
– ident: e_1_2_13_23_1
  doi: 10.1109/tmi.2021.3049498
– ident: e_1_2_13_7_1
  doi: 10.1002/acm2.13746
– ident: e_1_2_13_47_1
– ident: e_1_2_13_20_1
  doi: 10.1016/j.compbiomed.2022.105823
– ident: e_1_2_13_76_1
  doi: 10.1109/tmi.2018.2831261
– ident: e_1_2_13_80_1
  doi: 10.1109/CVPR.2015.7298990
– ident: e_1_2_13_32_1
  doi: 10.1016/j.aiopen.2021.01.001
– ident: e_1_2_13_66_1
  doi: 10.1109/tmi.2022.3226575
– ident: e_1_2_13_40_1
  doi: 10.1109/CISP-BMEI56279.2022.9980159
– ident: e_1_2_13_45_1
  doi: 10.1093/cercor/bhac513
– ident: e_1_2_13_49_1
  doi: 10.1007/s41109-019-0179-3
– ident: e_1_2_13_28_1
  doi: 10.1007/978-3-030-20351-1_6
– ident: e_1_2_13_22_1
  doi: 10.1016/j.artmed.2022.102382
– ident: e_1_2_13_38_1
  doi: 10.1016/j.neuroimage.2017.12.052
– ident: e_1_2_13_9_1
  doi: 10.1093/brain/aww194
– ident: e_1_2_13_64_1
  doi: 10.1016/j.ipm.2020.102439
– ident: e_1_2_13_70_1
  doi: 10.1109/jbhi.2021.3067333
– ident: e_1_2_13_24_1
  doi: 10.1109/tpami.2021.3137605
– ident: e_1_2_13_77_1
  doi: 10.1016/j.media.2018.11.006
– ident: e_1_2_13_25_1
  doi: 10.1137/20m1355896
– volume-title: International conference on machine learning
  year: 2017
  ident: e_1_2_13_35_1
– ident: e_1_2_13_54_1
  doi: 10.1016/j.patcog.2021.108113
– ident: e_1_2_13_69_1
  doi: 10.1016/j.compbiomed.2022.105961
– ident: e_1_2_13_26_1
  doi: 10.1109/tnnls.2020.2978386
– ident: e_1_2_13_11_1
  doi: 10.1016/j.media.2018.06.001
– ident: e_1_2_13_12_1
  doi: 10.1007/978-1-349-03521-2
– ident: e_1_2_13_48_1
  doi: 10.1109/jbhi.2021.3109119
– ident: e_1_2_13_73_1
– ident: e_1_2_13_50_1
  doi: 10.1109/jbhi.2021.3053568
– start-page: 1
  volume-title: An evolving graph convolutional network for dynamic functional brain network
  year: 2022
  ident: e_1_2_13_67_1
– volume-title: Advances in neural information processing systems
  year: 2019
  ident: e_1_2_13_72_1
– volume-title: Graph neural networks in network neuroscience
  year: 2022
  ident: e_1_2_13_27_1
– ident: e_1_2_13_57_1
  doi: 10.1117/12.2549451
– volume-title: Proceedings of NeurIPS
  year: 2019
  ident: e_1_2_13_29_1
– ident: e_1_2_13_75_1
  doi: 10.3390/math8050770
– ident: e_1_2_13_53_1
  doi: 10.1016/j.neunet.2022.06.035
– ident: e_1_2_13_42_1
  doi: 10.1016/j.patcog.2022.109106
– volume-title: Medical imaging with deep learning
  year: 2020
  ident: e_1_2_13_52_1
– ident: e_1_2_13_2_1
  doi: 10.1038/s41467-020-17419-7
– volume-title: Advances in neural information processing systems
  year: 2017
  ident: e_1_2_13_19_1
– ident: e_1_2_13_58_1
  doi: 10.3389/fninf.2021.802305
– ident: e_1_2_13_4_1
  doi: 10.1136/jnnp-2016-314005
– ident: e_1_2_13_15_1
  doi: 10.1109/EMBC.2016.7590913
SSID ssj0003010475
Score 2.3115108
SecondaryResourceType review_article
Snippet Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for image‐guided...
Abstract Medical imaging is playing an increasingly crucial role in disease diagnosis. Numerous deep learning‐based methods have been developed for...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Algorithms
Alzheimer's disease
Brain research
Deep learning
Disease
disease diagnosis
graph neural networks
Graph representations
Medical diagnosis
medical imaging
Multiple sclerosis
Neural networks
review
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LSgMxFIaDuNGNKCpWq0Qo7kaTTDJJ3Hm_gC5EwV3IJBmp1LG0FnHnI_iMPom5TEtFxI2rgUkW4Zwk58_MyXcA6LBQEMnHhazgjmXUn90yKa3JhGU4fGfgMiKFrq6L8zt6ec_up0p9hZywhAdOhtuzlSVEV5UuqfTzS2okHbIYVZY6WbhIL0VCTh2mHpPORzRSdn34pBkRBUo3ZgNxdK87sPluqPA9FYoisf-bzJwb1X399qp7ve_CNUae00Ww0EhGeJCGugRmXL0Mjs8CaRoGHKVvq1My9xB6CQq7T36P-Hz_eBh1rbOw-QXjnzGprjvchwcw3VhZAXenJ7dH51lTESEzAdridyZmMBKmMMIaJ7QpCGUlZRqxyjjKLdPcB3VRGspLYyT1occgaXnOLWfY5Ktgtn6u3RqApCg5tl5hOVz6bkRoJk2JKyykwYUWLbAzNo4yDS48VK3oqQQ6JipYURHUAnDSsZ8IGT-7HAbrTpoD0jq-8I5WjaPVX45ugfbYN6pZZ0OVo5in5WVcC2xP_PX7ODrRj7-1q4ub45yg9f8Y7gaYD5XpU1ZZG8y-DEZu0-uXl3IrTtUvsvDsPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA66ffBJKyqutBKh-DZ1kkkmSd_W1loFi4gL9SnkNmXpOl32guiTP8Hf2F_Sk0sXVymITzNMMkMmyTnnS3LOdxDa4zEhEtiFqhWBVwzWbpVS3lXScxL3GYRKlEIfTtuTMXt_xs-Kb06Mhcn8EOsNtygZSV9HAZ_5Luv5crpPX03mvoE13l201XKA4gO0NT79OPoSE8rJhlVUpijhci9UDpr9_c0Na5RI-zeQ5r1VPzPfv5npdBO7JuNz_CBnWF0kzsLoc3Kxv1rafffjD0bH__6vbXS_wFI8yvPoIboT-kfo6G1ks8aR8hLK-uwwvsAAc_HkK-ihq5-_zlcTHzwuxzxwTY57k8UBHuEcFfMYjY_ffD48qUrWhcpFYhjQftyRWrrWSe-CNK6ljFvGTc07F5jw3AgADtI6JqxzioF5c7XyohFecOKaJ2jQX_bhKcK0tYJ4QHGBWKhGpeHKWdIRqRxpjRyilze9r12hJI-ZMaY6kylTHTtC03qI8LriLLNw_F3ldRy-dXGkzU4PLufnukihho6m1HSdsUyBslIGmlZ7UneeBdUGPkQ7N4OviywvdFMnXzCAikP0Yj0hbm_HXhrd28r1u09HDa2f_cOndtBgOV-FXUA9S_u8zO1rhToDMw
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-DnoRRcX1RQTxVmzSpGm8-X6AIqLgLeRVWVi7susi3vwJ_kZ_iZO0VhcRPBWaCYRMZuZLMvkGoW0eCiJBXEhy4XnCYO-WSOlsUjhOwjmDkJFS6PIqP7tjF_f8_kepr5ofoj1wC5YR_XUwcG2Gu9-kod2By2B_N4mmCaCYsLgpu26PV7LIOxMSGCF-sgT2BbJ-Mht67zZ9x2JRpOwfw5kzo-pJv77oXm8cucbQczKP5hrMiPdrJS-gCV8toqPTQDWNAx8ltFV1NvcQAwbF3UdwEh9v7w-jrvMON3cw8I1Zdd3hHt7H9ZOVJXR3cnx7eJY0JRESG1hbwDVxS9LC5rZw1hfa5pRxw7hOeWk9E45rAVG9MJYJY61kEHtsKp3IhBOc2GwZTVX9yq8gTHMjiAOI5YkBMVpoLq0hJSmkJbkuOmjna3KUbfjCQ9mKnqqZjqkKs6ho2kG4FXyqKTJ-ixyE2W2bA6d1_NEfPKjGRJQrHaW6LLVhEjyJ1DC01JG0dMzL3PMOWv_SjWoMbaiyNCZqAY7roK1WX3-PYzvq8a92dX5zlNF09X9ia2g2FJ-vE8fW0dTzYOQ3AKI8m824GD8BkCbhRg
  priority: 102
  providerName: Wiley-Blackwell
Title Graph neural networks for image‐guided disease diagnosis: A review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fird3.20
https://www.proquest.com/docview/3090889505
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ird3.20
https://doaj.org/article/dfd22affab494259a09e0d10fd4e96e5
UnpaywallVersion publishedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2834-2879
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003010475
  issn: 2834-2860
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2834-2879
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003010475
  issn: 2834-2860
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2834-2879
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003010475
  issn: 2834-2860
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2834-2879
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003010475
  issn: 2834-2860
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3RahQxFA3t9kFfRFFxa10iFN_GJplkkggiW7u1Cl2W4kJ9CpkkUxbW2XW3i_gifoLf6JeYm5lZLVJfZiAJzJCb3HOT3JyD0KEAQaSIC1khg8h4XLtlWnuXKS8o7DNInSiFzsfF2ZR_uBSXO2jc3YWBtMrOJyZH7RcO9siPcpIyciJgv1l-yUA1Ck5XOwkN20or-NeJYmwX7TFgxuqhvePReHKx3XXJEx0N5DVGWOUZUwVpbtICE-nRbOXzl6D8_RdEJSb_G-HnnU29tN--2vn8ZkCbEOn0PrrXhpJ42Nj-AdoJ9UN08g4YqDHQVMa6uknyXuMYmuLZ5-g7fv34ebWZ-eBxezQT3ynZbrZ-hYe4ucnyCE1PRx_fnmWtUkLmgMwleizhKFGucMq7oKwrGBclF5aIygUuvbAygr0qHZelc5pHSHJEe5lLLwV1-WPUqxd1eIIwK0pJfYy8Ai1jM6as0K6kFVXa0cKqPnrRdY5xLY04qFnMTUOAzAz0omGkj_C24bJhzvi3yTH07rYaqK5TwWJ1ZdqZY3zlGbNVZUuuo4PRNv4a8ZRUngddBNFHB51tTDv_1ubPaOmj51t73f4fh8mOt9Wb9xcnOSP7___SU3QXtOibPLID1LtebcKzGLFclwO0y_hk0A7GQVr3x-f591Esm44nw0-_AfOn7bo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dThQxFG4QLvDGaNS4CloT9G5kptNOWxNiwAV3BTaGQMJd7bQdssk6u-yyIdz5CD6RD-OTeNrpLBCDd1xNMm1mmp6en7bnfB9CG8wTIoFfSAruWEJh75ZIaU0iLMv8OQOXAVLocFD0TujXU3a6hH63tTA-rbK1icFQ27HxZ-SbeRoycsBhf5qcJ541yt-uthQaOlIr2K0AMRYLO_bd1SVs4WZb_S7I-x0he7vHn3tJZBlIjAdCAW1nJkuFKYywxgltCkJZSZlOWWUc5ZZpDo5SlIby0hhJwZybVFqec8tZZnL47gO0QnMqYfO3srM7-Ha0OOXJA_yNz6MEN04TIoq0qdz1yKebw6nNP3im8RsuMTAH3Ap3V-f1RF9d6tHodgAdPODeY_Qohq54u1lrT9CSq5-i7hePeI09LCa01U1S-QxDKIyHP8BW_fn562w-tM7ieBUEz5DcN5x9xNu4qZx5hk7uZc6eo-V6XLsXCJOi5JmFSM9lJXQjQjNpyqzKhDRZoUUHvW8nR5kIW-7ZM0aqAVwmys-iImkH4UXHSYPU8W-XHT-7i2YPrR1ejKdnKmqqspUlRFeVLqkEgyY1DC21WVpZ6mThWAettbJRUd9n6np1dtDbhbzuHsdGkONd7ap_1M1J-vL_f3qDVnvHhwfqoD_Yf4UeEoi-mhy2NbR8MZ27dYiWLsrXcUli9P2-teAvLColaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS8MwEA86QX0RRcXp1AjiW7Fpk6bxTZ3zv4go-BbSJB2DWcfmEN_8CH5GP4mXtFaGCD4VmguEXO_ul_TudwjtMtcQCeJCkHDLAgpnt0AIo4PUMOLuGbjwlELXN8nZA714ZI9VVqWrhSn5IeoLN2cZ3l87A7cDk-__sIb2hiaGA940mqEM4qBjdaa39f1K7IlnXAYjBFAawMFAlDWzbvZ-NXciGHnO_gmgOTcuBurtVfX7k9DVx57OIlqoQCM-LLW8hKZssYzap45rGjtCShgrynTuEQYQintP4CU-3z-6456xBlc_YeDp0-p6owN8iMualRX00Dm5Pz4Lqp4IgXa0LeCbmCZhqhOdGm1TpZOIsowyFbJcW8oNUxzCepppyjOtBYXgo0NheMwNZ0THq6hRPBd2DeEoyTgxgLEsyUAsShUTOiM5SYUmiUqbaO97c6SuCMNd34q-LKmOI-l2UUZhE-FacFByZPwWOXK7Ww87Umv_4nnYlZWNSJObKFJ5rjIqwJUIBUsLDQlzQ61ILGui1rduZGVpIxmHPlMLgFwT7dT6-nsdu16Pf43L87t2HIXr_xPbRrO37Y68Or-53EDzrhF9mUTWQo2X4dhuAlx5ybb8d_kFnFHkQQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA66ffBJKyqutBKh-DZ1kkkmSd_W1loFi4gL9SnkNmXpOl32guiTP8Hf2F_Sk0sXVymITzNMMkMmyTnnS3LOdxDa4zEhEtiFqhWBVwzWbpVS3lXScxL3GYRKlEIfTtuTMXt_xs-Kb06Mhcn8EOsNtygZSV9HAZ_5Luv5crpPX03mvoE13l201XKA4gO0NT79OPoSE8rJhlVUpijhci9UDpr9_c0Na5RI-zeQ5r1VPzPfv5npdBO7JuNz_CBnWF0kzsLoc3Kxv1rafffjD0bH__6vbXS_wFI8yvPoIboT-kfo6G1ks8aR8hLK-uwwvsAAc_HkK-ihq5-_zlcTHzwuxzxwTY57k8UBHuEcFfMYjY_ffD48qUrWhcpFYhjQftyRWrrWSe-CNK6ljFvGTc07F5jw3AgADtI6JqxzioF5c7XyohFecOKaJ2jQX_bhKcK0tYJ4QHGBWKhGpeHKWdIRqRxpjRyilze9r12hJI-ZMaY6kylTHTtC03qI8LriLLNw_F3ldRy-dXGkzU4PLufnukihho6m1HSdsUyBslIGmlZ7UneeBdUGPkQ7N4OviywvdFMnXzCAikP0Yj0hbm_HXhrd28r1u09HDa2f_cOndtBgOV-FXUA9S_u8zO1rhToDMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+networks+for+image%E2%80%90guided+disease+diagnosis%3A+A+review&rft.jtitle=iRadiology+%28Online%29&rft.au=Zhang%2C+Lin&rft.au=Zhao%2C+Yan&rft.au=Che%2C+Tongtong&rft.au=Li%2C+Shuyu&rft.date=2023-06-01&rft.issn=2834-2860&rft.eissn=2834-2879&rft.volume=1&rft.issue=2&rft.spage=151&rft.epage=166&rft_id=info:doi/10.1002%2Fird3.20&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ird3_20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2834-2879&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2834-2879&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2834-2879&client=summon