Multiple regulatory inputs including cell envelope stress orchestrate expression of the Escherichia coli rpoN operon
The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine‐6‐phosphate levels, and two genes encoding proteins of the nitrogen‐related phosphotransferase system. Little is known about...
Saved in:
Published in | Molecular microbiology Vol. 122; no. 1; pp. 11 - 28 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-382X 1365-2958 1365-2958 |
DOI | 10.1111/mmi.15280 |
Cover
Abstract | The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine‐6‐phosphate levels, and two genes encoding proteins of the nitrogen‐related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read‐through transcription into the rpoN operon from a promoter located upstream of the preceding lptA‐lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN‐rapZ‐npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3′ end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.
The E. coli rpoN operon encodes important regulatory proteins including sigma 54 and components of the nitrogen‐related PTS. Here we show that additional upstream and internally located promoters contribute to its transcription in response to distinct envelope stress conditions and carbon source quality. RNase E cleaves transcripts extensively upstream of ptsN, generating more stable mRNAs comprising the distal three genes. Translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq. |
---|---|
AbstractList | The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality. The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine‐6‐phosphate levels, and two genes encoding proteins of the nitrogen‐related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read‐through transcription into the rpoN operon from a promoter located upstream of the preceding lptA‐lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN‐rapZ‐npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3′ end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality. The E. coli rpoN operon encodes important regulatory proteins including sigma 54 and components of the nitrogen‐related PTS. Here we show that additional upstream and internally located promoters contribute to its transcription in response to distinct envelope stress conditions and carbon source quality. RNase E cleaves transcripts extensively upstream of ptsN, generating more stable mRNAs comprising the distal three genes. Translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq. The rpoN operon, an important regulatory hub in Enterobacteriaceae , includes rpoN encoding sigma factor σ 54 , hpf involved in ribosome hibernation, rapZ regulating glucosamine‐6‐phosphate levels, and two genes encoding proteins of the nitrogen‐related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read‐through transcription into the rpoN operon from a promoter located upstream of the preceding lptA ‐ lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σ E also stimulates ptsN‐rapZ‐npr expression using an element downstream of rpoN , presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3′ end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality. The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ , hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σ also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality. The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine‐6‐phosphate levels, and two genes encoding proteins of the nitrogen‐related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read‐through transcription into the rpoN operon from a promoter located upstream of the preceding lptA‐lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN‐rapZ‐npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3′ end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality. |
Author | Milojevic, Olja Sikora, Florian Ziemniewicz, Amelia Budja, Lara Veronika Perko Dudys, Przemyslaw Görke, Boris |
Author_xml | – sequence: 1 givenname: Florian surname: Sikora fullname: Sikora, Florian organization: Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC) – sequence: 2 givenname: Lara Veronika Perko surname: Budja fullname: Budja, Lara Veronika Perko organization: University of Vienna – sequence: 3 givenname: Olja surname: Milojevic fullname: Milojevic, Olja organization: University of Vienna – sequence: 4 givenname: Amelia surname: Ziemniewicz fullname: Ziemniewicz, Amelia organization: University of Vienna – sequence: 5 givenname: Przemyslaw surname: Dudys fullname: Dudys, Przemyslaw organization: University of Vienna – sequence: 6 givenname: Boris orcidid: 0000-0002-1682-5387 surname: Görke fullname: Görke, Boris email: boris.goerke@univie.ac.at organization: University of Vienna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38770591$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1URLeFA38AWeICh7QTO47tI6oKVOrCBSRuluOddF05cbCTwv57vOz2UoEvY42_9zR-c0ZOxjgiIa9ruKjLuRwGf1ELpuAZWdW8FRXTQp2QFWgBFVfsxyk5y_keoObQ8hfklCspQeh6Reb1EmY_BaQJ75Zg55h21I_TMudSXFg2fryjDkOgOD5giBPSPCfMmcbktljudkaKv6d9z8eRxp7OW6TXubwm77beUheDp2mKX2iRpzi-JM97GzK-OtZz8v3j9berz9Xt1083Vx9uK8eVgkoK22iQ0DLBNRPAQWklmXKyZcrWqPsWpO3ahuGmQ9kIyxoFTScAVde4np-TdwffKcWfS5nVDD7v_2JHjEs2HIRsNVdCF_TtE_Q-Lmks0xVKsYZLBbxQb47U0g24MVPyg00785hnAS4PgEsx54S9cX62c8ml5OSDqcHsN2bKxszfjRXF-yeKR9N_sUf3Xz7g7v-gWa9vDoo_Xp2lLw |
CitedBy_id | crossref_primary_10_3390_ijms25169123 |
Cites_doi | 10.1261/rna.073288.119 10.1016/j.resmic.2005.11.014 10.1099/mic.0.28080-0 10.1046/j.1365-2958.1997.3601713.x 10.1111/j.1365-2958.2005.04929.x 10.1101/gad.210112.112 10.1006/jmbi.2000.4451 10.1073/pnas.0609897104 10.1128/JB.01368-07 10.1111/1462-2920.14410 10.1371/journal.pone.0001573 10.1038/nprot.2017.115 10.1146/annurev-genet-120215-035130 10.1074/jbc.M116.748954 10.1016/S0378-1097(03)00480-4 10.1371/journal.pbio.0040002 10.1111/j.1365-2958.2007.05888.x 10.1128/msphere.00059-23 10.1128/JB.181.17.5516-5520.1999 10.1073/pnas.0406038101 10.3389/fmicb.2021.711077 10.1111/mmi.13751 10.1074/jbc.270.9.4822 10.1128/JB.187.3.1124-1134.2005 10.1128/JB.00094-16 10.3390/ijms23010189 10.1128/MMBR.00176-20 10.1371/journal.pgen.1000651 10.1016/j.tim.2010.02.003 10.1099/13500872-140-5-1035 10.1128/JB.00270-08 10.1016/j.cell.2005.05.030 10.1111/j.1365-2958.2011.07751.x 10.1038/nrmicro1394 10.1016/j.molcel.2016.11.002 10.1016/j.resmic.2011.03.007 10.1128/jb.00022-23 10.15698/mic2020.05.717 10.1111/mmi.14001 10.1093/nar/gkad226 10.1186/1471-2164-12-385 10.1128/JB.00484-17 10.1016/j.resmic.2021.103882 10.1016/j.jmb.2018.10.021 10.3390/antibiotics9110808 10.1016/j.bbrc.2011.05.044 10.1128/jb.173.20.6428-6431.1991 10.1016/j.bbamcr.2013.07.011 10.1128/JB.01029-15 10.1139/W09-016 10.1111/j.1365-2958.2009.06918.x 10.1099/mic.0.000056 10.1128/JB.00819-07 10.1128/mSystems.00980-20 10.1074/jbc.M100464200 10.1099/13500872-142-10-2871 10.1016/j.tim.2016.10.001 10.1101/gad.445307 10.1111/1574-6968.12459 10.1111/j.1365-2958.2008.06394.x 10.1038/srep33055 10.1074/jbc.M110.119321 10.1016/j.molcel.2019.10.022 10.1128/AEM.03026-18 10.1128/JB.185.8.2512-2519.2003 10.1093/nar/gkab017 10.15252/embj.2019103848 10.1371/journal.pgen.1005552 10.1128/mBio.01666-18 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. 2024 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. – notice: 2024 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/mmi.15280 |
DatabaseName | Open Access资源_Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 28 |
ExternalDocumentID | 38770591 10_1111_mmi_15280 MMI15280 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund funderid: P32410; P35324 – fundername: Austrian Science Fund grantid: P32410 – fundername: Austrian Science Fund grantid: P35324 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3880-75a490706253925030898728c7628a1e9f607ab642edbe745a24804b50e8b4cf3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X 1365-2958 |
IngestDate | Fri Jul 11 09:16:48 EDT 2025 Fri Jul 25 10:48:03 EDT 2025 Mon Jul 21 06:07:14 EDT 2025 Tue Jul 01 03:38:39 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Wed Jan 22 17:17:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nitrogen‐related PTS envelope stress PhoP rpoN operon sigma E LPS |
Language | English |
License | Attribution 2024 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3880-75a490706253925030898728c7628a1e9f607ab642edbe745a24804b50e8b4cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1682-5387 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmmi.15280 |
PMID | 38770591 |
PQID | 3082437803 |
PQPubID | 35968 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_3057693859 proquest_journals_3082437803 pubmed_primary_38770591 crossref_citationtrail_10_1111_mmi_15280 crossref_primary_10_1111_mmi_15280 wiley_primary_10_1111_mmi_15280_MMI15280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2007; 104 2007; 189 2008; 190 2021; 23 2013; 27 2010; 18 2023; 8 1972 2011; 12 2008; 3 1996; 142 2017; 199 2008; 70 2001; 307 2020; 7 2009; 55 2018; 9 2020; 5 2005; 187 2011; 409 1994; 140 1999; 181 2020; 9 2016; 198 2007; 21 2007; 65 2011; 162 2021; 85 2013; 1833 2004; 101 2021; 49 2023; 51 2015; 161 1991; 173 2005; 151 2017; 25 2017; 65 2011; 81 2015; 11 1997; 24 2006; 59 2020; 39 2023; 205 2010; 285 2006; 4 2020; 77 2018; 20 2014; 356 1995; 270 2006; 157 2001; 276 2018; 430 2016; 6 2018; 110 2009; 74 2021; 12 2005; 122 2019; 85 2020; 26 2021; 172 2018; 52 2009; 5 2003; 225 2016; 291 2017; 106 2003; 185 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Miller J. (e_1_2_9_42_1) 1972 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 291 start-page: 22999 year: 2016 end-page: 23019 article-title: Multiple transcriptional factors regulate transcription of the gene in under different growth conditions and when the lipopolysaccharide biosynthesis is defective publication-title: The Journal of Biological Chemistry – volume: 25 start-page: 205 year: 2017 end-page: 216 article-title: Protecting from envelope stress: variations on the phage‐shock‐protein theme publication-title: Trends in Microbiology – volume: 12 year: 2021 article-title: The EcoCyc database in 2021 publication-title: Frontiers in Microbiology – volume: 225 start-page: 1 year: 2003 end-page: 7 article-title: New members of the sigmaE regulon identified by a two‐plasmid system publication-title: FEMS Microbiology Letters – volume: 190 start-page: 4460 year: 2008 end-page: 4469 article-title: Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of publication-title: Journal of Bacteriology – volume: 270 start-page: 4822 year: 1995 end-page: 4839 article-title: Novel proteins of the phosphotransferase system encoded within the operon of . Enzyme IIA affects growth on organic nitrogen and the conditional lethality of an mutant publication-title: The Journal of Biological Chemistry – volume: 59 start-page: 231 year: 2006 end-page: 247 article-title: Remodelling of the outer membrane by two small regulatory RNAs publication-title: Molecular Microbiology – volume: 85 year: 2021 article-title: How the PhoP/PhoQ system controls virulence and Mg homeostasis: lessons in signal transduction, pathogenesis, physiology, and evolution publication-title: Microbiology and Molecular Biology Reviews – volume: 55 start-page: 714 year: 2009 end-page: 728 article-title: Global responses of to adverse conditions determined by microarrays and FT‐IR spectroscopy publication-title: Canadian Journal of Microbiology – volume: 8 year: 2023 article-title: The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS publication-title: mSphere – volume: 101 start-page: 17162 year: 2004 end-page: 17167 article-title: Phenotypic differences between and resulting from the disparate regulation of homologous genes publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 187 start-page: 1124 year: 2005 end-page: 1134 article-title: Genome‐wide transcriptional response of chemostat‐cultured to zinc publication-title: Journal of Bacteriology – volume: 122 start-page: 461 year: 2005 end-page: 472 article-title: Recognition of antimicrobial peptides by a bacterial sensor kinase publication-title: Cell – volume: 189 start-page: 6891 year: 2007 end-page: 6900 article-title: Correlation between growth rates, EIIA phosphorylation, and intracellular cyclic AMP levels in K‐12 publication-title: Journal of Bacteriology – volume: 20 start-page: 4555 year: 2018 end-page: 4566 article-title: The interplay of EIIA(Ntr) with C‐source regulation of the promoter of mt‐2 publication-title: Environmental Microbiology – volume: 70 start-page: 1076 year: 2008 end-page: 1093 article-title: Repression of small toxic protein synthesis by the Sib and OhsC small RNAs publication-title: Molecular Microbiology – volume: 162 start-page: 470 year: 2011 end-page: 482 article-title: Complex transcriptional organization regulates an locus implicated in lipopolysaccharide biogenesis publication-title: Research in Microbiology – volume: 18 start-page: 205 year: 2010 end-page: 214 article-title: Regulatory roles of the bacterial nitrogen‐related phosphotransferase system publication-title: Trends in Microbiology – volume: 409 start-page: 556 year: 2011 end-page: 561 article-title: Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD publication-title: Biochemical and Biophysical Research Communications – volume: 24 start-page: 355 year: 1997 end-page: 371 article-title: Modulation of the sigmaE (RpoE) heat‐shock transcription‐factor activity by the RseA, RseB and RseC proteins publication-title: Molecular Microbiology – volume: 161 start-page: 1113 year: 2015 end-page: 1123 article-title: Dephosphorylated NPr is involved in an envelope stress response of publication-title: Microbiology – volume: 173 start-page: 6428 year: 1991 end-page: 6431 article-title: Effect of ( ) and temperature on expression of genes of K‐12 publication-title: Journal of Bacteriology – volume: 11 year: 2015 article-title: Genome‐scale mapping of sigma54 reveals widespread, conserved intragenic binding publication-title: PLoS Genetics – volume: 9 year: 2018 article-title: The phosphohistidine phosphatase SixA targets a phosphotransferase system publication-title: mBio – volume: 13 start-page: 1 year: 2018 end-page: 33 article-title: Mapping the small RNA interactome in bacteria using RIL‐seq publication-title: Nature Protocols – volume: 74 start-page: 1054 year: 2009 end-page: 1070 article-title: Dual control by perfectly overlapping sigma 54‐ and sigma 70‐ promoters adjusts small RNA GlmY expression to different environmental signals publication-title: Molecular Microbiology – volume: 307 start-page: 93 year: 2001 end-page: 105 article-title: The genes from code for a zinc and lead responsive two‐component regulatory system publication-title: Journal of Molecular Biology – volume: 9 year: 2020 article-title: Stress‐based high‐throughput screening assays to identify inhibitors of cell envelope biogenesis publication-title: Antibiotics (Basel) – volume: 6 year: 2016 article-title: Fine‐tuning of amino sugar homeostasis by EIIA in publication-title: Scientific Reports – volume: 77 start-page: 411 year: 2020 end-page: 425 e417 article-title: RNA‐RNA Interactomes of ProQ and Hfq reveal overlapping and competing roles publication-title: Molecular Cell – volume: 110 start-page: 161 year: 2018 end-page: 175 article-title: Expression and regulation of the hibernation promoting factor publication-title: Molecular Microbiology – volume: 185 start-page: 2512 year: 2003 end-page: 2519 article-title: Regulation of the alternative sigma factor sigma(E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in publication-title: Journal of Bacteriology – volume: 5 year: 2009 article-title: Global analysis of extracytoplasmic stress signaling in publication-title: PLoS Genetics – year: 1972 – volume: 142 start-page: 2871 issue: Pt 10 year: 1996 end-page: 2877 article-title: Dependence of peptidoglycan metabolism on phospholipid synthesis during growth of publication-title: Microbiology (Reading) – volume: 199 year: 2017 article-title: Circuitry linking the global Csr‐ and sigma(E)‐dependent cell envelope stress response systems publication-title: Journal of Bacteriology – volume: 52 start-page: 321 year: 2018 end-page: 348 article-title: Ribosome hibernation publication-title: Annual Review of Genetics – volume: 430 start-page: 4971 year: 2018 end-page: 4985 article-title: The two‐component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in publication-title: Journal of Molecular Biology – volume: 39 year: 2020 article-title: Small RNA‐binding protein RapZ mediates cell envelope precursor sensing and signaling in publication-title: The EMBO Journal – volume: 189 start-page: 8746 year: 2007 end-page: 8749 article-title: physiology in Luria‐Bertani broth publication-title: Journal of Bacteriology – volume: 151 start-page: 3349 year: 2005 end-page: 3359 article-title: Independent regulation of H‐NS‐mediated silencing of the operon at two levels: upstream by BglJ and LeuO and downstream by DnaKJ publication-title: Microbiology – volume: 49 start-page: 2226 year: 2021 end-page: 2239 article-title: Hibernation factors directly block ribonucleases from entering the ribosome in response to starvation publication-title: Nucleic Acids Research – volume: 140 start-page: 1035 issue: Pt 5 year: 1994 end-page: 1043 article-title: Molecular analysis of the operon which encodes the RNA polymerase sigma factor sigma 54 of publication-title: Microbiology – volume: 21 start-page: 2659 year: 2007 end-page: 2670 article-title: Regulation of the sigmaE stress response by DegS: how the PDZ domain keeps the protease inactive in the resting state and allows integration of different OMP‐derived stress signals upon folding stress publication-title: Genes & Development – volume: 276 start-page: 20866 year: 2001 end-page: 20875 article-title: Characterization of the sigma E regulon publication-title: The Journal of Biological Chemistry – volume: 85 year: 2019 article-title: Regulation of iron uptake by fine‐tuning the iron responsiveness of the iron sensor fur publication-title: Applied and Environmental Microbiology – volume: 1833 start-page: 2879 year: 2013 end-page: 2889 article-title: A role for EIIANtr in controlling fluxes in the central metabolism of K12 publication-title: Biochimica et Biophysica Acta – volume: 106 start-page: 54 year: 2017 end-page: 73 article-title: Non‐canonical activation of histidine kinase KdpD by phosphotransferase protein PtsN through interaction with the transmitter domain publication-title: Molecular Microbiology – volume: 172 year: 2021 article-title: The protein‐protein interaction network of the EIIA(Ntr) regulatory protein reveals a role in cell motility and metabolic control publication-title: Research in Microbiology – volume: 104 start-page: 4124 year: 2007 end-page: 4129 article-title: enzyme IIA regulates the K transporter TrkA publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 23 start-page: 189 year: 2021 article-title: Checkpoints that regulate balanced biosynthesis of lipopolysaccharide and its essentiality in publication-title: International Journal of Molecular Sciences – volume: 205 year: 2023 article-title: Meddling with metal sensors: fur‐family proteins as signaling hubs publication-title: Journal of Bacteriology – volume: 181 start-page: 5516 year: 1999 end-page: 5520 article-title: Molecular characterization of the PhoP‐PhoQ two‐component system in K‐12: identification of extracellular Mg ‐responsive promoters publication-title: Journal of Bacteriology – volume: 198 start-page: 1576 year: 2016 end-page: 1584 article-title: Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in publication-title: Journal of Bacteriology – volume: 4 start-page: 383 year: 2006 end-page: 394 article-title: Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens publication-title: Nature Reviews. Microbiology – volume: 198 start-page: 1868 year: 2016 end-page: 1882 article-title: Growth inhibition by external potassium of lacking PtsN (EIIANtr) is caused by potassium limitation mediated by YcgO publication-title: Journal of Bacteriology – volume: 157 start-page: 547 year: 2006 end-page: 558 article-title: Non‐essential KDO biosynthesis and new essential cell envelope biogenesis genes in the locus publication-title: Research in Microbiology – volume: 27 start-page: 552 year: 2013 end-page: 564 article-title: Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti‐adaptor RNA publication-title: Genes & Development – volume: 4 year: 2006 article-title: Conserved and variable functions of the sigmaE stress response in related genomes publication-title: PLoS Biology – volume: 65 start-page: 1518 year: 2007 end-page: 1533 article-title: Feedback control of glucosamine‐6‐phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in publication-title: Molecular Microbiology – volume: 12 year: 2011 article-title: Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior publication-title: BMC Genomics – volume: 5 year: 2020 article-title: Elucidation of regulatory modes for five two‐component systems in reveals novel relationships publication-title: mSystems – volume: 285 start-page: 29425 year: 2010 end-page: 29433 article-title: The protein‐disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta‐barrel protein LptD publication-title: The Journal of Biological Chemistry – volume: 65 start-page: 39 year: 2017 end-page: 51 article-title: In vivo cleavage map illuminates the central role of RNase E in coding and non‐coding RNA pathways publication-title: Molecular Cell – volume: 3 year: 2008 article-title: The extracytoplasmic stress factor, sigma E, is required to maintain cell envelope integrity in publication-title: PLoS ONE – volume: 26 start-page: 382 year: 2020 end-page: 395 article-title: Dynamic insights on transcription initiation and RNA processing during bacterial adaptation publication-title: RNA – volume: 51 start-page: 5125 year: 2023 end-page: 5143 article-title: Role of the 5′ end phosphorylation state for small RNA stability and target RNA regulation in bacteria publication-title: Nucleic Acids Research – volume: 7 start-page: 139 year: 2020 end-page: 142 article-title: A multifunctional small RNA binding protein for sensing and signaling cell envelope precursor availability in bacteria publication-title: Microbial Cell – volume: 81 start-page: 1144 year: 2011 end-page: 1165 article-title: Pervasive post‐transcriptional control of genes involved in amino acid metabolism by the Hfq‐dependent GcvB small RNA publication-title: Molecular Microbiology – volume: 356 start-page: 144 year: 2014 end-page: 153 article-title: From the phosphoenolpyruvate phosphotransferase system to selfish metabolism: a story retraced in publication-title: FEMS Microbiology Letters – ident: e_1_2_9_32_1 doi: 10.1261/rna.073288.119 – ident: e_1_2_9_66_1 doi: 10.1016/j.resmic.2005.11.014 – ident: e_1_2_9_37_1 doi: 10.1099/mic.0.28080-0 – ident: e_1_2_9_43_1 doi: 10.1046/j.1365-2958.1997.3601713.x – ident: e_1_2_9_18_1 doi: 10.1111/j.1365-2958.2005.04929.x – ident: e_1_2_9_15_1 doi: 10.1101/gad.210112.112 – ident: e_1_2_9_36_1 doi: 10.1006/jmbi.2000.4451 – ident: e_1_2_9_33_1 doi: 10.1073/pnas.0609897104 – volume-title: Experiments in molecular genetics year: 1972 ident: e_1_2_9_42_1 – ident: e_1_2_9_62_1 doi: 10.1128/JB.01368-07 – ident: e_1_2_9_46_1 doi: 10.1111/1462-2920.14410 – ident: e_1_2_9_20_1 doi: 10.1371/journal.pone.0001573 – ident: e_1_2_9_41_1 doi: 10.1038/nprot.2017.115 – ident: e_1_2_9_51_1 doi: 10.1146/annurev-genet-120215-035130 – ident: e_1_2_9_30_1 doi: 10.1074/jbc.M116.748954 – ident: e_1_2_9_55_1 doi: 10.1016/S0378-1097(03)00480-4 – ident: e_1_2_9_56_1 doi: 10.1371/journal.pbio.0040002 – ident: e_1_2_9_24_1 doi: 10.1111/j.1365-2958.2007.05888.x – ident: e_1_2_9_21_1 doi: 10.1128/msphere.00059-23 – ident: e_1_2_9_25_1 doi: 10.1128/JB.181.17.5516-5520.1999 – ident: e_1_2_9_69_1 doi: 10.1073/pnas.0406038101 – ident: e_1_2_9_26_1 doi: 10.3389/fmicb.2021.711077 – ident: e_1_2_9_45_1 doi: 10.1111/mmi.13751 – ident: e_1_2_9_49_1 doi: 10.1074/jbc.270.9.4822 – ident: e_1_2_9_35_1 doi: 10.1128/JB.187.3.1124-1134.2005 – ident: e_1_2_9_54_1 doi: 10.1128/JB.00094-16 – ident: e_1_2_9_31_1 doi: 10.3390/ijms23010189 – ident: e_1_2_9_17_1 doi: 10.1128/MMBR.00176-20 – ident: e_1_2_9_7_1 doi: 10.1371/journal.pgen.1000651 – ident: e_1_2_9_48_1 doi: 10.1016/j.tim.2010.02.003 – ident: e_1_2_9_23_1 doi: 10.1099/13500872-140-5-1035 – ident: e_1_2_9_65_1 doi: 10.1128/JB.00270-08 – ident: e_1_2_9_4_1 doi: 10.1016/j.cell.2005.05.030 – ident: e_1_2_9_63_1 doi: 10.1111/j.1365-2958.2011.07751.x – ident: e_1_2_9_59_1 doi: 10.1038/nrmicro1394 – ident: e_1_2_9_8_1 doi: 10.1016/j.molcel.2016.11.002 – ident: e_1_2_9_39_1 doi: 10.1016/j.resmic.2011.03.007 – ident: e_1_2_9_68_1 doi: 10.1128/jb.00022-23 – ident: e_1_2_9_28_1 doi: 10.15698/mic2020.05.717 – ident: e_1_2_9_3_1 doi: 10.1111/mmi.14001 – ident: e_1_2_9_60_1 doi: 10.1093/nar/gkad226 – ident: e_1_2_9_14_1 doi: 10.1186/1471-2164-12-385 – ident: e_1_2_9_70_1 doi: 10.1128/JB.00484-17 – ident: e_1_2_9_16_1 doi: 10.1016/j.resmic.2021.103882 – ident: e_1_2_9_58_1 doi: 10.1016/j.jmb.2018.10.021 – ident: e_1_2_9_67_1 doi: 10.3390/antibiotics9110808 – ident: e_1_2_9_29_1 doi: 10.1016/j.bbrc.2011.05.044 – ident: e_1_2_9_50_1 doi: 10.1128/jb.173.20.6428-6431.1991 – ident: e_1_2_9_22_1 doi: 10.1016/j.bbamcr.2013.07.011 – ident: e_1_2_9_64_1 doi: 10.1128/JB.01029-15 – ident: e_1_2_9_44_1 doi: 10.1139/W09-016 – ident: e_1_2_9_53_1 doi: 10.1111/j.1365-2958.2009.06918.x – ident: e_1_2_9_34_1 doi: 10.1099/mic.0.000056 – ident: e_1_2_9_5_1 doi: 10.1128/JB.00819-07 – ident: e_1_2_9_10_1 doi: 10.1128/mSystems.00980-20 – ident: e_1_2_9_11_1 doi: 10.1074/jbc.M100464200 – ident: e_1_2_9_57_1 doi: 10.1099/13500872-142-10-2871 – ident: e_1_2_9_38_1 doi: 10.1016/j.tim.2016.10.001 – ident: e_1_2_9_19_1 doi: 10.1101/gad.445307 – ident: e_1_2_9_47_1 doi: 10.1111/1574-6968.12459 – ident: e_1_2_9_13_1 doi: 10.1111/j.1365-2958.2008.06394.x – ident: e_1_2_9_71_1 doi: 10.1038/srep33055 – ident: e_1_2_9_12_1 doi: 10.1074/jbc.M110.119321 – ident: e_1_2_9_40_1 doi: 10.1016/j.molcel.2019.10.022 – ident: e_1_2_9_9_1 doi: 10.1128/AEM.03026-18 – ident: e_1_2_9_2_1 doi: 10.1128/JB.185.8.2512-2519.2003 – ident: e_1_2_9_52_1 doi: 10.1093/nar/gkab017 – ident: e_1_2_9_27_1 doi: 10.15252/embj.2019103848 – ident: e_1_2_9_6_1 doi: 10.1371/journal.pgen.1005552 – ident: e_1_2_9_61_1 doi: 10.1128/mBio.01666-18 |
SSID | ssj0013063 |
Score | 2.466746 |
Snippet | The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ... The rpoN operon, an important regulatory hub in Enterobacteriaceae , includes rpoN encoding sigma factor σ 54 , hpf involved in ribosome hibernation, rapZ... The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ , hpf involved in ribosome hibernation, rapZ... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11 |
SubjectTerms | Bacterial Proteins - genetics Bacterial Proteins - metabolism Carbon sources E coli Endoribonucleases envelope stress Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Ethanol Gene expression Gene Expression Regulation, Bacterial Genes Glucosamine Hibernation LPS mRNA processing nitrogen‐related PTS Operon - genetics PhoP Phosphotransferase Promoter Regions, Genetic Proteins Regulatory mechanisms (biology) Ribonuclease E rpoN operon sigma E Sigma factor Sigma Factor - genetics Sigma Factor - metabolism Signal quality Stress, Physiological - genetics Transcription, Genetic Transposon mutagenesis |
Title | Multiple regulatory inputs including cell envelope stress orchestrate expression of the Escherichia coli rpoN operon |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmmi.15280 https://www.ncbi.nlm.nih.gov/pubmed/38770591 https://www.proquest.com/docview/3082437803 https://www.proquest.com/docview/3057693859 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0950-382X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2958 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013063 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEB7OA8EX9fy5endE8cGXHtk2aVN8ErnjFPYQ8WAfhJJ0p7DcXrt0t-D51zuTtNVTD-SeWuiEpJlM8k0y-QbgDeax1RpdJA3mkbJYRjatkqgk15mWiKrUC97vmJ2lp-fq01zPd-DdcBcm8EOMG25sGX6-ZgO3bvObkV9eLjl5j2F_fZpof0T7Jf51gtBnUcs188fG855ViKN4xpLX16K_AOZ1vOoXnJMH8G1oaogzuTjqtu6o_PEHi-Mt_-Uh3O-BqHgfRs4e7GD9CO6G1JRXjyHczF2vULQhW33TXollve62G3qUq47XPMHb_gJrH3eEItw7EU3rk3AxB4XA732gbS2aShDYFMcbHiZLDrEWNAiXol03Z6JhvvL6CZyfHH_9cBr1GRpIl2T4UaatIu9akhNFOEsz901ustiUNMUaO8W8SmVmHfk4uHCYKW1jZaRyWqJxqqySp7BbNzU-ByHRKmnVQrmExCUVJaCVWBMnmKa2UhN4O-iqKHv6cs6isSoGN4Y6sfCdOIHXo-g6cHb8S2h_UHjRm-2mYO4elWRGJhN4NX4mg-PutDU2Hctozh9pdD6BZ2GgjLUkJssIr06psV7dN1dfzGYf_cuL_xd9CfdiglQhWHgfdrdthwcEibbuEO7E6vOht4CfV3EIaA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-tAEB9EkedF1OdH_dwnHt4lsCa7yQa8iCj1o-UdFHoLm3QChZqUtAX9753JpvGJCp4SyCwJMzu7v5nM_gbgDGPfao2pJw3GnrKYeTbMAy-j0Jm2iDzTQ8539Pph90ndDfRgCS4WZ2EcP0SbcGPPqNdrdnBOSP_n5c_PI-7eYyhgX1GhL3lO--rf-z-Epo9arJlB1h80vEJcx9MO_bgbfYKYHxFrveXcbMB6gxXFpTPuJixhsQWrrnvk629wh2cnYxSVayhfVq9iVEzmsyldsvGctyXBmXmBRV0ahMIdDRFlVffJYpoIgS9NLWwhylwQHhTXU7bkiKugBc2TkagmZV-UTClebMPTzfXjVddrmiiQusk3vUhbRQGwpDiHoJBmeprYRL7JaBU09hzjPJSRTSkMwWGKkdLWV0aqVEs0qcryYAeWi7LAPRASrZJWDVUakLikoYSFAmv8AMPQ5qoDfxfKTLKGYZwbXYyTRaRBek9qvXfgtBWdOFqNr4QOFxZJGs-aJkyvo4LIyKADf9rH5BOsTltgOWcZzS0ejY47sOss2b4lMFFEkPKcPrY27fevT3q92_pm_-eiJ_Cr-9h7SB5u-_cHsOYTAnK1vYewPKvmeEQIZpYe1xP1DV-D6uY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KRfFFbf262tZVfPAlZZvsJht8Eu3Rau8QsXAPQtjkJnB4TULuAq1_vTPZJP1QQXxKILNssjOz-5vN7G8A3mDsW60x9aTB2FMWM8-GeeBlFDrTEpFnes77HZNpeHymPs30bAPe9WdhHD_EsOHGntHO1-zg1Ty_5uTn5wsu3mMoXr-jQoquGBF99a9-IXRl1GLNBLL-rKMV4jSeoenNxeg3hHkTsLYrzvghfO_f1SWa_Dho1ulB9vMWjeN_fswjeNAhUfHemc4WbGCxDXddbcrLx-CO5lZLFLUrV1_Wl2JRVM16RZds2fCiJ3jfX2DRJh6hcAdPRFm3VbiYhELgRZdpW4gyF4Q2xdGK7WTBOdaCrHAh6qqcipIJy4sncDY--vbh2OtKNJAyyfO9SFtF4bWkKIqAlmbym9hEvslojjX2EOM8lJFNKcjBeYqR0tZXRqpUSzSpyvLgKWwWZYHPQUi0Slo1V2lA4pKaEtIKrPEDDEObqxG87XWVZB1_OZfRWCZ9HEODmLSDOILXg2jlSDv-JLTbKzzp_HaVMHmPCiIjgxG8Gh6Tx_Fw2gLLhmU0F5A0Oh7BM2coQy-BiSICrIf0sq26_959MpmctDc7_y76Eu59-ThOTk-mn1_AfZ_glUsc3oXNdd3gHsGjdbrfusEvbpkKXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+regulatory+inputs+including+cell+envelope+stress+orchestrate+expression+of+the+Escherichia+coli+rpoN+operon&rft.jtitle=Molecular+microbiology&rft.au=Sikora%2C+Florian&rft.au=Budja%2C+Lara+Veronika+Perko&rft.au=Milojevic%2C+Olja&rft.au=Ziemniewicz%2C+Amelia&rft.date=2024-07-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=122&rft.issue=1&rft.spage=11&rft.epage=28&rft_id=info:doi/10.1111%2Fmmi.15280&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mmi_15280 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |