Development strategies in transition metal carbide for hydrogen evolution reaction: A review
Economically viable hydrogen production by water electrolysis requires an inexpensive and efficient electrocatalyst Transition metal carbides (TMCs) have many merits such as low price, platinum-like catalytic activity, high physical stability, and electrical conductivity. This review presents strate...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 37; no. 8; pp. 1317 - 1330 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2020
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-020-0612-4 |
Cover
Abstract | Economically viable hydrogen production by water electrolysis requires an inexpensive and efficient electrocatalyst Transition metal carbides (TMCs) have many merits such as low price, platinum-like catalytic activity, high physical stability, and electrical conductivity. This review presents strategies for improving the catalytic activity of TMCs. It highlights synthesis using nanostructuring by inorganic-organic complexes and carbon supports to increase the number of active sites and to facilitate mass transport, and modification of electronic configuration by heteroatom doping, heterostructure, and phase control to increase intrinsic activity. The review concludes with an outlook on challenges to achieving practical TMC catalysts for the hydrogen evolution reaction. |
---|---|
AbstractList | Economically viable hydrogen production by water electrolysis requires an inexpensive and efficient electrocatalyst Transition metal carbides (TMCs) have many merits such as low price, platinum-like catalytic activity, high physical stability, and electrical conductivity. This review presents strategies for improving the catalytic activity of TMCs. It highlights synthesis using nanostructuring by inorganic-organic complexes and carbon supports to increase the number of active sites and to facilitate mass transport, and modification of electronic configuration by heteroatom doping, heterostructure, and phase control to increase intrinsic activity. The review concludes with an outlook on challenges to achieving practical TMC catalysts for the hydrogen evolution reaction. Economically viable hydrogen production by water electrolysis requires an inexpensive and efficient electrocatalyst. Transition metal carbides (TMCs) have many merits such as low price, platinum-like catalytic activity, high physical stability, and electrical conductivity. This review presents strategies for improving the catalytic activity of TMCs. It highlights synthesis using nanostructuring by inorganic-organic complexes and carbon supports to increase the number of active sites and to facilitate mass transport, and modification of electronic configuration by heteroatom doping, heterostructure, and phase control to increase intrinsic activity. The review concludes with an outlook on challenges to achieving practical TMC catalysts for the hydrogen evolution reaction. KCI Citation Count: 13 |
Author | Jun, Hyunwoo Kim, Seongbeen Lee, Jinwoo |
Author_xml | – sequence: 1 givenname: Hyunwoo surname: Jun fullname: Jun, Hyunwoo organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 2 givenname: Seongbeen surname: Kim fullname: Kim, Seongbeen organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 3 givenname: Jinwoo surname: Lee fullname: Lee, Jinwoo email: jwlee1@kaist.ac.kr organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002610720$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kFFL5DAQx4MouLveB7i3gE8-9G6SJk3r27J6d4IgiL4JIU2na7SbrEl3j_3219qDgwN9mhn4_YeZ35wc--CRkK8MvjEA9T0xVjKRAYcMCsYzcURmrFIyU5zDMZkBl0XGGJOnZJ7SC4CUBYcZebrCPXZhu0Hf09RH0-PaYaLO02HwyfUueLrB3nTUmli7BmkbIn0-NDGs0VPch273DkU0dmwu6XLo9w5_n5GT1nQJv_ytC_L44_ph9Su7vft5s1reZjYvVZ-hhVy2Sokqr60QYBquCtZajoqxtlRG5KaWpaxUiyjQoGiqGnhV1hwaaep8QS6mvT62-tU6HYx7r-ugX6Ne3j_c6EqKXAkxsOcTu43hbYep1y9hF_1wnuYiZwUUpYKBUhNlY0gpYqut68343WDFdZqBHrXrSbsetOtRux73s_-S2-g2Jh4-zfApkwbWrzH-u-nj0B-9OJbj |
CitedBy_id | crossref_primary_10_1016_j_mcat_2023_113683 crossref_primary_10_1016_j_checat_2023_100867 crossref_primary_10_1016_j_electacta_2025_145748 crossref_primary_10_1021_acsomega_3c07911 crossref_primary_10_1007_s11814_020_0693_0 crossref_primary_10_1016_j_fuel_2021_122103 crossref_primary_10_1007_s10562_022_04205_x crossref_primary_10_1016_j_enchem_2021_100054 crossref_primary_10_1016_j_ijhydene_2025_01_487 crossref_primary_10_1039_D1TA10850F crossref_primary_10_1039_D1NR02601A crossref_primary_10_1016_j_apsusc_2024_159815 crossref_primary_10_1016_j_jechem_2021_12_050 crossref_primary_10_1016_j_nanoen_2023_108440 crossref_primary_10_1016_j_jallcom_2022_167989 crossref_primary_10_1088_2752_5724_accbd8 crossref_primary_10_3390_nano12213884 crossref_primary_10_1021_acsanm_3c05665 crossref_primary_10_1021_acsanm_4c07296 crossref_primary_10_1039_D4TA00150H crossref_primary_10_1007_s11814_025_00391_7 crossref_primary_10_1016_j_ijhydene_2024_06_157 crossref_primary_10_1016_j_cej_2021_133514 crossref_primary_10_1039_D2TA09172K crossref_primary_10_1016_j_jcat_2021_07_013 crossref_primary_10_1021_acs_energyfuels_3c02671 |
Cites_doi | 10.1007/s11814-017-0243-6 10.1007/s40820-018-0229-x 10.1021/acsnano.6b04725 10.1038/ncomms13216 10.1021/cm9911060 10.1021/nl403661s 10.1039/c2ee23891h 10.1016/j.apcatb.2017.10.015 10.1007/s11814-019-0431-7 10.1002/anie.201207111 10.1038/nenergy.2017.31 10.1016/0021-9517(87)90218-1 10.1023/A:1019098112056 10.1016/j.electacta.2018.12.091 10.1016/j.electacta.2012.03.039 10.1021/ja5114529 10.1016/j.electacta.2014.12.096 10.1021/acs.chemmater.5b00621 10.1038/ncomms7512 10.1021/jacs.7b01530 10.1016/j.apcatb.2019.01.086 10.1021/cr950232u 10.1126/science.1258307 10.1002/anie.201504376 10.1016/S0926-860X(97)00342-6 10.1002/anie.201402998 10.1007/s11814-018-0231-0 10.1002/aenm.201800575 10.1002/cctc.201601477 10.1016/j.apcatb.2012.07.023 10.1021/nn5012144 10.1002/adfm.201403633 10.1021/nl8018593 10.1007/s11814-019-0378-8 10.1021/nn501434a 10.1111/j.1151-2916.1989.tb06190.x 10.1039/C8NR00908B 10.1021/acsnano.0c01285 10.1016/j.apcatb.2016.10.085 10.1039/C4CS00448E 10.1016/j.apcatb.2017.03.044 10.1002/anie.201509758 10.1007/BF00552326 10.1039/b103525h 10.1007/s12678-017-0425-3 10.1038/am.2016.102 10.1039/C7EE00388A 10.1021/ie00081a013 10.1016/j.apsusc.2017.08.098 10.1039/C7TA03364H 10.1039/C6SC00077K 10.1038/35104599 10.1021/acscatal.8b01794 10.1007/s11814-018-0162-1 10.1002/adma.201605838 10.1016/j.jechem.2018.10.010 10.1039/c3cc44076a 10.1038/s41467-017-02088-w 10.1039/C4TA04564E 10.1007/s11814-019-0223-0 10.1016/j.electacta.2020.135624 10.1038/s41929-019-0291-x 10.1002/smll.200900523 10.1007/s11814-013-0140-6 10.1002/adma.201802880 10.1021/jacs.7b00165 10.1016/S0013-4686(02)00329-8 10.1021/acsnano.5b00425 10.1039/c3ee40596f 10.1002/anie.201400294 10.1039/C6TA09052D 10.1039/C7DT01404J 10.1002/adfm.201600915 10.1039/C4NR05035E 10.1039/C5CS00434A 10.1016/j.cattod.2005.04.008 10.1126/science.181.4099.547 10.1021/acscatal.5b01803 10.1016/S0040-6090(00)00750-1 10.1021/cs500056u 10.1039/c1ee01970h 10.1016/S0013-4686(02)00163-9 10.1007/s10562-004-3434-9 10.1002/anie.201501590 10.1039/c3cp51389k 10.1126/science.aad8471 10.1002/anie.201914752 10.1002/anie.201506727 10.1002/aenm.201701601 10.1002/anie.201407031 10.1021/cr0204606 10.1016/S0926-860X(02)00428-3 10.1016/j.electacta.2015.12.074 10.1002/adfm.201803291 10.1007/s12274-017-1425-6 10.1021/acsnano.5b02420 10.1021/ja9538187 10.1002/cssc.201702328 10.1002/adma.201704156 |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2020 The Korean Institute of Chemical Engineers 2020. |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2020 – notice: The Korean Institute of Chemical Engineers 2020. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-020-0612-4 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 1330 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9543744 10_1007_s11814_020_0612_4 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c387t-ec035f77493bc440ad2761fc2e711f87a43ab58597fee4eae4d9b0298b20d5ab3 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:49 EST 2024 Tue Sep 16 16:21:10 EDT 2025 Tue Jul 01 03:29:40 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Fri Feb 21 02:37:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Heterostructure Phase Control Inorganic-organic Complex Carbon Support Heteroatom Doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-ec035f77493bc440ad2761fc2e711f87a43ab58597fee4eae4d9b0298b20d5ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2431606870 |
PQPubID | 2044390 |
PageCount | 14 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9543744 proquest_journals_2431606870 crossref_citationtrail_10_1007_s11814_020_0612_4 crossref_primary_10_1007_s11814_020_0612_4 springer_journals_10_1007_s11814_020_0612_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | IgnaszakASongCZhuWZhangJBauerABakerRNeburchilovVYeSCampbellSElectrochim. Acta2012693971:CAS:528:DC%2BC38XlsFSltLY%3D ChenJ GChem. Rev.19969614771:CAS:528:DyaK28Xjt1yis7w%3D11848799 LeeJ SOyamaS TBoudartMJ. Catal.19871061251:CAS:528:DyaL2sXls1amsbw%3D LevyR BBoudartMScience19731815471:CAS:528:DyaE3sXkvVerurs%3D17777803 HojoJOonoRKatoAJ. Mater. Sci.19801523351:CAS:528:DyaL3cXmt1Chtr4%3D DhandapaniBSt. ClairTOyamaS TAppl. Catal. A Gen.19981682191:CAS:528:DyaK1cXhvFOjsrk%3D LiSYangCYinZYangHChenYLinLLiMLiWHuGMaDNano Res.20171013221:CAS:528:DC%2BC2sXhs1ensLk%3D DresselhausM SThomasI LNature20014143321:CAS:528:DC%2BD3MXovFGisbk%3D11713539 Ledezma-YanezIWallaceW D ZSebastián-PascualPClimentVFeliuJ MKoperM T MNat. Energy20172170311:CAS:528:DC%2BC2sXot1ykurs%3D WangJXuFJinHChenYWangYAdv. Mater.2017291605838 LinHLiuNShiZGuoYTangYGaoQAdv. Funct. Mater.20162655901:CAS:528:DC%2BC28XotFantbo%3D WuH BXiaB YYuLYuX-YLouX WNat. Commun.2015665121:CAS:528:DC%2BC2MXosVCqtb8%3D257581594382699 GaoQLiuNWangSTangYNanoscale20146141061:CAS:528:DC%2BC2cXhs1SiurfJ25340459 HanNYangK RLuZLiYXuWGaoTCaiZZhangYBatistaV SLiuWSunXNat. Commun.201891 BukolaSMerzouguiBAkinpeluAZeamaMElectrochim. Acta201619011131:CAS:528:DC%2BC28XhtFWit7c%3D KoY-JChoJ-MKimIJeongD SLeeK-SParkJ-KBaikY-JChoiH-JLeeW-SAppl. Catal. B Environ.20172036841:CAS:528:DC%2BC28XhvVShsbfL ZhengYJiaoYJaroniecMQiaoS ZAngew. Chem. Int. Ed.201554521:CAS:528:DC%2BC2cXhvV2mtr%2FJ XuY-TXiaoXYeZ-MZhaoSShenRHeC-TZhangJ-PLiYChenX-MJ. Am. Chem. Soc.201713952851:CAS:528:DC%2BC2sXls1Glu7s%3D28376618 MaRZhouYChenYLiPLiuQWangJAngew. Chem. Int. Ed.201554147231:CAS:528:DC%2BC2MXhs1Kqs77M GiordanoCErpenCYaoWAntoniettiMNano Lett.2008846591:CAS:528:DC%2BD1cXhtlOlt7jL19367981 ZhaoGRuiKDouS XSunWAdv. Funct. Mater.2018281803291 ChenW-FWangC-HSasakiKMarinkovicNXuWMuckermanJ TZhuYAdzicR REnergy Environ. Sci.201369431:CAS:528:DC%2BC3sXivVGktro%3D ClaridgeJ BYorkA P EBrungsA JGreenM L HChem. Mater.2000121321:CAS:528:DyaK1MXnvVyntLg%3D VrubelHHuXAngew. Chem. Int. Ed.201251127031:CAS:528:DC%2BC38Xhs1GgsrbN OyamaS TSchlatterJ CMetcalfeJ ELambertJ MInd. Eng. Chem. Res.19882716391:CAS:528:DyaL1cXltFarsrc%3D WirthSHarnischFWeinmannMSchröderUAppl. Catal. B Environ.20121262251:CAS:528:DC%2BC38XhtlaitbbP ZouXZhangYChem. Soc. Rev.20154451481:CAS:528:DC%2BC2MXms1ygtbo%3D25886650 VoiryDSalehiMSilvaRFujitaTChenMAsefaTShenoyV BEdaGChhowallaMNano Lett.20131362221:CAS:528:DC%2BC3sXhsl2nsLnN24251828 FanXPengZYeRZhouHGuoXACS Nano2015974071:CAS:528:DC%2BC2MXhtV2is73M26126147 RegmiY NRoyAGoenagaG AMcBrideJ RRogersB RZawodzinskiT ALabbéNChmelyS CChemCatChem2017910541:CAS:528:DC%2BC2sXisF2itbs%3D DeshmukhP RHyunH SSohnYShinW GKorean J. Chem. Eng.2020375461:CAS:528:DC%2BB3cXktl2ls7k%3D ConwayB ETilakB VElectrochim. Acta20024735711:CAS:528:DC%2BD38Xms1agu78%3D XiaoPGeXWangHLiuZFisherAWangXAdv. Funct. Mater.20152515201:CAS:528:DC%2BC2MXjvFOjsrs%3D SchmueckerS MClouserDKrausT JLeonardB MDalton T.201746135241:CAS:528:DC%2BC2sXhsFehtrbP LiuPNørskovJ KPhys. Chem. Chem. Phys.2001338141:CAS:528:DC%2BD3MXmtVehsL8%3D ChenW-FMuckermanJ TFujitaEChem. Commun.20134988961:CAS:528:DC%2BC3sXhsVehtrrP MichalskyRZhangY-JPetersonA AACS Catal.2014412741:CAS:528:DC%2BC2cXktF2ntL0%3D GaoYLangZYuFTanHYanGWangYMaYLiYChemSusChem20181110821:CAS:528:DC%2BC1cXisFenu7w%3D29292866 LinHShiZHeSYuXWangSGaoQTangYChem. Sci.2016733991:CAS:528:DC%2BC28XisVegu7g%3D299978356007147 TangCWangWSunAQiCZhangDWuZWangDACS Catal.2015569561:CAS:528:DC%2BC2MXhs1KgtLzF LiuYHuangBXieZAppl. Surf. Sci.20184276931:CAS:528:DC%2BC2sXhsVWht7jP KimRJeeSRyuULeeH SKimS YChoiK MKorean J. Chem. Eng.2019369751:CAS:528:DC%2BC1MXmsVSqs78%3D MaT YCaoJ LJaroniecMQiaoS ZAngew. Chem. Int. Ed.20165511381:CAS:528:DC%2BC2MXhvFemt7bF HyeonTFangMSuslickK SJ. Am. Chem. Soc.199611854921:CAS:528:DyaK28XjtFWmu7c%3D HuangYGeJHuJZhangJHaoJWeiYAdv. Energy Mater.201881701601 AnjumM A RLeeM HLeeJ SACS Catal.2018882961:CAS:528:DC%2BC1cXhsVWrsLnE GaoQZhangWShiZYangLTangYAdv. Mater.2019311802880 GongQWangYHuQZhouJFengRDuchesneP NZhangPChenFHanNLiYJinCLiYLeeS-TNat. Commun.20167132161:CAS:528:DC%2BC28XhslShtLrP277520465071847 KitchinJ RNørskovJ KBarteauM AChenJ GCatal. Today2005105661:CAS:528:DC%2BD2MXlsFCrsbo%3D YuFGaoYLangZMaYYinLDuJTanHWangYLiYNanoscale20181060801:CAS:528:DC%2BC1cXjslOlsro%3D29546902 KecskesL JNiilerAJ. Am. Ceram. Soc.1989726551:CAS:528:DyaL1MXitFOrsrk%3D ZhangHMaZLiuGShiLTangJPangHWuKTakeiTZhangJYamauchiYYeJNPG Asia Mater.20168e2931:CAS:528:DC%2BC28XhtFKmsbrE PattJMoonD JPhillipsCThompsonLCatal. Lett.2000651931:CAS:528:DC%2BD3cXjtFWhtbc%3D ZhangKZhaoYZhangSYuHChenYGaoPZhuCJ. Mater. Chem. A20142187151:CAS:528:DC%2BC2cXhs1Squ7nK ShiZNieKShaoZ-JGaoBLinHZhangHLiuBWangYZhangYSunXCaoX-MHuPGaoQTangYEnergy Environ. Sci.20171012621:CAS:528:DC%2BC2sXmtlKmsro%3D LiuTZhangXGuoTWuZWangDElectrochim. Acta20203341356241:CAS:528:DC%2BB3cXnslWhtrY%3D XingJLiYGuoSJinTLiHWangYJiaoLElectrochim. Acta20192983051:CAS:528:DC%2BC1cXisFymsb7I HeLZhangWMoQHuangWYangLGaoQAngew. Chem. Int. Ed.20205935441:CAS:528:DC%2BB3cXhslSnt7w%3D NilssonAPetterssonL G MHammerBBligaardTChristensenC HNørskovJ KCatal. Lett.20051001111:CAS:528:DC%2BD2MXivVOntLc%3D LiuYYuGLiG-DSunYAsefaTChenWZouXAngew. Chem. Int. Ed.201554107521:CAS:528:DC%2BC2MXht1CiurjJ ZhangHJinHYangYSunFLiuYDuXZhangSSongFWangJWangYJiangZJ. Energy Chem.201935661:CAS:528:DC%2BC1cXos1KktLw%3D ShiYZhangBChem. Soc. Rev.20164515291:CAS:528:DC%2BC28Xhtlartrg%3D26806563 ChenW-FIyerSIyerSSasakiKWangC-HZhuYMuckermanJ TFujitaEEnergy Environ. Sci.2013618181:CAS:528:DC%2BC3sXnvFyrs70%3D ZhangXWangJGuoTLiuTWuZCavalloLCaoZWangDAppl. Catal. B Environ.2019247781:CAS:528:DC%2BC1MXis1Wrsb0%3D KimSChoiCHwangJParkJJeongJJunHLeeSKimS-KJangJ HJungYLeeJACS Nano20201449881:CAS:528:DC%2BB3cXltF2qtLY%3D32186842 HwuH HChenJ GChem. Rev.20051051851:CAS:528:DC%2BD2cXhtFahsLfE15720154 WanCRegmiY NLeonardB MAngew. Chem. Int. Ed.20145364071:CAS:528:DC%2BC2cXotVylsL0%3D WanCLeonardB MChem. Mater.20152742811:CAS:528:DC%2BC2MXot1ehtbk%3D ZhangLChenYZhaoPLuoWChenSShaoMElectrocatalysis201892641:CAS:528:DC%2BC2sXhs1elsr3J WuZYangYGuDLiQFengDChenZTuBWebleyP AZhaoDSmall2009527381:CAS:528:DC%2BD1MXhsFektb3O19743431 FanXZhouHGuoXACS Nano2015951251:CAS:528:DC%2BC2MXmsVemtr8%3D25869150 YanGWuCTanHFengXYanLZangHLiYJ. Mater. Chem. A201757651:CAS:528:DC%2BC28XhvFGjsbnN ZhaoYKamiyaKHashimotoKNakanishiSJ. Am. Chem. Soc.20151371101:CAS:528:DC%2BC2cXitFOgsr7P25531038 LuJHugossonHErikssonONordströmLJanssonUThin Solid Films20003702031:CAS:528:DC%2BD3cXktVSitr8%3D LiJ-SWangYLiuC-HLiS-LWangY-GDongL-ZDaiZ-HLiY-FLanY-QNat. Commun.201671 LeeY-RKimJAhnW-SKorean J. Chem. Eng.20133016671:CAS:528:DC%2BC3sXht1yrsLzO MahmoodiN MTaghizadehMTaghizadehAKorean J. Chem. Eng.2019362871:CAS:528:DC%2BC1cXisFCisrbI LuoJImJ-HMayerM TSchreierMNazeeruddinM KParkN-GTilleyS DFanH JGratzelMScience201434515931:CAS:528:DC%2BC2cXhsFygtbbJ25258076 PolitiJ R d SViñesFRodriguezJ AIllasFPhys. Chem. Chem. Phys.201315126171:CAS:528:DC%2BC3sXhtVyksL7O23787949 ShiJPuZLiuQAsiriA MHuJSunXElectrochim. Acta20151543451:CAS:528:DC%2BC2cXitFOntLfJ HuntS TMilinaMAlba-RubioA CHendonC HDumesicJ ARoman-LeshkovYScience20163529741:CAS:528:DC%2BC28XotVSktbo%3D27199426 YanHXieYJiaoYWuATianCZhangXWangLFuHAdv. Mater.2018301704156 LeeSChounMYeYLeeJMunYKangEHwangJLeeY-HShinC-HMoonS-HKimS-KLeeELeeJAngew. Chem. Int. Ed.20155492301:CAS:528:DC%2BC2MXhtVens7nP KumarPVejeranoEKhanALisakGAhnJ HKimK-HKorean J. Chem. Eng.20193618391:CAS:528:DC%2BC1MXitFWgu7%2FI KimH TLeeS-YLeeH-RParkCKorean J. Chem. Eng.2018352461:CAS:528:DC%2BC2sXhslCnu7zE ChenY-YZhangYJiangW-JZhangXDaiZWanL-JHuJ-SACS Nano20161088511:CAS:528:DC%2BC28XhsVyqtLrO27617483 JooDHanKJangJ HParkSKorean J. Chem. Eng.2019362991:CAS:528:DC%2BC1MXlvVCksL0%3D ThompsonS TPapageorgopoulosDNat. Catal.201925581:CAS:528:DC%2BC1MXhtlGrs7vE ChungD YJunS WYoonGKimHYooJ MLeeK-SKimTShinHSinhaA KKwonS GKangKHyeonTSungY-EJ. Am. Chem. Soc.201713966691:CAS:528:DC%2BC2sXmsFWqsb4%3D XuHWanJZhangHFangLLiuLHuangZLiJGuXWangYAdv. Energy Mater.201881800575 ZhengYJiaoYLiL HXingTChenYJaroniecMQiaoS ZACS Nano2014852901:CAS:528:DC%2BC2cXntFOgtLw%3D247795864046781 FurimskyEAppl. Catal. A Gen.200324011:CAS:528:DC%2BD3sXptlyntw%3D%3D MerkiDHuXEnergy Environ. Sci.2011438781:CAS:528:DC%2BC3MXhsVKitbvJ HuntS TNimmanwudipongTRomán-LeshkovYAngew. Chem. Int. Ed.20145351311:CAS:528:DC%2BC2cXlsFyjtrg%3D EdigaryanA ASafonovV ALubninE NVykhodtsevaL NChusovaG EPolukarovY MElectrochim. Acta20024727751:CAS:528:DC%2BD38XkslSju78%3D WeiJZhouMLongAXueYLiaoHWeiCXuZ JNano-Micro Lett.201810751:CAS:528:DC%2BC1MXhtVOlsr%2FL RenBLiDJinQCuiHWangCJ. Mater. Chem. A20175131961:CAS:528:DC%2BC2sXos1Sqs74%3D Gómez-MarínA MTicianelliE AAppl. Catal. B Environ.2017209600 YounD HHanSKimJ YKimJ YParkHChoiS HLeeJ SACS Nano2014851641:CAS:528:DC%2BC2cXntFOmsbc%3D24787540 MunYKimM JParkS-ALeeEYeYLeeSKimY-TKimSKimO-HChoY-HSungY-ELeeJAppl. Catal. B Environ.20182221911:CAS:528:DC%2BC2sXhs1KntL%2FK J Wang (612_CR4) 2017; 29 J Lu (612_CR25) 2000; 370 H H Hwu (612_CR11) 2005; 105 J R Kitchin (612_CR13) 2005; 105 J Shi (612_CR87) 2015; 154 T Hyeon (612_CR26) 1996; 118 Y Zheng (612_CR75) 2015; 54 C Giordano (612_CR60) 2008; 8 H Zhang (612_CR81) 2019; 35 Y Shi (612_CR5) 2016; 45 J G Chen (612_CR10) 1996; 96 G Zhao (612_CR77) 2018; 28 N Han (612_CR45) 2018; 9 Q Gong (612_CR14) 2016; 7 A M Gómez-Marín (612_CR72) 2017; 209 B Ren (612_CR86) 2017; 5 S Li (612_CR93) 2017; 10 H Zhang (612_CR69) 2016; 8 L Zhang (612_CR94) 2018; 9 Y Gao (612_CR55) 2018; 11 J R d S Politi (612_CR59) 2013; 15 W-F Chen (612_CR61) 2013; 6 P Liu (612_CR70) 2001; 3 H B Wu (612_CR68) 2015; 6 R B Levy (612_CR82) 1973; 181 X Fan (612_CR43) 2015; 9 P Kumar (612_CR67) 2019; 36 R Michalsky (612_CR23) 2014; 4 S Kim (612_CR42) 2020; 14 L He (612_CR56) 2020; 59 K Zhang (612_CR52) 2014; 2 D Joo (612_CR98) 2019; 36 C Wan (612_CR48) 2015; 27 Q Gong (612_CR58) 2016; 7 S Lee (612_CR96) 2015; 54 X Zou (612_CR3) 2015; 44 W-F Chen (612_CR92) 2013; 49 S Wirth (612_CR18) 2012; 126 S M Schmuecker (612_CR88) 2017; 46 T Liu (612_CR79) 2020; 334 Z Shi (612_CR73) 2017; 10 M S Dresselhaus (612_CR1) 2001; 414 Y Zhao (612_CR28) 2015; 137 Y-R Lee (612_CR64) 2013; 30 Y N Regmi (612_CR78) 2017; 9 D Voiry (612_CR9) 2013; 13 Y Liu (612_CR63) 2015; 54 B E Conway (612_CR22) 2002; 47 I Ledezma-Yanez (612_CR20) 2017; 2 Y Zheng (612_CR76) 2014; 8 D Merki (612_CR6) 2011; 4 P R Deshmukh (612_CR91) 2020; 37 F Yu (612_CR47) 2018; 10 D H Youn (612_CR71) 2014; 8 Y-T Xu (612_CR83) 2017; 139 Y Huang (612_CR62) 2018; 8 J Patt (612_CR15) 2000; 65 H Lin (612_CR41) 2016; 7 X Zhang (612_CR57) 2019; 247 W-F Chen (612_CR27) 2013; 6 H Lin (612_CR46) 2016; 26 B Dhandapani (612_CR17) 1998; 168 A Nilsson (612_CR54) 2005; 100 R Kim (612_CR66) 2019; 36 P Xiao (612_CR8) 2015; 25 M A R Anjum (612_CR99) 2018; 8 D Y Chung (612_CR101) 2017; 139 S T Hunt (612_CR29) 2014; 53 H T Kim (612_CR38) 2018; 35 S T Oyama (612_CR24) 1988; 27 R Ma (612_CR40) 2015; 54 A A Edigaryan (612_CR90) 2002; 47 Y-Y Chen (612_CR49) 2016; 10 Q Gao (612_CR39) 2014; 6 Z Wu (612_CR35) 2009; 5 J Wei (612_CR19) 2018; 10 S T Thompson (612_CR2) 2019; 2 T Y Ma (612_CR51) 2016; 55 Y Liu (612_CR80) 2018; 427 S Bukola (612_CR50) 2016; 190 L J Kecskes (612_CR31) 1989; 72 Y Mun (612_CR97) 2018; 222 J Xing (612_CR100) 2019; 298 S T Hunt (612_CR30) 2016; 352 H Yan (612_CR53) 2018; 30 N M Mahmoodi (612_CR65) 2019; 36 Q Gao (612_CR7) 2019; 31 Y-J Ko (612_CR85) 2017; 203 J B Claridge (612_CR34) 2000; 12 H Vrubel (612_CR12) 2012; 51 C Wan (612_CR33) 2014; 53 J-S Li (612_CR44) 2016; 7 G Yan (612_CR84) 2017; 5 A Ignaszak (612_CR89) 2012; 69 J S Lee (612_CR32) 1987; 106 J Luo (612_CR21) 2014; 345 J Hojo (612_CR37) 1980; 15 H Xu (612_CR95) 2018; 8 E Furimsky (612_CR16) 2003; 240 X Fan (612_CR36) 2015; 9 C Tang (612_CR74) 2015; 5 |
References_xml | – reference: MaT YCaoJ LJaroniecMQiaoS ZAngew. Chem. Int. Ed.20165511381:CAS:528:DC%2BC2MXhvFemt7bF – reference: ZhaoYKamiyaKHashimotoKNakanishiSJ. Am. Chem. Soc.20151371101:CAS:528:DC%2BC2cXitFOgsr7P25531038 – reference: VrubelHHuXAngew. Chem. Int. Ed.201251127031:CAS:528:DC%2BC38Xhs1GgsrbN – reference: LeeSChounMYeYLeeJMunYKangEHwangJLeeY-HShinC-HMoonS-HKimS-KLeeELeeJAngew. Chem. Int. Ed.20155492301:CAS:528:DC%2BC2MXhtVens7nP – reference: YanGWuCTanHFengXYanLZangHLiYJ. Mater. Chem. A201757651:CAS:528:DC%2BC28XhvFGjsbnN – reference: LuJHugossonHErikssonONordströmLJanssonUThin Solid Films20003702031:CAS:528:DC%2BD3cXktVSitr8%3D – reference: LeeJ SOyamaS TBoudartMJ. Catal.19871061251:CAS:528:DyaL2sXls1amsbw%3D – reference: LeeY-RKimJAhnW-SKorean J. Chem. Eng.20133016671:CAS:528:DC%2BC3sXht1yrsLzO – reference: XingJLiYGuoSJinTLiHWangYJiaoLElectrochim. Acta20192983051:CAS:528:DC%2BC1cXisFymsb7I – reference: WuZYangYGuDLiQFengDChenZTuBWebleyP AZhaoDSmall2009527381:CAS:528:DC%2BD1MXhsFektb3O19743431 – reference: ZouXZhangYChem. Soc. Rev.20154451481:CAS:528:DC%2BC2MXms1ygtbo%3D25886650 – reference: HeLZhangWMoQHuangWYangLGaoQAngew. Chem. Int. Ed.20205935441:CAS:528:DC%2BB3cXhslSnt7w%3D – reference: OyamaS TSchlatterJ CMetcalfeJ ELambertJ MInd. Eng. Chem. Res.19882716391:CAS:528:DyaL1cXltFarsrc%3D – reference: XiaoPGeXWangHLiuZFisherAWangXAdv. Funct. Mater.20152515201:CAS:528:DC%2BC2MXjvFOjsrs%3D – reference: Gómez-MarínA MTicianelliE AAppl. Catal. B Environ.2017209600 – reference: ZhengYJiaoYLiL HXingTChenYJaroniecMQiaoS ZACS Nano2014852901:CAS:528:DC%2BC2cXntFOgtLw%3D247795864046781 – reference: ThompsonS TPapageorgopoulosDNat. Catal.201925581:CAS:528:DC%2BC1MXhtlGrs7vE – reference: HanNYangK RLuZLiYXuWGaoTCaiZZhangYBatistaV SLiuWSunXNat. Commun.201891 – reference: WirthSHarnischFWeinmannMSchröderUAppl. Catal. B Environ.20121262251:CAS:528:DC%2BC38XhtlaitbbP – reference: KecskesL JNiilerAJ. Am. Ceram. Soc.1989726551:CAS:528:DyaL1MXitFOrsrk%3D – reference: ZhangXWangJGuoTLiuTWuZCavalloLCaoZWangDAppl. Catal. B Environ.2019247781:CAS:528:DC%2BC1MXis1Wrsb0%3D – reference: ZhengYJiaoYJaroniecMQiaoS ZAngew. Chem. Int. Ed.201554521:CAS:528:DC%2BC2cXhvV2mtr%2FJ – reference: PolitiJ R d SViñesFRodriguezJ AIllasFPhys. Chem. Chem. Phys.201315126171:CAS:528:DC%2BC3sXhtVyksL7O23787949 – reference: ChenW-FWangC-HSasakiKMarinkovicNXuWMuckermanJ TZhuYAdzicR REnergy Environ. Sci.201369431:CAS:528:DC%2BC3sXivVGktro%3D – reference: FanXZhouHGuoXACS Nano2015951251:CAS:528:DC%2BC2MXmsVemtr8%3D25869150 – reference: ZhangHMaZLiuGShiLTangJPangHWuKTakeiTZhangJYamauchiYYeJNPG Asia Mater.20168e2931:CAS:528:DC%2BC28XhtFKmsbrE – reference: MerkiDHuXEnergy Environ. Sci.2011438781:CAS:528:DC%2BC3MXhsVKitbvJ – reference: ChungD YJunS WYoonGKimHYooJ MLeeK-SKimTShinHSinhaA KKwonS GKangKHyeonTSungY-EJ. Am. Chem. Soc.201713966691:CAS:528:DC%2BC2sXmsFWqsb4%3D – reference: XuY-TXiaoXYeZ-MZhaoSShenRHeC-TZhangJ-PLiYChenX-MJ. Am. Chem. Soc.201713952851:CAS:528:DC%2BC2sXls1Glu7s%3D28376618 – reference: HyeonTFangMSuslickK SJ. Am. Chem. Soc.199611854921:CAS:528:DyaK28XjtFWmu7c%3D – reference: GongQWangYHuQZhouJFengRDuchesneP NZhangPChenFHanNLiYJinCLiYLeeS-TNat. Commun.20167132161:CAS:528:DC%2BC28XhslShtLrP277520465071847 – reference: ShiJPuZLiuQAsiriA MHuJSunXElectrochim. Acta20151543451:CAS:528:DC%2BC2cXitFOntLfJ – reference: GaoQLiuNWangSTangYNanoscale20146141061:CAS:528:DC%2BC2cXhs1SiurfJ25340459 – reference: HuangYGeJHuJZhangJHaoJWeiYAdv. Energy Mater.201881701601 – reference: KimSChoiCHwangJParkJJeongJJunHLeeSKimS-KJangJ HJungYLeeJACS Nano20201449881:CAS:528:DC%2BB3cXltF2qtLY%3D32186842 – reference: JooDHanKJangJ HParkSKorean J. Chem. Eng.2019362991:CAS:528:DC%2BC1MXlvVCksL0%3D – reference: GiordanoCErpenCYaoWAntoniettiMNano Lett.2008846591:CAS:528:DC%2BD1cXhtlOlt7jL19367981 – reference: WanCRegmiY NLeonardB MAngew. Chem. Int. Ed.20145364071:CAS:528:DC%2BC2cXotVylsL0%3D – reference: ChenY-YZhangYJiangW-JZhangXDaiZWanL-JHuJ-SACS Nano20161088511:CAS:528:DC%2BC28XhsVyqtLrO27617483 – reference: KumarPVejeranoEKhanALisakGAhnJ HKimK-HKorean J. Chem. Eng.20193618391:CAS:528:DC%2BC1MXitFWgu7%2FI – reference: LiuPNørskovJ KPhys. Chem. Chem. Phys.2001338141:CAS:528:DC%2BD3MXmtVehsL8%3D – reference: HwuH HChenJ GChem. Rev.20051051851:CAS:528:DC%2BD2cXhtFahsLfE15720154 – reference: LiSYangCYinZYangHChenYLinLLiMLiWHuGMaDNano Res.20171013221:CAS:528:DC%2BC2sXhs1ensLk%3D – reference: ZhaoGRuiKDouS XSunWAdv. Funct. Mater.2018281803291 – reference: RegmiY NRoyAGoenagaG AMcBrideJ RRogersB RZawodzinskiT ALabbéNChmelyS CChemCatChem2017910541:CAS:528:DC%2BC2sXisF2itbs%3D – reference: VoiryDSalehiMSilvaRFujitaTChenMAsefaTShenoyV BEdaGChhowallaMNano Lett.20131362221:CAS:528:DC%2BC3sXhsl2nsLnN24251828 – reference: ClaridgeJ BYorkA P EBrungsA JGreenM L HChem. Mater.2000121321:CAS:528:DyaK1MXnvVyntLg%3D – reference: EdigaryanA ASafonovV ALubninE NVykhodtsevaL NChusovaG EPolukarovY MElectrochim. Acta20024727751:CAS:528:DC%2BD38XkslSju78%3D – reference: MaRZhouYChenYLiPLiuQWangJAngew. Chem. Int. Ed.201554147231:CAS:528:DC%2BC2MXhs1Kqs77M – reference: LuoJImJ-HMayerM TSchreierMNazeeruddinM KParkN-GTilleyS DFanH JGratzelMScience201434515931:CAS:528:DC%2BC2cXhsFygtbbJ25258076 – reference: KimRJeeSRyuULeeH SKimS YChoiK MKorean J. Chem. Eng.2019369751:CAS:528:DC%2BC1MXmsVSqs78%3D – reference: YounD HHanSKimJ YKimJ YParkHChoiS HLeeJ SACS Nano2014851641:CAS:528:DC%2BC2cXntFOmsbc%3D24787540 – reference: LinHShiZHeSYuXWangSGaoQTangYChem. Sci.2016733991:CAS:528:DC%2BC28XisVegu7g%3D299978356007147 – reference: LiJ-SWangYLiuC-HLiS-LWangY-GDongL-ZDaiZ-HLiY-FLanY-QNat. Commun.201671 – reference: ChenJ GChem. Rev.19969614771:CAS:528:DyaK28Xjt1yis7w%3D11848799 – reference: WanCLeonardB MChem. Mater.20152742811:CAS:528:DC%2BC2MXot1ehtbk%3D – reference: BukolaSMerzouguiBAkinpeluAZeamaMElectrochim. Acta201619011131:CAS:528:DC%2BC28XhtFWit7c%3D – reference: PattJMoonD JPhillipsCThompsonLCatal. Lett.2000651931:CAS:528:DC%2BD3cXjtFWhtbc%3D – reference: ShiYZhangBChem. Soc. Rev.20164515291:CAS:528:DC%2BC28Xhtlartrg%3D26806563 – reference: FanXPengZYeRZhouHGuoXACS Nano2015974071:CAS:528:DC%2BC2MXhtV2is73M26126147 – reference: IgnaszakASongCZhuWZhangJBauerABakerRNeburchilovVYeSCampbellSElectrochim. Acta2012693971:CAS:528:DC%2BC38XlsFSltLY%3D – reference: LiuTZhangXGuoTWuZWangDElectrochim. Acta20203341356241:CAS:528:DC%2BB3cXnslWhtrY%3D – reference: ZhangHJinHYangYSunFLiuYDuXZhangSSongFWangJWangYJiangZJ. Energy Chem.201935661:CAS:528:DC%2BC1cXos1KktLw%3D – reference: DresselhausM SThomasI LNature20014143321:CAS:528:DC%2BD3MXovFGisbk%3D11713539 – reference: ZhangKZhaoYZhangSYuHChenYGaoPZhuCJ. Mater. Chem. A20142187151:CAS:528:DC%2BC2cXhs1Squ7nK – reference: HojoJOonoRKatoAJ. Mater. Sci.19801523351:CAS:528:DyaL3cXmt1Chtr4%3D – reference: LiuYHuangBXieZAppl. Surf. Sci.20184276931:CAS:528:DC%2BC2sXhsVWht7jP – reference: AnjumM A RLeeM HLeeJ SACS Catal.2018882961:CAS:528:DC%2BC1cXhsVWrsLnE – reference: DhandapaniBSt. ClairTOyamaS TAppl. Catal. A Gen.19981682191:CAS:528:DyaK1cXhvFOjsrk%3D – reference: KoY-JChoJ-MKimIJeongD SLeeK-SParkJ-KBaikY-JChoiH-JLeeW-SAppl. Catal. B Environ.20172036841:CAS:528:DC%2BC28XhvVShsbfL – reference: SchmueckerS MClouserDKrausT JLeonardB MDalton T.201746135241:CAS:528:DC%2BC2sXhsFehtrbP – reference: ZhangLChenYZhaoPLuoWChenSShaoMElectrocatalysis201892641:CAS:528:DC%2BC2sXhs1elsr3J – reference: YuFGaoYLangZMaYYinLDuJTanHWangYLiYNanoscale20181060801:CAS:528:DC%2BC1cXjslOlsro%3D29546902 – reference: HuntS TMilinaMAlba-RubioA CHendonC HDumesicJ ARoman-LeshkovYScience20163529741:CAS:528:DC%2BC28XotVSktbo%3D27199426 – reference: TangCWangWSunAQiCZhangDWuZWangDACS Catal.2015569561:CAS:528:DC%2BC2MXhs1KgtLzF – reference: YanHXieYJiaoYWuATianCZhangXWangLFuHAdv. Mater.2018301704156 – reference: KitchinJ RNørskovJ KBarteauM AChenJ GCatal. Today2005105661:CAS:528:DC%2BD2MXlsFCrsbo%3D – reference: LiuYYuGLiG-DSunYAsefaTChenWZouXAngew. Chem. Int. Ed.201554107521:CAS:528:DC%2BC2MXht1CiurjJ – reference: MichalskyRZhangY-JPetersonA AACS Catal.2014412741:CAS:528:DC%2BC2cXktF2ntL0%3D – reference: XuHWanJZhangHFangLLiuLHuangZLiJGuXWangYAdv. Energy Mater.201881800575 – reference: MahmoodiN MTaghizadehMTaghizadehAKorean J. Chem. Eng.2019362871:CAS:528:DC%2BC1cXisFCisrbI – reference: WuH BXiaB YYuLYuX-YLouX WNat. Commun.2015665121:CAS:528:DC%2BC2MXosVCqtb8%3D257581594382699 – reference: WangJXuFJinHChenYWangYAdv. Mater.2017291605838 – reference: KimH TLeeS-YLeeH-RParkCKorean J. Chem. Eng.2018352461:CAS:528:DC%2BC2sXhslCnu7zE – reference: Ledezma-YanezIWallaceW D ZSebastián-PascualPClimentVFeliuJ MKoperM T MNat. Energy20172170311:CAS:528:DC%2BC2sXot1ykurs%3D – reference: MunYKimM JParkS-ALeeEYeYLeeSKimY-TKimSKimO-HChoY-HSungY-ELeeJAppl. Catal. B Environ.20182221911:CAS:528:DC%2BC2sXhs1KntL%2FK – reference: DeshmukhP RHyunH SSohnYShinW GKorean J. Chem. Eng.2020375461:CAS:528:DC%2BB3cXktl2ls7k%3D – reference: NilssonAPetterssonL G MHammerBBligaardTChristensenC HNørskovJ KCatal. Lett.20051001111:CAS:528:DC%2BD2MXivVOntLc%3D – reference: LevyR BBoudartMScience19731815471:CAS:528:DyaE3sXkvVerurs%3D17777803 – reference: ChenW-FMuckermanJ TFujitaEChem. Commun.20134988961:CAS:528:DC%2BC3sXhsVehtrrP – reference: HuntS TNimmanwudipongTRomán-LeshkovYAngew. Chem. Int. Ed.20145351311:CAS:528:DC%2BC2cXlsFyjtrg%3D – reference: ShiZNieKShaoZ-JGaoBLinHZhangHLiuBWangYZhangYSunXCaoX-MHuPGaoQTangYEnergy Environ. Sci.20171012621:CAS:528:DC%2BC2sXmtlKmsro%3D – reference: RenBLiDJinQCuiHWangCJ. Mater. Chem. A20175131961:CAS:528:DC%2BC2sXos1Sqs74%3D – reference: FurimskyEAppl. Catal. A Gen.200324011:CAS:528:DC%2BD3sXptlyntw%3D%3D – reference: WeiJZhouMLongAXueYLiaoHWeiCXuZ JNano-Micro Lett.201810751:CAS:528:DC%2BC1MXhtVOlsr%2FL – reference: ConwayB ETilakB VElectrochim. Acta20024735711:CAS:528:DC%2BD38Xms1agu78%3D – reference: GaoQZhangWShiZYangLTangYAdv. Mater.2019311802880 – reference: ChenW-FIyerSIyerSSasakiKWangC-HZhuYMuckermanJ TFujitaEEnergy Environ. Sci.2013618181:CAS:528:DC%2BC3sXnvFyrs70%3D – reference: LinHLiuNShiZGuoYTangYGaoQAdv. Funct. Mater.20162655901:CAS:528:DC%2BC28XotFantbo%3D – reference: GaoYLangZYuFTanHYanGWangYMaYLiYChemSusChem20181110821:CAS:528:DC%2BC1cXisFenu7w%3D29292866 – volume: 35 start-page: 246 year: 2018 ident: 612_CR38 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0243-6 – volume: 10 start-page: 75 year: 2018 ident: 612_CR19 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0229-x – volume: 10 start-page: 8851 year: 2016 ident: 612_CR49 publication-title: ACS Nano doi: 10.1021/acsnano.6b04725 – volume: 7 start-page: 13216 year: 2016 ident: 612_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms13216 – volume: 12 start-page: 132 year: 2000 ident: 612_CR34 publication-title: Chem. Mater. doi: 10.1021/cm9911060 – volume: 13 start-page: 6222 year: 2013 ident: 612_CR9 publication-title: Nano Lett. doi: 10.1021/nl403661s – volume: 6 start-page: 943 year: 2013 ident: 612_CR27 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23891h – volume: 222 start-page: 191 year: 2018 ident: 612_CR97 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.10.015 – volume: 37 start-page: 546 year: 2020 ident: 612_CR91 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0431-7 – volume: 51 start-page: 12703 year: 2012 ident: 612_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207111 – volume: 2 start-page: 17031 year: 2017 ident: 612_CR20 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 106 start-page: 125 year: 1987 ident: 612_CR32 publication-title: J. Catal. doi: 10.1016/0021-9517(87)90218-1 – volume: 65 start-page: 193 year: 2000 ident: 612_CR15 publication-title: Catal. Lett. doi: 10.1023/A:1019098112056 – volume: 298 start-page: 305 year: 2019 ident: 612_CR100 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.091 – volume: 69 start-page: 397 year: 2012 ident: 612_CR89 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.039 – volume: 137 start-page: 110 year: 2015 ident: 612_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5114529 – volume: 154 start-page: 345 year: 2015 ident: 612_CR87 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.096 – volume: 27 start-page: 4281 year: 2015 ident: 612_CR48 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00621 – volume: 6 start-page: 6512 year: 2015 ident: 612_CR68 publication-title: Nat. Commun. doi: 10.1038/ncomms7512 – volume: 139 start-page: 6669 year: 2017 ident: 612_CR101 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01530 – volume: 247 start-page: 78 year: 2019 ident: 612_CR57 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.086 – volume: 96 start-page: 1477 year: 1996 ident: 612_CR10 publication-title: Chem. Rev. doi: 10.1021/cr950232u – volume: 345 start-page: 1593 year: 2014 ident: 612_CR21 publication-title: Science doi: 10.1126/science.1258307 – volume: 54 start-page: 10752 year: 2015 ident: 612_CR63 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201504376 – volume: 168 start-page: 219 year: 1998 ident: 612_CR17 publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(97)00342-6 – volume: 53 start-page: 6407 year: 2014 ident: 612_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402998 – volume: 36 start-page: 975 year: 2019 ident: 612_CR66 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-018-0231-0 – volume: 8 start-page: 1800575 year: 2018 ident: 612_CR95 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800575 – volume: 9 start-page: 1054 year: 2017 ident: 612_CR78 publication-title: ChemCatChem doi: 10.1002/cctc.201601477 – volume: 126 start-page: 225 year: 2012 ident: 612_CR18 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.07.023 – volume: 8 start-page: 5164 year: 2014 ident: 612_CR71 publication-title: ACS Nano doi: 10.1021/nn5012144 – volume: 25 start-page: 1520 year: 2015 ident: 612_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403633 – volume: 8 start-page: 4659 year: 2008 ident: 612_CR60 publication-title: Nano Lett. doi: 10.1021/nl8018593 – volume: 36 start-page: 1839 year: 2019 ident: 612_CR67 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0378-8 – volume: 8 start-page: 5290 year: 2014 ident: 612_CR76 publication-title: ACS Nano doi: 10.1021/nn501434a – volume: 72 start-page: 655 year: 1989 ident: 612_CR31 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1989.tb06190.x – volume: 10 start-page: 6080 year: 2018 ident: 612_CR47 publication-title: Nanoscale doi: 10.1039/C8NR00908B – volume: 14 start-page: 4988 year: 2020 ident: 612_CR42 publication-title: ACS Nano doi: 10.1021/acsnano.0c01285 – volume: 203 start-page: 684 year: 2017 ident: 612_CR85 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.10.085 – volume: 44 start-page: 5148 year: 2015 ident: 612_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 209 start-page: 600 year: 2017 ident: 612_CR72 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.03.044 – volume: 55 start-page: 1138 year: 2016 ident: 612_CR51 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509758 – volume: 15 start-page: 2335 year: 1980 ident: 612_CR37 publication-title: J. Mater. Sci. doi: 10.1007/BF00552326 – volume: 3 start-page: 3814 year: 2001 ident: 612_CR70 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b103525h – volume: 9 start-page: 264 year: 2018 ident: 612_CR94 publication-title: Electrocatalysis doi: 10.1007/s12678-017-0425-3 – volume: 8 start-page: e293 year: 2016 ident: 612_CR69 publication-title: NPG Asia Mater. doi: 10.1038/am.2016.102 – volume: 10 start-page: 1262 year: 2017 ident: 612_CR73 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00388A – volume: 27 start-page: 1639 year: 1988 ident: 612_CR24 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00081a013 – volume: 427 start-page: 693 year: 2018 ident: 612_CR80 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.098 – volume: 5 start-page: 13196 year: 2017 ident: 612_CR86 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03364H – volume: 7 start-page: 3399 year: 2016 ident: 612_CR41 publication-title: Chem. Sci. doi: 10.1039/C6SC00077K – volume: 414 start-page: 332 year: 2001 ident: 612_CR1 publication-title: Nature doi: 10.1038/35104599 – volume: 7 start-page: 13216 year: 2016 ident: 612_CR58 publication-title: Nat. Commun. doi: 10.1038/ncomms13216 – volume: 8 start-page: 8296 year: 2018 ident: 612_CR99 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01794 – volume: 36 start-page: 287 year: 2019 ident: 612_CR65 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-018-0162-1 – volume: 29 start-page: 1605838 year: 2017 ident: 612_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201605838 – volume: 35 start-page: 66 year: 2019 ident: 612_CR81 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.10.010 – volume: 49 start-page: 8896 year: 2013 ident: 612_CR92 publication-title: Chem. Commun. doi: 10.1039/c3cc44076a – volume: 9 start-page: 1 year: 2018 ident: 612_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – volume: 2 start-page: 18715 year: 2014 ident: 612_CR52 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04564E – volume: 36 start-page: 299 year: 2019 ident: 612_CR98 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0223-0 – volume: 334 start-page: 135624 year: 2020 ident: 612_CR79 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135624 – volume: 2 start-page: 558 year: 2019 ident: 612_CR2 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0291-x – volume: 5 start-page: 2738 year: 2009 ident: 612_CR35 publication-title: Small doi: 10.1002/smll.200900523 – volume: 30 start-page: 1667 year: 2013 ident: 612_CR64 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-013-0140-6 – volume: 31 start-page: 1802880 year: 2019 ident: 612_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201802880 – volume: 139 start-page: 5285 year: 2017 ident: 612_CR83 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00165 – volume: 47 start-page: 3571 year: 2002 ident: 612_CR22 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00329-8 – volume: 9 start-page: 5125 year: 2015 ident: 612_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.5b00425 – volume: 6 start-page: 1818 year: 2013 ident: 612_CR61 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40596f – volume: 53 start-page: 5131 year: 2014 ident: 612_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400294 – volume: 5 start-page: 765 year: 2017 ident: 612_CR84 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09052D – volume: 46 start-page: 13524 year: 2017 ident: 612_CR88 publication-title: Dalton T. doi: 10.1039/C7DT01404J – volume: 26 start-page: 5590 year: 2016 ident: 612_CR46 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600915 – volume: 6 start-page: 14106 year: 2014 ident: 612_CR39 publication-title: Nanoscale doi: 10.1039/C4NR05035E – volume: 45 start-page: 1529 year: 2016 ident: 612_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 105 start-page: 66 year: 2005 ident: 612_CR13 publication-title: Catal. Today doi: 10.1016/j.cattod.2005.04.008 – volume: 181 start-page: 547 year: 1973 ident: 612_CR82 publication-title: Science doi: 10.1126/science.181.4099.547 – volume: 5 start-page: 6956 year: 2015 ident: 612_CR74 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01803 – volume: 370 start-page: 203 year: 2000 ident: 612_CR25 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(00)00750-1 – volume: 4 start-page: 1274 year: 2014 ident: 612_CR23 publication-title: ACS Catal. doi: 10.1021/cs500056u – volume: 4 start-page: 3878 year: 2011 ident: 612_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01970h – volume: 47 start-page: 2775 year: 2002 ident: 612_CR90 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00163-9 – volume: 100 start-page: 111 year: 2005 ident: 612_CR54 publication-title: Catal. Lett. doi: 10.1007/s10562-004-3434-9 – volume: 54 start-page: 9230 year: 2015 ident: 612_CR96 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501590 – volume: 15 start-page: 12617 year: 2013 ident: 612_CR59 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51389k – volume: 7 start-page: 1 year: 2016 ident: 612_CR44 publication-title: Nat. Commun. – volume: 352 start-page: 974 year: 2016 ident: 612_CR30 publication-title: Science doi: 10.1126/science.aad8471 – volume: 59 start-page: 3544 year: 2020 ident: 612_CR56 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914752 – volume: 54 start-page: 14723 year: 2015 ident: 612_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506727 – volume: 8 start-page: 1701601 year: 2018 ident: 612_CR62 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701601 – volume: 54 start-page: 52 year: 2015 ident: 612_CR75 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407031 – volume: 105 start-page: 185 year: 2005 ident: 612_CR11 publication-title: Chem. Rev. doi: 10.1021/cr0204606 – volume: 240 start-page: 1 year: 2003 ident: 612_CR16 publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(02)00428-3 – volume: 190 start-page: 1113 year: 2016 ident: 612_CR50 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.074 – volume: 28 start-page: 1803291 year: 2018 ident: 612_CR77 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803291 – volume: 10 start-page: 1322 year: 2017 ident: 612_CR93 publication-title: Nano Res. doi: 10.1007/s12274-017-1425-6 – volume: 9 start-page: 7407 year: 2015 ident: 612_CR36 publication-title: ACS Nano doi: 10.1021/acsnano.5b02420 – volume: 118 start-page: 5492 year: 1996 ident: 612_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9538187 – volume: 11 start-page: 1082 year: 2018 ident: 612_CR55 publication-title: ChemSusChem doi: 10.1002/cssc.201702328 – volume: 30 start-page: 1704156 year: 2018 ident: 612_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201704156 |
SSID | ssj0055620 |
Score | 2.3681128 |
SecondaryResourceType | review_article |
Snippet | Economically viable hydrogen production by water electrolysis requires an inexpensive and efficient electrocatalyst Transition metal carbides (TMCs) have many... Economically viable hydrogen production by water electrolysis requires an inexpensive and efficient electrocatalyst. Transition metal carbides (TMCs) have many... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1317 |
SubjectTerms | Biotechnology Catalysis Catalytic activity Chemistry Chemistry and Materials Science Electrical resistivity Electrocatalysts Electrolysis Heterostructures Hydrogen evolution reactions Hydrogen production Industrial Chemistry/Chemical Engineering Invited Review Paper Materials Science Metal carbides Phase control Platinum Transition metals 화학공학 |
Title | Development strategies in transition metal carbide for hydrogen evolution reaction: A review |
URI | https://link.springer.com/article/10.1007/s11814-020-0612-4 https://www.proquest.com/docview/2431606870 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002610720 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2020, 37(8), 245, pp.1317-1330 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5uPqgPolPxx5QgPimBrklX69s2nFNxTw4UhJCkVx3TTroq-N976RqnooJPeWjSlrtr7rve3RdCDkLQAUJ7xQLFNRPoYpjiHJgXQaTQxYba2IzuVb_ZG4iLm-Cm7OOeuGp3l5IsdupZsxs6I8FsuGPdMhMVMh9YOik04oHfcttvgA59-mPFEuwh3nGpzJ9u8cUZVdIs-YIzv6VGC4_TXSHLJVSkraluV8kcpDWy0HEntNXI0icywTVy96n-h05yRwFBhynNrUMqarPoEyDapkZlehgDRcRKH97ibIxmROG1NEOKQLJodzihLTrtbVkng-7pdafHyrMTmOHHYc7AeDxIENtFXBshPBX7YbORGB_CRiM5DpXgSmOoEIUJgAAFIo60pWPXvhcHSvMNUk3HKWwSfCWB0SrqsomrDHgKMGYxEUJNIRJEI1vEc0KUpiQWt-dbPMoZJbKVu0S5Syt3iUsOP5Y8T1k1_pq8j5qRIzOUlgvbjvdjOcokIv5zGQWChwIn1Z3iZPkVTqRv-_y9Jm5JW-TIKXN2-dcnbv9r9g5Z9AuTslWBdVLNsxfYRaSS6z0y3-q22307nt1enu4VlvoOlFbgxw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uHtSD6FT8MTWIJyXQNem6ehtD2XTu5MCDEJL0VYfaSVcF_3tfusZNUcHTDk3a8V6a73t9730h5DgEHSC1VyxQXDOBEMMU58C8CCKFEBtqYzO614Nmdygub4Pbso974qrdXUqy2KlnzW4IRoLZcMfCMhMVsmizjDbiGvptt_0GCOjTDytWYA_5jktl_nSLL2BUSbPkC8_8lhotEOdijayWVJG2p75dJwuQ1shSx53QViMrc2KCG-Rurv6HTnInAUFHKc0tIBW1WfQZkG1TozI9ioEiY6UP73E2xmVE4a1chhSJZNHucEbbdNrbskmGF-c3nS4rz05ghrfCnIHxeJAgt4u4NkJ4KvbDZiMxPoSNRtIKleBKY6gQhQmAAAUijrSVY9e-FwdK8y1STccpbBP8SwKjVfRlE2cZ8BRgzGIipJpCJMhGdojnjChNKSxuz7d4kjNJZGt3iXaX1u4Sp5x8TnmZqmr8NfgIPSMfzUhaLWz7ez-Wj5lExt-TUSB4KHBQ3TlOlm_hRPq2z99r4pa0Q06dM2eXf33i7r9GH5Kl7s11X_Z7g6s9suwXy8tWCNZJNc9eYR9ZS64PilX6ARJf4Jo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIhV6AMpD0PKwqp6KDNnY2RBuK2CB0qIeigQSkrGdCay2zaJsqNT-esabmAXUIiFOOcROHHvs-SYz8w3ApxhNRNBe80gLwyWpGK6FQB4kmGhSsbGxzqP77aR1eCq_nEVndZ3TgY929y7JKqfBsTTl5dZNmm2NEt9IMUnuTB-norkchwnpSkg0YKJ9cH687w_jiNR79ZvF0e0R-vGOzX895JFqGs-L7BHqfOIoHeqfzgxc-pFXYSe9zdvSbNq_T0gdX_FpszBdY1PWroTpHYxhPgeTu74k3By8fcBeOA8XDwKO2KD0nBOsm7PSacBhMBj7hQTvmdWF6abICCKz6z9p0Se5Zfi7lntGyHWYX7HD2qxKplmA087-j91DXhdr4FZsxyVHG4goIzCZCGOlDHQaxq1mZkOMm81sO9ZSaEO2SRJniBI1yjQxjv_dhEEaaSMWoZH3c1wCGpIk85iEp0W9LAYayUiyCWFbKTOCP8sQ-HVStmYydwU1fqoRB7ObREWTqNwkKury-b7LTUXj8Vzjj7T4qme7ypFvu-tVX_UKRSbGkUoiKWJJjVa8bKh62w9U6IgFghadgcuw4Zd6dPu_b3z_otbr8Ob7Xkd9PTo5_gBT4VBUXETiCjTK4hZXCSWVZq3eCXewiwZC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+strategies+in+transition+metal+carbide+for+hydrogen+evolution+reaction%3A+A+review&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Jun%2C+Hyunwoo&rft.au=Kim%2C+Seongbeen&rft.au=Lee%2C+Jinwoo&rft.date=2020-08-01&rft.pub=Springer+US&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=37&rft.issue=8&rft.spage=1317&rft.epage=1330&rft_id=info:doi/10.1007%2Fs11814-020-0612-4&rft.externalDocID=10_1007_s11814_020_0612_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |