A Progressive Multi-Domain Adaptation Network With Reinforced Self-Constructed Graphs for Cross-Subject EEG-Based Emotion and Consciousness Recognition

Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability di...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 3498 - 3510
Main Authors Chen, Rongtao, Xie, Chuwen, Zhang, Jiahui, You, Qi, Pan, Jiahui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2025.3603190

Cover

Abstract Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% <inline-formula> <tex-math notation="LaTeX">\pm ~1.65 </tex-math></inline-formula>% and 88.18% <inline-formula> <tex-math notation="LaTeX">\pm ~4.55 </tex-math></inline-formula>%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% <inline-formula> <tex-math notation="LaTeX">\pm ~2.28 </tex-math></inline-formula>% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.
AbstractList Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: (1) extracting domain-invariant features while effectively preserving emotion-related information, and (2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% ± 1.65% and 88.18% ± 4.55%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% ± 2.28% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: (1) extracting domain-invariant features while effectively preserving emotion-related information, and (2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% ± 1.65% and 88.18% ± 4.55%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% ± 2.28% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.
Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% <tex-math notation="LaTeX">$\pm ~1.65$ </tex-math>% and 88.18% <tex-math notation="LaTeX">$\pm ~4.55$ </tex-math>%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% <tex-math notation="LaTeX">$\pm ~2.28$ </tex-math>% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.
Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% $\pm ~1.65$ % and 88.18% $\pm ~4.55$ %, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% $\pm ~2.28$ % in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.
Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% <inline-formula> <tex-math notation="LaTeX">\pm ~1.65 </tex-math></inline-formula>% and 88.18% <inline-formula> <tex-math notation="LaTeX">\pm ~4.55 </tex-math></inline-formula>%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% <inline-formula> <tex-math notation="LaTeX">\pm ~2.28 </tex-math></inline-formula>% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.
Author Pan, Jiahui
You, Qi
Zhang, Jiahui
Xie, Chuwen
Chen, Rongtao
Author_xml – sequence: 1
  givenname: Rongtao
  orcidid: 0009-0000-9279-495X
  surname: Chen
  fullname: Chen, Rongtao
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China
– sequence: 2
  givenname: Chuwen
  surname: Xie
  fullname: Xie, Chuwen
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China
– sequence: 3
  givenname: Jiahui
  surname: Zhang
  fullname: Zhang, Jiahui
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China
– sequence: 4
  givenname: Qi
  orcidid: 0009-0006-7366-8935
  surname: You
  fullname: You, Qi
  email: youqi@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China
– sequence: 5
  givenname: Jiahui
  orcidid: 0000-0002-7576-6743
  surname: Pan
  fullname: Pan, Jiahui
  email: panjiahui@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40864570$$D View this record in MEDLINE/PubMed
BookMark eNplUstuEzEUHaEi-oAfQAh5yWaCX_NahjCESqWgpoil5fFcpw4TO9geqn4Jv4snCUWCla_uPef4-B6fZyfWWciylwTPCMHN29vr1U07o5gWM1ZiRhr8JDsjRVHnmBJ8MtWM55xRfJqdh7DBmFRlUT3LTjmuS15U-Cz7NUdfvFt7CMH8BPRpHKLJ37utNBbNe7mLMhpn0TXEe-e_o28m3qEbMFY7r6BHKxh0vnA2RD-qmBpLL3d3AaUxWngXQr4auw2oiNp2mb-TIUHardtrStujiaqMG4NNBpKwcmtrpunz7KmWQ4AXx_Mi-_qhvV18zK8-Ly8X86tcsbqKeV82jFd1XzOu6k5SmZbBm7JoSg0M81QoSC_tGt2wXhdadQxjCqxgtKYdJewiuzzo9k5uxM6brfQPwkkj9g3n10L6aNQAIt1De6VIpeuO95x3SumGqIImC7qWZdJiB63R7uTDvRyGR0GCxRSZiDZ4EFNk4hhZYr05sHbe_RghRLE1QcEwSAtpMYJRXvIpUJqgr4_QsdtC_6j-J84EoAeAmnbvQf9nYP9n_jXw6kAyAPCXQAinVVOw39q3vFI
CODEN ITNSB3
Cites_doi 10.1196/annals.1279.014
10.1088/1741-2560/11/5/056007
10.1109/TIM.2025.3544334
10.1016/j.neunet.2024.106643
10.1109/TAFFC.2024.3349770
10.1109/TNSRE.2025.3530110
10.1016/j.neubiorev.2019.11.014
10.1109/TCYB.2018.2797176
10.1176/appi.ps.51.12.1579
10.1016/j.bspc.2023.104998
10.1109/TMM.2024.3385676
10.1055/s-2008-1040919
10.1109/TNSRE.2024.3435016
10.1145/3388142.3388167
10.1109/JBHI.2023.3335854
10.1186/s40708-018-0085-y
10.1016/j.clinph.2008.06.019
10.1109/TNNLS.2024.3493425
10.1016/j.neunet.2024.106742
10.1016/j.bspc.2021.103289
10.1109/TAMD.2015.2431497
10.1109/TAFFC.2018.2817622
10.1109/TNSRE.2024.3424543
10.1109/TAFFC.2024.3462603
10.1016/j.aei.2023.102008
10.1038/nrneurol.2013.279
10.1007/978-3-319-19387-8_288
10.1016/j.brainresbull.2024.110901
10.1016/j.knosys.2025.113368
10.1016/j.neunet.2021.05.032
10.1109/TAFFC.2020.2994159
10.1136/bmj.c3765
10.1016/S0140-6736(11)61224-5
10.1109/TAFFC.2024.3394436
10.1109/TNSRE.2023.3304660
10.1109/JBHI.2024.3416944
10.1038/s41598-024-62990-4
10.1126/science.1076358
10.1007/s11023-013-9320-8
10.1007/s11136-023-03539-2
10.1186/1741-7015-8-68
10.1109/TAFFC.2024.3480355
10.1016/j.brs.2022.12.009
10.1109/TIM.2023.3267367
10.3389/fnsys.2022.654541
10.1109/TNSRE.2023.3236687
10.1016/S0006-3223(00)00847-7
10.1027/0269-8803.21.2.100
10.1088/1741-2552/aa6c31
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2025.3603190
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (NTUSG)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: Consulter via IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 3510
ExternalDocumentID oai_doaj_org_article_4782dcc17f8b4d44bccf91c52934f8a6
10.1109/tnsre.2025.3603190
40864570
10_1109_TNSRE_2025_3603190
11142795
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science and Technology Innovation 2030 Major Program Science and Technology Innovation 2030-Major Projects
  grantid: 2022ZD0208900
  funderid: 10.13039/501100017680
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2024A1515010524
– fundername: Major Projects of Colleges and Universities in Guangdong Province
  grantid: 2023ZDZX2021
  funderid: 10.13039/501100003453
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c387t-d693478d834c8ba2a025496596fe304659ce645b9f93df5fcb3002e353282b213
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:41:44 EDT 2025
Mon Sep 15 08:25:31 EDT 2025
Sat Sep 06 05:48:25 EDT 2025
Tue Sep 09 02:30:48 EDT 2025
Wed Oct 01 05:24:34 EDT 2025
Wed Sep 17 06:32:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-d693478d834c8ba2a025496596fe304659ce645b9f93df5fcb3002e353282b213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-9279-495X
0009-0006-7366-8935
0000-0002-7576-6743
OpenAccessLink https://doaj.org/article/4782dcc17f8b4d44bccf91c52934f8a6
PMID 40864570
PQID 3246402102
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3246402102
pubmed_primary_40864570
ieee_primary_11142795
doaj_primary_oai_doaj_org_article_4782dcc17f8b4d44bccf91c52934f8a6
unpaywall_primary_10_1109_tnsre_2025_3603190
crossref_primary_10_1109_TNSRE_2025_3603190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref46
  doi: 10.1196/annals.1279.014
– ident: ref30
  doi: 10.1088/1741-2560/11/5/056007
– ident: ref33
  doi: 10.1109/TIM.2025.3544334
– ident: ref8
  doi: 10.1016/j.neunet.2024.106643
– ident: ref26
  doi: 10.1109/TAFFC.2024.3349770
– ident: ref2
  doi: 10.1109/TNSRE.2025.3530110
– ident: ref23
  doi: 10.1016/j.neubiorev.2019.11.014
– ident: ref16
  doi: 10.1109/TCYB.2018.2797176
– ident: ref47
  doi: 10.1176/appi.ps.51.12.1579
– ident: ref17
  doi: 10.1016/j.bspc.2023.104998
– ident: ref24
  doi: 10.1109/TMM.2024.3385676
– ident: ref36
  doi: 10.1055/s-2008-1040919
– ident: ref32
  doi: 10.1109/TNSRE.2024.3435016
– ident: ref3
  doi: 10.1145/3388142.3388167
– ident: ref7
  doi: 10.1109/JBHI.2023.3335854
– ident: ref42
  doi: 10.1186/s40708-018-0085-y
– ident: ref44
  doi: 10.1016/j.clinph.2008.06.019
– ident: ref39
  doi: 10.1109/TNNLS.2024.3493425
– ident: ref14
  doi: 10.1016/j.neunet.2024.106742
– ident: ref4
  doi: 10.1016/j.bspc.2021.103289
– ident: ref6
  doi: 10.1109/TAMD.2015.2431497
– ident: ref10
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref49
  doi: 10.1109/TNSRE.2024.3424543
– ident: ref48
  doi: 10.1109/TAFFC.2024.3462603
– ident: ref9
  doi: 10.1016/j.aei.2023.102008
– ident: ref37
  doi: 10.1038/nrneurol.2013.279
– ident: ref5
  doi: 10.1007/978-3-319-19387-8_288
– ident: ref41
  doi: 10.1016/j.brainresbull.2024.110901
– ident: ref34
  doi: 10.1016/j.knosys.2025.113368
– ident: ref40
  doi: 10.1016/j.neunet.2021.05.032
– ident: ref12
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref18
  doi: 10.1136/bmj.c3765
– ident: ref28
  doi: 10.1016/S0140-6736(11)61224-5
– ident: ref15
  doi: 10.1109/TAFFC.2024.3394436
– ident: ref11
  doi: 10.1109/TNSRE.2023.3304660
– ident: ref25
  doi: 10.1109/JBHI.2024.3416944
– ident: ref1
  doi: 10.1038/s41598-024-62990-4
– ident: ref21
  doi: 10.1126/science.1076358
– ident: ref45
  doi: 10.1007/s11023-013-9320-8
– ident: ref22
  doi: 10.1007/s11136-023-03539-2
– ident: ref19
  doi: 10.1186/1741-7015-8-68
– ident: ref27
  doi: 10.1109/TAFFC.2024.3480355
– ident: ref38
  doi: 10.1016/j.brs.2022.12.009
– ident: ref31
  doi: 10.1109/TIM.2023.3267367
– ident: ref35
  doi: 10.3389/fnsys.2022.654541
– ident: ref13
  doi: 10.1109/TNSRE.2023.3236687
– ident: ref20
  doi: 10.1016/S0006-3223(00)00847-7
– ident: ref43
  doi: 10.1027/0269-8803.21.2.100
– ident: ref29
  doi: 10.1088/1741-2552/aa6c31
SSID ssj0017657
Score 2.4426947
Snippet Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant...
SourceID doaj
unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3498
SubjectTerms Accuracy
Adaptation models
Adult
Algorithms
Brain modeling
Brain-Computer Interfaces
Computational modeling
Consciousness - physiology
consciousness recognition
Databases, Factual
domain adaptation
Electroencephalogram (EEG)
Electroencephalography
Electroencephalography - methods
Emotion recognition
Emotional responses
Emotions - physiology
Feature extraction
Female
Humans
Male
Neural Networks, Computer
Noise measurement
Probability distribution
reinforcement learning
Young Adult
SummonAdditionalLinks – databaseName: IEEE Xplore (NTUSG)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbYvQAHnguEl4wEXMDdJraT-NhdsrviUKFuV-wt8lOsKGklUhD8Ef4uM05SujwkblXqtJnMN-OxPfMNIc9VyDIjtWLo-JgQmoPNcc6systMGamMidkW0_zkTLw9l-d9sXqshfHex-QzP8KP8SzfLe0at8r2Uyz8LJTcITtFmXfFWpsjgyKPtJ5gwYIJno2HCpmx2p9PT2cVrAUzOeLYVVlh_zcBwbyQ2KR4a0KKvP19o5W_xZzXydV1s9LfvurFYmseOrpJpoMEXfrJx9G6NSP7_Tdyx_8W8Ra50UekdNJB6Da54ps75MU2-zCdd9QD9CWdXSL2vkt-TOg7zPDCZNovnsZyXvZm-UlfNHTi9KobR6ddsjl9f9F-gN-IbK3WO3rqF4Fhz9DIYgsXjpE_-zOFr-khvi4Gjg13imhVHbMDmHEdrbrGQ1Q3juKtFrN40WHT2ZAMtWz2yNlRNT88YX2vB2Z5WbTM5YqLonQlF7Y0OtNYpY9kh3nweHgrlfWgLqOC4i7IYA0HX-655LBmNFnK75HdZtn4B4S63AuFkV9hjICAEjxSkNbaMeehtC5NyKtB4fWqo_So41JorOqIlBqRUvdIScgBYmIzEum44wVQW91bdw1Pnjlr0yKURjghjLVBpVZCLCVCqfOE7KGqf_1dr-WEPBsgVoNZ41mNbjy8tRri3FzE9XhC7nfY29w9IDchrzdg_EOStgEBL0ny8B8P8Yhcw2HdvtJjsgsa908g0mrN02hhPwEu0CI0
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ9wAceC5QXjIScAF3m9hO4mN3ye6KQ7XqtmI5RX6KFSWttFkQ_BH-LjNOWlrYAxzj2Ikf43nYM98Q8lKFNDVSK4aMjwmhOew5zplVWZEqI5Ux0dtinB3PxPszedbB5GAszOb9fTJUe00NkgLMuFQOOCZEVmCe72QS9O4e2ZmNT0YfW0BUwQSPGIwgHwuGhswqQubKj2xJoQjW32VXuUrRvEmuX9ZL_f2bns83hM_h7TaL0UXELESfk8-Dy8YM7I8_EB3_bVx3yK1OB6Wjlmjukmu-vkdebeIN02kLNkBf08kWlPd98nNET9CnC91nv3oaA3jZu8UXfV7TkdPLth4dt-7l9MN58wm-EfFZrXf01M8DwyyhEbcWCo4QMfuCwmt6gHPFgJXh2RAtyyO2DzLW0bJNNUR17Sg2tei3iyyaTlbuT4t6l8wOy-nBMeuyOzDLi7xhLlNc5IUruLCF0anGuHyEN8yCx-taqazPhDQqKO6CDNZw4N6eSw5WokkT_oD06kXtHxHqMi8U6nq5MQJUSOBBQVprh5yHwrqkT96sVrtatiAeVTR-hqqajk8nZYULUXUL0Sf7SBDrmgjAHQtg_apuP1fQ89RZm-ShMMIJYawNKrEStCcRCp31yS6S0-_fYcxyrmSfvFjRVwUbGW9ndO1h1irQbDMRLfA-edgS3rq1AMNTyBy69nZNiX-NJJLU1kge_1_1J-QGPrYHTE9JDwjBPwOVqzHPu732C99dIlk
  priority: 102
  providerName: Unpaywall
Title A Progressive Multi-Domain Adaptation Network With Reinforced Self-Constructed Graphs for Cross-Subject EEG-Based Emotion and Consciousness Recognition
URI https://ieeexplore.ieee.org/document/11142795
https://www.ncbi.nlm.nih.gov/pubmed/40864570
https://www.proquest.com/docview/3246402102
https://doi.org/10.1109/tnsre.2025.3603190
https://doaj.org/article/4782dcc17f8b4d44bccf91c52934f8a6
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: Consulter via IEEE Xplore
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQcgAOiMcC4VEZCbiA2TS2k_jYXbK74lCtuq1YTpGfYqWSVqKA-CX8XWbspHQFEheuieNkMuN52DPfEPJChaIwUiuGio8JoTmsOc6ZVWVdKCOVMTHbYlqeLsT7C3mx0-oLc8ISPHD6cQcCTJizdlyF2ggnhLE2qLGVYKZEqHUE285rNQRT_flBVUaMT1jOggle5EO5TK4O5tPzWQOBYSHfcmyxjNp4xyRF5P6-1crfvM5b5MbXbq1_fNfL5Y4lOr5DbvcuJJ2kT79LrvnuHnm5CxdM5wkrgL6isytI3PfJzwk9w5QszH795mmsv2XvVp_1ZUcnTq_TODpN2eH0w-XmE8wR4VWtd_TcLwPDJp8RdhYunCDg9RcKt-kRUsdAE-HWDm2aE3YIJtLRJnUKorpzFB-1mHaLGpbOhuylVbdPFsfN_OiU9c0ZmOV1tWGuBAZUtau5sLXRhcayekQnLIPH01aprC-FNCoo7oIM1nBQvp5LDkGeKcb8AdnrVp1_RKgrvVDoqlXGCPAAQYUEaa3NOQ-1deOMvB74064TBkcbY5dctZGbLXKz7bmZkUNk4XYk4mfHCyBVbS9V7b-kKiP7KAC_X4clx5WSGXk-SEQL6xAPV3Tn4a-14JiWIgbQGXmYRGX7tIC4UcgKPu3NVnb-oGTTAYFXKHn8Pyh5Qm7inGnX6CnZA_Hwz8CP2phRXDKjWPI4ItcX07PJx1-qwhm-
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BORQOPAs1z0UCLrBp4t21vce0pA1QIpSmam_WPtWK4EQiAcEf4e8ys7ZDykPiFjnexOP5ZnZ2d-YbQp6pkKZGasXQ8TEhNAeb45xZlRWpMlIZE7MtRtnwWLw9ladNsXqshfHex-Qz38GP8SzfzewSt8p2elj4mSt5mVyRQghZl2utDg3yLBJ7gg0LJnjabWtkumpnMjoaD2A1mMoOx77KCjvACQjnhcQ2xWtTUmTub1qt_C3qvEY2l9Vcf_uqp9O1mWj_Bhm1MtQJKB87y4Xp2O-_0Tv-t5A3yfUmJqX9GkS3yCVf3SbP1_mH6aQmH6Av6PgCtfcd8qNPP2COF6bTfvE0FvSy17NP-ryifafn9X10VKeb05PzxRn8RuRrtd7RIz8NDLuGRh5buHCADNqfKXxN9_B1MXBtuFdEB4MDtgtzrqODuvUQ1ZWjONRiHi-6bDpu06Fm1RY53h9M9oas6fbALC_yBXOZ4iIvXMGFLYxONdbpI91hFjwe30plPajLqKC4CzJYw8Gbey45rBpN2uN3yUY1q_w2oS7zQmHslxsjIKQEnxSktbbLeSis6yXkZavwcl6TepRxMdRVZURKiUgpG6QkZBcxsboTCbnjBVBb2dh3CU-eOmt7eSiMcEIYa4PqWQnRlAiFzhKyhar-9XeNlhPytIVYCYaNpzW68vDWSoh0MxFX5Am5V2NvNbpFbkJercD4hySLCgS8IMn9fzzEE7I5nLw_LA_fjN49IFdxSL3L9JBsgPb9I4i7FuZxtLafeRolgQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ9wAceC5QXjIScAF3m9hO4mN3ye6KQ7XqtmI5RX6KFSWttFkQ_BH-LjNOWlrYAxzj2Ikf43nYM98Q8lKFNDVSK4aMjwmhOew5zplVWZEqI5Ux0dtinB3PxPszedbB5GAszOb9fTJUe00NkgLMuFQOOCZEVmCe72QS9O4e2ZmNT0YfW0BUwQSPGIwgHwuGhswqQubKj2xJoQjW32VXuUrRvEmuX9ZL_f2bns83hM_h7TaL0UXELESfk8-Dy8YM7I8_EB3_bVx3yK1OB6Wjlmjukmu-vkdebeIN02kLNkBf08kWlPd98nNET9CnC91nv3oaA3jZu8UXfV7TkdPLth4dt-7l9MN58wm-EfFZrXf01M8DwyyhEbcWCo4QMfuCwmt6gHPFgJXh2RAtyyO2DzLW0bJNNUR17Sg2tei3iyyaTlbuT4t6l8wOy-nBMeuyOzDLi7xhLlNc5IUruLCF0anGuHyEN8yCx-taqazPhDQqKO6CDNZw4N6eSw5WokkT_oD06kXtHxHqMi8U6nq5MQJUSOBBQVprh5yHwrqkT96sVrtatiAeVTR-hqqajk8nZYULUXUL0Sf7SBDrmgjAHQtg_apuP1fQ89RZm-ShMMIJYawNKrEStCcRCp31yS6S0-_fYcxyrmSfvFjRVwUbGW9ndO1h1irQbDMRLfA-edgS3rq1AMNTyBy69nZNiX-NJJLU1kge_1_1J-QGPrYHTE9JDwjBPwOVqzHPu732C99dIlk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Progressive+Multi-Domain+Adaptation+Network+With+Reinforced+Self-Constructed+Graphs+for+Cross-Subject+EEG-Based+Emotion+and+Consciousness+Recognition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Rongtao&rft.au=Xie%2C+Chuwen&rft.au=Zhang%2C+Jiahui&rft.au=You%2C+Qi&rft.date=2025-01-01&rft.eissn=1558-0210&rft.volume=33&rft.spage=3498&rft_id=info:doi/10.1109%2FTNSRE.2025.3603190&rft_id=info%3Apmid%2F40864570&rft.externalDocID=40864570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon