A Progressive Multi-Domain Adaptation Network With Reinforced Self-Constructed Graphs for Cross-Subject EEG-Based Emotion and Consciousness Recognition
Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability di...
        Saved in:
      
    
          | Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 3498 - 3510 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1534-4320 1558-0210 1558-0210  | 
| DOI | 10.1109/TNSRE.2025.3603190 | 
Cover
| Abstract | Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% <inline-formula> <tex-math notation="LaTeX">\pm ~1.65 </tex-math></inline-formula>% and 88.18% <inline-formula> <tex-math notation="LaTeX">\pm ~4.55 </tex-math></inline-formula>%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% <inline-formula> <tex-math notation="LaTeX">\pm ~2.28 </tex-math></inline-formula>% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode. | 
    
|---|---|
| AbstractList | Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: (1) extracting domain-invariant features while effectively preserving emotion-related information, and (2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% ± 1.65% and 88.18% ± 4.55%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% ± 2.28% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: (1) extracting domain-invariant features while effectively preserving emotion-related information, and (2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% ± 1.65% and 88.18% ± 4.55%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% ± 2.28% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode. Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% <tex-math notation="LaTeX">$\pm ~1.65$ </tex-math>% and 88.18% <tex-math notation="LaTeX">$\pm ~4.55$ </tex-math>%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% <tex-math notation="LaTeX">$\pm ~2.28$ </tex-math>% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode. Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% $\pm ~1.65$ % and 88.18% $\pm ~4.55$ %, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% $\pm ~2.28$ % in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode. Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant challenges: 1) extracting domain-invariant features while effectively preserving emotion-related information, and 2) aligning the joint probability distributions of data across different individuals. To address these challenges, we propose a progressive multi-domain adaptation network with reinforced self-constructed graphs. Specifically, we introduce EEG-CutMix to construct unlabeled mixed-domain data, facilitating the transition between source and target domains. Additionally, a reinforced self-constructed graphs module is employed to extract domain-invariant features. Finally, a progressive multi-domain adaptation framework is constructed to smoothly align the data distributions across individuals. Experiments on cross-subject datasets demonstrate that our model achieves state-of-the-art performance on the SEED and SEED-IV datasets, with accuracies of 97.03% <inline-formula> <tex-math notation="LaTeX">\pm ~1.65 </tex-math></inline-formula>% and 88.18% <inline-formula> <tex-math notation="LaTeX">\pm ~4.55 </tex-math></inline-formula>%, respectively. Furthermore, tests on a self-recorded dataset, comprising ten healthy subjects and twelve patients with disorders of consciousness (DOC), show that our model achieves a mean accuracy of 86.65% <inline-formula> <tex-math notation="LaTeX">\pm ~2.28 </tex-math></inline-formula>% in healthy subjects. Notably, it successfully applies to DOC patients, with four subjects achieving emotion recognition accuracy exceeding 70%. These results validate the effectiveness of our model in EEG emotion recognition and highlight its potential for assessing consciousness levels in DOC patients. The source code for the proposed model is available at GitHub-seizeall/mycode.  | 
    
| Author | Pan, Jiahui You, Qi Zhang, Jiahui Xie, Chuwen Chen, Rongtao  | 
    
| Author_xml | – sequence: 1 givenname: Rongtao orcidid: 0009-0000-9279-495X surname: Chen fullname: Chen, Rongtao organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China – sequence: 2 givenname: Chuwen surname: Xie fullname: Xie, Chuwen organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China – sequence: 3 givenname: Jiahui surname: Zhang fullname: Zhang, Jiahui organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China – sequence: 4 givenname: Qi orcidid: 0009-0006-7366-8935 surname: You fullname: You, Qi email: youqi@m.scnu.edu.cn organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China – sequence: 5 givenname: Jiahui orcidid: 0000-0002-7576-6743 surname: Pan fullname: Pan, Jiahui email: panjiahui@m.scnu.edu.cn organization: School of Artificial Intelligence, South China Normal University, Guangzhou, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40864570$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNplUstuEzEUHaEi-oAfQAh5yWaCX_NahjCESqWgpoil5fFcpw4TO9geqn4Jv4snCUWCla_uPef4-B6fZyfWWciylwTPCMHN29vr1U07o5gWM1ZiRhr8JDsjRVHnmBJ8MtWM55xRfJqdh7DBmFRlUT3LTjmuS15U-Cz7NUdfvFt7CMH8BPRpHKLJ37utNBbNe7mLMhpn0TXEe-e_o28m3qEbMFY7r6BHKxh0vnA2RD-qmBpLL3d3AaUxWngXQr4auw2oiNp2mb-TIUHardtrStujiaqMG4NNBpKwcmtrpunz7KmWQ4AXx_Mi-_qhvV18zK8-Ly8X86tcsbqKeV82jFd1XzOu6k5SmZbBm7JoSg0M81QoSC_tGt2wXhdadQxjCqxgtKYdJewiuzzo9k5uxM6brfQPwkkj9g3n10L6aNQAIt1De6VIpeuO95x3SumGqIImC7qWZdJiB63R7uTDvRyGR0GCxRSZiDZ4EFNk4hhZYr05sHbe_RghRLE1QcEwSAtpMYJRXvIpUJqgr4_QsdtC_6j-J84EoAeAmnbvQf9nYP9n_jXw6kAyAPCXQAinVVOw39q3vFI | 
    
| CODEN | ITNSB3 | 
    
| Cites_doi | 10.1196/annals.1279.014 10.1088/1741-2560/11/5/056007 10.1109/TIM.2025.3544334 10.1016/j.neunet.2024.106643 10.1109/TAFFC.2024.3349770 10.1109/TNSRE.2025.3530110 10.1016/j.neubiorev.2019.11.014 10.1109/TCYB.2018.2797176 10.1176/appi.ps.51.12.1579 10.1016/j.bspc.2023.104998 10.1109/TMM.2024.3385676 10.1055/s-2008-1040919 10.1109/TNSRE.2024.3435016 10.1145/3388142.3388167 10.1109/JBHI.2023.3335854 10.1186/s40708-018-0085-y 10.1016/j.clinph.2008.06.019 10.1109/TNNLS.2024.3493425 10.1016/j.neunet.2024.106742 10.1016/j.bspc.2021.103289 10.1109/TAMD.2015.2431497 10.1109/TAFFC.2018.2817622 10.1109/TNSRE.2024.3424543 10.1109/TAFFC.2024.3462603 10.1016/j.aei.2023.102008 10.1038/nrneurol.2013.279 10.1007/978-3-319-19387-8_288 10.1016/j.brainresbull.2024.110901 10.1016/j.knosys.2025.113368 10.1016/j.neunet.2021.05.032 10.1109/TAFFC.2020.2994159 10.1136/bmj.c3765 10.1016/S0140-6736(11)61224-5 10.1109/TAFFC.2024.3394436 10.1109/TNSRE.2023.3304660 10.1109/JBHI.2024.3416944 10.1038/s41598-024-62990-4 10.1126/science.1076358 10.1007/s11023-013-9320-8 10.1007/s11136-023-03539-2 10.1186/1741-7015-8-68 10.1109/TAFFC.2024.3480355 10.1016/j.brs.2022.12.009 10.1109/TIM.2023.3267367 10.3389/fnsys.2022.654541 10.1109/TNSRE.2023.3236687 10.1016/S0006-3223(00)00847-7 10.1027/0269-8803.21.2.100 10.1088/1741-2552/aa6c31  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/TNSRE.2025.3603190 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (NTUSG) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: Consulter via IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Occupational Therapy & Rehabilitation | 
    
| EISSN | 1558-0210 | 
    
| EndPage | 3510 | 
    
| ExternalDocumentID | oai_doaj_org_article_4782dcc17f8b4d44bccf91c52934f8a6 10.1109/tnsre.2025.3603190 40864570 10_1109_TNSRE_2025_3603190 11142795  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: National Science and Technology Innovation 2030 Major Program Science and Technology Innovation 2030-Major Projects grantid: 2022ZD0208900 funderid: 10.13039/501100017680 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2024A1515010524 – fundername: Major Projects of Colleges and Universities in Guangdong Province grantid: 2023ZDZX2021 funderid: 10.13039/501100003453  | 
    
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c387t-d693478d834c8ba2a025496596fe304659ce645b9f93df5fcb3002e353282b213 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1534-4320 1558-0210  | 
    
| IngestDate | Fri Oct 03 12:41:44 EDT 2025 Mon Sep 15 08:25:31 EDT 2025 Sat Sep 06 05:48:25 EDT 2025 Tue Sep 09 02:30:48 EDT 2025 Wed Oct 01 05:24:34 EDT 2025 Wed Sep 17 06:32:17 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c387t-d693478d834c8ba2a025496596fe304659ce645b9f93df5fcb3002e353282b213 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0009-0000-9279-495X 0009-0006-7366-8935 0000-0002-7576-6743  | 
    
| OpenAccessLink | https://doaj.org/article/4782dcc17f8b4d44bccf91c52934f8a6 | 
    
| PMID | 40864570 | 
    
| PQID | 3246402102 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_3246402102 pubmed_primary_40864570 ieee_primary_11142795 doaj_primary_oai_doaj_org_article_4782dcc17f8b4d44bccf91c52934f8a6 unpaywall_primary_10_1109_tnsre_2025_3603190 crossref_primary_10_1109_TNSRE_2025_3603190  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-01 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering | 
    
| PublicationTitleAbbrev | TNSRE | 
    
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29  | 
    
| References_xml | – ident: ref46 doi: 10.1196/annals.1279.014 – ident: ref30 doi: 10.1088/1741-2560/11/5/056007 – ident: ref33 doi: 10.1109/TIM.2025.3544334 – ident: ref8 doi: 10.1016/j.neunet.2024.106643 – ident: ref26 doi: 10.1109/TAFFC.2024.3349770 – ident: ref2 doi: 10.1109/TNSRE.2025.3530110 – ident: ref23 doi: 10.1016/j.neubiorev.2019.11.014 – ident: ref16 doi: 10.1109/TCYB.2018.2797176 – ident: ref47 doi: 10.1176/appi.ps.51.12.1579 – ident: ref17 doi: 10.1016/j.bspc.2023.104998 – ident: ref24 doi: 10.1109/TMM.2024.3385676 – ident: ref36 doi: 10.1055/s-2008-1040919 – ident: ref32 doi: 10.1109/TNSRE.2024.3435016 – ident: ref3 doi: 10.1145/3388142.3388167 – ident: ref7 doi: 10.1109/JBHI.2023.3335854 – ident: ref42 doi: 10.1186/s40708-018-0085-y – ident: ref44 doi: 10.1016/j.clinph.2008.06.019 – ident: ref39 doi: 10.1109/TNNLS.2024.3493425 – ident: ref14 doi: 10.1016/j.neunet.2024.106742 – ident: ref4 doi: 10.1016/j.bspc.2021.103289 – ident: ref6 doi: 10.1109/TAMD.2015.2431497 – ident: ref10 doi: 10.1109/TAFFC.2018.2817622 – ident: ref49 doi: 10.1109/TNSRE.2024.3424543 – ident: ref48 doi: 10.1109/TAFFC.2024.3462603 – ident: ref9 doi: 10.1016/j.aei.2023.102008 – ident: ref37 doi: 10.1038/nrneurol.2013.279 – ident: ref5 doi: 10.1007/978-3-319-19387-8_288 – ident: ref41 doi: 10.1016/j.brainresbull.2024.110901 – ident: ref34 doi: 10.1016/j.knosys.2025.113368 – ident: ref40 doi: 10.1016/j.neunet.2021.05.032 – ident: ref12 doi: 10.1109/TAFFC.2020.2994159 – ident: ref18 doi: 10.1136/bmj.c3765 – ident: ref28 doi: 10.1016/S0140-6736(11)61224-5 – ident: ref15 doi: 10.1109/TAFFC.2024.3394436 – ident: ref11 doi: 10.1109/TNSRE.2023.3304660 – ident: ref25 doi: 10.1109/JBHI.2024.3416944 – ident: ref1 doi: 10.1038/s41598-024-62990-4 – ident: ref21 doi: 10.1126/science.1076358 – ident: ref45 doi: 10.1007/s11023-013-9320-8 – ident: ref22 doi: 10.1007/s11136-023-03539-2 – ident: ref19 doi: 10.1186/1741-7015-8-68 – ident: ref27 doi: 10.1109/TAFFC.2024.3480355 – ident: ref38 doi: 10.1016/j.brs.2022.12.009 – ident: ref31 doi: 10.1109/TIM.2023.3267367 – ident: ref35 doi: 10.3389/fnsys.2022.654541 – ident: ref13 doi: 10.1109/TNSRE.2023.3236687 – ident: ref20 doi: 10.1016/S0006-3223(00)00847-7 – ident: ref43 doi: 10.1027/0269-8803.21.2.100 – ident: ref29 doi: 10.1088/1741-2552/aa6c31  | 
    
| SSID | ssj0017657 | 
    
| Score | 2.4426947 | 
    
| Snippet | Electroencephalogram (EEG)-based emotion recognition is a vital component in brain-computer interface applications. However, it faces two significant... | 
    
| SourceID | doaj unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 3498 | 
    
| SubjectTerms | Accuracy Adaptation models Adult Algorithms Brain modeling Brain-Computer Interfaces Computational modeling Consciousness - physiology consciousness recognition Databases, Factual domain adaptation Electroencephalogram (EEG) Electroencephalography Electroencephalography - methods Emotion recognition Emotional responses Emotions - physiology Feature extraction Female Humans Male Neural Networks, Computer Noise measurement Probability distribution reinforcement learning Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Xplore (NTUSG) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbYvQAHnguEl4wEXMDdJraT-NhdsrviUKFuV-wt8lOsKGklUhD8Ef4uM05SujwkblXqtJnMN-OxPfMNIc9VyDIjtWLo-JgQmoPNcc6systMGamMidkW0_zkTLw9l-d9sXqshfHex-QzP8KP8SzfLe0at8r2Uyz8LJTcITtFmXfFWpsjgyKPtJ5gwYIJno2HCpmx2p9PT2cVrAUzOeLYVVlh_zcBwbyQ2KR4a0KKvP19o5W_xZzXydV1s9LfvurFYmseOrpJpoMEXfrJx9G6NSP7_Tdyx_8W8Ra50UekdNJB6Da54ps75MU2-zCdd9QD9CWdXSL2vkt-TOg7zPDCZNovnsZyXvZm-UlfNHTi9KobR6ddsjl9f9F-gN-IbK3WO3rqF4Fhz9DIYgsXjpE_-zOFr-khvi4Gjg13imhVHbMDmHEdrbrGQ1Q3juKtFrN40WHT2ZAMtWz2yNlRNT88YX2vB2Z5WbTM5YqLonQlF7Y0OtNYpY9kh3nweHgrlfWgLqOC4i7IYA0HX-655LBmNFnK75HdZtn4B4S63AuFkV9hjICAEjxSkNbaMeehtC5NyKtB4fWqo_So41JorOqIlBqRUvdIScgBYmIzEum44wVQW91bdw1Pnjlr0yKURjghjLVBpVZCLCVCqfOE7KGqf_1dr-WEPBsgVoNZ41mNbjy8tRri3FzE9XhC7nfY29w9IDchrzdg_EOStgEBL0ny8B8P8Yhcw2HdvtJjsgsa908g0mrN02hhPwEu0CI0 priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ9wAceC5QXjIScAF3m9hO4mN3ye6KQ7XqtmI5RX6KFSWttFkQ_BH-LjNOWlrYAxzj2Ikf43nYM98Q8lKFNDVSK4aMjwmhOew5zplVWZEqI5Ux0dtinB3PxPszedbB5GAszOb9fTJUe00NkgLMuFQOOCZEVmCe72QS9O4e2ZmNT0YfW0BUwQSPGIwgHwuGhswqQubKj2xJoQjW32VXuUrRvEmuX9ZL_f2bns83hM_h7TaL0UXELESfk8-Dy8YM7I8_EB3_bVx3yK1OB6Wjlmjukmu-vkdebeIN02kLNkBf08kWlPd98nNET9CnC91nv3oaA3jZu8UXfV7TkdPLth4dt-7l9MN58wm-EfFZrXf01M8DwyyhEbcWCo4QMfuCwmt6gHPFgJXh2RAtyyO2DzLW0bJNNUR17Sg2tei3iyyaTlbuT4t6l8wOy-nBMeuyOzDLi7xhLlNc5IUruLCF0anGuHyEN8yCx-taqazPhDQqKO6CDNZw4N6eSw5WokkT_oD06kXtHxHqMi8U6nq5MQJUSOBBQVprh5yHwrqkT96sVrtatiAeVTR-hqqajk8nZYULUXUL0Sf7SBDrmgjAHQtg_apuP1fQ89RZm-ShMMIJYawNKrEStCcRCp31yS6S0-_fYcxyrmSfvFjRVwUbGW9ndO1h1irQbDMRLfA-edgS3rq1AMNTyBy69nZNiX-NJJLU1kge_1_1J-QGPrYHTE9JDwjBPwOVqzHPu732C99dIlk priority: 102 providerName: Unpaywall  | 
    
| Title | A Progressive Multi-Domain Adaptation Network With Reinforced Self-Constructed Graphs for Cross-Subject EEG-Based Emotion and Consciousness Recognition | 
    
| URI | https://ieeexplore.ieee.org/document/11142795 https://www.ncbi.nlm.nih.gov/pubmed/40864570 https://www.proquest.com/docview/3246402102 https://doi.org/10.1109/tnsre.2025.3603190 https://doaj.org/article/4782dcc17f8b4d44bccf91c52934f8a6  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: Consulter via IEEE Xplore customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQcgAOiMcC4VEZCbiA2TS2k_jYXbK74lCtuq1YTpGfYqWSVqKA-CX8XWbspHQFEheuieNkMuN52DPfEPJChaIwUiuGio8JoTmsOc6ZVWVdKCOVMTHbYlqeLsT7C3mx0-oLc8ISPHD6cQcCTJizdlyF2ggnhLE2qLGVYKZEqHUE285rNQRT_flBVUaMT1jOggle5EO5TK4O5tPzWQOBYSHfcmyxjNp4xyRF5P6-1crfvM5b5MbXbq1_fNfL5Y4lOr5DbvcuJJ2kT79LrvnuHnm5CxdM5wkrgL6isytI3PfJzwk9w5QszH795mmsv2XvVp_1ZUcnTq_TODpN2eH0w-XmE8wR4VWtd_TcLwPDJp8RdhYunCDg9RcKt-kRUsdAE-HWDm2aE3YIJtLRJnUKorpzFB-1mHaLGpbOhuylVbdPFsfN_OiU9c0ZmOV1tWGuBAZUtau5sLXRhcayekQnLIPH01aprC-FNCoo7oIM1nBQvp5LDkGeKcb8AdnrVp1_RKgrvVDoqlXGCPAAQYUEaa3NOQ-1deOMvB74064TBkcbY5dctZGbLXKz7bmZkUNk4XYk4mfHCyBVbS9V7b-kKiP7KAC_X4clx5WSGXk-SEQL6xAPV3Tn4a-14JiWIgbQGXmYRGX7tIC4UcgKPu3NVnb-oGTTAYFXKHn8Pyh5Qm7inGnX6CnZA_Hwz8CP2phRXDKjWPI4ItcX07PJx1-qwhm- | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BORQOPAs1z0UCLrBp4t21vce0pA1QIpSmam_WPtWK4EQiAcEf4e8ys7ZDykPiFjnexOP5ZnZ2d-YbQp6pkKZGasXQ8TEhNAeb45xZlRWpMlIZE7MtRtnwWLw9ladNsXqshfHex-Qz38GP8SzfzewSt8p2elj4mSt5mVyRQghZl2utDg3yLBJ7gg0LJnjabWtkumpnMjoaD2A1mMoOx77KCjvACQjnhcQ2xWtTUmTub1qt_C3qvEY2l9Vcf_uqp9O1mWj_Bhm1MtQJKB87y4Xp2O-_0Tv-t5A3yfUmJqX9GkS3yCVf3SbP1_mH6aQmH6Av6PgCtfcd8qNPP2COF6bTfvE0FvSy17NP-ryifafn9X10VKeb05PzxRn8RuRrtd7RIz8NDLuGRh5buHCADNqfKXxN9_B1MXBtuFdEB4MDtgtzrqODuvUQ1ZWjONRiHi-6bDpu06Fm1RY53h9M9oas6fbALC_yBXOZ4iIvXMGFLYxONdbpI91hFjwe30plPajLqKC4CzJYw8Gbey45rBpN2uN3yUY1q_w2oS7zQmHslxsjIKQEnxSktbbLeSis6yXkZavwcl6TepRxMdRVZURKiUgpG6QkZBcxsboTCbnjBVBb2dh3CU-eOmt7eSiMcEIYa4PqWQnRlAiFzhKyhar-9XeNlhPytIVYCYaNpzW68vDWSoh0MxFX5Am5V2NvNbpFbkJercD4hySLCgS8IMn9fzzEE7I5nLw_LA_fjN49IFdxSL3L9JBsgPb9I4i7FuZxtLafeRolgQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ9wAceC5QXjIScAF3m9hO4mN3ye6KQ7XqtmI5RX6KFSWttFkQ_BH-LjNOWlrYAxzj2Ikf43nYM98Q8lKFNDVSK4aMjwmhOew5zplVWZEqI5Ux0dtinB3PxPszedbB5GAszOb9fTJUe00NkgLMuFQOOCZEVmCe72QS9O4e2ZmNT0YfW0BUwQSPGIwgHwuGhswqQubKj2xJoQjW32VXuUrRvEmuX9ZL_f2bns83hM_h7TaL0UXELESfk8-Dy8YM7I8_EB3_bVx3yK1OB6Wjlmjukmu-vkdebeIN02kLNkBf08kWlPd98nNET9CnC91nv3oaA3jZu8UXfV7TkdPLth4dt-7l9MN58wm-EfFZrXf01M8DwyyhEbcWCo4QMfuCwmt6gHPFgJXh2RAtyyO2DzLW0bJNNUR17Sg2tei3iyyaTlbuT4t6l8wOy-nBMeuyOzDLi7xhLlNc5IUruLCF0anGuHyEN8yCx-taqazPhDQqKO6CDNZw4N6eSw5WokkT_oD06kXtHxHqMi8U6nq5MQJUSOBBQVprh5yHwrqkT96sVrtatiAeVTR-hqqajk8nZYULUXUL0Sf7SBDrmgjAHQtg_apuP1fQ89RZm-ShMMIJYawNKrEStCcRCp31yS6S0-_fYcxyrmSfvFjRVwUbGW9ndO1h1irQbDMRLfA-edgS3rq1AMNTyBy69nZNiX-NJJLU1kge_1_1J-QGPrYHTE9JDwjBPwOVqzHPu732C99dIlk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Progressive+Multi-Domain+Adaptation+Network+With+Reinforced+Self-Constructed+Graphs+for+Cross-Subject+EEG-Based+Emotion+and+Consciousness+Recognition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Rongtao&rft.au=Xie%2C+Chuwen&rft.au=Zhang%2C+Jiahui&rft.au=You%2C+Qi&rft.date=2025-01-01&rft.eissn=1558-0210&rft.volume=33&rft.spage=3498&rft_id=info:doi/10.1109%2FTNSRE.2025.3603190&rft_id=info%3Apmid%2F40864570&rft.externalDocID=40864570 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |