Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning
•Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid representation.•Improving performance by exploiting the commonalities and differences across tasks.•Embedding segmentation and quantification tasks into adv...
Saved in:
Published in | Medical image analysis Vol. 59; p. 101568 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2019.101568 |
Cover
Abstract | •Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid representation.•Improving performance by exploiting the commonalities and differences across tasks.•Embedding segmentation and quantification tasks into adversarial learning.
[Display omitted]
Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments. |
---|---|
AbstractList | •Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid representation.•Improving performance by exploiting the commonalities and differences across tasks.•Embedding segmentation and quantification tasks into adversarial learning.
[Display omitted]
Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments. 1Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments. Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments. Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments.Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments. |
ArticleNumber | 101568 |
Author | Ohorodnyk, Pavlo Zhang, Heye Xu, Chenchu Roth, Mike Howey, Joanne Li, Shuo |
Author_xml | – sequence: 1 givenname: Chenchu surname: Xu fullname: Xu, Chenchu organization: Western University, London ON, Canada – sequence: 2 givenname: Joanne surname: Howey fullname: Howey, Joanne organization: Western University, London ON, Canada – sequence: 3 givenname: Pavlo surname: Ohorodnyk fullname: Ohorodnyk, Pavlo organization: Western University, London ON, Canada – sequence: 4 givenname: Mike surname: Roth fullname: Roth, Mike organization: Western University, London ON, Canada – sequence: 5 givenname: Heye surname: Zhang fullname: Zhang, Heye email: zhangheye@mail.sysu.edu.cn organization: Sun Yat-Sen University, Shenzhen, China – sequence: 6 givenname: Shuo orcidid: 0000-0002-5184-3230 surname: Li fullname: Li, Shuo email: slishuo@gmail.com organization: Western University, London ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31622838$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URB7wC5CQJRqa3fgxM_YWFCgigBQpBUlt3bXvLF7N2Bvbs4F_H28moUiRxo_j71xZ55ySoxADEvKRsyVnvDvfLkd0HpaC8dVBaTv9hpxw2fGFboQ8-n_m7TE5zXnLGFNNw96RY8k7IbTUJ-Tvb9yMGAoUHwOF4OjdBKH43ttZij31oYdkH2_3vvyJU6E2hpIgFwqbas5074Hm3cFRcNzFBAOtD5iqskcKbo8pQ_JVHhBS8GHznrztYcj44Wk_I7eX328ufi6urn_8uvh2tbBSq7KwDVfOilY7VL2ztnei6TTnTijV9gDtitVVauzt2qr6IAW4dev0upLAnTwjX-a5uxTvJszFjD5bHAYIGKdshGSKS9YpWdHPL9BtnFKov6uUXOmaMe8q9emJmta1ALNLfoT0zzxnWoHVDNgUc07YG-vnfGtkfjCcmUN_Zmse-zOH_szcX_XKF97n8a-7vs4urEHuPSaTrcdgK5jQFuOif9X_APz3uFY |
CitedBy_id | crossref_primary_10_1007_s13735_022_00240_x crossref_primary_10_1016_j_media_2020_101944 crossref_primary_10_1371_journal_pone_0260195 crossref_primary_10_1145_3638044 crossref_primary_10_1016_j_compmedimag_2024_102333 crossref_primary_10_1016_j_knosys_2024_112536 crossref_primary_10_1049_ipr2_12495 crossref_primary_10_1016_j_media_2021_102170 crossref_primary_10_3390_app15042169 crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_1038_s41598_023_40841_y crossref_primary_10_3390_e26020166 crossref_primary_10_1016_j_compbiomed_2021_105063 crossref_primary_10_1016_j_media_2022_102554 crossref_primary_10_1016_j_media_2022_102694 crossref_primary_10_1016_j_media_2021_102154 crossref_primary_10_31083_j_rcm2512447 crossref_primary_10_1016_j_media_2021_102207 crossref_primary_10_1161_CIRCIMAGING_124_017360 crossref_primary_10_4329_wjr_v14_i6_114 crossref_primary_10_1109_TBDATA_2023_3258643 crossref_primary_10_1016_j_cmpb_2022_106889 crossref_primary_10_37549_AR2790 crossref_primary_10_1371_journal_pone_0267753 crossref_primary_10_1038_s41598_024_85029_0 crossref_primary_10_1016_j_cmpb_2019_105288 crossref_primary_10_3389_fcvm_2022_894503 crossref_primary_10_1002_mrm_28596 crossref_primary_10_1038_s41598_020_68062_7 crossref_primary_10_1016_j_knosys_2022_109212 crossref_primary_10_1088_1361_6560_abd66b crossref_primary_10_1016_j_imu_2020_100320 crossref_primary_10_1371_journal_pone_0255374 crossref_primary_10_3389_fcvm_2024_1457498 crossref_primary_10_3390_diagnostics13122061 crossref_primary_10_1109_TMI_2020_3017275 crossref_primary_10_12677_ACM_2022_121029 crossref_primary_10_1007_s11886_020_01321_1 |
Cites_doi | 10.1016/j.ins.2017.09.026 10.1016/j.amjcard.2004.04.020 10.1161/01.CIR.63.4.747 10.1148/radiol.2461062164 10.1016/j.media.2017.09.005 10.1109/TMI.2016.2562181 10.1016/j.media.2016.11.008 10.1148/radiol.11091882 10.1109/TPAMI.2017.2688363 10.1186/1532-429X-15-105 10.1016/j.media.2010.12.004 10.1161/CIRCULATIONAHA.106.684357 10.1016/j.media.2015.07.003 10.1016/j.amjcard.2006.11.059 10.1161/CIRCULATIONAHA.109.865352 10.1007/s11548-016-1404-5 10.1109/TMI.2005.852050 10.1016/j.jacc.2004.02.046 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jan 2020 |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2019.101568 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 31622838 10_1016_j_media_2019_101568 S1361841519301082 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7QO 8FD AGCQF AGRNS FR3 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c387t-c417dc258de7fdccfd246811d2775faa590faa38efcbc781132adb5d8bfd2a1d3 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Sun Sep 28 11:40:11 EDT 2025 Sat Jul 26 03:31:46 EDT 2025 Wed Feb 19 02:31:46 EST 2025 Wed Oct 01 03:29:50 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Fri Feb 23 02:48:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Myocardial infarction Full quantification Generative adversarial networks Segmentation Sequential images |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-c417dc258de7fdccfd246811d2775faa590faa38efcbc781132adb5d8bfd2a1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5184-3230 |
PMID | 31622838 |
PQID | 2339810116 |
PQPubID | 2045428 |
ParticipantIDs | proquest_miscellaneous_2307130673 proquest_journals_2339810116 pubmed_primary_31622838 crossref_citationtrail_10_1016_j_media_2019_101568 crossref_primary_10_1016_j_media_2019_101568 elsevier_sciencedirect_doi_10_1016_j_media_2019_101568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Afshin, Ayed, Islam, Goela, Peters, Li (bib0001) 2012 Flett, Hasleton, Cook, Hausenloy, Quarta, Ariti, Muthurangu, Moon (bib0006) 2011; 4 Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. arXiv Ingkanisorn, Rhoads, Aletras, Kellman, Arai (bib0014) 2004; 43 Schuijf, Kaandorp, Lamb, van der Geest, Viergever, van der Wall, de Roos, Bax (bib0028) 2004; 94 Xue, Nachum, Pandey, Warrington, Leung, Li (bib0038) 2017 Karim, Housden, Balasubramaniam, Chen, Perry, Uddin, Al-Beyatti, Palkhi, Acheampong, Obom (bib0016) 2013; 15 Shou, Chan, Zareian, Miyazawa, Chang (bib0029) 2017 Fox, Muntner, Chen, Alexander, Roe, Cannon, Saucedo, Kontos, Wiviott (bib0007) 2010; 121 Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0011) 2017 Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv Heiberg, Ugander, Engblom, Götberg, Olivecrona, Erlinge, Arheden (bib0012) 2008; 246 Petitjean, Dacher (bib0024) 2011; 15 Zhen, Islam, Bhaduri, Chan, Li (bib0040) 2015 Sun, Zhen, Bailey, Rasoulinejad, Yin, Li (bib0032) 2017 Wong, Tee, Chen, Bluemke, Summers, Yao (bib0034) 2016; 11 Popescu, Irving, Borlotti, Dall’Armellina, Grau (bib0025) 2016 Zhen, Wang, Islam, Bhaduri, Chan, Li (bib0041) 2016; 30 Bijnens, Claus, Weidemann, Strotmann, Sutherland (bib0002) 2007; 116 Ørn, Manhenke, Anand, Squire, Nagel, Edvardsen, Dickstein (bib0023) 2007; 99 Schlegl, Waldstein, Bogunovic, Endstraßer, Sadeghipour, Philip, Podkowinski, Gerendas, Langs, Schmidt-Erfurth (bib0027) 2017 Huang, Z., Xu, W., Yu, K., 2015. Bidirectional lstm-crf models for sequence tagging. arXiv Ledesma-Carbayo, Kybic, Desco, Santos, Suhling, Hunziker, Unser (bib0018) 2005; 24 Suinesiaputra, Ablin, Alba, Alessandrini, Allen, Bai, Cimen, Claes, Cowan, D’hooge (bib0031) 2017 Kingma, Ba (bib0017) 2014 Zhen, Zhang, Islam, Bhaduri, Chan, Li (bib0044) 2017; 36 Kali, Cokic, Tang, Yang, Sharif, Marbán, Li, Berman, Dharmakumar (bib0015) 2014 Tran, Bourdev, Fergus, Torresani, Paluri (bib0033) 2015 Goodfellow, Bengio, Courville, Bengio (bib0008) 2016; 1 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0009) 2014 Ordovas, Higgins (bib0022) 2011; 261 Zhen, Yu, He, Li (bib0043) 2017; 40 Xue, Brahm, Pandey, Leung, Li (bib0037) 2018; 43 Yeung, Russakovsky, Mori, Fei-Fei (bib0039) 2016 Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0035) 2015 . Ronneberger, Fischer, Brox (bib0026) 2015 Shou, Wang, Chang (bib0030) 2016 Xu, Xu, Gao, Zhao, Zhang, Zhang, Du, Zhao, Ghista, Li (bib0036) 2017 Gu, Shan, Sheng, Zheng, Li (bib0010) 2018; 423 Zhen, Wang, Yu, Li (bib0042) 2015 Bleton, Margeta, Lombaert, Delingette, Ayache (bib0003) 2015 Falsetti, Marcus, Kerber, Skorton (bib0005) 1981; 63 Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0019) 2017; 1 Duchateau, De Craene, Allain, Saloux, Sermesant (bib0004) 2016; 35 Ingkanisorn (10.1016/j.media.2019.101568_bib0014) 2004; 43 Yeung (10.1016/j.media.2019.101568_bib0039) 2016 Karim (10.1016/j.media.2019.101568_bib0016) 2013; 15 Sun (10.1016/j.media.2019.101568_bib0032) 2017 Ørn (10.1016/j.media.2019.101568_bib0023) 2007; 99 Bleton (10.1016/j.media.2019.101568_bib0003) 2015 Fox (10.1016/j.media.2019.101568_bib0007) 2010; 121 Wong (10.1016/j.media.2019.101568_bib0034) 2016; 11 Heiberg (10.1016/j.media.2019.101568_bib0012) 2008; 246 Xue (10.1016/j.media.2019.101568_bib0037) 2018; 43 Falsetti (10.1016/j.media.2019.101568_bib0005) 1981; 63 Schuijf (10.1016/j.media.2019.101568_bib0028) 2004; 94 Kali (10.1016/j.media.2019.101568_sbref0014) 2014 Shou (10.1016/j.media.2019.101568_bib0029) 2017 Popescu (10.1016/j.media.2019.101568_bib0025) 2016 Zhen (10.1016/j.media.2019.101568_bib0041) 2016; 30 Zhen (10.1016/j.media.2019.101568_bib0044) 2017; 36 Zhen (10.1016/j.media.2019.101568_bib0042) 2015 Bijnens (10.1016/j.media.2019.101568_bib0002) 2007; 116 Xu (10.1016/j.media.2019.101568_bib0036) 2017 Zhen (10.1016/j.media.2019.101568_bib0043) 2017; 40 Shou (10.1016/j.media.2019.101568_bib0030) 2016 Xue (10.1016/j.media.2019.101568_bib0038) 2017 Gu (10.1016/j.media.2019.101568_bib0010) 2018; 423 Ronneberger (10.1016/j.media.2019.101568_bib0026) 2015 Afshin (10.1016/j.media.2019.101568_bib0001) 2012 Petitjean (10.1016/j.media.2019.101568_bib0024) 2011; 15 Goodfellow (10.1016/j.media.2019.101568_bib0008) 2016; 1 Gulrajani (10.1016/j.media.2019.101568_bib0011) 2017 10.1016/j.media.2019.101568_bib0013 Goodfellow (10.1016/j.media.2019.101568_bib0009) 2014 Tran (10.1016/j.media.2019.101568_bib0033) 2015 Flett (10.1016/j.media.2019.101568_bib0006) 2011; 4 Lin (10.1016/j.media.2019.101568_bib0019) 2017; 1 Suinesiaputra (10.1016/j.media.2019.101568_bib0031) 2017 Xingjian (10.1016/j.media.2019.101568_bib0035) 2015 Duchateau (10.1016/j.media.2019.101568_bib0004) 2016; 35 10.1016/j.media.2019.101568_bib0020 10.1016/j.media.2019.101568_bib0021 Ordovas (10.1016/j.media.2019.101568_bib0022) 2011; 261 Schlegl (10.1016/j.media.2019.101568_bib0027) 2017 Kingma (10.1016/j.media.2019.101568_bib0017) 2014 Ledesma-Carbayo (10.1016/j.media.2019.101568_bib0018) 2005; 24 Zhen (10.1016/j.media.2019.101568_bib0040) 2015 |
References_xml | – reference: Huang, Z., Xu, W., Yu, K., 2015. Bidirectional lstm-crf models for sequence tagging. arXiv: – start-page: 535 year: 2012 end-page: 543 ident: bib0001 article-title: Global assessment of cardiac function using image statistics in MRI publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 529 year: 2017 end-page: 540 ident: bib0032 article-title: Direct estimation of spinal cobb angles by structured multi-output regression publication-title: International Conference on Information Processing in Medical Imaging – start-page: 240 year: 2017 end-page: 249 ident: bib0036 article-title: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1211 year: 2015 end-page: 1218 ident: bib0042 article-title: Supervised descriptor learning for multi-output regression publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 99 start-page: 1109 year: 2007 end-page: 1114 ident: bib0023 article-title: Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction publication-title: Am. J. Cardiol. – volume: 11 start-page: 1573 year: 2016 end-page: 1583 ident: bib0034 article-title: Regional infarction identification from cardiac ct images: a computer-aided biomechanical approach publication-title: Int. J. Comput. Assist. Radiol. Surg. – start-page: 182 year: 2016 end-page: 190 ident: bib0025 article-title: Myocardial scar quantification using slic supervoxels-parcellation based on tissue characteristic strains publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart – volume: 15 start-page: 169 year: 2011 end-page: 184 ident: bib0024 article-title: A review of segmentation methods in short axis cardiac mr images publication-title: Med. Image Anal. – year: 2014 ident: bib0015 article-title: Determination of location, size and transmurality of chronic myocardial infarction without exogenous contrast media using cardiac magnetic resonance imaging at 3t publication-title: Circulation: Cardiovasc. Imag – volume: 4 start-page: 150 year: 2011 end-page: 156 ident: bib0006 article-title: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance publication-title: JACC: Cardiovasc. Imag. – volume: 40 start-page: 497 year: 2017 end-page: 504 ident: bib0043 article-title: Multi-target regression via robust low-rank learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 669 year: 2015 end-page: 676 ident: bib0040 article-title: Direct and simultaneous four-chamber volume estimation by multi-output regression publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 43 start-page: 2253 year: 2004 end-page: 2259 ident: bib0014 article-title: Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction publication-title: J. Am. Coll. Cardiol. – volume: 36 start-page: 184 year: 2017 end-page: 196 ident: bib0044 article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression publication-title: Med. Image Anal. – start-page: 234 year: 2015 end-page: 241 ident: bib0026 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – start-page: 2672 year: 2014 end-page: 2680 ident: bib0009 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – year: 2017 ident: bib0027 article-title: Fully automated detection and quantification of macular fluid in oct using deep learning publication-title: Ophthalmology – volume: 121 start-page: 357 year: 2010 end-page: 365 ident: bib0007 article-title: Use of evidence-based therapies in short-term outcomes of st-segment elevation myocardial infarction and non–st-segment elevation myocardial infarction in patients with chronic kidney disease publication-title: Circulation – volume: 246 start-page: 581 year: 2008 end-page: 588 ident: bib0012 article-title: Automated quantification of myocardial infarction from mr images by accounting for partial volume effects: animal, phantom, and human study publication-title: Radiology – reference: Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv: – volume: 423 start-page: 303 year: 2018 end-page: 312 ident: bib0010 article-title: Sparse regression with output correlation for cardiac ejection fraction estimation publication-title: Inf. Sci. – start-page: 1417 year: 2017 end-page: 1426 ident: bib0029 article-title: Cdc: Convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos publication-title: Computer Vision and Pattern Recognition – volume: 94 start-page: 284 year: 2004 end-page: 288 ident: bib0028 article-title: Quantification of myocardial infarct size and transmurality by contrast-enhanced magnetic resonance imaging in men publication-title: Am. J. Cardiol. – start-page: 5767 year: 2017 end-page: 5777 ident: bib0011 article-title: Improved training of wasserstein gans publication-title: Advances in Neural Information Processing Systems – reference: Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. arXiv: – start-page: 2678 year: 2016 end-page: 2687 ident: bib0039 article-title: End-to-end learning of action detection from frame glimpses in videos publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: bib0017 article-title: Adam: Amethod for stochastic optimization publication-title: Proc. 3rd Int. Conf. Learn. Representations – start-page: 4489 year: 2015 end-page: 4497 ident: bib0033 article-title: Learning spatiotemporal features with 3d convolutional networks publication-title: Proceedings of the IEEE international conference on computer vision – volume: 1 year: 2016 ident: bib0008 article-title: Deep Learning – reference: . – year: 2017 ident: bib0031 article-title: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge publication-title: IEEE J. Biomed. Health Inform – volume: 261 start-page: 358 year: 2011 end-page: 374 ident: bib0022 article-title: Delayed contrast enhancement on mr images of myocardium: past, present, future publication-title: Radiology – start-page: 1049 year: 2016 end-page: 1058 ident: bib0030 article-title: Temporal action localization in untrimmed videos via multi-stage cnns publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 35 start-page: 2340 year: 2016 end-page: 2352 ident: bib0004 article-title: Infarct localization from myocardial deformation: prediction and uncertainty quantification by regression from a low-dimensional space publication-title: IEEE Trans. Med. Imag. – start-page: 108 year: 2015 end-page: 116 ident: bib0003 article-title: Myocardial infarct localization using neighbourhood approximation forests publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart – volume: 1 start-page: 4 year: 2017 ident: bib0019 article-title: Feature pyramid networks for object detection publication-title: CVPR – volume: 15 start-page: 105 year: 2013 ident: bib0016 article-title: Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge publication-title: J. Cardiovasc. Magn. Reson. – volume: 43 start-page: 54 year: 2018 end-page: 65 ident: bib0037 article-title: Full left ventricle quantification via deep multitask relationships learning publication-title: Med. Image Anal. – start-page: 802 year: 2015 end-page: 810 ident: bib0035 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting publication-title: Advances in neural information processing systems – start-page: 505 year: 2017 end-page: 516 ident: bib0038 article-title: Direct estimation of regional wall thicknesses via residual recurrent neural network publication-title: International Conference on Information Processing in Medical Imaging – volume: 116 start-page: 2453 year: 2007 end-page: 2464 ident: bib0002 article-title: Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease publication-title: Circulation – volume: 63 start-page: 747 year: 1981 end-page: 751 ident: bib0005 article-title: Quantification of myocardial ischemia and infarction by left ventricular imaging publication-title: Circulation – volume: 24 start-page: 1113 year: 2005 end-page: 1126 ident: bib0018 article-title: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation publication-title: IEEE Trans. Med. Imag. – volume: 30 start-page: 120 year: 2016 end-page: 129 ident: bib0041 article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation publication-title: Med. Image Anal. – volume: 423 start-page: 303 year: 2018 ident: 10.1016/j.media.2019.101568_bib0010 article-title: Sparse regression with output correlation for cardiac ejection fraction estimation publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.026 – year: 2014 ident: 10.1016/j.media.2019.101568_sbref0014 article-title: Determination of location, size and transmurality of chronic myocardial infarction without exogenous contrast media using cardiac magnetic resonance imaging at 3t publication-title: Circulation: Cardiovasc. Imag – volume: 94 start-page: 284 issue: 3 year: 2004 ident: 10.1016/j.media.2019.101568_bib0028 article-title: Quantification of myocardial infarct size and transmurality by contrast-enhanced magnetic resonance imaging in men publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2004.04.020 – volume: 63 start-page: 747 issue: 4 year: 1981 ident: 10.1016/j.media.2019.101568_bib0005 article-title: Quantification of myocardial ischemia and infarction by left ventricular imaging publication-title: Circulation doi: 10.1161/01.CIR.63.4.747 – volume: 246 start-page: 581 issue: 2 year: 2008 ident: 10.1016/j.media.2019.101568_bib0012 article-title: Automated quantification of myocardial infarction from mr images by accounting for partial volume effects: animal, phantom, and human study publication-title: Radiology doi: 10.1148/radiol.2461062164 – year: 2017 ident: 10.1016/j.media.2019.101568_bib0027 article-title: Fully automated detection and quantification of macular fluid in oct using deep learning publication-title: Ophthalmology – volume: 43 start-page: 54 year: 2018 ident: 10.1016/j.media.2019.101568_bib0037 article-title: Full left ventricle quantification via deep multitask relationships learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.09.005 – ident: 10.1016/j.media.2019.101568_bib0021 – volume: 35 start-page: 2340 issue: 10 year: 2016 ident: 10.1016/j.media.2019.101568_bib0004 article-title: Infarct localization from myocardial deformation: prediction and uncertainty quantification by regression from a low-dimensional space publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2562181 – start-page: 1049 year: 2016 ident: 10.1016/j.media.2019.101568_bib0030 article-title: Temporal action localization in untrimmed videos via multi-stage cnns – start-page: 4489 year: 2015 ident: 10.1016/j.media.2019.101568_bib0033 article-title: Learning spatiotemporal features with 3d convolutional networks – year: 2017 ident: 10.1016/j.media.2019.101568_bib0031 article-title: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge publication-title: IEEE J. Biomed. Health Inform – volume: 36 start-page: 184 year: 2017 ident: 10.1016/j.media.2019.101568_bib0044 article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.008 – start-page: 669 year: 2015 ident: 10.1016/j.media.2019.101568_bib0040 article-title: Direct and simultaneous four-chamber volume estimation by multi-output regression – start-page: 2678 year: 2016 ident: 10.1016/j.media.2019.101568_bib0039 article-title: End-to-end learning of action detection from frame glimpses in videos – volume: 261 start-page: 358 issue: 2 year: 2011 ident: 10.1016/j.media.2019.101568_bib0022 article-title: Delayed contrast enhancement on mr images of myocardium: past, present, future publication-title: Radiology doi: 10.1148/radiol.11091882 – start-page: 240 year: 2017 ident: 10.1016/j.media.2019.101568_bib0036 article-title: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm – volume: 1 year: 2016 ident: 10.1016/j.media.2019.101568_bib0008 – start-page: 234 year: 2015 ident: 10.1016/j.media.2019.101568_bib0026 article-title: U-net: convolutional networks for biomedical image segmentation – start-page: 802 year: 2015 ident: 10.1016/j.media.2019.101568_bib0035 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting – volume: 40 start-page: 497 issue: 2 year: 2017 ident: 10.1016/j.media.2019.101568_bib0043 article-title: Multi-target regression via robust low-rank learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2688363 – volume: 15 start-page: 105 issue: 1 year: 2013 ident: 10.1016/j.media.2019.101568_bib0016 article-title: Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-15-105 – volume: 15 start-page: 169 issue: 2 year: 2011 ident: 10.1016/j.media.2019.101568_bib0024 article-title: A review of segmentation methods in short axis cardiac mr images publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.12.004 – ident: 10.1016/j.media.2019.101568_bib0013 – volume: 116 start-page: 2453 issue: 21 year: 2007 ident: 10.1016/j.media.2019.101568_bib0002 article-title: Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.684357 – volume: 30 start-page: 120 year: 2016 ident: 10.1016/j.media.2019.101568_bib0041 article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.07.003 – volume: 99 start-page: 1109 issue: 8 year: 2007 ident: 10.1016/j.media.2019.101568_bib0023 article-title: Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2006.11.059 – volume: 121 start-page: 357 issue: 3 year: 2010 ident: 10.1016/j.media.2019.101568_bib0007 article-title: Use of evidence-based therapies in short-term outcomes of st-segment elevation myocardial infarction and non–st-segment elevation myocardial infarction in patients with chronic kidney disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.865352 – start-page: 2672 year: 2014 ident: 10.1016/j.media.2019.101568_bib0009 article-title: Generative adversarial nets – start-page: 505 year: 2017 ident: 10.1016/j.media.2019.101568_bib0038 article-title: Direct estimation of regional wall thicknesses via residual recurrent neural network – ident: 10.1016/j.media.2019.101568_bib0020 – volume: 4 start-page: 150 issue: 2 year: 2011 ident: 10.1016/j.media.2019.101568_bib0006 article-title: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance publication-title: JACC: Cardiovasc. Imag. – volume: 11 start-page: 1573 issue: 9 year: 2016 ident: 10.1016/j.media.2019.101568_bib0034 article-title: Regional infarction identification from cardiac ct images: a computer-aided biomechanical approach publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-016-1404-5 – volume: 24 start-page: 1113 issue: 9 year: 2005 ident: 10.1016/j.media.2019.101568_bib0018 article-title: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2005.852050 – volume: 1 start-page: 4 year: 2017 ident: 10.1016/j.media.2019.101568_bib0019 article-title: Feature pyramid networks for object detection – start-page: 529 year: 2017 ident: 10.1016/j.media.2019.101568_bib0032 article-title: Direct estimation of spinal cobb angles by structured multi-output regression – volume: 43 start-page: 2253 issue: 12 year: 2004 ident: 10.1016/j.media.2019.101568_bib0014 article-title: Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2004.02.046 – start-page: 1417 year: 2017 ident: 10.1016/j.media.2019.101568_bib0029 article-title: Cdc: Convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos – start-page: 108 year: 2015 ident: 10.1016/j.media.2019.101568_bib0003 article-title: Myocardial infarct localization using neighbourhood approximation forests – start-page: 1211 year: 2015 ident: 10.1016/j.media.2019.101568_bib0042 article-title: Supervised descriptor learning for multi-output regression – start-page: 5767 year: 2017 ident: 10.1016/j.media.2019.101568_bib0011 article-title: Improved training of wasserstein gans – year: 2014 ident: 10.1016/j.media.2019.101568_bib0017 article-title: Adam: Amethod for stochastic optimization – start-page: 182 year: 2016 ident: 10.1016/j.media.2019.101568_bib0025 article-title: Myocardial scar quantification using slic supervoxels-parcellation based on tissue characteristic strains – start-page: 535 year: 2012 ident: 10.1016/j.media.2019.101568_bib0001 article-title: Global assessment of cardiac function using image statistics in MRI |
SSID | ssj0007440 |
Score | 2.4894674 |
Snippet | •Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid... Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are... 1Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101568 |
SubjectTerms | Centroids Coders Contrast agents Discriminators Full quantification Generative adversarial networks Image segmentation Learning Mapping Multiscale analysis Myocardial infarction Segmentation Sequential images Simultaneous discrimination learning |
Title | Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning |
URI | https://dx.doi.org/10.1016/j.media.2019.101568 https://www.ncbi.nlm.nih.gov/pubmed/31622838 https://www.proquest.com/docview/2339810116 https://www.proquest.com/docview/2307130673 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeW0plJI6ExXGcOMeloiyP9lKKerPGdrzaqmRLk0Wc-O14HGcBCXrgkijOWLI84_GMPfMNwPPSepRWYeZMUWVF6U2mZO2yUqHAqpYSkY4Gjo7L-Wnx_kyebcHBmAtDYZVJ9w86PWrr1DJNszm9XC6nJ1xQsRJOJkhwKhTpYUL_CjL98sevMA8CwBtyr3hG1CPyUIzxitkZFN9VU4skvNW_707_sj7jLnR4F-4k85HNhhHeg62m3YHbv4EK7sDNo3Rdfh--nzSLLym5qGXYOvZ1jUN00NC08ixIWJD1-EVnsqt1z2L4OnY9Q8q76ti3JbIuRl4nIKsLtoho1aQqGVJJ5w5JkFmqQbF4AKeHbz4dzLNUaiGzQlV9ZgteOZtL5ZrKO2u9y4tSce7yqpIeUdavwlOoxltjKTlV5OiMdMoESuROPITtdtU2j4EJw01J69wZLHI0ZNIFTxiN8VSnyE8gH6dY24RDTuUwLvQYcHauI1808UUPfJnAi02nywGG43rycuSd_kOadNgoru-4N3Jap8Xc6VyImnDQeDmBZ5vfYRnS3Qq2zWpNNOTuU9WfCTwaJGQzUMFLAhlSu_87qidwKyc3P5787MF2f7VungZbqDf7Udj34cbs3Yf5cXi_ff3x8-wn4DQNZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3CBtrmENr0a5u0VaHHmq0sy5aPISRsmuxekkBuYiTZy4bUm8be0p9fjSwvDbQ59GKwLIHwjEYz0sx7AJ9zW6O0ChNnsiLJ8tokSpYuyRUKLEopEeloYDbPp1fZt2t5vQVHQy0MpVVG29_b9GCtY8sk_s3J3XI5ueCCyEo4uSA-qFDeDm9n0tvkEWwfnp5N5xuDTBh4ffkVT2jAAD4U0rxCgQaleJXUIgly9e8b1L8c0LARnTyH3ehBssN-ki9gq2r2YOcPXME9eDKLN-Yv4ddFtfge64saho1jP9bYJwj1TauaeSXz6h7e6Fh2te5YyGDHtmNIpVct-7lE1obk64hldcsWAbCarCVDYnVukXSZRRqKxSu4Ojm-PJomkW0hsUIVXWIzXjibSuWqonbW1i7NcsW5S4tC1oiy_OqfQlW1NZbqU0WKzkinjO-J3InXMGpWTfUWmDDc5LTUncEsRUNenQ-G0ZiaqIrqMaTDL9Y2QpETI8atHnLObnSQiya56F4uY_iyGXTXI3E83j0fZKcfKJT2e8XjAw8GSeu4nludClESFBrPx_Bp89mvRLpewaZarakPRfxE_DOGN72GbCYqeE44Q-rd_87qIzydXs7O9fnp_GwfnqUU9YeDoAMYdffr6r13jTrzIar-b4dnDoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+and+quantification+of+infarction+without+contrast+agents+via+spatiotemporal+generative+adversarial+learning&rft.jtitle=Medical+image+analysis&rft.au=Xu%2C+Chenchu&rft.au=Howey%2C+Joanne&rft.au=Ohorodnyk%2C+Pavlo&rft.au=Roth%2C+Mike&rft.date=2020-01-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=59&rft.spage=101568&rft_id=info:doi/10.1016%2Fj.media.2019.101568&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |