Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning

•Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid representation.•Improving performance by exploiting the commonalities and differences across tasks.•Embedding segmentation and quantification tasks into adv...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 59; p. 101568
Main Authors Xu, Chenchu, Howey, Joanne, Ohorodnyk, Pavlo, Roth, Mike, Zhang, Heye, Li, Shuo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2019.101568

Cover

Abstract •Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid representation.•Improving performance by exploiting the commonalities and differences across tasks.•Embedding segmentation and quantification tasks into adversarial learning. [Display omitted] Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments.
AbstractList •Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid representation.•Improving performance by exploiting the commonalities and differences across tasks.•Embedding segmentation and quantification tasks into adversarial learning. [Display omitted] Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments.
1Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments.
Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments.
Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments.Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are crucial for early diagnosis and surgical planning. Current clinical methods remain subject to potential high-risk, nonreproducibility and time-consumption issues. In this study, a deep spatiotemporal adversarial network (DSTGAN) is proposed as a contrast-free, stable and automatic clinical tool to simultaneously segment and quantify MIs directly from the cine MR image. The DSTGAN is implemented using a conditional generative model, which conditions the distributions of the objective cine MR image to directly optimize the generalized error of the mapping between the input and the output. The method consists of the following: (1) A multi-level and multi-scale spatiotemporal variation encoder learns a coarse to fine hierarchical feature to effectively encode the MI-specific morphological and kinematic abnormality structures, which vary for different spatial locations and time periods. (2) The top-down and cross-task generators learn the shared representations between segmentation and quantification to use the commonalities and differences between the two related tasks and enhance the generator preference. (3) Three inter-/intra-tasks to label the relatedness discriminators are iteratively imposed on the encoder and generator to detect and correct the inconsistencies in the label relatedness between and within tasks via adversarial learning. Our proposed method yields a pixel classification accuracy of 96.98%, and the mean absolute error of the MI centroid is 0.96 mm from 165 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments.
ArticleNumber 101568
Author Ohorodnyk, Pavlo
Zhang, Heye
Xu, Chenchu
Roth, Mike
Howey, Joanne
Li, Shuo
Author_xml – sequence: 1
  givenname: Chenchu
  surname: Xu
  fullname: Xu, Chenchu
  organization: Western University, London ON, Canada
– sequence: 2
  givenname: Joanne
  surname: Howey
  fullname: Howey, Joanne
  organization: Western University, London ON, Canada
– sequence: 3
  givenname: Pavlo
  surname: Ohorodnyk
  fullname: Ohorodnyk, Pavlo
  organization: Western University, London ON, Canada
– sequence: 4
  givenname: Mike
  surname: Roth
  fullname: Roth, Mike
  organization: Western University, London ON, Canada
– sequence: 5
  givenname: Heye
  surname: Zhang
  fullname: Zhang, Heye
  email: zhangheye@mail.sysu.edu.cn
  organization: Sun Yat-Sen University, Shenzhen, China
– sequence: 6
  givenname: Shuo
  orcidid: 0000-0002-5184-3230
  surname: Li
  fullname: Li, Shuo
  email: slishuo@gmail.com
  organization: Western University, London ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31622838$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URB7wC5CQJRqa3fgxM_YWFCgigBQpBUlt3bXvLF7N2Bvbs4F_H28moUiRxo_j71xZ55ySoxADEvKRsyVnvDvfLkd0HpaC8dVBaTv9hpxw2fGFboQ8-n_m7TE5zXnLGFNNw96RY8k7IbTUJ-Tvb9yMGAoUHwOF4OjdBKH43ttZij31oYdkH2_3vvyJU6E2hpIgFwqbas5074Hm3cFRcNzFBAOtD5iqskcKbo8pQ_JVHhBS8GHznrztYcj44Wk_I7eX328ufi6urn_8uvh2tbBSq7KwDVfOilY7VL2ztnei6TTnTijV9gDtitVVauzt2qr6IAW4dev0upLAnTwjX-a5uxTvJszFjD5bHAYIGKdshGSKS9YpWdHPL9BtnFKov6uUXOmaMe8q9emJmta1ALNLfoT0zzxnWoHVDNgUc07YG-vnfGtkfjCcmUN_Zmse-zOH_szcX_XKF97n8a-7vs4urEHuPSaTrcdgK5jQFuOif9X_APz3uFY
CitedBy_id crossref_primary_10_1007_s13735_022_00240_x
crossref_primary_10_1016_j_media_2020_101944
crossref_primary_10_1371_journal_pone_0260195
crossref_primary_10_1145_3638044
crossref_primary_10_1016_j_compmedimag_2024_102333
crossref_primary_10_1016_j_knosys_2024_112536
crossref_primary_10_1049_ipr2_12495
crossref_primary_10_1016_j_media_2021_102170
crossref_primary_10_3390_app15042169
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1038_s41598_023_40841_y
crossref_primary_10_3390_e26020166
crossref_primary_10_1016_j_compbiomed_2021_105063
crossref_primary_10_1016_j_media_2022_102554
crossref_primary_10_1016_j_media_2022_102694
crossref_primary_10_1016_j_media_2021_102154
crossref_primary_10_31083_j_rcm2512447
crossref_primary_10_1016_j_media_2021_102207
crossref_primary_10_1161_CIRCIMAGING_124_017360
crossref_primary_10_4329_wjr_v14_i6_114
crossref_primary_10_1109_TBDATA_2023_3258643
crossref_primary_10_1016_j_cmpb_2022_106889
crossref_primary_10_37549_AR2790
crossref_primary_10_1371_journal_pone_0267753
crossref_primary_10_1038_s41598_024_85029_0
crossref_primary_10_1016_j_cmpb_2019_105288
crossref_primary_10_3389_fcvm_2022_894503
crossref_primary_10_1002_mrm_28596
crossref_primary_10_1038_s41598_020_68062_7
crossref_primary_10_1016_j_knosys_2022_109212
crossref_primary_10_1088_1361_6560_abd66b
crossref_primary_10_1016_j_imu_2020_100320
crossref_primary_10_1371_journal_pone_0255374
crossref_primary_10_3389_fcvm_2024_1457498
crossref_primary_10_3390_diagnostics13122061
crossref_primary_10_1109_TMI_2020_3017275
crossref_primary_10_12677_ACM_2022_121029
crossref_primary_10_1007_s11886_020_01321_1
Cites_doi 10.1016/j.ins.2017.09.026
10.1016/j.amjcard.2004.04.020
10.1161/01.CIR.63.4.747
10.1148/radiol.2461062164
10.1016/j.media.2017.09.005
10.1109/TMI.2016.2562181
10.1016/j.media.2016.11.008
10.1148/radiol.11091882
10.1109/TPAMI.2017.2688363
10.1186/1532-429X-15-105
10.1016/j.media.2010.12.004
10.1161/CIRCULATIONAHA.106.684357
10.1016/j.media.2015.07.003
10.1016/j.amjcard.2006.11.059
10.1161/CIRCULATIONAHA.109.865352
10.1007/s11548-016-1404-5
10.1109/TMI.2005.852050
10.1016/j.jacc.2004.02.046
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2019.101568
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 31622838
10_1016_j_media_2019_101568
S1361841519301082
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7QO
8FD
AGCQF
AGRNS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-c417dc258de7fdccfd246811d2775faa590faa38efcbc781132adb5d8bfd2a1d3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 11:40:11 EDT 2025
Sat Jul 26 03:31:46 EDT 2025
Wed Feb 19 02:31:46 EST 2025
Wed Oct 01 03:29:50 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Fri Feb 23 02:48:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
Full quantification
Generative adversarial networks
Segmentation
Sequential images
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-c417dc258de7fdccfd246811d2775faa590faa38efcbc781132adb5d8bfd2a1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5184-3230
PMID 31622838
PQID 2339810116
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2307130673
proquest_journals_2339810116
pubmed_primary_31622838
crossref_citationtrail_10_1016_j_media_2019_101568
crossref_primary_10_1016_j_media_2019_101568
elsevier_sciencedirect_doi_10_1016_j_media_2019_101568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Afshin, Ayed, Islam, Goela, Peters, Li (bib0001) 2012
Flett, Hasleton, Cook, Hausenloy, Quarta, Ariti, Muthurangu, Moon (bib0006) 2011; 4
Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. arXiv
Ingkanisorn, Rhoads, Aletras, Kellman, Arai (bib0014) 2004; 43
Schuijf, Kaandorp, Lamb, van der Geest, Viergever, van der Wall, de Roos, Bax (bib0028) 2004; 94
Xue, Nachum, Pandey, Warrington, Leung, Li (bib0038) 2017
Karim, Housden, Balasubramaniam, Chen, Perry, Uddin, Al-Beyatti, Palkhi, Acheampong, Obom (bib0016) 2013; 15
Shou, Chan, Zareian, Miyazawa, Chang (bib0029) 2017
Fox, Muntner, Chen, Alexander, Roe, Cannon, Saucedo, Kontos, Wiviott (bib0007) 2010; 121
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0011) 2017
Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv
Heiberg, Ugander, Engblom, Götberg, Olivecrona, Erlinge, Arheden (bib0012) 2008; 246
Petitjean, Dacher (bib0024) 2011; 15
Zhen, Islam, Bhaduri, Chan, Li (bib0040) 2015
Sun, Zhen, Bailey, Rasoulinejad, Yin, Li (bib0032) 2017
Wong, Tee, Chen, Bluemke, Summers, Yao (bib0034) 2016; 11
Popescu, Irving, Borlotti, Dall’Armellina, Grau (bib0025) 2016
Zhen, Wang, Islam, Bhaduri, Chan, Li (bib0041) 2016; 30
Bijnens, Claus, Weidemann, Strotmann, Sutherland (bib0002) 2007; 116
Ørn, Manhenke, Anand, Squire, Nagel, Edvardsen, Dickstein (bib0023) 2007; 99
Schlegl, Waldstein, Bogunovic, Endstraßer, Sadeghipour, Philip, Podkowinski, Gerendas, Langs, Schmidt-Erfurth (bib0027) 2017
Huang, Z., Xu, W., Yu, K., 2015. Bidirectional lstm-crf models for sequence tagging. arXiv
Ledesma-Carbayo, Kybic, Desco, Santos, Suhling, Hunziker, Unser (bib0018) 2005; 24
Suinesiaputra, Ablin, Alba, Alessandrini, Allen, Bai, Cimen, Claes, Cowan, D’hooge (bib0031) 2017
Kingma, Ba (bib0017) 2014
Zhen, Zhang, Islam, Bhaduri, Chan, Li (bib0044) 2017; 36
Kali, Cokic, Tang, Yang, Sharif, Marbán, Li, Berman, Dharmakumar (bib0015) 2014
Tran, Bourdev, Fergus, Torresani, Paluri (bib0033) 2015
Goodfellow, Bengio, Courville, Bengio (bib0008) 2016; 1
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0009) 2014
Ordovas, Higgins (bib0022) 2011; 261
Zhen, Yu, He, Li (bib0043) 2017; 40
Xue, Brahm, Pandey, Leung, Li (bib0037) 2018; 43
Yeung, Russakovsky, Mori, Fei-Fei (bib0039) 2016
Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0035) 2015
.
Ronneberger, Fischer, Brox (bib0026) 2015
Shou, Wang, Chang (bib0030) 2016
Xu, Xu, Gao, Zhao, Zhang, Zhang, Du, Zhao, Ghista, Li (bib0036) 2017
Gu, Shan, Sheng, Zheng, Li (bib0010) 2018; 423
Zhen, Wang, Yu, Li (bib0042) 2015
Bleton, Margeta, Lombaert, Delingette, Ayache (bib0003) 2015
Falsetti, Marcus, Kerber, Skorton (bib0005) 1981; 63
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0019) 2017; 1
Duchateau, De Craene, Allain, Saloux, Sermesant (bib0004) 2016; 35
Ingkanisorn (10.1016/j.media.2019.101568_bib0014) 2004; 43
Yeung (10.1016/j.media.2019.101568_bib0039) 2016
Karim (10.1016/j.media.2019.101568_bib0016) 2013; 15
Sun (10.1016/j.media.2019.101568_bib0032) 2017
Ørn (10.1016/j.media.2019.101568_bib0023) 2007; 99
Bleton (10.1016/j.media.2019.101568_bib0003) 2015
Fox (10.1016/j.media.2019.101568_bib0007) 2010; 121
Wong (10.1016/j.media.2019.101568_bib0034) 2016; 11
Heiberg (10.1016/j.media.2019.101568_bib0012) 2008; 246
Xue (10.1016/j.media.2019.101568_bib0037) 2018; 43
Falsetti (10.1016/j.media.2019.101568_bib0005) 1981; 63
Schuijf (10.1016/j.media.2019.101568_bib0028) 2004; 94
Kali (10.1016/j.media.2019.101568_sbref0014) 2014
Shou (10.1016/j.media.2019.101568_bib0029) 2017
Popescu (10.1016/j.media.2019.101568_bib0025) 2016
Zhen (10.1016/j.media.2019.101568_bib0041) 2016; 30
Zhen (10.1016/j.media.2019.101568_bib0044) 2017; 36
Zhen (10.1016/j.media.2019.101568_bib0042) 2015
Bijnens (10.1016/j.media.2019.101568_bib0002) 2007; 116
Xu (10.1016/j.media.2019.101568_bib0036) 2017
Zhen (10.1016/j.media.2019.101568_bib0043) 2017; 40
Shou (10.1016/j.media.2019.101568_bib0030) 2016
Xue (10.1016/j.media.2019.101568_bib0038) 2017
Gu (10.1016/j.media.2019.101568_bib0010) 2018; 423
Ronneberger (10.1016/j.media.2019.101568_bib0026) 2015
Afshin (10.1016/j.media.2019.101568_bib0001) 2012
Petitjean (10.1016/j.media.2019.101568_bib0024) 2011; 15
Goodfellow (10.1016/j.media.2019.101568_bib0008) 2016; 1
Gulrajani (10.1016/j.media.2019.101568_bib0011) 2017
10.1016/j.media.2019.101568_bib0013
Goodfellow (10.1016/j.media.2019.101568_bib0009) 2014
Tran (10.1016/j.media.2019.101568_bib0033) 2015
Flett (10.1016/j.media.2019.101568_bib0006) 2011; 4
Lin (10.1016/j.media.2019.101568_bib0019) 2017; 1
Suinesiaputra (10.1016/j.media.2019.101568_bib0031) 2017
Xingjian (10.1016/j.media.2019.101568_bib0035) 2015
Duchateau (10.1016/j.media.2019.101568_bib0004) 2016; 35
10.1016/j.media.2019.101568_bib0020
10.1016/j.media.2019.101568_bib0021
Ordovas (10.1016/j.media.2019.101568_bib0022) 2011; 261
Schlegl (10.1016/j.media.2019.101568_bib0027) 2017
Kingma (10.1016/j.media.2019.101568_bib0017) 2014
Ledesma-Carbayo (10.1016/j.media.2019.101568_bib0018) 2005; 24
Zhen (10.1016/j.media.2019.101568_bib0040) 2015
References_xml – reference: Huang, Z., Xu, W., Yu, K., 2015. Bidirectional lstm-crf models for sequence tagging. arXiv:
– start-page: 535
  year: 2012
  end-page: 543
  ident: bib0001
  article-title: Global assessment of cardiac function using image statistics in MRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 529
  year: 2017
  end-page: 540
  ident: bib0032
  article-title: Direct estimation of spinal cobb angles by structured multi-output regression
  publication-title: International Conference on Information Processing in Medical Imaging
– start-page: 240
  year: 2017
  end-page: 249
  ident: bib0036
  article-title: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1211
  year: 2015
  end-page: 1218
  ident: bib0042
  article-title: Supervised descriptor learning for multi-output regression
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 99
  start-page: 1109
  year: 2007
  end-page: 1114
  ident: bib0023
  article-title: Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction
  publication-title: Am. J. Cardiol.
– volume: 11
  start-page: 1573
  year: 2016
  end-page: 1583
  ident: bib0034
  article-title: Regional infarction identification from cardiac ct images: a computer-aided biomechanical approach
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– start-page: 182
  year: 2016
  end-page: 190
  ident: bib0025
  article-title: Myocardial scar quantification using slic supervoxels-parcellation based on tissue characteristic strains
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– volume: 15
  start-page: 169
  year: 2011
  end-page: 184
  ident: bib0024
  article-title: A review of segmentation methods in short axis cardiac mr images
  publication-title: Med. Image Anal.
– year: 2014
  ident: bib0015
  article-title: Determination of location, size and transmurality of chronic myocardial infarction without exogenous contrast media using cardiac magnetic resonance imaging at 3t
  publication-title: Circulation: Cardiovasc. Imag
– volume: 4
  start-page: 150
  year: 2011
  end-page: 156
  ident: bib0006
  article-title: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance
  publication-title: JACC: Cardiovasc. Imag.
– volume: 40
  start-page: 497
  year: 2017
  end-page: 504
  ident: bib0043
  article-title: Multi-target regression via robust low-rank learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 669
  year: 2015
  end-page: 676
  ident: bib0040
  article-title: Direct and simultaneous four-chamber volume estimation by multi-output regression
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 43
  start-page: 2253
  year: 2004
  end-page: 2259
  ident: bib0014
  article-title: Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
– volume: 36
  start-page: 184
  year: 2017
  end-page: 196
  ident: bib0044
  article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression
  publication-title: Med. Image Anal.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0026
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0009
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– year: 2017
  ident: bib0027
  article-title: Fully automated detection and quantification of macular fluid in oct using deep learning
  publication-title: Ophthalmology
– volume: 121
  start-page: 357
  year: 2010
  end-page: 365
  ident: bib0007
  article-title: Use of evidence-based therapies in short-term outcomes of st-segment elevation myocardial infarction and non–st-segment elevation myocardial infarction in patients with chronic kidney disease
  publication-title: Circulation
– volume: 246
  start-page: 581
  year: 2008
  end-page: 588
  ident: bib0012
  article-title: Automated quantification of myocardial infarction from mr images by accounting for partial volume effects: animal, phantom, and human study
  publication-title: Radiology
– reference: Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv:
– volume: 423
  start-page: 303
  year: 2018
  end-page: 312
  ident: bib0010
  article-title: Sparse regression with output correlation for cardiac ejection fraction estimation
  publication-title: Inf. Sci.
– start-page: 1417
  year: 2017
  end-page: 1426
  ident: bib0029
  article-title: Cdc: Convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos
  publication-title: Computer Vision and Pattern Recognition
– volume: 94
  start-page: 284
  year: 2004
  end-page: 288
  ident: bib0028
  article-title: Quantification of myocardial infarct size and transmurality by contrast-enhanced magnetic resonance imaging in men
  publication-title: Am. J. Cardiol.
– start-page: 5767
  year: 2017
  end-page: 5777
  ident: bib0011
  article-title: Improved training of wasserstein gans
  publication-title: Advances in Neural Information Processing Systems
– reference: Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. arXiv:
– start-page: 2678
  year: 2016
  end-page: 2687
  ident: bib0039
  article-title: End-to-end learning of action detection from frame glimpses in videos
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: bib0017
  article-title: Adam: Amethod for stochastic optimization
  publication-title: Proc. 3rd Int. Conf. Learn. Representations
– start-page: 4489
  year: 2015
  end-page: 4497
  ident: bib0033
  article-title: Learning spatiotemporal features with 3d convolutional networks
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 1
  year: 2016
  ident: bib0008
  article-title: Deep Learning
– reference: .
– year: 2017
  ident: bib0031
  article-title: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge
  publication-title: IEEE J. Biomed. Health Inform
– volume: 261
  start-page: 358
  year: 2011
  end-page: 374
  ident: bib0022
  article-title: Delayed contrast enhancement on mr images of myocardium: past, present, future
  publication-title: Radiology
– start-page: 1049
  year: 2016
  end-page: 1058
  ident: bib0030
  article-title: Temporal action localization in untrimmed videos via multi-stage cnns
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 35
  start-page: 2340
  year: 2016
  end-page: 2352
  ident: bib0004
  article-title: Infarct localization from myocardial deformation: prediction and uncertainty quantification by regression from a low-dimensional space
  publication-title: IEEE Trans. Med. Imag.
– start-page: 108
  year: 2015
  end-page: 116
  ident: bib0003
  article-title: Myocardial infarct localization using neighbourhood approximation forests
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– volume: 1
  start-page: 4
  year: 2017
  ident: bib0019
  article-title: Feature pyramid networks for object detection
  publication-title: CVPR
– volume: 15
  start-page: 105
  year: 2013
  ident: bib0016
  article-title: Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 43
  start-page: 54
  year: 2018
  end-page: 65
  ident: bib0037
  article-title: Full left ventricle quantification via deep multitask relationships learning
  publication-title: Med. Image Anal.
– start-page: 802
  year: 2015
  end-page: 810
  ident: bib0035
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in neural information processing systems
– start-page: 505
  year: 2017
  end-page: 516
  ident: bib0038
  article-title: Direct estimation of regional wall thicknesses via residual recurrent neural network
  publication-title: International Conference on Information Processing in Medical Imaging
– volume: 116
  start-page: 2453
  year: 2007
  end-page: 2464
  ident: bib0002
  article-title: Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease
  publication-title: Circulation
– volume: 63
  start-page: 747
  year: 1981
  end-page: 751
  ident: bib0005
  article-title: Quantification of myocardial ischemia and infarction by left ventricular imaging
  publication-title: Circulation
– volume: 24
  start-page: 1113
  year: 2005
  end-page: 1126
  ident: bib0018
  article-title: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation
  publication-title: IEEE Trans. Med. Imag.
– volume: 30
  start-page: 120
  year: 2016
  end-page: 129
  ident: bib0041
  article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
  publication-title: Med. Image Anal.
– volume: 423
  start-page: 303
  year: 2018
  ident: 10.1016/j.media.2019.101568_bib0010
  article-title: Sparse regression with output correlation for cardiac ejection fraction estimation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.026
– year: 2014
  ident: 10.1016/j.media.2019.101568_sbref0014
  article-title: Determination of location, size and transmurality of chronic myocardial infarction without exogenous contrast media using cardiac magnetic resonance imaging at 3t
  publication-title: Circulation: Cardiovasc. Imag
– volume: 94
  start-page: 284
  issue: 3
  year: 2004
  ident: 10.1016/j.media.2019.101568_bib0028
  article-title: Quantification of myocardial infarct size and transmurality by contrast-enhanced magnetic resonance imaging in men
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2004.04.020
– volume: 63
  start-page: 747
  issue: 4
  year: 1981
  ident: 10.1016/j.media.2019.101568_bib0005
  article-title: Quantification of myocardial ischemia and infarction by left ventricular imaging
  publication-title: Circulation
  doi: 10.1161/01.CIR.63.4.747
– volume: 246
  start-page: 581
  issue: 2
  year: 2008
  ident: 10.1016/j.media.2019.101568_bib0012
  article-title: Automated quantification of myocardial infarction from mr images by accounting for partial volume effects: animal, phantom, and human study
  publication-title: Radiology
  doi: 10.1148/radiol.2461062164
– year: 2017
  ident: 10.1016/j.media.2019.101568_bib0027
  article-title: Fully automated detection and quantification of macular fluid in oct using deep learning
  publication-title: Ophthalmology
– volume: 43
  start-page: 54
  year: 2018
  ident: 10.1016/j.media.2019.101568_bib0037
  article-title: Full left ventricle quantification via deep multitask relationships learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.09.005
– ident: 10.1016/j.media.2019.101568_bib0021
– volume: 35
  start-page: 2340
  issue: 10
  year: 2016
  ident: 10.1016/j.media.2019.101568_bib0004
  article-title: Infarct localization from myocardial deformation: prediction and uncertainty quantification by regression from a low-dimensional space
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2562181
– start-page: 1049
  year: 2016
  ident: 10.1016/j.media.2019.101568_bib0030
  article-title: Temporal action localization in untrimmed videos via multi-stage cnns
– start-page: 4489
  year: 2015
  ident: 10.1016/j.media.2019.101568_bib0033
  article-title: Learning spatiotemporal features with 3d convolutional networks
– year: 2017
  ident: 10.1016/j.media.2019.101568_bib0031
  article-title: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge
  publication-title: IEEE J. Biomed. Health Inform
– volume: 36
  start-page: 184
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0044
  article-title: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.008
– start-page: 669
  year: 2015
  ident: 10.1016/j.media.2019.101568_bib0040
  article-title: Direct and simultaneous four-chamber volume estimation by multi-output regression
– start-page: 2678
  year: 2016
  ident: 10.1016/j.media.2019.101568_bib0039
  article-title: End-to-end learning of action detection from frame glimpses in videos
– volume: 261
  start-page: 358
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2019.101568_bib0022
  article-title: Delayed contrast enhancement on mr images of myocardium: past, present, future
  publication-title: Radiology
  doi: 10.1148/radiol.11091882
– start-page: 240
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0036
  article-title: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm
– volume: 1
  year: 2016
  ident: 10.1016/j.media.2019.101568_bib0008
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2019.101568_bib0026
  article-title: U-net: convolutional networks for biomedical image segmentation
– start-page: 802
  year: 2015
  ident: 10.1016/j.media.2019.101568_bib0035
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
– volume: 40
  start-page: 497
  issue: 2
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0043
  article-title: Multi-target regression via robust low-rank learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2688363
– volume: 15
  start-page: 105
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2019.101568_bib0016
  article-title: Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-15-105
– volume: 15
  start-page: 169
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2019.101568_bib0024
  article-title: A review of segmentation methods in short axis cardiac mr images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.12.004
– ident: 10.1016/j.media.2019.101568_bib0013
– volume: 116
  start-page: 2453
  issue: 21
  year: 2007
  ident: 10.1016/j.media.2019.101568_bib0002
  article-title: Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.684357
– volume: 30
  start-page: 120
  year: 2016
  ident: 10.1016/j.media.2019.101568_bib0041
  article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.07.003
– volume: 99
  start-page: 1109
  issue: 8
  year: 2007
  ident: 10.1016/j.media.2019.101568_bib0023
  article-title: Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2006.11.059
– volume: 121
  start-page: 357
  issue: 3
  year: 2010
  ident: 10.1016/j.media.2019.101568_bib0007
  article-title: Use of evidence-based therapies in short-term outcomes of st-segment elevation myocardial infarction and non–st-segment elevation myocardial infarction in patients with chronic kidney disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.865352
– start-page: 2672
  year: 2014
  ident: 10.1016/j.media.2019.101568_bib0009
  article-title: Generative adversarial nets
– start-page: 505
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0038
  article-title: Direct estimation of regional wall thicknesses via residual recurrent neural network
– ident: 10.1016/j.media.2019.101568_bib0020
– volume: 4
  start-page: 150
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2019.101568_bib0006
  article-title: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance
  publication-title: JACC: Cardiovasc. Imag.
– volume: 11
  start-page: 1573
  issue: 9
  year: 2016
  ident: 10.1016/j.media.2019.101568_bib0034
  article-title: Regional infarction identification from cardiac ct images: a computer-aided biomechanical approach
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-016-1404-5
– volume: 24
  start-page: 1113
  issue: 9
  year: 2005
  ident: 10.1016/j.media.2019.101568_bib0018
  article-title: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2005.852050
– volume: 1
  start-page: 4
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0019
  article-title: Feature pyramid networks for object detection
– start-page: 529
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0032
  article-title: Direct estimation of spinal cobb angles by structured multi-output regression
– volume: 43
  start-page: 2253
  issue: 12
  year: 2004
  ident: 10.1016/j.media.2019.101568_bib0014
  article-title: Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2004.02.046
– start-page: 1417
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0029
  article-title: Cdc: Convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos
– start-page: 108
  year: 2015
  ident: 10.1016/j.media.2019.101568_bib0003
  article-title: Myocardial infarct localization using neighbourhood approximation forests
– start-page: 1211
  year: 2015
  ident: 10.1016/j.media.2019.101568_bib0042
  article-title: Supervised descriptor learning for multi-output regression
– start-page: 5767
  year: 2017
  ident: 10.1016/j.media.2019.101568_bib0011
  article-title: Improved training of wasserstein gans
– year: 2014
  ident: 10.1016/j.media.2019.101568_bib0017
  article-title: Adam: Amethod for stochastic optimization
– start-page: 182
  year: 2016
  ident: 10.1016/j.media.2019.101568_bib0025
  article-title: Myocardial scar quantification using slic supervoxels-parcellation based on tissue characteristic strains
– start-page: 535
  year: 2012
  ident: 10.1016/j.media.2019.101568_bib0001
  article-title: Global assessment of cardiac function using image statistics in MRI
SSID ssj0007440
Score 2.4894674
Snippet •Simultaneous segmentation and quantification of infarction without contrast agent.•Learning time-series images by using spatiotemporal pyramid...
Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are...
1Accurate and simultaneous segmentation and full quantification (all indices are required in a clinical assessment) of the myocardial infarction (MI) area are...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101568
SubjectTerms Centroids
Coders
Contrast agents
Discriminators
Full quantification
Generative adversarial networks
Image segmentation
Learning
Mapping
Multiscale analysis
Myocardial infarction
Segmentation
Sequential images
Simultaneous discrimination learning
Title Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning
URI https://dx.doi.org/10.1016/j.media.2019.101568
https://www.ncbi.nlm.nih.gov/pubmed/31622838
https://www.proquest.com/docview/2339810116
https://www.proquest.com/docview/2307130673
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeW0plJI6ExXGcOMeloiyP9lKKerPGdrzaqmRLk0Wc-O14HGcBCXrgkijOWLI84_GMPfMNwPPSepRWYeZMUWVF6U2mZO2yUqHAqpYSkY4Gjo7L-Wnx_kyebcHBmAtDYZVJ9w86PWrr1DJNszm9XC6nJ1xQsRJOJkhwKhTpYUL_CjL98sevMA8CwBtyr3hG1CPyUIzxitkZFN9VU4skvNW_707_sj7jLnR4F-4k85HNhhHeg62m3YHbv4EK7sDNo3Rdfh--nzSLLym5qGXYOvZ1jUN00NC08ixIWJD1-EVnsqt1z2L4OnY9Q8q76ti3JbIuRl4nIKsLtoho1aQqGVJJ5w5JkFmqQbF4AKeHbz4dzLNUaiGzQlV9ZgteOZtL5ZrKO2u9y4tSce7yqpIeUdavwlOoxltjKTlV5OiMdMoESuROPITtdtU2j4EJw01J69wZLHI0ZNIFTxiN8VSnyE8gH6dY24RDTuUwLvQYcHauI1808UUPfJnAi02nywGG43rycuSd_kOadNgoru-4N3Jap8Xc6VyImnDQeDmBZ5vfYRnS3Qq2zWpNNOTuU9WfCTwaJGQzUMFLAhlSu_87qidwKyc3P5787MF2f7VungZbqDf7Udj34cbs3Yf5cXi_ff3x8-wn4DQNZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3CBtrmENr0a5u0VaHHmq0sy5aPISRsmuxekkBuYiTZy4bUm8be0p9fjSwvDbQ59GKwLIHwjEYz0sx7AJ9zW6O0ChNnsiLJ8tokSpYuyRUKLEopEeloYDbPp1fZt2t5vQVHQy0MpVVG29_b9GCtY8sk_s3J3XI5ueCCyEo4uSA-qFDeDm9n0tvkEWwfnp5N5xuDTBh4ffkVT2jAAD4U0rxCgQaleJXUIgly9e8b1L8c0LARnTyH3ehBssN-ki9gq2r2YOcPXME9eDKLN-Yv4ddFtfge64saho1jP9bYJwj1TauaeSXz6h7e6Fh2te5YyGDHtmNIpVct-7lE1obk64hldcsWAbCarCVDYnVukXSZRRqKxSu4Ojm-PJomkW0hsUIVXWIzXjibSuWqonbW1i7NcsW5S4tC1oiy_OqfQlW1NZbqU0WKzkinjO-J3InXMGpWTfUWmDDc5LTUncEsRUNenQ-G0ZiaqIrqMaTDL9Y2QpETI8atHnLObnSQiya56F4uY_iyGXTXI3E83j0fZKcfKJT2e8XjAw8GSeu4nludClESFBrPx_Bp89mvRLpewaZarakPRfxE_DOGN72GbCYqeE44Q-rd_87qIzydXs7O9fnp_GwfnqUU9YeDoAMYdffr6r13jTrzIar-b4dnDoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+and+quantification+of+infarction+without+contrast+agents+via+spatiotemporal+generative+adversarial+learning&rft.jtitle=Medical+image+analysis&rft.au=Xu%2C+Chenchu&rft.au=Howey%2C+Joanne&rft.au=Ohorodnyk%2C+Pavlo&rft.au=Roth%2C+Mike&rft.date=2020-01-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=59&rft.spage=101568&rft_id=info:doi/10.1016%2Fj.media.2019.101568&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon