The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves

Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) u...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 15; no. 4; pp. 772 - 786
Main Authors Kjems, U., Hansen, L.K., Anderson, J., Frutiger, S., Muley, S., Sidtis, J., Rottenberg, D., Strother, S.C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2002
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1006/nimg.2001.1033

Cover

Abstract Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [15O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper.
AbstractList Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [15O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper.
Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [(15)O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper.Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [(15)O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper.
Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [(15)O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper.
Author Rottenberg, D.
Muley, S.
Strother, S.C.
Sidtis, J.
Anderson, J.
Hansen, L.K.
Frutiger, S.
Kjems, U.
Author_xml – sequence: 1
  givenname: U.
  surname: Kjems
  fullname: Kjems, U.
  organization: Department of Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Denmark
– sequence: 2
  givenname: L.K.
  surname: Hansen
  fullname: Hansen, L.K.
  organization: Department of Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Denmark
– sequence: 3
  givenname: J.
  surname: Anderson
  fullname: Anderson, J.
  organization: Radiology Department, University of Minnesota, Minneapolis, Minnesota, 55455
– sequence: 4
  givenname: S.
  surname: Frutiger
  fullname: Frutiger, S.
  organization: Neurology Department, University of Minnesota, Minneapolis, Minnesota, 55455
– sequence: 5
  givenname: S.
  surname: Muley
  fullname: Muley, S.
  organization: Neurology Department, University of Minnesota, Minneapolis, Minnesota, 55455
– sequence: 6
  givenname: J.
  surname: Sidtis
  fullname: Sidtis, J.
  organization: Neurology Department, University of Minnesota, Minneapolis, Minnesota, 55455
– sequence: 7
  givenname: D.
  surname: Rottenberg
  fullname: Rottenberg, D.
  organization: Radiology Department, University of Minnesota, Minneapolis, Minnesota, 55455
– sequence: 8
  givenname: S.C.
  surname: Strother
  fullname: Strother, S.C.
  organization: Radiology Department, University of Minnesota, Minneapolis, Minnesota, 55455
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11906219$$D View this record in MEDLINE/PubMed
BookMark eNp9kElLxDAYQIMo7leP0pO3jknTLd5kGBcYFUHPIU2_jtE2GbMM-u9NHUUQ9JQvyXuBvD20qY0GhI4InhCMy1OthsUkw5jELaUbaJdgVqSsqLLNcS5oWhPCdtCec88YY0byehvtxCNcZoTtou7hCZL7ILRXXni1gmS2En2Io9GJ6ZKLoOU4iz65hWCNGsRC6UUye1uCVQNo786Sm-BDBK51Z-ywVucgrB7BabArcAdoqxO9g8OvdR89Xsweplfp_O7yeno-TyWtK582uCzKumUFAFSYAG0a0tIyK9uqanCeMxbvGIgCSAV1U2aU4Uh0wCD-nrZ0H52s311a8xrAeT4oJ6HvhQYTHK9IkWc1yyN4_AWGZoCWL-NnhH3n32UiMFkD0hrnLHQ_COZjej6m52N6PqaPQv5LkJ9JjfZWqP5vrV5rELOsFFjupAItoVUWpOetUX-r5S9V9korKfoXeP9P_ACTO66U
CitedBy_id crossref_primary_10_1016_j_neuroimage_2012_01_096
crossref_primary_10_1006_nimg_2002_1300
crossref_primary_10_1016_j_neuroimage_2013_04_007
crossref_primary_10_1371_journal_pone_0131520
crossref_primary_10_1016_j_neuroimage_2005_06_070
crossref_primary_10_1016_j_neuroimage_2013_05_072
crossref_primary_10_1016_j_neuroimage_2010_07_074
crossref_primary_10_1088_1742_6596_1601_3_032008
crossref_primary_10_1016_j_cortex_2015_09_005
crossref_primary_10_1155_2019_9210785
crossref_primary_10_1016_j_nicl_2013_10_013
crossref_primary_10_1007_s12021_013_9204_3
crossref_primary_10_1093_cercor_bhr047
crossref_primary_10_1371_journal_pcbi_1009279
crossref_primary_10_1016_j_neuroimage_2006_11_054
crossref_primary_10_1016_j_neuroimage_2012_01_137
crossref_primary_10_1016_j_neuroimage_2011_08_021
crossref_primary_10_1016_j_neuroimage_2013_02_055
crossref_primary_10_1016_j_neuroimage_2010_06_052
crossref_primary_10_3389_fphys_2023_1201617
crossref_primary_10_1002_hbm_22318
crossref_primary_10_1109_MEMB_2006_1607675
crossref_primary_10_1002_hbm_22590
crossref_primary_10_1002_hbm_22490
crossref_primary_10_1155_2012_961257
crossref_primary_10_1016_j_neuroimage_2009_11_039
crossref_primary_10_1016_j_asoc_2017_04_024
crossref_primary_10_1371_journal_pone_0235885
crossref_primary_10_1007_s12021_008_9014_1
crossref_primary_10_1016_j_neuroimage_2014_03_074
crossref_primary_10_1016_j_neuroimage_2008_03_034
crossref_primary_10_1006_nimg_2001_1034
crossref_primary_10_1016_j_patcog_2011_09_011
crossref_primary_10_1016_j_neuroimage_2004_07_022
crossref_primary_10_1016_j_neuroimage_2013_10_062
crossref_primary_10_1002_hbm_20243
crossref_primary_10_1002_hbm_21057
crossref_primary_10_1016_j_neuroimage_2010_12_035
crossref_primary_10_1016_S1053_8119_03_00349_5
crossref_primary_10_1007_s00158_020_02648_7
crossref_primary_10_3389_fnimg_2022_815778
crossref_primary_10_1109_TGRS_2018_2867002
crossref_primary_10_1016_j_neuroimage_2011_06_042
crossref_primary_10_1109_MEMB_2006_1607667
crossref_primary_10_1109_TBME_2004_831538
crossref_primary_10_1162_NECO_a_00024
crossref_primary_10_1002_hbm_20326
Cites_doi 10.1162/089976698300017232
10.1162/neco.1992.4.1.1
10.1002/hbm.460020402
10.1002/hbm.460030303
10.1016/S1053-8119(18)31795-6
10.1006/nimg.2000.0644
10.1006/nimg.2000.0676
10.1016/S1053-8119(01)91467-3
10.1109/42.925291
10.1007/3-540-63046-5_20
10.1006/nimg.1997.0294
10.1016/S1053-8119(96)80260-6
10.1038/jcbfm.1995.94
10.1006/nimg.2001.1034
10.1002/(SICI)1097-0193(1996)4:2<140::AID-HBM5>3.0.CO;2-3
10.1023/A:1009715923555
10.1109/NNSP.1995.514923
10.1006/nimg.1999.0402
10.1109/42.768840
10.1006/nimg.1998.0425
10.1016/S1053-8119(96)80100-5
ContentType Journal Article
Copyright 2002 Elsevier Science (USA)
(C)2002 Elsevier Science (USA).
Copyright_xml – notice: 2002 Elsevier Science (USA)
– notice: (C)2002 Elsevier Science (USA).
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1006/nimg.2001.1033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 786
ExternalDocumentID 11906219
10_1006_nimg_2001_1033
S105381190191033X
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: P20 MH57180
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
PUEGO
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c387t-b06568d95eee701e3bb1d3626d77b04499d959ea5e17e8b62390b1dfe9e0333d3
IEDL.DBID AIKHN
ISSN 1053-8119
IngestDate Thu Oct 02 10:02:28 EDT 2025
Wed Feb 19 01:33:01 EST 2025
Wed Oct 01 01:28:24 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Fri Feb 23 02:34:11 EST 2024
Tue Oct 14 19:29:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cross-validation
prediction error
mutual information
multisubject PET and fMRI studies
generalization error
macroscopic and microscopic models
sensitivity map
learning curve
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
(C)2002 Elsevier Science (USA).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-b06568d95eee701e3bb1d3626d77b04499d959ea5e17e8b62390b1dfe9e0333d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 11906219
PQID 71542894
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_71542894
pubmed_primary_11906219
crossref_primary_10_1006_nimg_2001_1033
crossref_citationtrail_10_1006_nimg_2001_1033
elsevier_sciencedirect_doi_10_1006_nimg_2001_1033
elsevier_clinicalkey_doi_10_1006_nimg_2001_1033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-04-01
PublicationDateYYYYMMDD 2002-04-01
PublicationDate_xml – month: 04
  year: 2002
  text: 2002-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2002
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kustra, Strother (RF22) 2001; 20
Strother, Anderson, Schaper, Sidtis, Liow, Woods, Rottenberg (RF33) 1995; 15
Mørch, Hansen, Strother, Svarer, Rottenberg, Lautrup, Savoy, Paulson (RF28) 1997
Liow, Strother, Rehm, Rottenberg (RF24) 1997; 38
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (RF8) 1995; 2
Cover, Thomas (RF5) 1991
Geman, Bienenstock, Doursat (RF12) 1992; 4
Skudlarski, Constable, Gore (RF31) 1999; 9
Frutiger, Anderson, Daly, Sidtis, Arnold, Strother, Savoy, Rottenberg (RF10) 1998; 7
Hintz-Madsen, M.
Kjems, Strother, Anderson, Law, Hansen (RF20) 1999; 18
Duda, Hart, Stork (RF6) 2001
Bishop (RF1) 1999
Kjems, Hansen, Strother (RF19) 2001; 13
Burges (RF3) 1998; 2
Lautrup, Hansen, Law, Mørch, Svarer, Strother (RF23) 1995
Strother, Anderson, Hansen, Kjems, Kustra, Sidtis, Frutiger, Muley, LaConte, Rottenberg (RF32) 2002; 15
1995, Design and evaluation of neural classifiers—Application to skin lesion classification
Genovese, Lazar, Nichols (RF13) 2001; 13
Strother, Lange, Savoy, Anderson, Sidtis, Hansen, Bandettini, O'Craven, Rezza, Rosen, Rottenberg (RF34) 1996; 3
Friston, Ashburner, Frith, Poline, Heather, Frackowiak (RF7) 1995; 2
Heskes (RF17) 1998; 10
Muley, Strother, Ashe, Frutiger, Anderson, Sidtis, Rottenberg (RF29) 2001; 13
Hansen, Larsen, Nielsen, Strother, Rostrup, Savoy, Lange, Sidtis, Svarer, Paulson (RF15) 1999; 9
Friston, Poline, Holmes, Frith, Frackowiak (RF9) 1996; 4
Kustra (RF21) 2000
Press, Flannery, Teukolsky, Vetterling (RF30) 1986
Hertz, Heller, Kjær, Richmond (RF16) 1995
.
Mørch (RF26) 1998
Worsley, Poline, Friston, Evans (RF35) 1997; 6
Frutiger, Strother, Anderson, Sidtis, Arnold, Rottenberg (RF11) 2000; 12
Golub, Loan (RF14) 1989
Mardia, Kent (RF25) 1979
Bishop (RF2) 1995
Mørch, Hansen, Strother, Law, Svarer, Lautrup, Anderson, Lange, Paulson (RF27) 1996; 3
Cherkassky, Mulier (RF4) 1998
Friston (10.1006/nimg.2001.1033_RF7) 1995; 2
Press (10.1006/nimg.2001.1033_RF30) 1986
Frutiger (10.1006/nimg.2001.1033_RF10) 1998; 7
Bishop (10.1006/nimg.2001.1033_RF2) 1995
Worsley (10.1006/nimg.2001.1033_RF35) 1997; 6
Mørch (10.1006/nimg.2001.1033_RF26) 1998
Strother (10.1006/nimg.2001.1033_RF34) 1996; 3
Friston (10.1006/nimg.2001.1033_RF9) 1996; 4
Geman (10.1006/nimg.2001.1033_RF12) 1992; 4
Friston (10.1006/nimg.2001.1033_RF8) 1995; 2
Liow (10.1006/nimg.2001.1033_RF24) 1997; 38
Kustra (10.1006/nimg.2001.1033_RF21) 2000
Lautrup (10.1006/nimg.2001.1033_RF23) 1995
Genovese (10.1006/nimg.2001.1033_RF13) 2001; 13
Cherkassky (10.1006/nimg.2001.1033_RF4) 1998
Mardia (10.1006/nimg.2001.1033_RF25) 1979
Mørch (10.1006/nimg.2001.1033_RF27) 1996; 3
Duda (10.1006/nimg.2001.1033_RF6) 2001
Hertz (10.1006/nimg.2001.1033_RF16) 1995
Strother (10.1006/nimg.2001.1033_RF33) 1995; 15
Kustra (10.1006/nimg.2001.1033_RF22) 2001; 20
Frutiger (10.1006/nimg.2001.1033_RF11) 2000; 12
Cover (10.1006/nimg.2001.1033_RF5) 1991
Hansen (10.1006/nimg.2001.1033_RF15) 1999; 9
Heskes (10.1006/nimg.2001.1033_RF17) 1998; 10
Bishop (10.1006/nimg.2001.1033_RF1) 1999
Kjems (10.1006/nimg.2001.1033_RF20) 1999; 18
Skudlarski (10.1006/nimg.2001.1033_RF31) 1999; 9
Golub (10.1006/nimg.2001.1033_RF14) 1989
Kjems (10.1006/nimg.2001.1033_RF19) 2001; 13
Muley (10.1006/nimg.2001.1033_RF29) 2001; 13
Burges (10.1006/nimg.2001.1033_RF3) 1998; 2
Strother (10.1006/nimg.2001.1033_RF32) 2002; 15
Mørch (10.1006/nimg.2001.1033_RF28) 1997
10.1006/nimg.2001.1033_RF18
References_xml – start-page: 137
  year: 1995
  end-page: 148
  ident: RF23
  article-title: Massive weight sharing: A cure for extremely ill-posed problems
  publication-title: Proceedings of Workshop on Supercomputing in Brain Research: From Tomography to Neural Networks, HLRZ, KFA Jülich, Germany
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: RF8
  article-title: Statistical parametric maps in functional neuroimaging: A general linear approach
  publication-title: Hum. Brain Mapping
– volume: 3
  start-page: 258
  year: 1996
  ident: RF27
  article-title: Generalization performance of nonlinear vs. linear models for [
  publication-title: NeuroImage
– volume: 2
  start-page: 165
  year: 1995
  end-page: 189
  ident: RF7
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapping
– year: 2000
  ident: RF21
  publication-title: Statistical Analysis of Medical Images with Applications to Neuroimaging
– volume: 12
  start-page: 515
  year: 2000
  end-page: 527
  ident: RF11
  article-title: Multivariate predictive relationship between kinematic and functional ativation patterns in a PET study of visiomotor learning
  publication-title: NeuroImage
– volume: 13
  start-page: S124
  year: 2001
  ident: RF13
  article-title: Threshold determination using the false discovery rate
  publication-title: Neuroimage
– volume: 18
  start-page: 306
  year: 1999
  end-page: 319
  ident: RF20
  article-title: Enhancing the multivariate signal of [
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 376
  year: 2001
  end-page: 387
  ident: RF22
  article-title: Penalized discriminant analysis of [
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 305
  year: 1997
  end-page: 319
  ident: RF35
  article-title: Characterizing the response of PET and fMRI data using multivariate linear models
  publication-title: NeuroImage
– year: 1999
  ident: RF1
  article-title: Bayesian pca
  publication-title: Advances in Neural Information Processing Systems
– volume: 10
  start-page: 1425
  year: 1998
  end-page: 1433
  ident: RF17
  article-title: Bias/variance decompositions for likelihood-based estimators
  publication-title: Neural Comput.
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: RF3
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discovery
– volume: 38
  start-page: 1623
  year: 1997
  end-page: 1631
  ident: RF24
  article-title: Improved resolution for PET volume imaging through three-dimensional iterative reconstruction
  publication-title: J. Nucl. Med.
– volume: 4
  start-page: 1
  year: 1992
  end-page: 58
  ident: RF12
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
– reference: , 1995, Design and evaluation of neural classifiers—Application to skin lesion classification,
– reference: Hintz-Madsen, M.
– volume: 13
  start-page: 185
  year: 2001
  end-page: 195
  ident: RF29
  article-title: Effects of changes in experimental design on PET studies of isometric force
  publication-title: NeuroImage
– year: 1995
  ident: RF16
  article-title: Information spectroscopy of single neurons
  publication-title: Neural Networks: From Biology to High Energy Physics
– year: 1991
  ident: RF5
  publication-title: Elements of Information Theory
– year: 1998
  ident: RF26
  publication-title: A Multivariate Approach to Functional Neuro Modeling
– year: 1989
  ident: RF14
  publication-title: Matrix Computations
– volume: 9
  start-page: 311
  year: 1999
  end-page: 329
  ident: RF31
  article-title: ROC analysis of statistical methods used in functional MRI: Individual subjects
  publication-title: NeuroImage
– reference: .
– year: 2001
  ident: RF6
  publication-title: Pattern Classification
– volume: 15
  start-page: 738
  year: 1995
  end-page: 753
  ident: RF33
  article-title: Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping. I. “Functional connectivity” of the human motor system studied with [15-O]water PET
  publication-title: J. Cereb. Blood Flow Metab.
– year: 1995
  ident: RF2
  publication-title: Neural Networks for Pattern Recognition
– year: 1998
  ident: RF4
  publication-title: Learning from Data: Concepts, Theory and Methods
– volume: 15
  start-page: 747
  year: 2002
  end-page: 771
  ident: RF32
  article-title: The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework
  publication-title: NeuroImage
– volume: 13
  start-page: 549
  year: 2001
  end-page: 555
  ident: RF19
  article-title: Generalizable singular value decomposition
  publication-title: Neural Inform. Process. Syst.
– year: 1986
  ident: RF30
  publication-title: Numerical Recipes
– volume: 3
  start-page: S98
  year: 1996
  ident: RF34
  article-title: Multidimensional state spaces for fMRI and PET activation studies
  publication-title: NeuroImage
– volume: 9
  start-page: 534
  year: 1999
  end-page: 544
  ident: RF15
  article-title: Generalizable patterns in neuroimaging: How many principal components?
  publication-title: NeuroImage
– volume: 4
  start-page: 140
  year: 1996
  end-page: 151
  ident: RF9
  article-title: A multivariate analysis of pet activation studies
  publication-title: Hum. Brain Mapping
– volume: 7
  start-page: S962
  year: 1998
  ident: RF10
  article-title: PET studies of perceptuomotor learning in a mirror-reversal paradigm
  publication-title: NeuroImage
– start-page: 259
  year: 1997
  end-page: 270
  ident: RF28
  article-title: Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover
  publication-title: Lecture Notes in Computer Science 1230: Information Processing in Medical Imaging
– year: 1979
  ident: RF25
  publication-title: Multivariate Analysis
– volume: 10
  start-page: 1425
  year: 1998
  ident: 10.1006/nimg.2001.1033_RF17
  article-title: Bias/variance decompositions for likelihood-based estimators
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017232
– volume: 4
  start-page: 1
  year: 1992
  ident: 10.1006/nimg.2001.1033_RF12
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.1.1
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1006/nimg.2001.1033_RF8
  article-title: Statistical parametric maps in functional neuroimaging: A general linear approach
  publication-title: Hum. Brain Mapping
  doi: 10.1002/hbm.460020402
– volume: 2
  start-page: 165
  year: 1995
  ident: 10.1006/nimg.2001.1033_RF7
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapping
  doi: 10.1002/hbm.460030303
– volume: 7
  start-page: S962
  year: 1998
  ident: 10.1006/nimg.2001.1033_RF10
  article-title: PET studies of perceptuomotor learning in a mirror-reversal paradigm
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(18)31795-6
– year: 1998
  ident: 10.1006/nimg.2001.1033_RF26
– volume: 12
  start-page: 515
  year: 2000
  ident: 10.1006/nimg.2001.1033_RF11
  article-title: Multivariate predictive relationship between kinematic and functional ativation patterns in a PET study of visiomotor learning
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0644
– year: 2000
  ident: 10.1006/nimg.2001.1033_RF21
– volume: 13
  start-page: 185
  year: 2001
  ident: 10.1006/nimg.2001.1033_RF29
  article-title: Effects of changes in experimental design on PET studies of isometric force
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0676
– year: 1986
  ident: 10.1006/nimg.2001.1033_RF30
– volume: 13
  start-page: S124
  year: 2001
  ident: 10.1006/nimg.2001.1033_RF13
  article-title: Threshold determination using the false discovery rate
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(01)91467-3
– volume: 20
  start-page: 376
  year: 2001
  ident: 10.1006/nimg.2001.1033_RF22
  article-title: Penalized discriminant analysis of [15O]water PET brain images with prediction error selection of smoothing and regularization hyperparameters
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.925291
– start-page: 259
  year: 1997
  ident: 10.1006/nimg.2001.1033_RF28
  article-title: Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover
  doi: 10.1007/3-540-63046-5_20
– year: 1979
  ident: 10.1006/nimg.2001.1033_RF25
– year: 1991
  ident: 10.1006/nimg.2001.1033_RF5
– volume: 6
  start-page: 305
  year: 1997
  ident: 10.1006/nimg.2001.1033_RF35
  article-title: Characterizing the response of PET and fMRI data using multivariate linear models
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0294
– year: 1995
  ident: 10.1006/nimg.2001.1033_RF2
– volume: 3
  start-page: 258
  year: 1996
  ident: 10.1006/nimg.2001.1033_RF27
  article-title: Generalization performance of nonlinear vs. linear models for [15O]water PET functional activation studies
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(96)80260-6
– year: 1989
  ident: 10.1006/nimg.2001.1033_RF14
– volume: 38
  start-page: 1623
  year: 1997
  ident: 10.1006/nimg.2001.1033_RF24
  article-title: Improved resolution for PET volume imaging through three-dimensional iterative reconstruction
  publication-title: J. Nucl. Med.
– volume: 15
  start-page: 738
  year: 1995
  ident: 10.1006/nimg.2001.1033_RF33
  article-title: Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping. I. “Functional connectivity” of the human motor system studied with [15-O]water PET
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1995.94
– year: 2001
  ident: 10.1006/nimg.2001.1033_RF6
– volume: 15
  start-page: 747
  year: 2002
  ident: 10.1006/nimg.2001.1033_RF32
  article-title: The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1034
– volume: 4
  start-page: 140
  year: 1996
  ident: 10.1006/nimg.2001.1033_RF9
  article-title: A multivariate analysis of pet activation studies
  publication-title: Hum. Brain Mapping
  doi: 10.1002/(SICI)1097-0193(1996)4:2<140::AID-HBM5>3.0.CO;2-3
– volume: 13
  start-page: 549
  year: 2001
  ident: 10.1006/nimg.2001.1033_RF19
  article-title: Generalizable singular value decomposition
  publication-title: Neural Inform. Process. Syst.
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1006/nimg.2001.1033_RF3
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discovery
  doi: 10.1023/A:1009715923555
– ident: 10.1006/nimg.2001.1033_RF18
  doi: 10.1109/NNSP.1995.514923
– start-page: 137
  year: 1995
  ident: 10.1006/nimg.2001.1033_RF23
  article-title: Massive weight sharing: A cure for extremely ill-posed problems
– volume: 9
  start-page: 311
  year: 1999
  ident: 10.1006/nimg.2001.1033_RF31
  article-title: ROC analysis of statistical methods used in functional MRI: Individual subjects
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0402
– year: 1995
  ident: 10.1006/nimg.2001.1033_RF16
  article-title: Information spectroscopy of single neurons
– volume: 18
  start-page: 306
  year: 1999
  ident: 10.1006/nimg.2001.1033_RF20
  article-title: Enhancing the multivariate signal of [15O]water PET studies with a new non-linear neuroanatomical registration algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.768840
– year: 1999
  ident: 10.1006/nimg.2001.1033_RF1
  article-title: Bayesian pca
– year: 1998
  ident: 10.1006/nimg.2001.1033_RF4
– volume: 9
  start-page: 534
  year: 1999
  ident: 10.1006/nimg.2001.1033_RF15
  article-title: Generalizable patterns in neuroimaging: How many principal components?
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0425
– volume: 3
  start-page: S98
  year: 1996
  ident: 10.1006/nimg.2001.1033_RF34
  article-title: Multidimensional state spaces for fMRI and PET activation studies
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(96)80100-5
SSID ssj0009148
Score 1.9449987
Snippet Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 772
SubjectTerms Adult
Brain Mapping - methods
Cerebral Cortex - physiology
cross-validation
Data Interpretation, Statistical
Female
generalization error
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
learning curve
macroscopic and microscopic models
Magnetic Resonance Imaging - statistics & numerical data
Male
Mathematical Computing
Middle Aged
Models, Statistical
multisubject PET and fMRI studies
mutual information
prediction error
Psychomotor Performance - physiology
Reference Values
sensitivity map
Tomography, Emission-Computed - statistics & numerical data
Title The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381190191033X
https://dx.doi.org/10.1006/nimg.2001.1033
https://www.ncbi.nlm.nih.gov/pubmed/11906219
https://www.proquest.com/docview/71542894
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5omxgvxrf1Ufdg4glhywKLN23a1Ecbn0lvhIWlaWKpscWjv93ZZanxUA-eSGAHNrPDfLOP-QbgjDGRJGnILSk9YbGWIyxOk9gSCg4Za8VZog_IDvzeK7sdesMVaFe5MOpYpfH9pU_X3trcsY027ffx2H7GyADhRgEaQp7rDlehjvjDeQ3qVzd3vcEP9y5lZUac51pKoOJudHw7H09GapJIVfK5uwyblsWeGoO6m7BhgkdyVfZvC1Zkvg1rfbM9vgMZDjp5LOJcZ46hHyOdBZk3mWakiyBWrv0RTcoxnugaRaSzoPmfXZJ-oVJKiMlT0qKGhHVE2sXHp5ztwmu389LuWaaQgpW4PJgrxXs-T0NPShk4VLpC0FTx0KRBIByGkx58FsrYkzSQXGBEFDrYIpOhRK24qbsHtXyaywMgjDo88bkIs9hnGGwJfCnLUp_56A0ymjbAqlQYJYZlXBW7eItKfmQ_UipXxS9ppFTegPNF-_eSX2NpS7sakajKGkU_F6HrXypBFxK_bOpPmdNqsCP80dTuSZzLaTGLAgw2cXbKGrBf2sBPf6kie6bh4T--dwTrur6MPgt0DLX5RyFPMMyZiyasXnzRJhpz--n-oWmMGq_XncHD0zct5f9I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGkIAL4s14LQckTqXNmr64oWnTeAwJAdJuUdOmqBJ0iK0c-e04adqJwzhwbe02slM_GvszwDljIknSKLSk9ITFeo6wQprEllDukLFenCW6QPbBH72w24k3aUG_7oVRZZXG9lc2XVtrc8U20rQ_8tx-wsgA3Y1yaOjyXHeyAqvM6wUqA7v8XtR5RJRV_XCeaynyGrnR8e0if39VKSJVrefuMs-0LPLUHmi4BZsmdCTX1eq2oSWLHVgbm8PxXchQ5eSxjAvdN4ZWjAwaKG8yzcgQXVj1549oSI78XU8oIoMG5H92RcalaighpktJsxoI1lfSLz-_5GwPXoaD5_7IMmMUrMQNg7kSu-eHaeRJKQOHSlcImioUmjQIhMMw5cF7kYw9SQMZCoyHIgcpMhlJlIqbuvvQLqaFPATCqBMmfiiiLPYZhloCH8qy1Gc-2oKMph2wahHyxGCMq1EXb7xCR_a5ErkafUm5EnkHLhr6jwpdYymlXWuE1z2jaOU4Gv6lHLTh-LWj_uTp1srm-Jmps5O4kNNyxgMMNTE3ZR04qPbAYr1UQT3T6Ogf7-vC-uh5fM_vbx7ujmFDT5rRVUEn0J5_lvIUA565ONMb-gdtVvzh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Quantitative+Evaluation+of+Functional+Neuroimaging+Experiments%3A+Mutual+Information+Learning+Curves&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kjems%2C+U.&rft.au=Hansen%2C+L.K.&rft.au=Anderson%2C+J.&rft.au=Frutiger%2C+S.&rft.date=2002-04-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=15&rft.issue=4&rft.spage=772&rft.epage=786&rft_id=info:doi/10.1006%2Fnimg.2001.1033&rft.externalDocID=S105381190191033X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon