The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves
Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) u...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 15; no. 4; pp. 772 - 786 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.04.2002
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 |
| DOI | 10.1006/nimg.2001.1033 |
Cover
| Abstract | Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [15O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper. |
|---|---|
| AbstractList | Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [15O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper. Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [(15)O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper.Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [(15)O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper. Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbiased estimates of a generic multivariate Gaussian classifier, for training set sizes from 2 to 16 subjects. We apply the framework to four different activation experiments, in this case [(15)O]water data sets, although the framework is equally valid for multisubject fMRI studies. We demonstrate how the prediction error can be expressed as the mutual information between the scan and the scan label, measured in units of bits. The mutual information learning curve can be used to evaluate the impact of different methodological choices, e.g., classification label schemes, preprocessing choices. Another application for the learning curve is to examine the model performance using bias/variance considerations enabling the researcher to determine if the model performance is limited by statistical bias or variance. We furthermore present the sensitivity map as a general method for extracting activation maps from statistical models within the probabilistic framework and illustrate relationships between mutual information and pattern reproducibility as derived in the NPAIRS framework described in a companion paper. |
| Author | Rottenberg, D. Muley, S. Strother, S.C. Sidtis, J. Anderson, J. Hansen, L.K. Frutiger, S. Kjems, U. |
| Author_xml | – sequence: 1 givenname: U. surname: Kjems fullname: Kjems, U. organization: Department of Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Denmark – sequence: 2 givenname: L.K. surname: Hansen fullname: Hansen, L.K. organization: Department of Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Denmark – sequence: 3 givenname: J. surname: Anderson fullname: Anderson, J. organization: Radiology Department, University of Minnesota, Minneapolis, Minnesota, 55455 – sequence: 4 givenname: S. surname: Frutiger fullname: Frutiger, S. organization: Neurology Department, University of Minnesota, Minneapolis, Minnesota, 55455 – sequence: 5 givenname: S. surname: Muley fullname: Muley, S. organization: Neurology Department, University of Minnesota, Minneapolis, Minnesota, 55455 – sequence: 6 givenname: J. surname: Sidtis fullname: Sidtis, J. organization: Neurology Department, University of Minnesota, Minneapolis, Minnesota, 55455 – sequence: 7 givenname: D. surname: Rottenberg fullname: Rottenberg, D. organization: Radiology Department, University of Minnesota, Minneapolis, Minnesota, 55455 – sequence: 8 givenname: S.C. surname: Strother fullname: Strother, S.C. organization: Radiology Department, University of Minnesota, Minneapolis, Minnesota, 55455 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11906219$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kElLxDAYQIMo7leP0pO3jknTLd5kGBcYFUHPIU2_jtE2GbMM-u9NHUUQ9JQvyXuBvD20qY0GhI4InhCMy1OthsUkw5jELaUbaJdgVqSsqLLNcS5oWhPCdtCec88YY0byehvtxCNcZoTtou7hCZL7ILRXXni1gmS2En2Io9GJ6ZKLoOU4iz65hWCNGsRC6UUye1uCVQNo786Sm-BDBK51Z-ywVucgrB7BabArcAdoqxO9g8OvdR89Xsweplfp_O7yeno-TyWtK582uCzKumUFAFSYAG0a0tIyK9uqanCeMxbvGIgCSAV1U2aU4Uh0wCD-nrZ0H52s311a8xrAeT4oJ6HvhQYTHK9IkWc1yyN4_AWGZoCWL-NnhH3n32UiMFkD0hrnLHQ_COZjej6m52N6PqaPQv5LkJ9JjfZWqP5vrV5rELOsFFjupAItoVUWpOetUX-r5S9V9korKfoXeP9P_ACTO66U |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2012_01_096 crossref_primary_10_1006_nimg_2002_1300 crossref_primary_10_1016_j_neuroimage_2013_04_007 crossref_primary_10_1371_journal_pone_0131520 crossref_primary_10_1016_j_neuroimage_2005_06_070 crossref_primary_10_1016_j_neuroimage_2013_05_072 crossref_primary_10_1016_j_neuroimage_2010_07_074 crossref_primary_10_1088_1742_6596_1601_3_032008 crossref_primary_10_1016_j_cortex_2015_09_005 crossref_primary_10_1155_2019_9210785 crossref_primary_10_1016_j_nicl_2013_10_013 crossref_primary_10_1007_s12021_013_9204_3 crossref_primary_10_1093_cercor_bhr047 crossref_primary_10_1371_journal_pcbi_1009279 crossref_primary_10_1016_j_neuroimage_2006_11_054 crossref_primary_10_1016_j_neuroimage_2012_01_137 crossref_primary_10_1016_j_neuroimage_2011_08_021 crossref_primary_10_1016_j_neuroimage_2013_02_055 crossref_primary_10_1016_j_neuroimage_2010_06_052 crossref_primary_10_3389_fphys_2023_1201617 crossref_primary_10_1002_hbm_22318 crossref_primary_10_1109_MEMB_2006_1607675 crossref_primary_10_1002_hbm_22590 crossref_primary_10_1002_hbm_22490 crossref_primary_10_1155_2012_961257 crossref_primary_10_1016_j_neuroimage_2009_11_039 crossref_primary_10_1016_j_asoc_2017_04_024 crossref_primary_10_1371_journal_pone_0235885 crossref_primary_10_1007_s12021_008_9014_1 crossref_primary_10_1016_j_neuroimage_2014_03_074 crossref_primary_10_1016_j_neuroimage_2008_03_034 crossref_primary_10_1006_nimg_2001_1034 crossref_primary_10_1016_j_patcog_2011_09_011 crossref_primary_10_1016_j_neuroimage_2004_07_022 crossref_primary_10_1016_j_neuroimage_2013_10_062 crossref_primary_10_1002_hbm_20243 crossref_primary_10_1002_hbm_21057 crossref_primary_10_1016_j_neuroimage_2010_12_035 crossref_primary_10_1016_S1053_8119_03_00349_5 crossref_primary_10_1007_s00158_020_02648_7 crossref_primary_10_3389_fnimg_2022_815778 crossref_primary_10_1109_TGRS_2018_2867002 crossref_primary_10_1016_j_neuroimage_2011_06_042 crossref_primary_10_1109_MEMB_2006_1607667 crossref_primary_10_1109_TBME_2004_831538 crossref_primary_10_1162_NECO_a_00024 crossref_primary_10_1002_hbm_20326 |
| Cites_doi | 10.1162/089976698300017232 10.1162/neco.1992.4.1.1 10.1002/hbm.460020402 10.1002/hbm.460030303 10.1016/S1053-8119(18)31795-6 10.1006/nimg.2000.0644 10.1006/nimg.2000.0676 10.1016/S1053-8119(01)91467-3 10.1109/42.925291 10.1007/3-540-63046-5_20 10.1006/nimg.1997.0294 10.1016/S1053-8119(96)80260-6 10.1038/jcbfm.1995.94 10.1006/nimg.2001.1034 10.1002/(SICI)1097-0193(1996)4:2<140::AID-HBM5>3.0.CO;2-3 10.1023/A:1009715923555 10.1109/NNSP.1995.514923 10.1006/nimg.1999.0402 10.1109/42.768840 10.1006/nimg.1998.0425 10.1016/S1053-8119(96)80100-5 |
| ContentType | Journal Article |
| Copyright | 2002 Elsevier Science (USA) (C)2002 Elsevier Science (USA). |
| Copyright_xml | – notice: 2002 Elsevier Science (USA) – notice: (C)2002 Elsevier Science (USA). |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1006/nimg.2001.1033 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 786 |
| ExternalDocumentID | 11906219 10_1006_nimg_2001_1033 S105381190191033X |
| Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: P20 MH57180 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION PUEGO 0SF ALIPV CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c387t-b06568d95eee701e3bb1d3626d77b04499d959ea5e17e8b62390b1dfe9e0333d3 |
| IEDL.DBID | AIKHN |
| ISSN | 1053-8119 |
| IngestDate | Thu Oct 02 10:02:28 EDT 2025 Wed Feb 19 01:33:01 EST 2025 Wed Oct 01 01:28:24 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Fri Feb 23 02:34:11 EST 2024 Tue Oct 14 19:29:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | cross-validation prediction error mutual information multisubject PET and fMRI studies generalization error macroscopic and microscopic models sensitivity map learning curve |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 (C)2002 Elsevier Science (USA). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-b06568d95eee701e3bb1d3626d77b04499d959ea5e17e8b62390b1dfe9e0333d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 11906219 |
| PQID | 71542894 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_71542894 pubmed_primary_11906219 crossref_primary_10_1006_nimg_2001_1033 crossref_citationtrail_10_1006_nimg_2001_1033 elsevier_sciencedirect_doi_10_1006_nimg_2001_1033 elsevier_clinicalkey_doi_10_1006_nimg_2001_1033 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2002-04-01 |
| PublicationDateYYYYMMDD | 2002-04-01 |
| PublicationDate_xml | – month: 04 year: 2002 text: 2002-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2002 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Kustra, Strother (RF22) 2001; 20 Strother, Anderson, Schaper, Sidtis, Liow, Woods, Rottenberg (RF33) 1995; 15 Mørch, Hansen, Strother, Svarer, Rottenberg, Lautrup, Savoy, Paulson (RF28) 1997 Liow, Strother, Rehm, Rottenberg (RF24) 1997; 38 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (RF8) 1995; 2 Cover, Thomas (RF5) 1991 Geman, Bienenstock, Doursat (RF12) 1992; 4 Skudlarski, Constable, Gore (RF31) 1999; 9 Frutiger, Anderson, Daly, Sidtis, Arnold, Strother, Savoy, Rottenberg (RF10) 1998; 7 Hintz-Madsen, M. Kjems, Strother, Anderson, Law, Hansen (RF20) 1999; 18 Duda, Hart, Stork (RF6) 2001 Bishop (RF1) 1999 Kjems, Hansen, Strother (RF19) 2001; 13 Burges (RF3) 1998; 2 Lautrup, Hansen, Law, Mørch, Svarer, Strother (RF23) 1995 Strother, Anderson, Hansen, Kjems, Kustra, Sidtis, Frutiger, Muley, LaConte, Rottenberg (RF32) 2002; 15 1995, Design and evaluation of neural classifiers—Application to skin lesion classification Genovese, Lazar, Nichols (RF13) 2001; 13 Strother, Lange, Savoy, Anderson, Sidtis, Hansen, Bandettini, O'Craven, Rezza, Rosen, Rottenberg (RF34) 1996; 3 Friston, Ashburner, Frith, Poline, Heather, Frackowiak (RF7) 1995; 2 Heskes (RF17) 1998; 10 Muley, Strother, Ashe, Frutiger, Anderson, Sidtis, Rottenberg (RF29) 2001; 13 Hansen, Larsen, Nielsen, Strother, Rostrup, Savoy, Lange, Sidtis, Svarer, Paulson (RF15) 1999; 9 Friston, Poline, Holmes, Frith, Frackowiak (RF9) 1996; 4 Kustra (RF21) 2000 Press, Flannery, Teukolsky, Vetterling (RF30) 1986 Hertz, Heller, Kjær, Richmond (RF16) 1995 . Mørch (RF26) 1998 Worsley, Poline, Friston, Evans (RF35) 1997; 6 Frutiger, Strother, Anderson, Sidtis, Arnold, Rottenberg (RF11) 2000; 12 Golub, Loan (RF14) 1989 Mardia, Kent (RF25) 1979 Bishop (RF2) 1995 Mørch, Hansen, Strother, Law, Svarer, Lautrup, Anderson, Lange, Paulson (RF27) 1996; 3 Cherkassky, Mulier (RF4) 1998 Friston (10.1006/nimg.2001.1033_RF7) 1995; 2 Press (10.1006/nimg.2001.1033_RF30) 1986 Frutiger (10.1006/nimg.2001.1033_RF10) 1998; 7 Bishop (10.1006/nimg.2001.1033_RF2) 1995 Worsley (10.1006/nimg.2001.1033_RF35) 1997; 6 Mørch (10.1006/nimg.2001.1033_RF26) 1998 Strother (10.1006/nimg.2001.1033_RF34) 1996; 3 Friston (10.1006/nimg.2001.1033_RF9) 1996; 4 Geman (10.1006/nimg.2001.1033_RF12) 1992; 4 Friston (10.1006/nimg.2001.1033_RF8) 1995; 2 Liow (10.1006/nimg.2001.1033_RF24) 1997; 38 Kustra (10.1006/nimg.2001.1033_RF21) 2000 Lautrup (10.1006/nimg.2001.1033_RF23) 1995 Genovese (10.1006/nimg.2001.1033_RF13) 2001; 13 Cherkassky (10.1006/nimg.2001.1033_RF4) 1998 Mardia (10.1006/nimg.2001.1033_RF25) 1979 Mørch (10.1006/nimg.2001.1033_RF27) 1996; 3 Duda (10.1006/nimg.2001.1033_RF6) 2001 Hertz (10.1006/nimg.2001.1033_RF16) 1995 Strother (10.1006/nimg.2001.1033_RF33) 1995; 15 Kustra (10.1006/nimg.2001.1033_RF22) 2001; 20 Frutiger (10.1006/nimg.2001.1033_RF11) 2000; 12 Cover (10.1006/nimg.2001.1033_RF5) 1991 Hansen (10.1006/nimg.2001.1033_RF15) 1999; 9 Heskes (10.1006/nimg.2001.1033_RF17) 1998; 10 Bishop (10.1006/nimg.2001.1033_RF1) 1999 Kjems (10.1006/nimg.2001.1033_RF20) 1999; 18 Skudlarski (10.1006/nimg.2001.1033_RF31) 1999; 9 Golub (10.1006/nimg.2001.1033_RF14) 1989 Kjems (10.1006/nimg.2001.1033_RF19) 2001; 13 Muley (10.1006/nimg.2001.1033_RF29) 2001; 13 Burges (10.1006/nimg.2001.1033_RF3) 1998; 2 Strother (10.1006/nimg.2001.1033_RF32) 2002; 15 Mørch (10.1006/nimg.2001.1033_RF28) 1997 10.1006/nimg.2001.1033_RF18 |
| References_xml | – start-page: 137 year: 1995 end-page: 148 ident: RF23 article-title: Massive weight sharing: A cure for extremely ill-posed problems publication-title: Proceedings of Workshop on Supercomputing in Brain Research: From Tomography to Neural Networks, HLRZ, KFA Jülich, Germany – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: RF8 article-title: Statistical parametric maps in functional neuroimaging: A general linear approach publication-title: Hum. Brain Mapping – volume: 3 start-page: 258 year: 1996 ident: RF27 article-title: Generalization performance of nonlinear vs. linear models for [ publication-title: NeuroImage – volume: 2 start-page: 165 year: 1995 end-page: 189 ident: RF7 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapping – year: 2000 ident: RF21 publication-title: Statistical Analysis of Medical Images with Applications to Neuroimaging – volume: 12 start-page: 515 year: 2000 end-page: 527 ident: RF11 article-title: Multivariate predictive relationship between kinematic and functional ativation patterns in a PET study of visiomotor learning publication-title: NeuroImage – volume: 13 start-page: S124 year: 2001 ident: RF13 article-title: Threshold determination using the false discovery rate publication-title: Neuroimage – volume: 18 start-page: 306 year: 1999 end-page: 319 ident: RF20 article-title: Enhancing the multivariate signal of [ publication-title: IEEE Trans. Med. Imaging – volume: 20 start-page: 376 year: 2001 end-page: 387 ident: RF22 article-title: Penalized discriminant analysis of [ publication-title: IEEE Trans. Med. Imaging – volume: 6 start-page: 305 year: 1997 end-page: 319 ident: RF35 article-title: Characterizing the response of PET and fMRI data using multivariate linear models publication-title: NeuroImage – year: 1999 ident: RF1 article-title: Bayesian pca publication-title: Advances in Neural Information Processing Systems – volume: 10 start-page: 1425 year: 1998 end-page: 1433 ident: RF17 article-title: Bias/variance decompositions for likelihood-based estimators publication-title: Neural Comput. – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: RF3 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl. Discovery – volume: 38 start-page: 1623 year: 1997 end-page: 1631 ident: RF24 article-title: Improved resolution for PET volume imaging through three-dimensional iterative reconstruction publication-title: J. Nucl. Med. – volume: 4 start-page: 1 year: 1992 end-page: 58 ident: RF12 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. – reference: , 1995, Design and evaluation of neural classifiers—Application to skin lesion classification, – reference: Hintz-Madsen, M. – volume: 13 start-page: 185 year: 2001 end-page: 195 ident: RF29 article-title: Effects of changes in experimental design on PET studies of isometric force publication-title: NeuroImage – year: 1995 ident: RF16 article-title: Information spectroscopy of single neurons publication-title: Neural Networks: From Biology to High Energy Physics – year: 1991 ident: RF5 publication-title: Elements of Information Theory – year: 1998 ident: RF26 publication-title: A Multivariate Approach to Functional Neuro Modeling – year: 1989 ident: RF14 publication-title: Matrix Computations – volume: 9 start-page: 311 year: 1999 end-page: 329 ident: RF31 article-title: ROC analysis of statistical methods used in functional MRI: Individual subjects publication-title: NeuroImage – reference: . – year: 2001 ident: RF6 publication-title: Pattern Classification – volume: 15 start-page: 738 year: 1995 end-page: 753 ident: RF33 article-title: Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping. I. “Functional connectivity” of the human motor system studied with [15-O]water PET publication-title: J. Cereb. Blood Flow Metab. – year: 1995 ident: RF2 publication-title: Neural Networks for Pattern Recognition – year: 1998 ident: RF4 publication-title: Learning from Data: Concepts, Theory and Methods – volume: 15 start-page: 747 year: 2002 end-page: 771 ident: RF32 article-title: The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework publication-title: NeuroImage – volume: 13 start-page: 549 year: 2001 end-page: 555 ident: RF19 article-title: Generalizable singular value decomposition publication-title: Neural Inform. Process. Syst. – year: 1986 ident: RF30 publication-title: Numerical Recipes – volume: 3 start-page: S98 year: 1996 ident: RF34 article-title: Multidimensional state spaces for fMRI and PET activation studies publication-title: NeuroImage – volume: 9 start-page: 534 year: 1999 end-page: 544 ident: RF15 article-title: Generalizable patterns in neuroimaging: How many principal components? publication-title: NeuroImage – volume: 4 start-page: 140 year: 1996 end-page: 151 ident: RF9 article-title: A multivariate analysis of pet activation studies publication-title: Hum. Brain Mapping – volume: 7 start-page: S962 year: 1998 ident: RF10 article-title: PET studies of perceptuomotor learning in a mirror-reversal paradigm publication-title: NeuroImage – start-page: 259 year: 1997 end-page: 270 ident: RF28 article-title: Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover publication-title: Lecture Notes in Computer Science 1230: Information Processing in Medical Imaging – year: 1979 ident: RF25 publication-title: Multivariate Analysis – volume: 10 start-page: 1425 year: 1998 ident: 10.1006/nimg.2001.1033_RF17 article-title: Bias/variance decompositions for likelihood-based estimators publication-title: Neural Comput. doi: 10.1162/089976698300017232 – volume: 4 start-page: 1 year: 1992 ident: 10.1006/nimg.2001.1033_RF12 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. doi: 10.1162/neco.1992.4.1.1 – volume: 2 start-page: 189 year: 1995 ident: 10.1006/nimg.2001.1033_RF8 article-title: Statistical parametric maps in functional neuroimaging: A general linear approach publication-title: Hum. Brain Mapping doi: 10.1002/hbm.460020402 – volume: 2 start-page: 165 year: 1995 ident: 10.1006/nimg.2001.1033_RF7 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapping doi: 10.1002/hbm.460030303 – volume: 7 start-page: S962 year: 1998 ident: 10.1006/nimg.2001.1033_RF10 article-title: PET studies of perceptuomotor learning in a mirror-reversal paradigm publication-title: NeuroImage doi: 10.1016/S1053-8119(18)31795-6 – year: 1998 ident: 10.1006/nimg.2001.1033_RF26 – volume: 12 start-page: 515 year: 2000 ident: 10.1006/nimg.2001.1033_RF11 article-title: Multivariate predictive relationship between kinematic and functional ativation patterns in a PET study of visiomotor learning publication-title: NeuroImage doi: 10.1006/nimg.2000.0644 – year: 2000 ident: 10.1006/nimg.2001.1033_RF21 – volume: 13 start-page: 185 year: 2001 ident: 10.1006/nimg.2001.1033_RF29 article-title: Effects of changes in experimental design on PET studies of isometric force publication-title: NeuroImage doi: 10.1006/nimg.2000.0676 – year: 1986 ident: 10.1006/nimg.2001.1033_RF30 – volume: 13 start-page: S124 year: 2001 ident: 10.1006/nimg.2001.1033_RF13 article-title: Threshold determination using the false discovery rate publication-title: Neuroimage doi: 10.1016/S1053-8119(01)91467-3 – volume: 20 start-page: 376 year: 2001 ident: 10.1006/nimg.2001.1033_RF22 article-title: Penalized discriminant analysis of [15O]water PET brain images with prediction error selection of smoothing and regularization hyperparameters publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.925291 – start-page: 259 year: 1997 ident: 10.1006/nimg.2001.1033_RF28 article-title: Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover doi: 10.1007/3-540-63046-5_20 – year: 1979 ident: 10.1006/nimg.2001.1033_RF25 – year: 1991 ident: 10.1006/nimg.2001.1033_RF5 – volume: 6 start-page: 305 year: 1997 ident: 10.1006/nimg.2001.1033_RF35 article-title: Characterizing the response of PET and fMRI data using multivariate linear models publication-title: NeuroImage doi: 10.1006/nimg.1997.0294 – year: 1995 ident: 10.1006/nimg.2001.1033_RF2 – volume: 3 start-page: 258 year: 1996 ident: 10.1006/nimg.2001.1033_RF27 article-title: Generalization performance of nonlinear vs. linear models for [15O]water PET functional activation studies publication-title: NeuroImage doi: 10.1016/S1053-8119(96)80260-6 – year: 1989 ident: 10.1006/nimg.2001.1033_RF14 – volume: 38 start-page: 1623 year: 1997 ident: 10.1006/nimg.2001.1033_RF24 article-title: Improved resolution for PET volume imaging through three-dimensional iterative reconstruction publication-title: J. Nucl. Med. – volume: 15 start-page: 738 year: 1995 ident: 10.1006/nimg.2001.1033_RF33 article-title: Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping. I. “Functional connectivity” of the human motor system studied with [15-O]water PET publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.1995.94 – year: 2001 ident: 10.1006/nimg.2001.1033_RF6 – volume: 15 start-page: 747 year: 2002 ident: 10.1006/nimg.2001.1033_RF32 article-title: The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework publication-title: NeuroImage doi: 10.1006/nimg.2001.1034 – volume: 4 start-page: 140 year: 1996 ident: 10.1006/nimg.2001.1033_RF9 article-title: A multivariate analysis of pet activation studies publication-title: Hum. Brain Mapping doi: 10.1002/(SICI)1097-0193(1996)4:2<140::AID-HBM5>3.0.CO;2-3 – volume: 13 start-page: 549 year: 2001 ident: 10.1006/nimg.2001.1033_RF19 article-title: Generalizable singular value decomposition publication-title: Neural Inform. Process. Syst. – volume: 2 start-page: 121 year: 1998 ident: 10.1006/nimg.2001.1033_RF3 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl. Discovery doi: 10.1023/A:1009715923555 – ident: 10.1006/nimg.2001.1033_RF18 doi: 10.1109/NNSP.1995.514923 – start-page: 137 year: 1995 ident: 10.1006/nimg.2001.1033_RF23 article-title: Massive weight sharing: A cure for extremely ill-posed problems – volume: 9 start-page: 311 year: 1999 ident: 10.1006/nimg.2001.1033_RF31 article-title: ROC analysis of statistical methods used in functional MRI: Individual subjects publication-title: NeuroImage doi: 10.1006/nimg.1999.0402 – year: 1995 ident: 10.1006/nimg.2001.1033_RF16 article-title: Information spectroscopy of single neurons – volume: 18 start-page: 306 year: 1999 ident: 10.1006/nimg.2001.1033_RF20 article-title: Enhancing the multivariate signal of [15O]water PET studies with a new non-linear neuroanatomical registration algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.768840 – year: 1999 ident: 10.1006/nimg.2001.1033_RF1 article-title: Bayesian pca – year: 1998 ident: 10.1006/nimg.2001.1033_RF4 – volume: 9 start-page: 534 year: 1999 ident: 10.1006/nimg.2001.1033_RF15 article-title: Generalizable patterns in neuroimaging: How many principal components? publication-title: NeuroImage doi: 10.1006/nimg.1998.0425 – volume: 3 start-page: S98 year: 1996 ident: 10.1006/nimg.2001.1033_RF34 article-title: Multidimensional state spaces for fMRI and PET activation studies publication-title: NeuroImage doi: 10.1016/S1053-8119(96)80100-5 |
| SSID | ssj0009148 |
| Score | 1.9449987 |
| Snippet | Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 772 |
| SubjectTerms | Adult Brain Mapping - methods Cerebral Cortex - physiology cross-validation Data Interpretation, Statistical Female generalization error Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional learning curve macroscopic and microscopic models Magnetic Resonance Imaging - statistics & numerical data Male Mathematical Computing Middle Aged Models, Statistical multisubject PET and fMRI studies mutual information prediction error Psychomotor Performance - physiology Reference Values sensitivity map Tomography, Emission-Computed - statistics & numerical data |
| Title | The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381190191033X https://dx.doi.org/10.1006/nimg.2001.1033 https://www.ncbi.nlm.nih.gov/pubmed/11906219 https://www.proquest.com/docview/71542894 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5omxgvxrf1Ufdg4glhywKLN23a1Ecbn0lvhIWlaWKpscWjv93ZZanxUA-eSGAHNrPDfLOP-QbgjDGRJGnILSk9YbGWIyxOk9gSCg4Za8VZog_IDvzeK7sdesMVaFe5MOpYpfH9pU_X3trcsY027ffx2H7GyADhRgEaQp7rDlehjvjDeQ3qVzd3vcEP9y5lZUac51pKoOJudHw7H09GapJIVfK5uwyblsWeGoO6m7BhgkdyVfZvC1Zkvg1rfbM9vgMZDjp5LOJcZ46hHyOdBZk3mWakiyBWrv0RTcoxnugaRaSzoPmfXZJ-oVJKiMlT0qKGhHVE2sXHp5ztwmu389LuWaaQgpW4PJgrxXs-T0NPShk4VLpC0FTx0KRBIByGkx58FsrYkzSQXGBEFDrYIpOhRK24qbsHtXyaywMgjDo88bkIs9hnGGwJfCnLUp_56A0ymjbAqlQYJYZlXBW7eItKfmQ_UipXxS9ppFTegPNF-_eSX2NpS7sakajKGkU_F6HrXypBFxK_bOpPmdNqsCP80dTuSZzLaTGLAgw2cXbKGrBf2sBPf6kie6bh4T--dwTrur6MPgt0DLX5RyFPMMyZiyasXnzRJhpz--n-oWmMGq_XncHD0zct5f9I |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGkIAL4s14LQckTqXNmr64oWnTeAwJAdJuUdOmqBJ0iK0c-e04adqJwzhwbe02slM_GvszwDljIknSKLSk9ITFeo6wQprEllDukLFenCW6QPbBH72w24k3aUG_7oVRZZXG9lc2XVtrc8U20rQ_8tx-wsgA3Y1yaOjyXHeyAqvM6wUqA7v8XtR5RJRV_XCeaynyGrnR8e0if39VKSJVrefuMs-0LPLUHmi4BZsmdCTX1eq2oSWLHVgbm8PxXchQ5eSxjAvdN4ZWjAwaKG8yzcgQXVj1549oSI78XU8oIoMG5H92RcalaighpktJsxoI1lfSLz-_5GwPXoaD5_7IMmMUrMQNg7kSu-eHaeRJKQOHSlcImioUmjQIhMMw5cF7kYw9SQMZCoyHIgcpMhlJlIqbuvvQLqaFPATCqBMmfiiiLPYZhloCH8qy1Gc-2oKMph2wahHyxGCMq1EXb7xCR_a5ErkafUm5EnkHLhr6jwpdYymlXWuE1z2jaOU4Gv6lHLTh-LWj_uTp1srm-Jmps5O4kNNyxgMMNTE3ZR04qPbAYr1UQT3T6Ogf7-vC-uh5fM_vbx7ujmFDT5rRVUEn0J5_lvIUA565ONMb-gdtVvzh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Quantitative+Evaluation+of+Functional+Neuroimaging+Experiments%3A+Mutual+Information+Learning+Curves&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kjems%2C+U.&rft.au=Hansen%2C+L.K.&rft.au=Anderson%2C+J.&rft.au=Frutiger%2C+S.&rft.date=2002-04-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=15&rft.issue=4&rft.spage=772&rft.epage=786&rft_id=info:doi/10.1006%2Fnimg.2001.1033&rft.externalDocID=S105381190191033X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |