Complete waste recycling strategies for improving the accessibility of rice protein films
Although a plant protein film is a promising alternative to petroleum-based plastic films, the insoluble nature of some plant proteins still limits their use as film-forming materials. Alkali and thermal treatments are traditional methods to produce films from proteins with low solubility, which mig...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 22; no. 2; pp. 49 - 53 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
27.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9262 1463-9270 1463-9270 |
DOI | 10.1039/c9gc03354h |
Cover
Abstract | Although a plant protein film is a promising alternative to petroleum-based plastic films, the insoluble nature of some plant proteins still limits their use as film-forming materials. Alkali and thermal treatments are traditional methods to produce films from proteins with low solubility, which might pose a risk of caustic burns and harmful substances. Three innovative strategies for the preparation of film-forming precursors were proposed in this study, namely, a new solvent system using malic acid, a resist folding structure modified by wool keratin, and an electrostatic bound structure by citrus peel pectin. Furthermore, we successfully prepared these three types of rice protein films using glycerin and thermal treatments. The results showed that the film prepared with malic acid has the lowest haze, opacity, and water vapor transmission ability, and the film containing wool keratin has the highest mechanical strength and water resistance. The addition of pectin provided more pronounced whiteness (
p
< 0.01) and rapid biodegradability compared with that for the film produced under conventional alkaline conditions. This work demonstrates facile preparation methods for safer and skin-friendly rice protein films and enlightens broad interests in the potential towards completely environment-friendly plant protein films as well.
Waste recycling-Green chemistry technologies for the preparation of fully environment-friendly rice protein films with improved accessibility have been developed. |
---|---|
AbstractList | Although a plant protein film is a promising alternative to petroleum-based plastic films, the insoluble nature of some plant proteins still limits their use as film-forming materials. Alkali and thermal treatments are traditional methods to produce films from proteins with low solubility, which might pose a risk of caustic burns and harmful substances. Three innovative strategies for the preparation of film-forming precursors were proposed in this study, namely, a new solvent system using malic acid, a resist folding structure modified by wool keratin, and an electrostatic bound structure by citrus peel pectin. Furthermore, we successfully prepared these three types of rice protein films using glycerin and thermal treatments. The results showed that the film prepared with malic acid has the lowest haze, opacity, and water vapor transmission ability, and the film containing wool keratin has the highest mechanical strength and water resistance. The addition of pectin provided more pronounced whiteness (p < 0.01) and rapid biodegradability compared with that for the film produced under conventional alkaline conditions. This work demonstrates facile preparation methods for safer and skin-friendly rice protein films and enlightens broad interests in the potential towards completely environment-friendly plant protein films as well. Although a plant protein film is a promising alternative to petroleum-based plastic films, the insoluble nature of some plant proteins still limits their use as film-forming materials. Alkali and thermal treatments are traditional methods to produce films from proteins with low solubility, which might pose a risk of caustic burns and harmful substances. Three innovative strategies for the preparation of film-forming precursors were proposed in this study, namely, a new solvent system using malic acid, a resist folding structure modified by wool keratin, and an electrostatic bound structure by citrus peel pectin. Furthermore, we successfully prepared these three types of rice protein films using glycerin and thermal treatments. The results showed that the film prepared with malic acid has the lowest haze, opacity, and water vapor transmission ability, and the film containing wool keratin has the highest mechanical strength and water resistance. The addition of pectin provided more pronounced whiteness ( p < 0.01) and rapid biodegradability compared with that for the film produced under conventional alkaline conditions. This work demonstrates facile preparation methods for safer and skin-friendly rice protein films and enlightens broad interests in the potential towards completely environment-friendly plant protein films as well. Waste recycling-Green chemistry technologies for the preparation of fully environment-friendly rice protein films with improved accessibility have been developed. Although a plant protein film is a promising alternative to petroleum-based plastic films, the insoluble nature of some plant proteins still limits their use as film-forming materials. Alkali and thermal treatments are traditional methods to produce films from proteins with low solubility, which might pose a risk of caustic burns and harmful substances. Three innovative strategies for the preparation of film-forming precursors were proposed in this study, namely, a new solvent system using malic acid, a resist folding structure modified by wool keratin, and an electrostatic bound structure by citrus peel pectin. Furthermore, we successfully prepared these three types of rice protein films using glycerin and thermal treatments. The results showed that the film prepared with malic acid has the lowest haze, opacity, and water vapor transmission ability, and the film containing wool keratin has the highest mechanical strength and water resistance. The addition of pectin provided more pronounced whiteness ( p < 0.01) and rapid biodegradability compared with that for the film produced under conventional alkaline conditions. This work demonstrates facile preparation methods for safer and skin-friendly rice protein films and enlightens broad interests in the potential towards completely environment-friendly plant protein films as well. |
Author | Hu, Juwu Zhao, Qiang Selomulya, Cordelia Liao, Yang Xiong, Hua He, Chengxin Wang, Yong Hu, Yu |
AuthorAffiliation | Department of Chemical Engineering Jiangxi Academy of Sciences Monash University State Key Laboratory of Food Science and Technology Nanchang University |
AuthorAffiliation_xml | – sequence: 0 name: Nanchang University – sequence: 0 name: Jiangxi Academy of Sciences – sequence: 0 name: State Key Laboratory of Food Science and Technology – sequence: 0 name: Department of Chemical Engineering – sequence: 0 name: Monash University |
Author_xml | – sequence: 1 givenname: Chengxin surname: He fullname: He, Chengxin – sequence: 2 givenname: Yu surname: Hu fullname: Hu, Yu – sequence: 3 givenname: Yong surname: Wang fullname: Wang, Yong – sequence: 4 givenname: Yang surname: Liao fullname: Liao, Yang – sequence: 5 givenname: Hua surname: Xiong fullname: Xiong, Hua – sequence: 6 givenname: Cordelia surname: Selomulya fullname: Selomulya, Cordelia – sequence: 7 givenname: Juwu surname: Hu fullname: Hu, Juwu – sequence: 8 givenname: Qiang surname: Zhao fullname: Zhao, Qiang |
BookMark | eNptkEFrGzEQhUVxoHbSS-4FQS8lwYmk1a5Wx7I0SSGQS3LoaZHHI0dGu3IlucH_vnJckpL0MjMw37yZeTMyGcOIhJxydsFZpS9Br4BVVS0fP5Apl00110KxyUvdiI9kltKaMc5VI6fkZxeGjceM9MmkEiPCDrwbVzTlaDKuHCZqQ6Ru2MTwe9_Ij0gNAKbkFs67vKPB0ugAaSEyupFa54d0Qo6s8Qk__c3H5OHq-313M7-9u_7RfbudQ9WqPNcLpZEZtC1YZZq2XgpZgVC6tRIsF4oLqI1QqGtT29YaKxfLRkhYokXDmuqYnB90t-PG7J6M9_0musHEXc9Zv3elf3Wl0F8PdLn11xZT7geXAL03I4Zt6kXVtqrlTO2Fv7xB12Ebx_JLoWRdcy61KtTZgYIYUopo323v9HX3vP2mwOwNDC6b7MJYzHb-_yOfDyMxwYv0Pw_9AW9Omqc |
CitedBy_id | crossref_primary_10_1039_D1RA09350A crossref_primary_10_1002_adfm_202214935 crossref_primary_10_1016_j_fpsl_2024_101320 crossref_primary_10_3390_foods11193010 crossref_primary_10_1002_star_202000203 crossref_primary_10_1016_j_ijbiomac_2022_12_119 crossref_primary_10_1016_j_jafr_2022_100318 crossref_primary_10_1016_j_jclepro_2021_129473 crossref_primary_10_1016_j_lwt_2020_110679 crossref_primary_10_3390_molecules27185798 crossref_primary_10_1007_s11947_023_03056_7 crossref_primary_10_3390_molecules27154878 crossref_primary_10_1002_sus2_46 crossref_primary_10_1016_j_fpsl_2024_101419 crossref_primary_10_1016_j_tifs_2022_01_010 crossref_primary_10_1016_j_ijbiomac_2024_129224 crossref_primary_10_1016_j_foodhyd_2020_106148 crossref_primary_10_1007_s11947_023_03077_2 crossref_primary_10_1016_j_scp_2024_101713 crossref_primary_10_1016_j_tifs_2023_06_002 crossref_primary_10_1016_j_lwt_2021_112868 crossref_primary_10_1080_10942912_2023_2267785 crossref_primary_10_1016_j_ijbiomac_2022_05_031 crossref_primary_10_1016_j_jclepro_2023_137739 crossref_primary_10_1016_j_ijbiomac_2023_123877 crossref_primary_10_1016_j_susmat_2024_e01133 crossref_primary_10_1016_j_foodhyd_2023_108478 crossref_primary_10_1016_j_foodhyd_2025_111260 crossref_primary_10_1016_j_foodhyd_2022_108017 crossref_primary_10_1021_acs_chemrev_2c00236 |
Cites_doi | 10.1016/S0301-4622(99)00060-5 10.1016/j.foodhyd.2011.02.023 10.1021/bk-2002-0826.ch009 10.1016/j.eurpolymj.2010.12.011 10.1016/S0001-8686(97)00040-7 10.1016/S0167-4838(96)00190-2 10.1111/jfpp.12149 10.1016/S0924-2244(96)10037-6 10.1016/j.foodhyd.2018.01.001 10.1021/acsami.8b13503 10.1016/j.ijbiomac.2018.06.142 10.1016/j.jcs.2012.08.012 10.1111/j.1365-2621.1996.tb13164.x 10.1094/CCHEM-85-1-0076 10.1039/C5GC01254F 10.1002/anie.201710642 10.1021/jp014377i 10.1039/C7CP00459A 10.1016/j.tifs.2005.10.008 10.1039/C9GC01081E 10.1021/jf0005418 10.1016/j.foodchem.2016.09.064 10.1016/j.foodhyd.2018.07.038 10.1016/j.fpsl.2018.03.005 10.1002/adfm.201901830 10.1016/j.foodchem.2009.11.033 10.1016/j.ijbiomac.2005.07.008 10.1016/j.lwt.2004.02.012 10.1080/10942912.2013.865057 10.1016/j.foodhyd.2017.04.007 10.1016/j.foodhyd.2012.05.001 10.1016/j.foodhyd.2015.08.014 10.1021/bm010160i 10.1021/jf9907485 10.1016/j.lwt.2018.11.006 10.1016/j.molstruc.2009.08.036 10.1002/ep.10225 10.1016/j.ijbiomac.2013.02.020 10.1039/C8FO00661J 10.1016/j.carbpol.2012.05.009 10.1002/pc.23718 10.1016/j.foodhyd.2013.11.017 10.1016/j.actbio.2018.03.058 10.1016/j.indcrop.2015.09.026 10.1016/j.foodhyd.2018.06.024 10.1016/j.ab.2018.08.027 10.1016/j.foodchem.2018.03.084 10.1007/s10973-008-9360-0 10.1016/j.cis.2010.10.001 10.1002/polc.5070060121 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 ADTOC UNPAY |
DOI | 10.1039/c9gc03354h |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 53 |
ExternalDocumentID | 10.1039/c9gc03354h 10_1039_C9GC03354H c9gc03354h |
GroupedDBID | -JG 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 0UZ 1TJ 53G 71~ ACHDF ACRPL ADNMO ADTOC ADVLN AFFNX AGQPQ AHGXI AITUG AKRWK ALSGL AMRAJ ANBJS ANLMG ASPBG AVWKF AZFZN BBWZM CAG EEHRC EJD FEDTE HVGLF H~9 IDY J3G J3H L-8 NDZJH RCLXC ROL UNPAY |
ID | FETCH-LOGICAL-c387t-9b79e0aef8cf7a685d243c2798f4cf12712c5a27e95a5f8faf4bd624cdefea063 |
IEDL.DBID | UNPAY |
ISSN | 1463-9262 1463-9270 |
IngestDate | Tue Aug 19 22:45:20 EDT 2025 Thu Jul 10 18:24:05 EDT 2025 Mon Jun 30 12:00:13 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Tue Jul 01 01:41:21 EDT 2025 Tue Dec 17 20:58:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-9b79e0aef8cf7a685d243c2798f4cf12712c5a27e95a5f8faf4bd624cdefea063 |
Notes | 10.1039/c9gc03354h Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3744-912X 0000-0002-2198-0162 0000-0001-5215-4480 0000-0003-0766-0557 0000-0002-9601-0304 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2020/gc/c9gc03354h |
PQID | 2345511497 |
PQPubID | 2047490 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1039_C9GC03354H crossref_citationtrail_10_1039_C9GC03354H unpaywall_primary_10_1039_c9gc03354h proquest_miscellaneous_2388781076 rsc_primary_c9gc03354h proquest_journals_2345511497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200127 |
PublicationDateYYYYMMDD | 2020-01-27 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200127 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Floyd (C9GC03354H-(cit17)/*[position()=1]) 2018; 563 Fuertes (C9GC03354H-(cit30)/*[position()=1]) 2017; 70 Chevalier (C9GC03354H-(cit53)/*[position()=1]) 2019; 87 Gabelman (C9GC03354H-(cit34)/*[position()=1]) 1994 Rodríguez Patino (C9GC03354H-(cit51)/*[position()=1]) 2011; 25 Li (C9GC03354H-(cit3)/*[position()=1]) 2015; 77 Schmitt (C9GC03354H-(cit52)/*[position()=1]) 2011; 167 Johnson (C9GC03354H-(cit13)/*[position()=1]) 2007; 26 Pan (C9GC03354H-(cit42)/*[position()=1]) 2016; 52 Liu (C9GC03354H-(cit4)/*[position()=1]) 2004; 37 Jagadeesh (C9GC03354H-(cit1)/*[position()=1]) 2017; 38 Mohanty (C9GC03354H-(cit31)/*[position()=1]) 2000 Vieira (C9GC03354H-(cit21)/*[position()=1]) 2011; 47 Hou (C9GC03354H-(cit12)/*[position()=1]) 2017; 218 Friedman (C9GC03354H-(cit16)/*[position()=1]) 1964; 6 Li-Chan (C9GC03354H-(cit48)/*[position()=1]) 1996; 7 Kelly (C9GC03354H-(cit50)/*[position()=1]) 1997; 1338 Silva (C9GC03354H-(cit25)/*[position()=1]) 2018; 16 Xing (C9GC03354H-(cit39)/*[position()=1]) 2018; 57 Olivato (C9GC03354H-(cit35)/*[position()=1]) 2012; 90 Wang (C9GC03354H-(cit46)/*[position()=1]) 2019; 101 Demyttenaere (C9GC03354H-(cit32)/*[position()=1]) 2002; 826 Thirathumthavorn (C9GC03354H-(cit11)/*[position()=1]) 2014; 38 Gennadios (C9GC03354H-(cit9)/*[position()=1]) 1996; 61 Zoccola (C9GC03354H-(cit24)/*[position()=1]) 2009; 938 Ayhllon-Meixueiro (C9GC03354H-(cit7)/*[position()=1]) 2000; 48 Paraman (C9GC03354H-(cit18)/*[position()=1]) 2008; 85 Atik (C9GC03354H-(cit27)/*[position()=1]) 2008; 94 Ghorpade (C9GC03354H-(cit36)/*[position()=1]) 2018; 118 ASTM E96/E96M-16 (C9GC03354H-(cit15)/*[position()=1]) 2016 Wang (C9GC03354H-(cit45)/*[position()=1]) 2018; 9 Wang (C9GC03354H-(cit43)/*[position()=1]) 2018; 258 Belton (C9GC03354H-(cit55)/*[position()=1]) 2018; 73 Gu (C9GC03354H-(cit6)/*[position()=1]) 2019; 21 Wang (C9GC03354H-(cit44)/*[position()=1]) 2018; 84 Shih (C9GC03354H-(cit10)/*[position()=1]) 1996; 73 Jiao (C9GC03354H-(cit20)/*[position()=1]) 2018; 10 Rhim (C9GC03354H-(cit5)/*[position()=1]) 2000; 48 Ellepola (C9GC03354H-(cit47)/*[position()=1]) 2005; 37 Zhao (C9GC03354H-(cit2)/*[position()=1]) 2012; 56 Willats (C9GC03354H-(cit23)/*[position()=1]) 2006; 17 Pirestani (C9GC03354H-(cit29)/*[position()=1]) 2018; 79 Wang (C9GC03354H-(cit41)/*[position()=1]) 2019; 29 Jiang (C9GC03354H-(cit49)/*[position()=1]) 2015; 18 Schmitt (C9GC03354H-(cit54)/*[position()=1]) 1998 Cai (C9GC03354H-(cit38)/*[position()=1]) 1999; 80 Lan (C9GC03354H-(cit33)/*[position()=1]) 2010; 120 Ramos (C9GC03354H-(cit19)/*[position()=1]) 2013; 30 Vogler (C9GC03354H-(cit26)/*[position()=1]) 1998; 74 Wang (C9GC03354H-(cit14)/*[position()=1]) 2016; 18 Ikkai (C9GC03354H-(cit22)/*[position()=1]) 2002; 3 Spotti (C9GC03354H-(cit28)/*[position()=1]) 2014; 38 Sanchez-Fernandez (C9GC03354H-(cit40)/*[position()=1]) 2017; 19 Max (C9GC03354H-(cit37)/*[position()=1]) 2002; 106 Arabestani (C9GC03354H-(cit8)/*[position()=1]) 2013; 57 |
References_xml | – issn: 2016 publication-title: Standard Test Methods for Water Vapor Transmission of Materials doi: ASTM E96/E96M-16 – issn: 2002 issue: 826 end-page: 150-165 publication-title: Heteroatomic Aroma Compounds doi: Demyttenaere Tehrani De Kimpe – issn: 2000 publication-title: Biofibres, Biodegradable Polymers and Biocomposites: An Overview doi: Mohanty Misra Hinrichsen – issn: 1998 publication-title: Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review doi: Schmitt Sanchez Desobry-Banon Hardy – issn: 1994 publication-title: Bioprocess production of flavor, fragrance, and color ingredients doi: Gabelman – volume: 80 start-page: 7 year: 1999 ident: C9GC03354H-(cit38)/*[position()=1] publication-title: Biophys. Chem. doi: 10.1016/S0301-4622(99)00060-5 – volume: 25 start-page: 1925 year: 2011 ident: C9GC03354H-(cit51)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.02.023 – volume: 826 volume-title: Heteroatomic Aroma Compounds year: 2002 ident: C9GC03354H-(cit32)/*[position()=1] doi: 10.1021/bk-2002-0826.ch009 – volume: 47 start-page: 254 year: 2011 ident: C9GC03354H-(cit21)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2010.12.011 – volume: 74 start-page: 69 year: 1998 ident: C9GC03354H-(cit26)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(97)00040-7 – volume: 1338 start-page: 161 year: 1997 ident: C9GC03354H-(cit50)/*[position()=1] publication-title: Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(96)00190-2 – volume: 38 start-page: 1799 year: 2014 ident: C9GC03354H-(cit11)/*[position()=1] publication-title: J. Food Process. Preserv. doi: 10.1111/jfpp.12149 – volume-title: Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review year: 1998 ident: C9GC03354H-(cit54)/*[position()=1] – volume: 7 start-page: 361 year: 1996 ident: C9GC03354H-(cit48)/*[position()=1] publication-title: Trends Food Sci. Technol. doi: 10.1016/S0924-2244(96)10037-6 – volume: 73 start-page: 406 year: 1996 ident: C9GC03354H-(cit10)/*[position()=1] publication-title: Cereal Chem. – volume: 79 start-page: 228 year: 2018 ident: C9GC03354H-(cit29)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.01.001 – volume: 10 start-page: 41299 year: 2018 ident: C9GC03354H-(cit20)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13503 – volume: 118 start-page: 783 year: 2018 ident: C9GC03354H-(cit36)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.06.142 – volume: 56 start-page: 568 year: 2012 ident: C9GC03354H-(cit2)/*[position()=1] publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2012.08.012 – volume: 61 start-page: 585 year: 1996 ident: C9GC03354H-(cit9)/*[position()=1] publication-title: J. Food Sci. doi: 10.1111/j.1365-2621.1996.tb13164.x – volume: 85 start-page: 76 year: 2008 ident: C9GC03354H-(cit18)/*[position()=1] publication-title: Cereal Chem. doi: 10.1094/CCHEM-85-1-0076 – volume: 18 start-page: 476 year: 2016 ident: C9GC03354H-(cit14)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC01254F – volume: 57 start-page: 1537 year: 2018 ident: C9GC03354H-(cit39)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710642 – volume: 106 start-page: 6452 year: 2002 ident: C9GC03354H-(cit37)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp014377i – volume: 19 start-page: 8667 year: 2017 ident: C9GC03354H-(cit40)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00459A – volume: 17 start-page: 97 year: 2006 ident: C9GC03354H-(cit23)/*[position()=1] publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2005.10.008 – volume: 21 start-page: 3651 year: 2019 ident: C9GC03354H-(cit6)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C9GC01081E – volume: 48 start-page: 4937 year: 2000 ident: C9GC03354H-(cit5)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf0005418 – volume: 218 start-page: 207 year: 2017 ident: C9GC03354H-(cit12)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.09.064 – volume: 87 start-page: 61 year: 2019 ident: C9GC03354H-(cit53)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.07.038 – volume: 16 start-page: 122 year: 2018 ident: C9GC03354H-(cit25)/*[position()=1] publication-title: Food Packag. Shelf doi: 10.1016/j.fpsl.2018.03.005 – volume-title: Standard Test Methods for Water Vapor Transmission of Materials year: 2016 ident: C9GC03354H-(cit15)/*[position()=1] – volume: 29 start-page: 1901830 issue: 31 year: 2019 ident: C9GC03354H-(cit41)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901830 – volume: 120 start-page: 967 year: 2010 ident: C9GC03354H-(cit33)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.11.033 – volume: 37 start-page: 12 year: 2005 ident: C9GC03354H-(cit47)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2005.07.008 – volume: 37 start-page: 731 year: 2004 ident: C9GC03354H-(cit4)/*[position()=1] publication-title: LWT – Food Sci. Technol. doi: 10.1016/j.lwt.2004.02.012 – volume: 18 start-page: 1059 year: 2015 ident: C9GC03354H-(cit49)/*[position()=1] publication-title: Int. J. Food Prop. doi: 10.1080/10942912.2013.865057 – volume: 70 start-page: 229 year: 2017 ident: C9GC03354H-(cit30)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.04.007 – volume-title: Biofibres, Biodegradable Polymers and Biocomposites: An Overview year: 2000 ident: C9GC03354H-(cit31)/*[position()=1] – volume: 30 start-page: 110 year: 2013 ident: C9GC03354H-(cit19)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.05.001 – volume-title: Bioprocess production of flavor, fragrance, and color ingredients year: 1994 ident: C9GC03354H-(cit34)/*[position()=1] – volume: 52 start-page: 600 year: 2016 ident: C9GC03354H-(cit42)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.08.014 – volume: 3 start-page: 482 year: 2002 ident: C9GC03354H-(cit22)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm010160i – volume: 48 start-page: 3032 year: 2000 ident: C9GC03354H-(cit7)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf9907485 – volume: 101 start-page: 207 year: 2019 ident: C9GC03354H-(cit46)/*[position()=1] publication-title: LWT – Food Sci. Technol. doi: 10.1016/j.lwt.2018.11.006 – volume: 938 start-page: 35 year: 2009 ident: C9GC03354H-(cit24)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2009.08.036 – volume: 26 start-page: 338 year: 2007 ident: C9GC03354H-(cit13)/*[position()=1] publication-title: Environ. Prog. doi: 10.1002/ep.10225 – volume: 57 start-page: 118 year: 2013 ident: C9GC03354H-(cit8)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.02.020 – volume: 9 start-page: 4282 year: 2018 ident: C9GC03354H-(cit45)/*[position()=1] publication-title: Food Funct. doi: 10.1039/C8FO00661J – volume: 90 start-page: 159 year: 2012 ident: C9GC03354H-(cit35)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.05.009 – volume: 38 start-page: 1504 year: 2017 ident: C9GC03354H-(cit1)/*[position()=1] publication-title: Polym. Compos. doi: 10.1002/pc.23718 – volume: 38 start-page: 76 year: 2014 ident: C9GC03354H-(cit28)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.11.017 – volume: 73 start-page: 355 year: 2018 ident: C9GC03354H-(cit55)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.03.058 – volume: 77 start-page: 565 year: 2015 ident: C9GC03354H-(cit3)/*[position()=1] publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.09.026 – volume: 84 start-page: 361 year: 2018 ident: C9GC03354H-(cit44)/*[position()=1] publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.06.024 – volume: 563 start-page: 1 year: 2018 ident: C9GC03354H-(cit17)/*[position()=1] publication-title: Anal. Biochem. doi: 10.1016/j.ab.2018.08.027 – volume: 258 start-page: 278 year: 2018 ident: C9GC03354H-(cit43)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.03.084 – volume: 94 start-page: 687 year: 2008 ident: C9GC03354H-(cit27)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-008-9360-0 – volume: 167 start-page: 63 year: 2011 ident: C9GC03354H-(cit52)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2010.10.001 – volume: 6 start-page: 183 year: 1964 ident: C9GC03354H-(cit16)/*[position()=1] publication-title: J. Polym. Sci., Part C: Polym. Symp. doi: 10.1002/polc.5070060121 |
SSID | ssj0011764 |
Score | 2.4818292 |
Snippet | Although a plant protein film is a promising alternative to petroleum-based plastic films, the insoluble nature of some plant proteins still limits their use... |
SourceID | unpaywall proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 49 |
SubjectTerms | Biodegradability Biodegradation citrus peels Folding structures glycerol Green chemistry Haze heat treatment Keratin Malic acid Mechanical properties Opacity Pectin pectins petroleum plastic film Polymer films Production methods Proteins recycling Rice rice protein solubility solvents strength (mechanics) Waste recycling wastes Water resistance Water vapor Wool |
Title | Complete waste recycling strategies for improving the accessibility of rice protein films |
URI | https://www.proquest.com/docview/2345511497 https://www.proquest.com/docview/2388781076 https://pubs.rsc.org/en/content/articlepdf/2020/gc/c9gc03354h |
UnpaywallVersion | publishedVersion |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers customDbUrl: https://pubs.rsc.org eissn: 1463-9270 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011764 issn: 1463-9270 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9i7WHsMKBQkTEmI3bhkDaN4zg-VlVHQTBxWKXtFDmOXSpKWi2ppvLX85yPpnwcELdIeVYcv-fn37P9fg_gEkFDQo3UOJEYBiihEq4Mw8j10tSToWCIMOzWwOfrcDYPPt6y2_pujs2FwU7kg_u8ogjWGL5bjqasGNbjuEmNDde94UINlVgoj1IWfD2CbsgweO5Ad379ZXxXZRRR13Lhtc_ca-hJqTho_OuC1KLMI-zFCRxvs43cPcjV6mDZuXpS1VYtO1zeNvk22BbJQP34jcvxv__oKZzWgJSMK7ln8EhnPTieNHXgenByQFnYg_60zYzDZrVryJ_DnfUsaASaPEi0HIKedGfTLhckLxo6CoIImSybbQyC2JPIsmBjdUV3R9aGWJIjUrJHLDNilqvv-QuYX01vJjO3rtvgKhrxwhUJF9qT2kTKcBlGLPUDqnwuIhMoM_L5yFdM-lwLJpmJjDRBkoZ-oFJttETM1IdOts70SyCaMi8xJg3SkAeJSWSiZEB1qkcpS2jEHHjXKC9WNam5ra2xisvDdSriiXg_Kcd05sDbveymovL4q9R5YwNxPZ3z2KcBIksMJrkDb_avUQ_2dEVmer21MuivI4ymQwf6qO_9N1qtOnC5N6c_utCKnf2b2Ct4bA3H7gf5_Bw6xf1Wv0aEVCQX0B1Pbz58uqjnw08EsRLm |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3cOyBx6FisCCjNgLh7Rp_Eh8XFW7VEisOFBp91Q5fpSKklabVKvy6xnn0ZTHAXGLlLHieMbjb2zPNwDnCBoy6pTFicQxQBFahkqINIyMiZSQHBGG3xr4dC2mM_bxht80d3N8Lgx2ohjeFTVFsMXw3XM05eWoGceNcT5cj0YLPdJyoSNKOft6BMeCY_Dcg-PZ9eeL2zqjiIaeC697TqKWnpTKg8a_LkgdyjzCXpzCyTbfqN29Wq0Olp2rx3Vt1arD1W2Tb8NtmQ31j9-4HP_7j57AowaQkota7ik8sHkfTiZtHbg-nB5QFvZhcNllxmGzxjUUz-DWexY0AkvuFVoOQU-682mXC1KULR0FQYRMlu02BkHsSVRVsLG-orsja0c8yRGp2COWOXHL1ffiOcyuLr9MpmFTtyHUNE3KUGaJtJGyLtUuUSLlJmZUx4lMHdNuHCfjWHMVJ1ZyxV3qlGOZETHTxjqrEDMNoJevc_sCiKU8ypwzzIiEZS5TmVaMWmPHhmc05QG8b5U31w2pua-tsZpXh-tUzifyw6Qa02kA7_aym5rK469SZ60NzJvpXMxjyhBZYjCZBPB2_xr14E9XVG7XWy-D_jrFaFoEMEB977_RaTWA8705_dGFTuzlv4m9gofecPx-UJycQa-829rXiJDK7E0zD34CdbERVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complete+waste+recycling+strategies+for+improving+the+accessibility+of+rice+protein+films&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=He%2C+Chengxin&rft.au=Hu%2C+Yu&rft.au=Wang%2C+Yong&rft.au=Liao%2C+Yang&rft.date=2020-01-27&rft.issn=1463-9270&rft.volume=22&rft.issue=2+p.490-503&rft.spage=490&rft.epage=503&rft_id=info:doi/10.1039%2Fc9gc03354h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |