Uniqueness problem with truncated multiplicities in value distribution theory

In 1929, H. Cartan declared that there are at most two meromorphic functions on ℂ which share four values without multiplicities, which is incorrect but affirmative if they share four values counted with multiplicities truncated by two. In this paper, we generalize such a restricted H. Cartan’s decl...

Full description

Saved in:
Bibliographic Details
Published inNagoya mathematical journal Vol. 152; pp. 131 - 152
Main Author Fujimoto, Hirotaka
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.12.1998
Duke University Press
Subjects
Online AccessGet full text
ISSN0027-7630
2152-6842
DOI10.1017/S0027763000006826

Cover

Abstract In 1929, H. Cartan declared that there are at most two meromorphic functions on ℂ which share four values without multiplicities, which is incorrect but affirmative if they share four values counted with multiplicities truncated by two. In this paper, we generalize such a restricted H. Cartan’s declaration to the case of maps into PN (ℂ). We show that there are at most two nondegenerate meromorphic maps of ℂn into PN (ℂ) which share 3N + 1 hyperplanes in general position counted with multiplicities truncated by two. We also give some degeneracy theorems of meromorphic maps into PN (ℂ) and discuss some other related subjects.
AbstractList In 1929, H. Cartan declared that there are at most two meromorphic functions on ℂ which share four values without multiplicities, which is incorrect but affirmative if they share four values counted with multiplicities truncated by two. In this paper, we generalize such a restricted H. Cartan’s declaration to the case of maps into PN (ℂ). We show that there are at most two nondegenerate meromorphic maps of ℂn into PN (ℂ) which share 3N + 1 hyperplanes in general position counted with multiplicities truncated by two. We also give some degeneracy theorems of meromorphic maps into PN (ℂ) and discuss some other related subjects.
In 1929, H. Cartan declared that there are at most two meromorphic functions on ℂ which share four values without multiplicities, which is incorrect but affirmative if they share four values counted with multiplicities truncated by two. In this paper, we generalize such a restricted H. Cartan’s declaration to the case of maps into P N (ℂ). We show that there are at most two nondegenerate meromorphic maps of ℂ n into P N (ℂ) which share 3 N + 1 hyperplanes in general position counted with multiplicities truncated by two. We also give some degeneracy theorems of meromorphic maps into P N (ℂ) and discuss some other related subjects.
Author Fujimoto, Hirotaka
Author_xml – sequence: 1
  givenname: Hirotaka
  surname: Fujimoto
  fullname: Fujimoto, Hirotaka
  email: fujimoto@kappa.s.kanazawa-u.ac.jp
  organization: Department of Mathematics, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-11, Japan, fujimoto@kappa.s.kanazawa-u.ac.jp
BookMark eNp9kMtOwzAQRS0EEm3hA9j5BwJ-JHa8A1W8pCIW0LXl2A51lTjFdkD9exI1bEDqbEaamXNn5s7Bqe-8BeAKo2uMML95Q4hwzigag5WEnYAZwQXJWJmTUzAb29nYPwfzGLfDUEkFnYGXtXefvfU2RrgLXdXYFn67tIEp9F6rZA1s-ya5XeO0S85G6Dz8Uk1voXExBVf1yXUepo3twv4CnNWqifZyyguwfrh_Xz5lq9fH5-XdKtO05CkTBWWi4Igpm3NlCaZUCFGjvKpMxXhOdCGUKckwpxmra02VJjivjDaYCEboAtwedIeTt1Yn2-vGGbkLrlVhLzvl5HK9mqpT8u1WYoxLzliO80GCHyR06GIMtpbDf2r8JQXlGomRHI2V_4wdSPyH_N17jKETo9oqOPNh5bbrgx9MOkL9AAR6jU8
CitedBy_id crossref_primary_10_1142_S0129167X05003132
crossref_primary_10_1007_s10013_013_0017_3
crossref_primary_10_1090_S0002_9939_2013_11718_1
crossref_primary_10_1090_S0002_9939_2011_11123_7
crossref_primary_10_2996_kmj44209
crossref_primary_10_1007_s10587_010_0017_3
crossref_primary_10_1524_anly_2008_0923
crossref_primary_10_1080_17476933_2020_1767088
crossref_primary_10_1142_S0129167X06003898
crossref_primary_10_1016_j_jmaa_2016_06_050
crossref_primary_10_1007_s11253_011_0531_y
crossref_primary_10_1007_s10013_015_0136_0
crossref_primary_10_1007_s11785_014_0367_1
crossref_primary_10_1007_s11253_019_01658_z
crossref_primary_10_1007_s40306_019_00350_5
crossref_primary_10_1080_17476933_2021_1871902
crossref_primary_10_1007_s11401_019_0131_y
crossref_primary_10_1080_17476930903394929
crossref_primary_10_5802_afst_1120
crossref_primary_10_1142_S0129167X07004047
crossref_primary_10_1007_s12188_015_0114_1
crossref_primary_10_1016_j_jmaa_2010_09_040
crossref_primary_10_1007_s10476_021_0101_y
crossref_primary_10_1016_j_jmaa_2014_08_048
crossref_primary_10_1142_S0129167X1450102X
crossref_primary_10_2478_v10062_008_0014_2
crossref_primary_10_1142_S0129167X10006409
crossref_primary_10_1007_s12188_009_0027_y
crossref_primary_10_1007_s41478_023_00701_4
crossref_primary_10_1080_17476933_2012_686495
crossref_primary_10_1007_s10114_015_4380_8
crossref_primary_10_1016_S0252_9602_07_60062_9
crossref_primary_10_1007_s41980_018_0002_4
crossref_primary_10_1016_j_bulsci_2008_03_006
crossref_primary_10_1142_S0129167X12500887
crossref_primary_10_2206_kyushujm_65_219
crossref_primary_10_2478_auom_2022_0015
crossref_primary_10_1090_S0002_9939_06_08475_9
crossref_primary_10_1016_j_jmaa_2008_07_061
crossref_primary_10_1080_17476933_2019_1701449
crossref_primary_10_2748_tmj_1113247649
crossref_primary_10_1515_gmj_2022_2172
crossref_primary_10_1080_17476933_2023_2234830
crossref_primary_10_1017_S0027763000007030
crossref_primary_10_1016_S0252_9602_11_60255_5
crossref_primary_10_1017_S002776300002568X
crossref_primary_10_1142_S0129167X23500702
crossref_primary_10_1142_S0129167X09005492
crossref_primary_10_2140_pjm_2019_302_371
crossref_primary_10_1007_s11401_007_0295_8
crossref_primary_10_1007_s10114_019_8261_4
crossref_primary_10_1142_S0129167X0500293X
crossref_primary_10_1142_S0129167X20501268
crossref_primary_10_1007_s11425_010_3137_1
crossref_primary_10_1007_s41980_019_00301_8
crossref_primary_10_1007_s10476_025_00064_x
crossref_primary_10_1007_s11425_010_0039_1
crossref_primary_10_1007_s40315_019_00284_x
Cites_doi 10.1090/conm/025/730045
10.1017/S0027763000016676
10.5186/aasfm.1988.1307
10.4099/math1924.11.233
10.2996/kmj/1138039844
10.2969/jmsj/04530481
10.1007/BF02565342
10.2748/tmj/1178228497
10.1017/S0027763000021607
10.1017/S002776300001758X
10.2140/pjm.1988.135.323
ContentType Journal Article
Copyright Copyright © Editorial Board of Nagoya Mathematical Journal 1998
Copyright 1998 Editorial Board, Nagoya Mathematical Journal
Copyright_xml – notice: Copyright © Editorial Board of Nagoya Mathematical Journal 1998
– notice: Copyright 1998 Editorial Board, Nagoya Mathematical Journal
DBID AAYXX
CITATION
DOI 10.1017/S0027763000006826
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate H. FUJIMOTO
Uniqueness Problem in Value Distribution Theory
EISSN 2152-6842
EndPage 152
ExternalDocumentID oai_CULeuclid_euclid_nmj_1118766414
10_1017_S0027763000006826
GroupedDBID --Z
-~X
09C
09E
0R~
123
29M
2WC
6OB
7.U
8FE
8FG
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
ABBZL
ABDNZ
ABJCF
ABJNI
ABLJU
ABMWE
ABQTM
ABROB
ABTAH
ABVKB
ABVZP
ABXAU
ABZCX
ACBMC
ACDLN
ACGFS
ACIPV
ACIWK
ACNCT
ACUIJ
ACYZP
ACZBM
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADOVT
ADVJH
ADYHW
AEBAK
AEHGV
AENCP
AENEX
AENGE
AEYYC
AFFOW
AFFUJ
AFKQG
AFKRA
AFLVW
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARZZG
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BJBOZ
BLZWO
BMAJL
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
E3Z
EBS
EGQIC
EJD
HCIFZ
H~9
IH6
IOEEP
IOO
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
L6V
L7B
LHUNA
LW7
M7S
NHB
NIKVX
NZEOI
OHT
OK1
P2P
PTHSS
PUASD
PYCCK
RAMDC
RBU
RBV
RCA
RDU
ROL
RPE
S6U
SAAAG
T9M
TKC
TN5
TR2
UT1
WFFJZ
WS9
XOL
XSB
YNT
YQT
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
AAYXX
ABGDZ
ABXHF
AKMAY
AMVHM
CITATION
OVT
PHGZM
PHGZT
08R
AAEED
ABFLS
ABUFD
ACCHT
ACQFJ
ACUYZ
ACWGA
ADACO
ADGEJ
ADKFC
ADOCW
AGOOT
F20
RYH
UQL
X
Z
ID FETCH-LOGICAL-c387t-953695706ae47ae2133999f04bbdb6742c59ad82953c66ffc3ac214bdcd129623
IEDL.DBID RBV
ISSN 0027-7630
IngestDate Tue Jan 05 18:13:28 EST 2021
Thu Apr 24 23:12:06 EDT 2025
Tue Jul 01 03:36:38 EDT 2025
Tue Jan 21 06:20:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-953695706ae47ae2133999f04bbdb6742c59ad82953c66ffc3ac214bdcd129623
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/87020FC9555DA2403D360899AA947EC5/S0027763000006826a.pdf/div-class-title-uniqueness-problem-with-truncated-multiplicities-in-value-distribution-theory-div.pdf
PageCount 22
ParticipantIDs projecteuclid_primary_oai_CULeuclid_euclid_nmj_1118766414
crossref_citationtrail_10_1017_S0027763000006826
crossref_primary_10_1017_S0027763000006826
cambridge_journals_10_1017_S0027763000006826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-12-01
PublicationDateYYYYMMDD 1998-12-01
PublicationDate_xml – month: 12
  year: 1998
  text: 1998-12-01
  day: 01
PublicationDecade 1990
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Nagoya mathematical journal
PublicationTitleAlternate Nagoya Mathematical Journal
PublicationYear 1998
Publisher Cambridge University Press
Duke University Press
Publisher_xml – name: Cambridge University Press
– name: Duke University Press
References Steinmetz (S0027763000006826_ref13) 1988; 13
Cartan (S0027763000006826_ref1) 1929; 188
Shiftman (S0027763000006826_ref11) 1983; 981
S0027763000006826_ref3
S0027763000006826_ref2
S0027763000006826_ref5
S0027763000006826_ref4
S0027763000006826_ref12
S0027763000006826_ref10
S0027763000006826_ref7
S0027763000006826_ref6
S0027763000006826_ref9
S0027763000006826_ref8
References_xml – ident: S0027763000006826_ref12
  doi: 10.1090/conm/025/730045
– ident: S0027763000006826_ref2
  doi: 10.1017/S0027763000016676
– volume: 13
  start-page: 93
  year: 1988
  ident: S0027763000006826_ref13
  article-title: A uniqueness theorem for three meromorphic functions
  publication-title: Annales Acad. Sci. Fenn.
  doi: 10.5186/aasfm.1988.1307
– ident: S0027763000006826_ref5
  doi: 10.4099/math1924.11.233
– ident: S0027763000006826_ref8
  doi: 10.2996/kmj/1138039844
– ident: S0027763000006826_ref7
  doi: 10.2969/jmsj/04530481
– ident: S0027763000006826_ref10
  doi: 10.1007/BF02565342
– ident: S0027763000006826_ref6
  doi: 10.2748/tmj/1178228497
– ident: S0027763000006826_ref4
  doi: 10.1017/S0027763000021607
– ident: S0027763000006826_ref3
  doi: 10.1017/S002776300001758X
– ident: S0027763000006826_ref9
  doi: 10.2140/pjm.1988.135.323
– volume: 188
  start-page: 301
  year: 1929
  ident: S0027763000006826_ref1
  article-title: Un nouveau théorème d’unicité relatif aux fonctions méromorphes
  publication-title: C. R. Acad. Sci. Paris
– volume: 981
  volume-title: Lecture Notes in Math.
  year: 1983
  ident: S0027763000006826_ref11
SSID ssj0008393
Score 1.7376276
Snippet In 1929, H. Cartan declared that there are at most two meromorphic functions on ℂ which share four values without multiplicities, which is incorrect but...
SourceID projecteuclid
crossref
cambridge
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms 30D35
32H30
Title Uniqueness problem with truncated multiplicities in value distribution theory
URI https://www.cambridge.org/core/product/identifier/S0027763000006826/type/journal_article
http://projecteuclid.org/euclid.nmj/1118766414
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66J0XEJ64vcvAkFtsmTZOjLi6LWE9W9laaR6GyVnF3D_57J9ls1yLsxVNDyVDITOeRmfkGoatQaFFRwwPOBQ0ogZWkiQxYGtHYJFHFXaI9e2ajnD6Ok_EqUPTXD2auJrV2iXy_bN7fbiM7GpsxN7d6k6euW-v-tdW7YOrJMm_pQKFtetIiSlmVzLvoCR0rtNP56i_zMtxDu94vxHcLRu6jDdMcoO2sBVWdHqIsd2CrVjdhPwcG22tUPPuaW2hXo7EvD6yVw0nFdYMtmLfB2sLj-slW2PUufh-hfPjwMhgFfhpCoAhPZy7PKpI0ZKWhaWliCC7BuatCKqWWDCJclYhS8xj2KcaqSpFSxRGVWmmw6eDlHKNe89GYE4Q1Jbw0JfzNUlKiiBQ6DlkFmo6YmEneRzftSRVepqfFoh4sLf4cbB-Fy8MslEcWtwMuJutIrluSzwWsxrrNosOhlsJCYw_yJ__WP0BSipWknP6D9gxtuQ5EV7xyjnrATXMBLshMXjrJ-wHWNNnU
linkProvider Project Euclid
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yDyoifuL8zMGTWGybNE2OOhxT1x1kld1K81GozCpuO_jfm2RZZxF28dRQ8gjkvbyPvJffA-DKZ5IVWFGPUoY9jPSI44h7JA5wqKKgoDbRngxIL8VPo2i0DBTd9YOaiXEpbSLfDav3t9vAtMYmxPatXtdyFJqD-HL_WmtebezRInNpYaFNgtJgShmlTJv4CQ07tN1Y95eB6e6CHecZwrs5K_fAmqr2wVZSw6pODkCSWrhVo52g6wQDzUUqnH7NDLirktAVCJbCIqXCsoIGzltBaQByXW8raF8vfh-CtPsw7PQ81w_BE4jGU5tpZVHsk1zhOFehDi-1e1f4mHPJiY5xRcRySUM9TxBSFALlIgwwl0Jqq679nCPQqj4qdQygxIjmKtfnmXOMBOJMhj4ptK5DKiSctsFNvVOZk-pJNq8Ii7M_G9sG_mIzM-GwxU2Li_Eqkuua5HMOrLFqMmtwqKYw4NidtO_-uo-WlWwpKyf_oL0EG71h0s_6j4PnU7Bp3yPaUpYz0NKcVefaIZnyCyuFP2u_3SU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5eQBQRrziveVAfxGIvado-ydwcU7chw4lvpbkUOmuVbQV986ebpGlxKHvxqaHklOYknPOdnOQ7AJyYAQtixH3D9wNkIEe0CHKJgT0L2dy1Yl8l2rs93B6gu2f3eQ58lXdh9P4Dz2masIInuKiaUB9GH5dNSSD_FrErphsqWNNaP7XNUtv5KFXJmpIeWiYqJbeUNM4CT58l4z4f5-mkkSb0RXiFnM-DRbEybVn8oX_9VNlyAR-cMhf615d-MjJMebbVqYH8cFmtdbCmsSasF7-7AeZ4tglWuhVR63gLdAeKwFXaO6hry0C5NQsno1zSxXIG9ZHDhCruVZhkUBKEc8gk5a6ulgXVfcjPbTBo3Tw22oausGBQx_cmKncbuJ6JI468iNsiYBWAMTYRIYxgETVTN4iYb4t-FOM4pk5EbQsRRpnACQI57YCF7C3juwAy5PgRj4SFIAQ51CEBs00cC-vpcBsTvwYuKk2FesbGYXHGzAt_KbYGzFKZIdVs5bJoRjpL5LwSeS-oOmZ1DqZmqJKQdNuNQUe_1Y_sdShDJeE5MLLQ3j9kj8HSQ7MVdm579_tgWV1wVGdjDsCCmFh-KBDOhBypRfgNhIX50g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniqueness+problem+with+truncated+multiplicities+in+value+distribution+theory&rft.jtitle=Nagoya+mathematical+journal&rft.au=Fujimoto%2C+Hirotaka&rft.date=1998-12-01&rft.issn=0027-7630&rft.eissn=2152-6842&rft.volume=152&rft.spage=131&rft.epage=152&rft_id=info:doi/10.1017%2FS0027763000006826&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0027763000006826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-7630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-7630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-7630&client=summon