Effect of wedelolactone and gallic acid on quinolinic acid-induced neurotoxicity and impaired motor function: significance to sporadic amyotrophic lateral sclerosis

•Quinolinic acid is well known endogenous neuroactive metabolite of tryptophan degradation pathway.•Quinolinic acid causes neurotoxicity and impairment in motor function and motor learning memory.•Wedelolactone and Gallic acid were improved the motor function and motor learning ability in the rats.•...

Full description

Saved in:
Bibliographic Details
Published inNeurotoxicology (Park Forest South) Vol. 68; pp. 1 - 12
Main Authors S, Maya, T, Prakash, Goli, Divakar
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0161-813X
1872-9711
1872-9711
DOI10.1016/j.neuro.2018.06.015

Cover

Abstract •Quinolinic acid is well known endogenous neuroactive metabolite of tryptophan degradation pathway.•Quinolinic acid causes neurotoxicity and impairment in motor function and motor learning memory.•Wedelolactone and Gallic acid were improved the motor function and motor learning ability in the rats.•Wedelolactone and Gallic acid are capable to act through various pathways and can reduce reverse the toxic events triggered by quinolinic acid. Quinolinic acid (QUIN) is a well-known neuroactive metabolite of tryptophan degradation pathway or kynurenine pathway. The QUIN is involved in the development of several toxic cascades which leads to the neuronal degeneration processes. The QUIN-induced toxicity is also responsible for the impairment of the motor function and motor learning ability. This study seeks to investigate the several mechanisms which are involved in the intrastriatal administration of QUIN-induced neurodegeneration and the neuroprotective effects of wedelolactone (WL) and gallic acid (GA) over QUIN-induced toxicity. The Wistar rats were used for the study and conducted behavioral model to evaluate the effects of WL (100 & 200 mg/kg) and GA (100 & 200 mg/kg) on impaired motor function and motor learning ability. We also assessed the effects of WL and GA on the antioxidant profile, cytotoxicity, apoptosis, excitotoxicity, inflammatory cascades, and on growth factors which helps in neurogenesis. The compounds effectively improved the motor function, motor learning memory in the rats. Similarly, enhanced the activity of Glutathione peroxidase, SOD, catalase, and declined the lipid peroxidation and nitrite production in the brain. The treatment with WL and GA lowered the activities of LDH, m-calpain, and caspase-3. The reports strongly support that both compounds are useful in the prevention of glutamate excitotoxicity induced by QUIN. The NAA, IGF-1, and VEGF levels in the brain were improved after treatment with WL and GA. The neuroprotective effects of WL and GA further proved through the anti-inflammatory effects. The compounds significantly down-regulated the expression of TNF-α, IL-6, and IL-β in the brain. Immunohistochemical analysis shows that the WL and GA reduced the expression of NF-κB. The histopathological studies for cerebellum, hippocampus, striatum, and spinal cord confirms the toxic effects of QUIN and neuroprotective effects of WL and GA. The results suggest that WL and GA could ameliorate the toxic events triggered by QUIN and might be effective in the prevention and progression of several cascades which lead to the development of sALS.
AbstractList Quinolinic acid (QUIN) is a well-known neuroactive metabolite of tryptophan degradation pathway or kynurenine pathway. The QUIN is involved in the development of several toxic cascades which leads to the neuronal degeneration processes. The QUIN-induced toxicity is also responsible for the impairment of the motor function and motor learning ability. This study seeks to investigate the several mechanisms which are involved in the intrastriatal administration of QUIN-induced neurodegeneration and the neuroprotective effects of wedelolactone (WL) and gallic acid (GA) over QUIN-induced toxicity. The Wistar rats were used for the study and conducted behavioral model to evaluate the effects of WL (100 & 200 mg/kg) and GA (100 & 200 mg/kg) on impaired motor function and motor learning ability. We also assessed the effects of WL and GA on the antioxidant profile, cytotoxicity, apoptosis, excitotoxicity, inflammatory cascades, and on growth factors which helps in neurogenesis. The compounds effectively improved the motor function, motor learning memory in the rats. Similarly, enhanced the activity of Glutathione peroxidase, SOD, catalase, and declined the lipid peroxidation and nitrite production in the brain. The treatment with WL and GA lowered the activities of LDH, m-calpain, and caspase-3. The reports strongly support that both compounds are useful in the prevention of glutamate excitotoxicity induced by QUIN. The NAA, IGF-1, and VEGF levels in the brain were improved after treatment with WL and GA. The neuroprotective effects of WL and GA further proved through the anti-inflammatory effects. The compounds significantly down-regulated the expression of TNF-α, IL-6, and IL-β in the brain. Immunohistochemical analysis shows that the WL and GA reduced the expression of NF-κB. The histopathological studies for cerebellum, hippocampus, striatum, and spinal cord confirms the toxic effects of QUIN and neuroprotective effects of WL and GA. The results suggest that WL and GA could ameliorate the toxic events triggered by QUIN and might be effective in the prevention and progression of several cascades which lead to the development of sALS.Quinolinic acid (QUIN) is a well-known neuroactive metabolite of tryptophan degradation pathway or kynurenine pathway. The QUIN is involved in the development of several toxic cascades which leads to the neuronal degeneration processes. The QUIN-induced toxicity is also responsible for the impairment of the motor function and motor learning ability. This study seeks to investigate the several mechanisms which are involved in the intrastriatal administration of QUIN-induced neurodegeneration and the neuroprotective effects of wedelolactone (WL) and gallic acid (GA) over QUIN-induced toxicity. The Wistar rats were used for the study and conducted behavioral model to evaluate the effects of WL (100 & 200 mg/kg) and GA (100 & 200 mg/kg) on impaired motor function and motor learning ability. We also assessed the effects of WL and GA on the antioxidant profile, cytotoxicity, apoptosis, excitotoxicity, inflammatory cascades, and on growth factors which helps in neurogenesis. The compounds effectively improved the motor function, motor learning memory in the rats. Similarly, enhanced the activity of Glutathione peroxidase, SOD, catalase, and declined the lipid peroxidation and nitrite production in the brain. The treatment with WL and GA lowered the activities of LDH, m-calpain, and caspase-3. The reports strongly support that both compounds are useful in the prevention of glutamate excitotoxicity induced by QUIN. The NAA, IGF-1, and VEGF levels in the brain were improved after treatment with WL and GA. The neuroprotective effects of WL and GA further proved through the anti-inflammatory effects. The compounds significantly down-regulated the expression of TNF-α, IL-6, and IL-β in the brain. Immunohistochemical analysis shows that the WL and GA reduced the expression of NF-κB. The histopathological studies for cerebellum, hippocampus, striatum, and spinal cord confirms the toxic effects of QUIN and neuroprotective effects of WL and GA. The results suggest that WL and GA could ameliorate the toxic events triggered by QUIN and might be effective in the prevention and progression of several cascades which lead to the development of sALS.
Quinolinic acid (QUIN) is a well-known neuroactive metabolite of tryptophan degradation pathway or kynurenine pathway. The QUIN is involved in the development of several toxic cascades which leads to the neuronal degeneration processes. The QUIN-induced toxicity is also responsible for the impairment of the motor function and motor learning ability. This study seeks to investigate the several mechanisms which are involved in the intrastriatal administration of QUIN-induced neurodegeneration and the neuroprotective effects of wedelolactone (WL) and gallic acid (GA) over QUIN-induced toxicity. The Wistar rats were used for the study and conducted behavioral model to evaluate the effects of WL (100 & 200 mg/kg) and GA (100 & 200 mg/kg) on impaired motor function and motor learning ability. We also assessed the effects of WL and GA on the antioxidant profile, cytotoxicity, apoptosis, excitotoxicity, inflammatory cascades, and on growth factors which helps in neurogenesis. The compounds effectively improved the motor function, motor learning memory in the rats. Similarly, enhanced the activity of Glutathione peroxidase, SOD, catalase, and declined the lipid peroxidation and nitrite production in the brain. The treatment with WL and GA lowered the activities of LDH, m-calpain, and caspase-3. The reports strongly support that both compounds are useful in the prevention of glutamate excitotoxicity induced by QUIN. The NAA, IGF-1, and VEGF levels in the brain were improved after treatment with WL and GA. The neuroprotective effects of WL and GA further proved through the anti-inflammatory effects. The compounds significantly down-regulated the expression of TNF-α, IL-6, and IL-β in the brain. Immunohistochemical analysis shows that the WL and GA reduced the expression of NF-κB. The histopathological studies for cerebellum, hippocampus, striatum, and spinal cord confirms the toxic effects of QUIN and neuroprotective effects of WL and GA. The results suggest that WL and GA could ameliorate the toxic events triggered by QUIN and might be effective in the prevention and progression of several cascades which lead to the development of sALS.
•Quinolinic acid is well known endogenous neuroactive metabolite of tryptophan degradation pathway.•Quinolinic acid causes neurotoxicity and impairment in motor function and motor learning memory.•Wedelolactone and Gallic acid were improved the motor function and motor learning ability in the rats.•Wedelolactone and Gallic acid are capable to act through various pathways and can reduce reverse the toxic events triggered by quinolinic acid. Quinolinic acid (QUIN) is a well-known neuroactive metabolite of tryptophan degradation pathway or kynurenine pathway. The QUIN is involved in the development of several toxic cascades which leads to the neuronal degeneration processes. The QUIN-induced toxicity is also responsible for the impairment of the motor function and motor learning ability. This study seeks to investigate the several mechanisms which are involved in the intrastriatal administration of QUIN-induced neurodegeneration and the neuroprotective effects of wedelolactone (WL) and gallic acid (GA) over QUIN-induced toxicity. The Wistar rats were used for the study and conducted behavioral model to evaluate the effects of WL (100 & 200 mg/kg) and GA (100 & 200 mg/kg) on impaired motor function and motor learning ability. We also assessed the effects of WL and GA on the antioxidant profile, cytotoxicity, apoptosis, excitotoxicity, inflammatory cascades, and on growth factors which helps in neurogenesis. The compounds effectively improved the motor function, motor learning memory in the rats. Similarly, enhanced the activity of Glutathione peroxidase, SOD, catalase, and declined the lipid peroxidation and nitrite production in the brain. The treatment with WL and GA lowered the activities of LDH, m-calpain, and caspase-3. The reports strongly support that both compounds are useful in the prevention of glutamate excitotoxicity induced by QUIN. The NAA, IGF-1, and VEGF levels in the brain were improved after treatment with WL and GA. The neuroprotective effects of WL and GA further proved through the anti-inflammatory effects. The compounds significantly down-regulated the expression of TNF-α, IL-6, and IL-β in the brain. Immunohistochemical analysis shows that the WL and GA reduced the expression of NF-κB. The histopathological studies for cerebellum, hippocampus, striatum, and spinal cord confirms the toxic effects of QUIN and neuroprotective effects of WL and GA. The results suggest that WL and GA could ameliorate the toxic events triggered by QUIN and might be effective in the prevention and progression of several cascades which lead to the development of sALS.
Author Goli, Divakar
S, Maya
T, Prakash
Author_xml – sequence: 1
  givenname: Maya
  surname: S
  fullname: S, Maya
  email: mayas@acharya.ac.in
– sequence: 2
  givenname: Prakash
  surname: T
  fullname: T, Prakash
  email: prakasht@acharya.ac.in
– sequence: 3
  givenname: Divakar
  surname: Goli
  fullname: Goli, Divakar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29981346$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1URLeFJ0BClrhwSbCzieMgcUBV-SNV4gISN8s7nhSvHHtrO4V9Hx4UZ3d76aEnW-PfNzP-vgty5oNHQl5zVnPGxftt7XGOoW4YlzUTNePdM7Lism-qoef8jKwKxSvJ17_OyUVKW1aIXgwvyHkzDKXcihX5dz2OCJmGkf5Bgy44DbnModobequds0A1WEODp3ez9cFZfypV1psZ0NDDGjn8tWDz_iC0007bWJ6mUo90nD1kG_wHmuytt6MF7QFpDjTtQtRmaTjtQ45h97vcnc4YtaMJHMaQbHpJno_aJXx1Oi_Jz8_XP66-Vjffv3y7-nRTwVr2ueoFDthjM4zcaCkZilG2mhlt2gEHxjVIwzdtZ8Smg0Fw3XQtg42EjoOAnq0vybtj310MdzOmrCabAJ3THsOcVMOEaGXbsa6gbx-h2zBHX7ZTDW9EJ4q7C_XmRM2bCY3aRTvpuFcP_hdgOAJQPpoijqp4qBevctTWKc7UkrXaqoPJaslaMaFKkkW7fqR9aP-06uNRhcXIe4tRJbBY4jAlMMjKBPuk_j_s98hP
CitedBy_id crossref_primary_10_1177_18479790241238129
crossref_primary_10_1016_j_freeradbiomed_2021_07_009
crossref_primary_10_3390_antiox8090333
crossref_primary_10_1016_j_jep_2025_119557
crossref_primary_10_1016_j_ejphar_2022_174867
crossref_primary_10_3390_antiox10081328
crossref_primary_10_1016_j_fitote_2023_105613
crossref_primary_10_3390_molecules27103297
crossref_primary_10_3390_nu16142225
crossref_primary_10_1016_j_brainresbull_2021_07_007
crossref_primary_10_2174_1386207324666210520093517
crossref_primary_10_3390_molecules25194385
crossref_primary_10_1016_j_fitote_2022_105355
crossref_primary_10_1002_fsn3_1418
crossref_primary_10_3390_antiox13040482
crossref_primary_10_3389_fnins_2022_1002004
crossref_primary_10_1080_13813455_2019_1630652
crossref_primary_10_3390_biom12070998
crossref_primary_10_1016_j_phrs_2021_105615
crossref_primary_10_3390_molecules28248133
crossref_primary_10_1016_j_foodres_2024_114068
crossref_primary_10_1155_2020_1675957
crossref_primary_10_3390_metabo11020120
crossref_primary_10_1002_ajoc_202400564
crossref_primary_10_1016_S1875_5364_25_60821_1
crossref_primary_10_3390_antiox13081001
crossref_primary_10_32604_phyton_2020_013388
Cites_doi 10.1046/j.1471-4159.1999.0730322.x
10.3389/fnins.2016.00052
10.1111/j.1460-9568.2008.06310.x
10.1111/j.1471-4159.1989.tb02552.x
10.1016/S0022-510X(97)00309-2
10.1523/JNEUROSCI.15-11-07344.1995
10.1007/s12640-009-9051-z
10.3109/17482960802566824
10.1523/JNEUROSCI.23-35-11036.2003
10.1016/j.nlm.2004.01.001
10.1101/cshperspect.a001651
10.1111/febs.12762
10.1097/01.wcb.0000037988.07114.98
10.1186/1742-2094-2-16
10.1155/2013/104024
10.1016/S0165-0173(03)00152-8
10.1016/S0021-9258(19)52451-6
10.1006/exnr.1998.6767
10.1016/j.ijdevneu.2005.08.004
10.1016/0003-2697(79)90738-3
10.1007/s11064-008-9619-7
10.1159/000089622
10.1016/0003-2697(82)90118-X
10.1160/TH03-09-0582
10.1523/JNEUROSCI.3293-13.2013
10.1016/j.pneurobio.2006.12.003
10.1136/jnnp.2004.048652
10.1523/JNEUROSCI.16-16-05168.1996
10.1074/jbc.M402202200
10.1016/0304-3940(93)90752-7
10.1093/brain/115.5.1249
10.1002/glia.10175
10.1186/1742-2094-6-36
10.1046/j.1471-4159.1997.69041629.x
10.1152/physrev.1990.70.2.427
10.1016/S0006-8993(99)02474-9
10.1007/978-1-4613-0381-7_38
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Sep 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Sep 2018
DBID AAYXX
CITATION
NPM
7TK
7U7
C1K
7X8
DOI 10.1016/j.neuro.2018.06.015
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Toxicology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-9711
EndPage 12
ExternalDocumentID 29981346
10_1016_j_neuro_2018_06_015
S0161813X18301591
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACIUM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSJ
SSN
SSP
SSZ
T5K
TEORI
TN5
UHS
UNMZH
XPP
ZGI
ZXP
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7TK
7U7
C1K
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c387t-76e9e7e29f1da880e6f84a0dad49e901ac8d1b45d6b5c961a2540cb8c51c6c703
IEDL.DBID AIKHN
ISSN 0161-813X
1872-9711
IngestDate Sat Sep 27 19:22:48 EDT 2025
Sat Jul 26 02:43:24 EDT 2025
Mon Jul 21 05:39:26 EDT 2025
Tue Jul 01 01:48:43 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Fri Feb 23 02:36:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wedelolactone
Amyotrophic lateral sclerosis
Neurotoxicity
Quinolinic acid
Gallic acid
Neurodegeneration
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-76e9e7e29f1da880e6f84a0dad49e901ac8d1b45d6b5c961a2540cb8c51c6c703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29981346
PQID 2126563465
PQPubID 105584
PageCount 12
ParticipantIDs proquest_miscellaneous_2066484505
proquest_journals_2126563465
pubmed_primary_29981346
crossref_citationtrail_10_1016_j_neuro_2018_06_015
crossref_primary_10_1016_j_neuro_2018_06_015
elsevier_sciencedirect_doi_10_1016_j_neuro_2018_06_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Redfield
PublicationTitle Neurotoxicology (Park Forest South)
PublicationTitleAlternate Neurotoxicology
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Kakkar, Das, Viswanathan (bib0100) 1984; 21
Cluskey, Ramsden (bib0035) 2001; 54
Lugo-Huitron, Muniz, Pineda, Pedraza-Chaverri, Rios, Perez-de la Cruz (bib0125) 2013
Braidy, Grant, Adams, Brew, Guillemin (bib0020) 2009; 16
Guillemin, Wang, Brew (bib0085) 2005; 2
Lowry, Rosebrough, Farr, Randall (bib0120) 1951; 193
Rosenstein, Mani, Khaibullina, Krum (bib0185) 2003; 23
Aebi (bib0005) 1974
Pober, Cotran (bib0165) 1990; 70
Metz, Whishaw (bib0130) 2009; 28
Raab, Beck, Gaumann, Yuce, Gerber, Plate, Hammes, Ferrara, Brejer (bib0170) 2004; 91
Nieto-Estevez, V., Defterali, C., Vicario-Abejon, C., 2016. IGF-1: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. 10, 52.
Buitrago, Schulz, Dichgants, Luft (bib0025) 2004; 81
Connick, Carla, Moroni, Stone (bib0040) 1989; 52
Goda, Kishimoto, Shimizu, Hamane, Ueda (bib0065) 1996; 398
Wang, Briz, Chishti, Bi, Baudry (bib0230) 2013; 33
Green, Wagner, Glogowski, Skipper, Wishnok, Tannenbaum (bib0070) 1982; 126
Chio, Logroscino, Hardiman, Swingler, Mitchell, Beghi, Traynor (bib0030) 2009; 10
Bordelon, Chesselet, Nelson, Welsh, Erecinska (bib0015) 1997; 69
Trichur, Neelam, Gourie- Devi (bib0215) 1999; 2
Paxinos, Watson (bib0155) 2007
Gil, Rego (bib0060) 2008; 27
Mohana Rao, Sridevi, Someswar, Anandraj (bib0140) 2014; 2
Wang, Qin, Han, Wang (bib0225) 2013
Gage, Kipke, Shain (bib0055) 2012; 65
Sanvicens, Gomez- Vicente, Masip, Messeguer, Cotter (bib0190) 2004; 279
Block, Munkel, Schwarz (bib0010) 1993; 149
Ueyama, Kumamoto, Fujimoto, Murakami, Tsuda (bib0220) 1998; 155
Ray, Hogan, Banik (bib0175) 2003; 42
Svensson, Peters, Koing, Poppe, Levkau, Rothermundt, Arolt, Kogel, Prehn (bib0205) 2002; 22
Fernandes, Landeira-Fernandez, Souza-Santos, Carvalho-Alves, Castilho (bib0050) 2008; 33
Leipnitz, Schumacher, Scussiato, Dalcin, Wannmacher, Wyse, Dutra-Filho, Wajner, Latini (bib0115) 2005; 23
Emerich, Lindner, Winn, Chen, Frydel, Kordower (bib0045) 1996; 16
Ting, Brew, Guillemin (bib0210) 2009; 6
Guillemin, Croitoru- Lamoury, Dormont, Armati, Brew (bib0075) 2003; 41
Moffett, Ross, Arun, Madhavarao, Namboodiri (bib0135) 2007; 81
Heyes, Saito, Crowley, Davis, Demitrack, Der, Dilling, Elia, Kruesi, Lackner (bib0090) 1992; 115
Lawrence (bib0110) 2009; 1
Wendel (bib0235) 1980; Vol 1
Shear, Dong, Haik- Creguer, Bezzett, Albin, Dunbar (bib0200) 1998; 150
Jeon, Kholodilov, Oo, Kim, Tomaselli, Srinivasan, Stefanis, Burke (bib0095) 1999; 73
Pierozan, Fernandes, Dutra, Pandolfo, Ferreira, de Lima, Porciuncula, Wajner, Pessoa-pureur (bib0160) 2014; 281
Rodriguez- Martineza, Camachoa, Maldonadob, Pedraza-Chaverrib, Santamariac, Galvan-Arzatea, Santamariaa (bib0180) 2000; 858
Guillemin, Meininger, Brew (bib0080) 2005; 2
Ohkawa, Ohisi, Yagi (bib0150) 1979; 95
Shaw (bib0195) 2005; 76
Ye, Carson, D’Ercole (bib0240) 1995; 15
Kalonia, Kumar, Nehru, Kumar (bib0105) 2009; 47
Moffett (10.1016/j.neuro.2018.06.015_bib0135) 2007; 81
Jeon (10.1016/j.neuro.2018.06.015_bib0095) 1999; 73
Ohkawa (10.1016/j.neuro.2018.06.015_bib0150) 1979; 95
Goda (10.1016/j.neuro.2018.06.015_bib0065) 1996; 398
Raab (10.1016/j.neuro.2018.06.015_bib0170) 2004; 91
Metz (10.1016/j.neuro.2018.06.015_bib0130) 2009; 28
Guillemin (10.1016/j.neuro.2018.06.015_bib0080) 2005; 2
Cluskey (10.1016/j.neuro.2018.06.015_bib0035) 2001; 54
Shaw (10.1016/j.neuro.2018.06.015_bib0195) 2005; 76
Wang (10.1016/j.neuro.2018.06.015_bib0230) 2013; 33
Kalonia (10.1016/j.neuro.2018.06.015_bib0105) 2009; 47
Guillemin (10.1016/j.neuro.2018.06.015_bib0085) 2005; 2
Bordelon (10.1016/j.neuro.2018.06.015_bib0015) 1997; 69
Paxinos (10.1016/j.neuro.2018.06.015_bib0155) 2007
Guillemin (10.1016/j.neuro.2018.06.015_bib0075) 2003; 41
Ye (10.1016/j.neuro.2018.06.015_bib0240) 1995; 15
Block (10.1016/j.neuro.2018.06.015_bib0010) 1993; 149
Braidy (10.1016/j.neuro.2018.06.015_bib0020) 2009; 16
Ray (10.1016/j.neuro.2018.06.015_bib0175) 2003; 42
Fernandes (10.1016/j.neuro.2018.06.015_bib0050) 2008; 33
Lowry (10.1016/j.neuro.2018.06.015_bib0120) 1951; 193
Shear (10.1016/j.neuro.2018.06.015_bib0200) 1998; 150
Pierozan (10.1016/j.neuro.2018.06.015_bib0160) 2014; 281
Green (10.1016/j.neuro.2018.06.015_bib0070) 1982; 126
Rosenstein (10.1016/j.neuro.2018.06.015_bib0185) 2003; 23
Aebi (10.1016/j.neuro.2018.06.015_bib0005) 1974
Lawrence (10.1016/j.neuro.2018.06.015_bib0110) 2009; 1
Connick (10.1016/j.neuro.2018.06.015_bib0040) 1989; 52
Wendel (10.1016/j.neuro.2018.06.015_bib0235) 1980; Vol 1
Lugo-Huitron (10.1016/j.neuro.2018.06.015_bib0125) 2013
Ting (10.1016/j.neuro.2018.06.015_bib0210) 2009; 6
Gage (10.1016/j.neuro.2018.06.015_bib0055) 2012; 65
Emerich (10.1016/j.neuro.2018.06.015_bib0045) 1996; 16
Gil (10.1016/j.neuro.2018.06.015_bib0060) 2008; 27
Sanvicens (10.1016/j.neuro.2018.06.015_bib0190) 2004; 279
Chio (10.1016/j.neuro.2018.06.015_bib0030) 2009; 10
Mohana Rao (10.1016/j.neuro.2018.06.015_bib0140) 2014; 2
10.1016/j.neuro.2018.06.015_bib0145
Rodriguez- Martineza (10.1016/j.neuro.2018.06.015_bib0180) 2000; 858
Ueyama (10.1016/j.neuro.2018.06.015_bib0220) 1998; 155
Kakkar (10.1016/j.neuro.2018.06.015_bib0100) 1984; 21
Svensson (10.1016/j.neuro.2018.06.015_bib0205) 2002; 22
Leipnitz (10.1016/j.neuro.2018.06.015_bib0115) 2005; 23
Buitrago (10.1016/j.neuro.2018.06.015_bib0025) 2004; 81
Pober (10.1016/j.neuro.2018.06.015_bib0165) 1990; 70
Trichur (10.1016/j.neuro.2018.06.015_bib0215) 1999; 2
Heyes (10.1016/j.neuro.2018.06.015_bib0090) 1992; 115
Wang (10.1016/j.neuro.2018.06.015_bib0225) 2013
References_xml – volume: Vol 1
  year: 1980
  ident: bib0235
  publication-title: Enzymatic Basis of Detoxication
– volume: 54
  start-page: 386
  year: 2001
  end-page: 392
  ident: bib0035
  article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis
  publication-title: Mol. Pathol.
– volume: 23
  start-page: 695
  year: 2005
  end-page: 701
  ident: bib0115
  article-title: Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats
  publication-title: Int. J. Dev. Neurosci.
– volume: 858
  start-page: 436
  year: 2000
  end-page: 439
  ident: bib0180
  article-title: Effect of quinolinic acid on endogenous antioxidants in rat corpus triatum
  publication-title: Brain Res.
– volume: 15
  start-page: 7344
  year: 1995
  end-page: 7356
  ident: bib0240
  article-title: actions of insulin-like growth factor-1 (IGF-1) on brain myelination: studies of IGF-1 and IGF binding protein-1 (IGFBP-1) transgenic mice
  publication-title: J. Neurosci.
– volume: 42
  start-page: 169
  year: 2003
  end-page: 185
  ident: bib0175
  article-title: Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors
  publication-title: Brain Res. Brain Res. Rev.
– volume: 115
  start-page: 1249
  year: 1992
  end-page: 1273
  ident: bib0090
  article-title: Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease
  publication-title: Brain
– volume: 16
  start-page: 5168
  year: 1996
  end-page: 5181
  ident: bib0045
  article-title: Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease
  publication-title: J. Neurosci.
– volume: 70
  start-page: 427
  year: 1990
  end-page: 451
  ident: bib0165
  article-title: Cytokines and endothelial cell biology
  publication-title: Physio. Rev.
– volume: 2
  start-page: 283
  year: 2014
  end-page: 295
  ident: bib0140
  article-title: A novel diagnostic method for Duchenne muscular dystrophy using m-calpain as a quantitative marker: biochemical marker for DMD diagnostics
  publication-title: J. Med. Sci. Clin. Res.
– volume: 398
  start-page: 247
  year: 1996
  end-page: 254
  ident: bib0065
  article-title: Quinolinic acid and active oxygens. Possible contribution of active oxygens during cell death in the brain
  publication-title: Adv. Exp. Med. Biol.
– volume: 126
  start-page: 131
  year: 1982
  end-page: 138
  ident: bib0070
  article-title: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids
  publication-title: Anal. Biochem.
– reference: Nieto-Estevez, V., Defterali, C., Vicario-Abejon, C., 2016. IGF-1: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. 10, 52.
– year: 2013
  ident: bib0225
  article-title: Cathepsin L plays a role in quinolinic acid-induced NF- κB activation and excitotoxicity in rat striatal neurons
  publication-title: PLoS One
– volume: 10
  start-page: 310
  year: 2009
  end-page: 323
  ident: bib0030
  article-title: Prognostic factors in ALS: a critical review
  publication-title: Amyotroph. Lateral. Scler.
– volume: 27
  start-page: 2803
  year: 2008
  end-page: 2820
  ident: bib0060
  article-title: Mechanisms of neurodegeneration in Huntington’s disease
  publication-title: Eur. J. Neurosci.
– volume: 41
  start-page: 371
  year: 2003
  end-page: 381
  ident: bib0075
  article-title: Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes
  publication-title: Glia
– volume: 65
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0055
  article-title: Whole animal perfusion fixation for rodents
  publication-title: J. Vis. Exp.
– volume: 47
  start-page: 880
  year: 2009
  end-page: 892
  ident: bib0105
  article-title: Neuroprotective effect of MK-801 against intra-striatal quinolinic acid induced behavioural, oxidative stress and cellular alterations in rats
  publication-title: Ind. J. Exp. Biol.
– volume: 16
  start-page: 77
  year: 2009
  end-page: 86
  ident: bib0020
  article-title: Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons
  publication-title: Neurotox. Res.
– volume: 149
  start-page: 126
  year: 1993
  end-page: 128
  ident: bib0010
  article-title: Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats
  publication-title: Neurosci. Lett.
– year: 2013
  ident: bib0125
  article-title: Quinolinic acid: an endogenous neurotoxin with multiple targets
  publication-title: Oxid. Med. Cell. Longev.
– volume: 33
  start-page: 1749
  year: 2008
  end-page: 1758
  ident: bib0050
  article-title: Quinolinate-induced rat striatal excitotoxicity impairs endoplasmic reticulum Ca
  publication-title: Neurochem. Res.
– volume: 23
  start-page: 11036
  year: 2003
  end-page: 11044.
  ident: bib0185
  article-title: Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons
  publication-title: J. Neurosci.
– volume: 91
  start-page: 595
  year: 2004
  end-page: 605
  ident: bib0170
  article-title: Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor
  publication-title: Thromb. Haemost.
– volume: 281
  start-page: 2061
  year: 2014
  end-page: 2073
  ident: bib0160
  article-title: Biochemical, histopathological, and behavioral alterations caused by intrastriatal administration of quinolinic acid to young rats
  publication-title: FEBS. J.
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  ident: bib0120
  article-title: Protein measurement with the Folin phenol reagent
  publication-title: J. Biol. Chem.
– volume: 95
  start-page: 351
  year: 1979
  end-page: 358
  ident: bib0150
  article-title: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction
  publication-title: Anal. Biochem.
– volume: 76
  start-page: 1046
  year: 2005
  end-page: 1057
  ident: bib0195
  article-title: Molecular and cellular pathways of neurodegeneration in motor neuron disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– year: 1974
  ident: bib0005
  article-title: Methods of Enzymatic Analysis
– volume: 21
  start-page: 130
  year: 1984
  end-page: 132
  ident: bib0100
  article-title: A modified spectrophotometric assay of superoxide dismutase
  publication-title: Indian J. Biochem. Biophys.
– volume: 81
  start-page: 89
  year: 2007
  end-page: 131
  ident: bib0135
  article-title: -Acetyaspartate in the CNS: from neurodiagnostics to neurobiology
  publication-title: Prog. Neurobiol.
– volume: 155
  start-page: 163
  year: 1998
  end-page: 169
  ident: bib0220
  article-title: Expression of three calpain isoform genes in human skeletal muscles
  publication-title: J. Neurol. Sci.
– volume: 2
  start-page: 166
  year: 2005
  end-page: 176
  ident: bib0080
  article-title: Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis
  publication-title: Neurodegener. Dis.
– volume: 2
  start-page: 29
  year: 1999
  end-page: 33
  ident: bib0215
  article-title: Animal models of amyotrophic lateral sclerosis
  publication-title: Ann. Ind. Acad. Neuro.
– volume: 2
  year: 2005
  ident: bib0085
  article-title: Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex
  publication-title: J. Neuroinflamm.
– volume: 73
  start-page: 322
  year: 1999
  end-page: 333
  ident: bib0095
  article-title: Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra
  publication-title: J. Neurochem.
– volume: 6
  start-page: 36
  year: 2009
  ident: bib0210
  article-title: Effects of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease
  publication-title: J. Neuroinflam.
– volume: 52
  year: 1989
  ident: bib0040
  article-title: Increase in kynurenic acid in Huntington’s disease motor cortex
  publication-title: J. Neurochem.
– volume: 22
  start-page: 1170
  year: 2002
  end-page: 1175
  ident: bib0205
  article-title: Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an anti-excitotoxic, caspase-independent mechanism
  publication-title: J. Cereb. Blood Flow. Metab.
– volume: 33
  start-page: 18880
  year: 2013
  end-page: 18892
  ident: bib0230
  article-title: Distinct riles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR mediated neurodegeneration
  publication-title: J. Neurosci.
– volume: 1
  year: 2009
  ident: bib0110
  article-title: The nuclear factor NF-κB pathway in inflammation
  publication-title: Cold. Spring. Harb. Perspect. Biol.
– volume: 279
  start-page: 39268
  year: 2004
  end-page: 39278
  ident: bib0190
  article-title: Oxidative stress-induced apoptosis in retinal photoreceptor cells is mediated by calpains and caspases and blocked by the oxygen radical scavenger CR-6
  publication-title: J. Biol. Chem.
– volume: 69
  start-page: 1629
  year: 1997
  end-page: 1639
  ident: bib0015
  article-title: Energetic dysfunction in quinolinic acid-lesioned rat striatum
  publication-title: J. Neurochem.
– volume: 28
  start-page: 1
  year: 2009
  end-page: 4
  ident: bib0130
  article-title: The ladder rung walking test: a scoring system and its practical application
  publication-title: JOVE
– volume: 81
  start-page: 211
  year: 2004
  end-page: 216
  ident: bib0025
  article-title: Short and long-term motor skill learning in an accelerated rotarod training paradigm
  publication-title: Neurobiol. Learn. Mem.
– volume: 150
  start-page: 305
  year: 1998
  end-page: 311
  ident: bib0200
  article-title: Chronic administration of quinolinic acid in the rat striatum causes spatial learning deficits in a radial arm water maze task
  publication-title: Exp. Neurol.
– year: 2007
  ident: bib0155
  article-title: The Rat Brain in Stereotaxic Coordinates
– volume: 73
  start-page: 322
  year: 1999
  ident: 10.1016/j.neuro.2018.06.015_bib0095
  article-title: Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1999.0730322.x
– ident: 10.1016/j.neuro.2018.06.015_bib0145
  doi: 10.3389/fnins.2016.00052
– volume: 27
  start-page: 2803
  year: 2008
  ident: 10.1016/j.neuro.2018.06.015_bib0060
  article-title: Mechanisms of neurodegeneration in Huntington’s disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06310.x
– volume: 52
  year: 1989
  ident: 10.1016/j.neuro.2018.06.015_bib0040
  article-title: Increase in kynurenic acid in Huntington’s disease motor cortex
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1989.tb02552.x
– volume: 155
  start-page: 163
  year: 1998
  ident: 10.1016/j.neuro.2018.06.015_bib0220
  article-title: Expression of three calpain isoform genes in human skeletal muscles
  publication-title: J. Neurol. Sci.
  doi: 10.1016/S0022-510X(97)00309-2
– volume: 15
  start-page: 7344
  year: 1995
  ident: 10.1016/j.neuro.2018.06.015_bib0240
  article-title: In vivo actions of insulin-like growth factor-1 (IGF-1) on brain myelination: studies of IGF-1 and IGF binding protein-1 (IGFBP-1) transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-11-07344.1995
– volume: 16
  start-page: 77
  year: 2009
  ident: 10.1016/j.neuro.2018.06.015_bib0020
  article-title: Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons
  publication-title: Neurotox. Res.
  doi: 10.1007/s12640-009-9051-z
– volume: 10
  start-page: 310
  year: 2009
  ident: 10.1016/j.neuro.2018.06.015_bib0030
  article-title: Prognostic factors in ALS: a critical review
  publication-title: Amyotroph. Lateral. Scler.
  doi: 10.3109/17482960802566824
– volume: 23
  start-page: 11036
  year: 2003
  ident: 10.1016/j.neuro.2018.06.015_bib0185
  article-title: Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-35-11036.2003
– year: 1974
  ident: 10.1016/j.neuro.2018.06.015_bib0005
– volume: 81
  start-page: 211
  year: 2004
  ident: 10.1016/j.neuro.2018.06.015_bib0025
  article-title: Short and long-term motor skill learning in an accelerated rotarod training paradigm
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2004.01.001
– year: 2007
  ident: 10.1016/j.neuro.2018.06.015_bib0155
– volume: 2
  start-page: 283
  year: 2014
  ident: 10.1016/j.neuro.2018.06.015_bib0140
  article-title: A novel diagnostic method for Duchenne muscular dystrophy using m-calpain as a quantitative marker: biochemical marker for DMD diagnostics
  publication-title: J. Med. Sci. Clin. Res.
– volume: 1
  year: 2009
  ident: 10.1016/j.neuro.2018.06.015_bib0110
  article-title: The nuclear factor NF-κB pathway in inflammation
  publication-title: Cold. Spring. Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001651
– volume: 281
  start-page: 2061
  year: 2014
  ident: 10.1016/j.neuro.2018.06.015_bib0160
  article-title: Biochemical, histopathological, and behavioral alterations caused by intrastriatal administration of quinolinic acid to young rats
  publication-title: FEBS. J.
  doi: 10.1111/febs.12762
– volume: 22
  start-page: 1170
  year: 2002
  ident: 10.1016/j.neuro.2018.06.015_bib0205
  article-title: Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an anti-excitotoxic, caspase-independent mechanism
  publication-title: J. Cereb. Blood Flow. Metab.
  doi: 10.1097/01.wcb.0000037988.07114.98
– volume: 47
  start-page: 880
  year: 2009
  ident: 10.1016/j.neuro.2018.06.015_bib0105
  article-title: Neuroprotective effect of MK-801 against intra-striatal quinolinic acid induced behavioural, oxidative stress and cellular alterations in rats
  publication-title: Ind. J. Exp. Biol.
– volume: 2
  year: 2005
  ident: 10.1016/j.neuro.2018.06.015_bib0085
  article-title: Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex
  publication-title: J. Neuroinflamm.
  doi: 10.1186/1742-2094-2-16
– year: 2013
  ident: 10.1016/j.neuro.2018.06.015_bib0125
  article-title: Quinolinic acid: an endogenous neurotoxin with multiple targets
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2013/104024
– volume: 42
  start-page: 169
  year: 2003
  ident: 10.1016/j.neuro.2018.06.015_bib0175
  article-title: Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(03)00152-8
– volume: 193
  start-page: 265
  year: 1951
  ident: 10.1016/j.neuro.2018.06.015_bib0120
  article-title: Protein measurement with the Folin phenol reagent
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)52451-6
– volume: 150
  start-page: 305
  year: 1998
  ident: 10.1016/j.neuro.2018.06.015_bib0200
  article-title: Chronic administration of quinolinic acid in the rat striatum causes spatial learning deficits in a radial arm water maze task
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1998.6767
– volume: 23
  start-page: 695
  year: 2005
  ident: 10.1016/j.neuro.2018.06.015_bib0115
  article-title: Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1016/j.ijdevneu.2005.08.004
– volume: 95
  start-page: 351
  year: 1979
  ident: 10.1016/j.neuro.2018.06.015_bib0150
  article-title: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(79)90738-3
– volume: 33
  start-page: 1749
  year: 2008
  ident: 10.1016/j.neuro.2018.06.015_bib0050
  article-title: Quinolinate-induced rat striatal excitotoxicity impairs endoplasmic reticulum Ca2+-ATPase function
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-008-9619-7
– volume: 2
  start-page: 166
  year: 2005
  ident: 10.1016/j.neuro.2018.06.015_bib0080
  article-title: Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis
  publication-title: Neurodegener. Dis.
  doi: 10.1159/000089622
– year: 2013
  ident: 10.1016/j.neuro.2018.06.015_bib0225
  article-title: Cathepsin L plays a role in quinolinic acid-induced NF- κB activation and excitotoxicity in rat striatal neurons
  publication-title: PLoS One
– volume: 126
  start-page: 131
  year: 1982
  ident: 10.1016/j.neuro.2018.06.015_bib0070
  article-title: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(82)90118-X
– volume: 91
  start-page: 595
  year: 2004
  ident: 10.1016/j.neuro.2018.06.015_bib0170
  article-title: Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH03-09-0582
– volume: 2
  start-page: 29
  year: 1999
  ident: 10.1016/j.neuro.2018.06.015_bib0215
  article-title: Animal models of amyotrophic lateral sclerosis
  publication-title: Ann. Ind. Acad. Neuro.
– volume: 33
  start-page: 18880
  year: 2013
  ident: 10.1016/j.neuro.2018.06.015_bib0230
  article-title: Distinct riles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR mediated neurodegeneration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3293-13.2013
– volume: 28
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuro.2018.06.015_bib0130
  article-title: The ladder rung walking test: a scoring system and its practical application
  publication-title: JOVE
– volume: 81
  start-page: 89
  year: 2007
  ident: 10.1016/j.neuro.2018.06.015_bib0135
  article-title: N-Acetyaspartate in the CNS: from neurodiagnostics to neurobiology
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2006.12.003
– volume: 76
  start-page: 1046
  year: 2005
  ident: 10.1016/j.neuro.2018.06.015_bib0195
  article-title: Molecular and cellular pathways of neurodegeneration in motor neuron disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2004.048652
– volume: 21
  start-page: 130
  year: 1984
  ident: 10.1016/j.neuro.2018.06.015_bib0100
  article-title: A modified spectrophotometric assay of superoxide dismutase
  publication-title: Indian J. Biochem. Biophys.
– volume: 16
  start-page: 5168
  year: 1996
  ident: 10.1016/j.neuro.2018.06.015_bib0045
  article-title: Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-16-05168.1996
– volume: 279
  start-page: 39268
  year: 2004
  ident: 10.1016/j.neuro.2018.06.015_bib0190
  article-title: Oxidative stress-induced apoptosis in retinal photoreceptor cells is mediated by calpains and caspases and blocked by the oxygen radical scavenger CR-6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M402202200
– volume: 149
  start-page: 126
  year: 1993
  ident: 10.1016/j.neuro.2018.06.015_bib0010
  article-title: Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(93)90752-7
– volume: Vol 1
  year: 1980
  ident: 10.1016/j.neuro.2018.06.015_bib0235
– volume: 54
  start-page: 386
  year: 2001
  ident: 10.1016/j.neuro.2018.06.015_bib0035
  article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis
  publication-title: Mol. Pathol.
– volume: 115
  start-page: 1249
  year: 1992
  ident: 10.1016/j.neuro.2018.06.015_bib0090
  article-title: Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease
  publication-title: Brain
  doi: 10.1093/brain/115.5.1249
– volume: 65
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuro.2018.06.015_bib0055
  article-title: Whole animal perfusion fixation for rodents
  publication-title: J. Vis. Exp.
– volume: 41
  start-page: 371
  year: 2003
  ident: 10.1016/j.neuro.2018.06.015_bib0075
  article-title: Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes
  publication-title: Glia
  doi: 10.1002/glia.10175
– volume: 6
  start-page: 36
  year: 2009
  ident: 10.1016/j.neuro.2018.06.015_bib0210
  article-title: Effects of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease
  publication-title: J. Neuroinflam.
  doi: 10.1186/1742-2094-6-36
– volume: 69
  start-page: 1629
  year: 1997
  ident: 10.1016/j.neuro.2018.06.015_bib0015
  article-title: Energetic dysfunction in quinolinic acid-lesioned rat striatum
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1997.69041629.x
– volume: 70
  start-page: 427
  year: 1990
  ident: 10.1016/j.neuro.2018.06.015_bib0165
  article-title: Cytokines and endothelial cell biology
  publication-title: Physio. Rev.
  doi: 10.1152/physrev.1990.70.2.427
– volume: 858
  start-page: 436
  year: 2000
  ident: 10.1016/j.neuro.2018.06.015_bib0180
  article-title: Effect of quinolinic acid on endogenous antioxidants in rat corpus triatum
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(99)02474-9
– volume: 398
  start-page: 247
  year: 1996
  ident: 10.1016/j.neuro.2018.06.015_bib0065
  article-title: Quinolinic acid and active oxygens. Possible contribution of active oxygens during cell death in the brain
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4613-0381-7_38
SSID ssj0015769
Score 2.3935206
Snippet •Quinolinic acid is well known endogenous neuroactive metabolite of tryptophan degradation pathway.•Quinolinic acid causes neurotoxicity and impairment in...
Quinolinic acid (QUIN) is a well-known neuroactive metabolite of tryptophan degradation pathway or kynurenine pathway. The QUIN is involved in the development...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Amyotrophic lateral sclerosis
Antioxidants
Apoptosis
Brain
Calpain
Cascades
Caspase
Caspase-3
Catalase
Cerebellum
Cytotoxicity
Degeneration
Excitotoxicity
Gallic acid
Glutathione
Glutathione peroxidase
Growth factors
Inflammation
Insulin-like growth factor I
Interleukin 6
Learning
Lipid peroxidation
Lipids
Memory
Motor ability
Neostriatum
Neurodegeneration
Neurogenesis
Neurotoxicity
Peroxidase
Peroxidation
Prevention
Quinolinic acid
Rats
Spinal cord
Toxicity
Tryptophan
Vascular endothelial growth factor
Wedelolactone
Title Effect of wedelolactone and gallic acid on quinolinic acid-induced neurotoxicity and impaired motor function: significance to sporadic amyotrophic lateral sclerosis
URI https://dx.doi.org/10.1016/j.neuro.2018.06.015
https://www.ncbi.nlm.nih.gov/pubmed/29981346
https://www.proquest.com/docview/2126563465
https://www.proquest.com/docview/2066484505
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKKiEuiPJMaSMjccQk3vU6u71VEVV4tEJApdwsr-0Vi8JuSDYqvfBr-kOZsb2RkKAHbvvyauyZ8XyjeZiQl2VSpZXlJTNV4ZhwQrICnDDmTObyivMqJNGcX8j5pXi3yBZ7ZNbXwmBaZdz7w57ud-v4ZBxXc7yq6_Fn3-udpwsQSrBpWMG-n4C1zwdk__Tt-_nFLpgAkLoILb45wwF98yGf5uXbRmKKV-jjicfj_t1A_QuAekN09oDcjwiSngYiD8ieax6Su-cxRv6I3ISGxLSt6JWzbgm-q8GO21Q3lmKcvTZUm9rStqE_tnXT-tpI_4iBgw6sttST27U_4ZfdtR-I1ZSwUpYCa9s1RXOILD2hmACC6UYoPbRrKbrJ2uIPv1-33bpdfYXrpcZC5yXdAMUw63rzmFyevfkym7N4FgMzaT7t2FS6wk1dUlTcatB5J6tc6InVVhQOMIU2OXBcZFaWmSkk1-B4TkyZm4wbaWBbeUIGDcz1GaHOZZMSUGrmXAHOuS4maaJlakVqDUYxhyTpGaBMbFSO52UsVZ-R9k35ZVDINYV5eTwbkle7QavQp-P2z2XPWfWHuCmwJLcPPOrlQEVt3ygw_wCLUyHh9Yvda9BTDL7oxrVb-AawncgFAM4heRrkZ0coQAKQSyEP_5eq5-Qe3oXctyMy6NZbdwxgqStH5M7rX3wEKjH79OHjKKrGb8IsGWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqVAIuiDeBAkbiyCpx1uusuVUVVUqbXGil3Cyv7RWLwjokG7X9P_xQZmxvJCTogdvKj9XYM_Z8o3mYkA_VpM5ry6rM1NJl3HGRSTDCMmcKV9aM1TGIZr4Qsyv-ZVksD8hJnwuDYZXp7o93eritU8so7eZo3TSjr6HWO8uXIJSg0zCD_ZDjo9YDcnh8dj5b7J0JAKllLPHNMpzQFx8KYV6hbCSGeMU6nvg87t8V1L8AaFBEp4_Iw4Qg6XEk8jE5cO0Tcm-efORPya9YkJj6ml4761ZguxqsuE11ayn62RtDtWks9S39uWtaH3IjQ1MGBjqw2tJAbudv4JfdbZiI2ZSwU5YCa_2GojpEln6iGACC4UYoPbTzFM1kbfGHP259t_Hrb_C90pjovKJboBhW3WyfkavTz5cnsyy9xZCZvJx22VQ46aZuImtmNZx5J-qS67HVlksHmEKbEjjOCyuqwkjBNBieY1OVpmBGGLhWnpNBC2t9SahzxbgClFo4J8E413KcT7TILc-tQS_mkEx6BiiTCpXjexkr1UekfVdhGxRyTWFcHiuG5ON-0jrW6bh7uOg5q_4QNwWa5O6JR70cqHTatwrUP8DinAvofr_vhnOKzhfdOr-DMYDteMkBcA7Jiyg_e0IBEoBccvHqf6l6R-7PLucX6uJscf6aPMCeGAd3RAbdZufeAHDqqrfpYPwGktcZvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+wedelolactone+and+gallic+acid+on+quinolinic+acid-induced+neurotoxicity+and+impaired+motor+function%3A+significance+to+sporadic+amyotrophic+lateral+sclerosis&rft.jtitle=Neurotoxicology+%28Park+Forest+South%29&rft.au=S%2C+Maya&rft.au=T%2C+Prakash&rft.au=Goli%2C+Divakar&rft.date=2018-09-01&rft.issn=1872-9711&rft.eissn=1872-9711&rft.volume=68&rft.spage=1&rft_id=info:doi/10.1016%2Fj.neuro.2018.06.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-813X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-813X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-813X&client=summon