MatChat: A large language model and application service platform for materials science

The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 32; no. 11; pp. 118104 - 199
Main Authors Chen, Zi-Yi, Xie, Fan-Kai, Wan, Meng, Yuan, Yang, Liu, Miao, Wang, Zong-Guo, Meng, Sheng, Wang, Yan-Gang
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.11.2023
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
2058-3834
DOI10.1088/1674-1056/ad04cb

Cover

Abstract The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence (GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data. This specialized AI model, named MatChat, focuses on predicting inorganic material synthesis pathways. MatChat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although MatChat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. MatChat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.
AbstractList The prediction of chemical synthesis pathways plays a pivotal role in materials science research.Challenges,such as the complexity of synthesis pathways and the lack of comprehensive datasets,currently hinder our ability to predict these chemical processes accurately.However,recent advancements in generative artificial intelligence(GAI),including automated text generation and question-answering systems,coupled with fine-tuning techniques,have facilitated the de-ployment of large-scale AI models tailored to specific domains.In this study,we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model,named MatChat,focuses on predicting inorganic material synthesis pathways.MatChat ex-hibits remarkable proficiency in generating and reasoning with knowledge in materials science.Although MatChat requires further refinement to meet the diverse material design needs,this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science.MatChat is now accessible online and open for use,with both the model and its application framework available as open source.This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.
The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence (GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data. This specialized AI model, named MatChat, focuses on predicting inorganic material synthesis pathways. MatChat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although MatChat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. MatChat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.
Author Wang, Yan-Gang
Wan, Meng
Liu, Miao
Wang, Zong-Guo
Meng, Sheng
Yuan, Yang
Chen, Zi-Yi
Xie, Fan-Kai
Author_xml – sequence: 1
  givenname: Zi-Yi
  surname: Chen
  fullname: Chen, Zi-Yi
  organization: University of Chinese Academy of Sciences , China
– sequence: 2
  givenname: Fan-Kai
  surname: Xie
  fullname: Xie, Fan-Kai
  organization: School of Physical Sciences, University of Chinese Academy of Sciences , China
– sequence: 3
  givenname: Meng
  surname: Wan
  fullname: Wan, Meng
  organization: Computer Network Information Center, Chinese Academy of Sciences , China
– sequence: 4
  givenname: Yang
  surname: Yuan
  fullname: Yuan, Yang
  organization: University of Chinese Academy of Sciences , China
– sequence: 5
  givenname: Miao
  surname: Liu
  fullname: Liu, Miao
  organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , China
– sequence: 6
  givenname: Zong-Guo
  surname: Wang
  fullname: Wang, Zong-Guo
  organization: University of Chinese Academy of Sciences , China
– sequence: 7
  givenname: Sheng
  surname: Meng
  fullname: Meng, Sheng
  organization: Songshan Lake Materials Laboratory , China
– sequence: 8
  givenname: Yan-Gang
  surname: Wang
  fullname: Wang, Yan-Gang
  organization: University of Chinese Academy of Sciences , China
BookMark eNqNUE1LxDAQDaLg-nH3mJserJtJ-pH1JotfsOJFvYZpmq6RbFrSrov-erNWFERFCJMZ5r3HvLdDNn3jDSEHwE6ASTmGvEgTYFk-xoqlutwgI84ymQgp0k0y-lxvk52ue2IsB8bFiDzcYD99xP6UnlGHYW5i9fMlxmbRVMZR9BXFtnVWY28bTzsTnq02tHXY101Y0FjoAnsTLLqOdtoar80e2arjaPY__l1yf3F-N71KZreX19OzWaKFLPqkyEqTZWCYBsCSAxTVRJt6wnVZllBrJng6QTExvIACMilRSlHkCEUuMWdG7BIYdJe-xZcVOqfaYBcYXhQwtQ5GrZ2rtXM1BBM5hwNnhb6OZtVTsww-Xqle5yunDI_BQEyHRyQbkDo0XRdM_R_x_BtF2_49uT6gdX8Rjwaibdqvi3RbKsEVQHwSWKraqo7Q4x-gvyq_AZ9aosA
CitedBy_id crossref_primary_10_1088_1674_1056_ad3c30
crossref_primary_10_1038_s41524_025_01538_0
crossref_primary_10_1039_D4CS00077C
crossref_primary_10_1016_j_rcim_2024_102883
crossref_primary_10_1039_D4DD00319E
crossref_primary_10_1021_jacs_4c05840
crossref_primary_10_37155_2811_0730_0302_13
crossref_primary_10_1007_s13042_024_02473_0
Cites_doi 10.1088/0256-307X/38/7/070302
10.1016/j.jnoncrysol.2016.02.022
10.1360/SSC-2022-0167
10.1063/1.4812323
10.1088/0256-307X/40/5/057401
10.1038/s41597-022-01317-2
10.1088/0256-307X/39/4/047402
10.1007/s40843-022-2134-3
10.1088/0256-307X/38/5/050701
10.1016/j.commatsci.2022.111699
10.1088/0256-307X/39/10/100701
10.1016/S0167-577X(02)01144-8
10.1038/s41598-022-19426-8
10.1038/s41524-022-00784-w
10.1007/s11837-013-0755-4
10.1088/0256-307X/40/11/117101
ContentType Journal Article
Copyright 2023 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
ADTOC
UNPAY
DOI 10.1088/1674-1056/ad04cb
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 199
ExternalDocumentID 10.1088/1674-1056/ad04cb
zgwl_e202311022
10_1088_1674_1056_ad04cb
cpb_32_11_118104
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
AEINN
CITATION
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ADTOC
UNPAY
ID FETCH-LOGICAL-c387t-75be551e0c11ab2117d9cef92cbbb1fc03249a39e27171588a88376a1768a60e3
IEDL.DBID IOP
ISSN 1674-1056
2058-3834
IngestDate Sun Sep 07 10:52:30 EDT 2025
Thu May 29 04:07:18 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Wed Oct 01 02:56:36 EDT 2025
Sun Aug 18 14:40:27 EDT 2024
Tue Aug 20 22:16:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords MatChat
materials science
generative artificial intelligence
Language English
License This article is available under the terms of the IOP-Standard License.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-75be551e0c11ab2117d9cef92cbbb1fc03249a39e27171588a88376a1768a60e3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1674-1056/ad04cb
PageCount 6
ParticipantIDs unpaywall_primary_10_1088_1674_1056_ad04cb
iop_journals_10_1088_1674_1056_ad04cb
crossref_primary_10_1088_1674_1056_ad04cb
crossref_citationtrail_10_1088_1674_1056_ad04cb
wanfang_journals_zgwl_e202311022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2023
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Liang (cpb_32_11_118104bib25) 2023; 66
Guo (cpb_32_11_118104bib27) 2022; 12
Zhang (cpb_32_11_118104bib10) 2023
Xie (cpb_32_11_118104bib16) 2023; 40
Zeng (cpb_32_11_118104bib3) 2022
Jia (cpb_32_11_118104bib21) 2022; 9
Gupta (cpb_32_11_118104bib28) 2022; 8
Saal (cpb_32_11_118104bib23) 2013; 65
Wang (cpb_32_11_118104bib14) 2022
Touvron (cpb_32_11_118104bib7) 2023
Lucacel (cpb_32_11_118104bib32) 2016; 439
Liu (cpb_32_11_118104bib26) 2022; 214
cpb_32_11_118104bib1
Sun (cpb_32_11_118104bib4) 2019
Ren (cpb_32_11_118104bib20) 2021; 38
Cheng (cpb_32_11_118104bib18) 2021; 38
Yang (cpb_32_11_118104bib9) 2022
Wang (cpb_32_11_118104bib30) 2022; 9
Jiang (cpb_32_11_118104bib17) 2022; 39
Hu Edward (cpb_32_11_118104bib31) 2021
Bai (cpb_32_11_118104bib19) 2022; 39
Annapurna (cpb_32_11_118104bib33) 2003; 57
Dan (cpb_32_11_118104bib13) 2023
Jain (cpb_32_11_118104bib24) 2013; 1
Xie (cpb_32_11_118104bib15) 2023; 40
Zhang (cpb_32_11_118104bib12) 2023
etc. (cpb_32_11_118104bib6) 2021
Du (cpb_32_11_118104bib2) 2022
Xiong (cpb_32_11_118104bib11) 2023
Liu (cpb_32_11_118104bib22) 2023; 53
Touvron (cpb_32_11_118104bib8) 2023
Sun (cpb_32_11_118104bib5) 2020
Devlin (cpb_32_11_118104bib29) 2019
References_xml – volume: 9
  year: 2022
  ident: cpb_32_11_118104bib21
  publication-title: Adv. Sci.
– year: 2021
  ident: cpb_32_11_118104bib6
– volume: 38
  year: 2021
  ident: cpb_32_11_118104bib18
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/7/070302
– year: 2023
  ident: cpb_32_11_118104bib10
– volume: 439
  start-page: 67
  year: 2016
  ident: cpb_32_11_118104bib32
  publication-title: J. Non-Crystalline Solids
  doi: 10.1016/j.jnoncrysol.2016.02.022
– volume: 53
  start-page: 19
  year: 2023
  ident: cpb_32_11_118104bib22
  publication-title: Scientia Sinica Chimica
  doi: 10.1360/SSC-2022-0167
– start-page: 4171
  year: 2019
  ident: cpb_32_11_118104bib29
– volume: 1
  year: 2013
  ident: cpb_32_11_118104bib24
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– year: 2022
  ident: cpb_32_11_118104bib9
– volume: 40
  year: 2023
  ident: cpb_32_11_118104bib15
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/40/5/057401
– volume: 9
  start-page: 231
  year: 2022
  ident: cpb_32_11_118104bib30
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01317-2
– volume: 39
  year: 2022
  ident: cpb_32_11_118104bib17
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/39/4/047402
– volume: 66
  start-page: 343
  year: 2023
  ident: cpb_32_11_118104bib25
  publication-title: Sci. China. Mater.
  doi: 10.1007/s40843-022-2134-3
– year: 2023
  ident: cpb_32_11_118104bib11
– year: 2021
  ident: cpb_32_11_118104bib31
– year: 2023
  ident: cpb_32_11_118104bib7
– start-page: 320
  year: 2022
  ident: cpb_32_11_118104bib2
– year: 2023
  ident: cpb_32_11_118104bib8
– year: 2023
  ident: cpb_32_11_118104bib13
– year: 2023
  ident: cpb_32_11_118104bib12
– volume: 38
  year: 2021
  ident: cpb_32_11_118104bib20
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/5/050701
– year: 2022
  ident: cpb_32_11_118104bib14
– volume: 214
  year: 2022
  ident: cpb_32_11_118104bib26
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/j.commatsci.2022.111699
– year: 2022
  ident: cpb_32_11_118104bib3
– volume: 39
  year: 2022
  ident: cpb_32_11_118104bib19
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/39/10/100701
– volume: 57
  start-page: 2095
  year: 2003
  ident: cpb_32_11_118104bib33
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(02)01144-8
– year: 2019
  ident: cpb_32_11_118104bib4
– volume: 12
  year: 2022
  ident: cpb_32_11_118104bib27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19426-8
– volume: 8
  start-page: 102
  year: 2022
  ident: cpb_32_11_118104bib28
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00784-w
– start-page: 8968
  year: 2020
  ident: cpb_32_11_118104bib5
– volume: 65
  start-page: 1501
  year: 2013
  ident: cpb_32_11_118104bib23
  publication-title: JOM
  doi: 10.1007/s11837-013-0755-4
– volume: 40
  year: 2023
  ident: cpb_32_11_118104bib16
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/40/11/117101
– ident: cpb_32_11_118104bib1
SSID ssj0061023
Score 2.45561
Snippet The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and...
The prediction of chemical synthesis pathways plays a pivotal role in materials science research.Challenges,such as the complexity of synthesis pathways and...
SourceID unpaywall
wanfang
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118104
SubjectTerms generative artificial intelligence
MatChat
materials science
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC50ZFk96D4Uxxct7B52oTXvh7dBFFlQPDiLe2q6ujsqhhicDKK_3q6kR51FRC85VVdIdSX9fakXwA-dR4klViE3KaacIoEcM4y4xkAHiNqXIRUnH58kR8Poz3l87v53UC3MVPzekjNKkuc0HX5Xai9SOAtzSWxRdw_mhieng3_EpyYiNEfOizNuSVfkIpKvqZg6gWavbuoF-Dyuanl_J8uyrd2pClldvDhmDpe6nkejtjshZZdc74wb3FEP__VufM8TfIFFhzXZoHOOrzBjqm_wqc35VKPv8PdYNvuXstljA1ZSQjib_Lxk7XwcJivNXgS42aj7rrC6lA1hXWYvzCLezomZO0yXYXh4cLZ_xN2YBa7CLG14GqOxuMl4yvclWkKY6lyZIg8UIvqF8izmymWYm8BSPz_OMmn3Nk2kb5mKTDwTrkCvuqnMKjC7JpVxkKcBmigzYY5SB5EuSCGGse7D7sT0Qrke5DQKoxRtLDzLBFlLkLVEZ60-_HpaUXf9N96Q_Wl3U7iXcPSG3PaUnKpRhIHlQoKqcL1I1Lrow-8nn3jHjZlzmmelDxd3pTA0nN4nUr32EX3rME8Lu5LHDeg1t2OzabFPg1vO7R8BQ8b4vQ
  priority: 102
  providerName: Unpaywall
Title MatChat: A large language model and application service platform for materials science
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad04cb
https://d.wanfangdata.com.cn/periodical/zgwl-e202311022
https://doi.org/10.1088/1674-1056/ad04cb
UnpaywallVersion publishedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 2058-3834
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD70gqgP3sX1UkbQB4XsJplcJvq0FEsRWvvgSgVhmDMzqWBIg5ul2F_vnMxkbUVK8SXk4cwlZ87MfCfnBvDKVFnhFCse2RLLiCyBEQrMIoOpSRFNojgFJx8cFvuL7ONxfrwB79exMKddOPqn7tUnCvYsDA5xYkZ-8xEVjJ8pE2caN2GbCweMKXrv09F4DBeUk4C0rZE62Cj_1cOlO2nTjXsbbq7aTv06U00zRPO0tWpPLlw8e3fh2zhl72_yY7rqcarP_8rm-J_fdA_uBEDK5p70PmzY9gHcGBxD9fIhfDlQ_e531b9jc9aQ1zgb_3CyoYgOU61hF6zgbOkPH9Y1qidAzNyDOVjsJZ2FKT6Cxd6Hz7v7UajFEGkuyj4qc7QOXNlYJ4lCpzWWptK2rlKNiEmtYwfMKsUrmzr9MMmFUE4AykIlTp1RRWz5Y9hqT1v7BJhrU6o8rcoUbSYsr1CZNDM1dYg8NxOYjashdUhUTvUyGjkYzIWQxC1J3JKeWxN4s27R-SQdV9C-dosgw05dXkH38hKd7lDy1ClMkkJ140x2pp7A27WYXGNgFuToT6fnJ2eNtFTBPiHN--k15_YMblEbHxL5HLb6nyv7wmGjHneGPbAD24vDo_nX303jBuQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NTxUxcCIYUA8KqPGpYEnkIMm-t98f3gjygvJ5AMOtdtouJGyWjW9fiPx6O9sugiGEhMtmDzNtd2bazux8AXxWRZwawyrydIaZR55AD3OMPYWhChFVICJKTt7bT7eP4x8nyYnrc9rlwlw07ugfmldbKNiS0AXE5SOKm_eoYfxIKD-WOGpUOQNPuzollMF3cNgfxSnVJSCLq8dwfsq7Rrl1L82YuV_As2ndiD-Xoqq6jJ66FPXpjctn_Ap-9cu2MSfnw2mLQ3n1X0XHR3zXArx0iinbsOCL8ETXSzDXBYjKyWv4uSfazTPRfmUbrKLocdb_6WRdMx0masVueMPZxB5CrKlES4oxMw9m1GMr8cwt8w0cj7eONrc915PBk1GetV6WoDZKlvZlEAg01mOmCqnLIpSIGJTSNwpaIaJCh8ZODJI8F0YQslQExqwRqa-jtzBbX9T6HTCDk4kkLLIQdZzrqEChwliVNCBGiRrAqOcIl65gOfXNqHjnOM9zThTjRDFuKTaAL9cYjS3WcQ_smmEEdzt2cg_c6i042SCPQmM4cUrZ9WNuuDSA9WtRecDEzMnSv0GvTi8rrqmTfUAW-PsHru0TzB9-G_Pd7_s7H-A5odssyY8w2_6e6mWjLrW40m2Jv_dRCpU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC50ZFk96D4Uxxct7B52oTXvh7dBFFlQPDiLe2q6ujsqhhicDKK_3q6kR51FRC85VVdIdSX9fakXwA-dR4klViE3KaacIoEcM4y4xkAHiNqXIRUnH58kR8Poz3l87v53UC3MVPzekjNKkuc0HX5Xai9SOAtzSWxRdw_mhieng3_EpyYiNEfOizNuSVfkIpKvqZg6gWavbuoF-Dyuanl_J8uyrd2pClldvDhmDpe6nkejtjshZZdc74wb3FEP__VufM8TfIFFhzXZoHOOrzBjqm_wqc35VKPv8PdYNvuXstljA1ZSQjib_Lxk7XwcJivNXgS42aj7rrC6lA1hXWYvzCLezomZO0yXYXh4cLZ_xN2YBa7CLG14GqOxuMl4yvclWkKY6lyZIg8UIvqF8izmymWYm8BSPz_OMmn3Nk2kb5mKTDwTrkCvuqnMKjC7JpVxkKcBmigzYY5SB5EuSCGGse7D7sT0Qrke5DQKoxRtLDzLBFlLkLVEZ60-_HpaUXf9N96Q_Wl3U7iXcPSG3PaUnKpRhIHlQoKqcL1I1Lrow-8nn3jHjZlzmmelDxd3pTA0nN4nUr32EX3rME8Lu5LHDeg1t2OzabFPg1vO7R8BQ8b4vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MatChat%3A+A+large+language+model+and+application+service+platform+for+materials+science&rft.jtitle=Chinese+physics+B&rft.au=Chen+%E9%99%88%2C+Zi-Yi+%E5%AD%90%E9%80%B8&rft.au=Xie+%E8%B0%A2%2C+Fan-Kai+%E5%B8%86%E6%81%BA&rft.au=Wan+%E4%B8%87%2C+Meng+%E8%90%8C&rft.au=Yuan+%E8%A2%81%2C+Yang+%E6%89%AC&rft.date=2023-11-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=32&rft.issue=11&rft.spage=118104&rft_id=info:doi/10.1088%2F1674-1056%2Fad04cb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad04cb
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg