MatChat: A large language model and application service platform for materials science
The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements...
Saved in:
| Published in | Chinese physics B Vol. 32; no. 11; pp. 118104 - 199 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chinese Physical Society and IOP Publishing Ltd
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 2058-3834 |
| DOI | 10.1088/1674-1056/ad04cb |
Cover
| Abstract | The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence (GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data. This specialized AI model, named MatChat, focuses on predicting inorganic material synthesis pathways. MatChat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although MatChat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. MatChat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science. |
|---|---|
| AbstractList | The prediction of chemical synthesis pathways plays a pivotal role in materials science research.Challenges,such as the complexity of synthesis pathways and the lack of comprehensive datasets,currently hinder our ability to predict these chemical processes accurately.However,recent advancements in generative artificial intelligence(GAI),including automated text generation and question-answering systems,coupled with fine-tuning techniques,have facilitated the de-ployment of large-scale AI models tailored to specific domains.In this study,we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model,named MatChat,focuses on predicting inorganic material synthesis pathways.MatChat ex-hibits remarkable proficiency in generating and reasoning with knowledge in materials science.Although MatChat requires further refinement to meet the diverse material design needs,this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science.MatChat is now accessible online and open for use,with both the model and its application framework available as open source.This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science. The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence (GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data. This specialized AI model, named MatChat, focuses on predicting inorganic material synthesis pathways. MatChat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although MatChat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. MatChat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science. |
| Author | Wang, Yan-Gang Wan, Meng Liu, Miao Wang, Zong-Guo Meng, Sheng Yuan, Yang Chen, Zi-Yi Xie, Fan-Kai |
| Author_xml | – sequence: 1 givenname: Zi-Yi surname: Chen fullname: Chen, Zi-Yi organization: University of Chinese Academy of Sciences , China – sequence: 2 givenname: Fan-Kai surname: Xie fullname: Xie, Fan-Kai organization: School of Physical Sciences, University of Chinese Academy of Sciences , China – sequence: 3 givenname: Meng surname: Wan fullname: Wan, Meng organization: Computer Network Information Center, Chinese Academy of Sciences , China – sequence: 4 givenname: Yang surname: Yuan fullname: Yuan, Yang organization: University of Chinese Academy of Sciences , China – sequence: 5 givenname: Miao surname: Liu fullname: Liu, Miao organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , China – sequence: 6 givenname: Zong-Guo surname: Wang fullname: Wang, Zong-Guo organization: University of Chinese Academy of Sciences , China – sequence: 7 givenname: Sheng surname: Meng fullname: Meng, Sheng organization: Songshan Lake Materials Laboratory , China – sequence: 8 givenname: Yan-Gang surname: Wang fullname: Wang, Yan-Gang organization: University of Chinese Academy of Sciences , China |
| BookMark | eNqNUE1LxDAQDaLg-nH3mJserJtJ-pH1JotfsOJFvYZpmq6RbFrSrov-erNWFERFCJMZ5r3HvLdDNn3jDSEHwE6ASTmGvEgTYFk-xoqlutwgI84ymQgp0k0y-lxvk52ue2IsB8bFiDzcYD99xP6UnlGHYW5i9fMlxmbRVMZR9BXFtnVWY28bTzsTnq02tHXY101Y0FjoAnsTLLqOdtoar80e2arjaPY__l1yf3F-N71KZreX19OzWaKFLPqkyEqTZWCYBsCSAxTVRJt6wnVZllBrJng6QTExvIACMilRSlHkCEUuMWdG7BIYdJe-xZcVOqfaYBcYXhQwtQ5GrZ2rtXM1BBM5hwNnhb6OZtVTsww-Xqle5yunDI_BQEyHRyQbkDo0XRdM_R_x_BtF2_49uT6gdX8Rjwaibdqvi3RbKsEVQHwSWKraqo7Q4x-gvyq_AZ9aosA |
| CitedBy_id | crossref_primary_10_1088_1674_1056_ad3c30 crossref_primary_10_1038_s41524_025_01538_0 crossref_primary_10_1039_D4CS00077C crossref_primary_10_1016_j_rcim_2024_102883 crossref_primary_10_1039_D4DD00319E crossref_primary_10_1021_jacs_4c05840 crossref_primary_10_37155_2811_0730_0302_13 crossref_primary_10_1007_s13042_024_02473_0 |
| Cites_doi | 10.1088/0256-307X/38/7/070302 10.1016/j.jnoncrysol.2016.02.022 10.1360/SSC-2022-0167 10.1063/1.4812323 10.1088/0256-307X/40/5/057401 10.1038/s41597-022-01317-2 10.1088/0256-307X/39/4/047402 10.1007/s40843-022-2134-3 10.1088/0256-307X/38/5/050701 10.1016/j.commatsci.2022.111699 10.1088/0256-307X/39/10/100701 10.1016/S0167-577X(02)01144-8 10.1038/s41598-022-19426-8 10.1038/s41524-022-00784-w 10.1007/s11837-013-0755-4 10.1088/0256-307X/40/11/117101 |
| ContentType | Journal Article |
| Copyright | 2023 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2023 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ ADTOC UNPAY |
| DOI | 10.1088/1674-1056/ad04cb |
| DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2058-3834 |
| EndPage | 199 |
| ExternalDocumentID | 10.1088/1674-1056/ad04cb zgwl_e202311022 10_1088_1674_1056_ad04cb cpb_32_11_118104 |
| GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX AEINN CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c387t-75be551e0c11ab2117d9cef92cbbb1fc03249a39e27171588a88376a1768a60e3 |
| IEDL.DBID | IOP |
| ISSN | 1674-1056 2058-3834 |
| IngestDate | Sun Sep 07 10:52:30 EDT 2025 Thu May 29 04:07:18 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Wed Oct 01 02:56:36 EDT 2025 Sun Aug 18 14:40:27 EDT 2024 Tue Aug 20 22:16:39 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | MatChat materials science generative artificial intelligence |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-75be551e0c11ab2117d9cef92cbbb1fc03249a39e27171588a88376a1768a60e3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1674-1056/ad04cb |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1088_1674_1056_ad04cb iop_journals_10_1088_1674_1056_ad04cb crossref_primary_10_1088_1674_1056_ad04cb crossref_citationtrail_10_1088_1674_1056_ad04cb wanfang_journals_zgwl_e202311022 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chin. Phys. B |
| PublicationTitle_FL | Chinese Physics B |
| PublicationYear | 2023 |
| Publisher | Chinese Physical Society and IOP Publishing Ltd |
| Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
| References | Liang (cpb_32_11_118104bib25) 2023; 66 Guo (cpb_32_11_118104bib27) 2022; 12 Zhang (cpb_32_11_118104bib10) 2023 Xie (cpb_32_11_118104bib16) 2023; 40 Zeng (cpb_32_11_118104bib3) 2022 Jia (cpb_32_11_118104bib21) 2022; 9 Gupta (cpb_32_11_118104bib28) 2022; 8 Saal (cpb_32_11_118104bib23) 2013; 65 Wang (cpb_32_11_118104bib14) 2022 Touvron (cpb_32_11_118104bib7) 2023 Lucacel (cpb_32_11_118104bib32) 2016; 439 Liu (cpb_32_11_118104bib26) 2022; 214 cpb_32_11_118104bib1 Sun (cpb_32_11_118104bib4) 2019 Ren (cpb_32_11_118104bib20) 2021; 38 Cheng (cpb_32_11_118104bib18) 2021; 38 Yang (cpb_32_11_118104bib9) 2022 Wang (cpb_32_11_118104bib30) 2022; 9 Jiang (cpb_32_11_118104bib17) 2022; 39 Hu Edward (cpb_32_11_118104bib31) 2021 Bai (cpb_32_11_118104bib19) 2022; 39 Annapurna (cpb_32_11_118104bib33) 2003; 57 Dan (cpb_32_11_118104bib13) 2023 Jain (cpb_32_11_118104bib24) 2013; 1 Xie (cpb_32_11_118104bib15) 2023; 40 Zhang (cpb_32_11_118104bib12) 2023 etc. (cpb_32_11_118104bib6) 2021 Du (cpb_32_11_118104bib2) 2022 Xiong (cpb_32_11_118104bib11) 2023 Liu (cpb_32_11_118104bib22) 2023; 53 Touvron (cpb_32_11_118104bib8) 2023 Sun (cpb_32_11_118104bib5) 2020 Devlin (cpb_32_11_118104bib29) 2019 |
| References_xml | – volume: 9 year: 2022 ident: cpb_32_11_118104bib21 publication-title: Adv. Sci. – year: 2021 ident: cpb_32_11_118104bib6 – volume: 38 year: 2021 ident: cpb_32_11_118104bib18 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/7/070302 – year: 2023 ident: cpb_32_11_118104bib10 – volume: 439 start-page: 67 year: 2016 ident: cpb_32_11_118104bib32 publication-title: J. Non-Crystalline Solids doi: 10.1016/j.jnoncrysol.2016.02.022 – volume: 53 start-page: 19 year: 2023 ident: cpb_32_11_118104bib22 publication-title: Scientia Sinica Chimica doi: 10.1360/SSC-2022-0167 – start-page: 4171 year: 2019 ident: cpb_32_11_118104bib29 – volume: 1 year: 2013 ident: cpb_32_11_118104bib24 publication-title: APL Mater. doi: 10.1063/1.4812323 – year: 2022 ident: cpb_32_11_118104bib9 – volume: 40 year: 2023 ident: cpb_32_11_118104bib15 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/40/5/057401 – volume: 9 start-page: 231 year: 2022 ident: cpb_32_11_118104bib30 publication-title: Sci. Data doi: 10.1038/s41597-022-01317-2 – volume: 39 year: 2022 ident: cpb_32_11_118104bib17 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/39/4/047402 – volume: 66 start-page: 343 year: 2023 ident: cpb_32_11_118104bib25 publication-title: Sci. China. Mater. doi: 10.1007/s40843-022-2134-3 – year: 2023 ident: cpb_32_11_118104bib11 – year: 2021 ident: cpb_32_11_118104bib31 – year: 2023 ident: cpb_32_11_118104bib7 – start-page: 320 year: 2022 ident: cpb_32_11_118104bib2 – year: 2023 ident: cpb_32_11_118104bib8 – year: 2023 ident: cpb_32_11_118104bib13 – year: 2023 ident: cpb_32_11_118104bib12 – volume: 38 year: 2021 ident: cpb_32_11_118104bib20 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/5/050701 – year: 2022 ident: cpb_32_11_118104bib14 – volume: 214 year: 2022 ident: cpb_32_11_118104bib26 publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2022.111699 – year: 2022 ident: cpb_32_11_118104bib3 – volume: 39 year: 2022 ident: cpb_32_11_118104bib19 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/39/10/100701 – volume: 57 start-page: 2095 year: 2003 ident: cpb_32_11_118104bib33 publication-title: Mater. Lett. doi: 10.1016/S0167-577X(02)01144-8 – year: 2019 ident: cpb_32_11_118104bib4 – volume: 12 year: 2022 ident: cpb_32_11_118104bib27 publication-title: Sci. Rep. doi: 10.1038/s41598-022-19426-8 – volume: 8 start-page: 102 year: 2022 ident: cpb_32_11_118104bib28 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00784-w – start-page: 8968 year: 2020 ident: cpb_32_11_118104bib5 – volume: 65 start-page: 1501 year: 2013 ident: cpb_32_11_118104bib23 publication-title: JOM doi: 10.1007/s11837-013-0755-4 – volume: 40 year: 2023 ident: cpb_32_11_118104bib16 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/40/11/117101 – ident: cpb_32_11_118104bib1 |
| SSID | ssj0061023 |
| Score | 2.45561 |
| Snippet | The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and... The prediction of chemical synthesis pathways plays a pivotal role in materials science research.Challenges,such as the complexity of synthesis pathways and... |
| SourceID | unpaywall wanfang crossref iop |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118104 |
| SubjectTerms | generative artificial intelligence MatChat materials science |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC50ZFk96D4Uxxct7B52oTXvh7dBFFlQPDiLe2q6ujsqhhicDKK_3q6kR51FRC85VVdIdSX9fakXwA-dR4klViE3KaacIoEcM4y4xkAHiNqXIRUnH58kR8Poz3l87v53UC3MVPzekjNKkuc0HX5Xai9SOAtzSWxRdw_mhieng3_EpyYiNEfOizNuSVfkIpKvqZg6gWavbuoF-Dyuanl_J8uyrd2pClldvDhmDpe6nkejtjshZZdc74wb3FEP__VufM8TfIFFhzXZoHOOrzBjqm_wqc35VKPv8PdYNvuXstljA1ZSQjib_Lxk7XwcJivNXgS42aj7rrC6lA1hXWYvzCLezomZO0yXYXh4cLZ_xN2YBa7CLG14GqOxuMl4yvclWkKY6lyZIg8UIvqF8izmymWYm8BSPz_OMmn3Nk2kb5mKTDwTrkCvuqnMKjC7JpVxkKcBmigzYY5SB5EuSCGGse7D7sT0Qrke5DQKoxRtLDzLBFlLkLVEZ60-_HpaUXf9N96Q_Wl3U7iXcPSG3PaUnKpRhIHlQoKqcL1I1Lrow-8nn3jHjZlzmmelDxd3pTA0nN4nUr32EX3rME8Lu5LHDeg1t2OzabFPg1vO7R8BQ8b4vQ priority: 102 providerName: Unpaywall |
| Title | MatChat: A large language model and application service platform for materials science |
| URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad04cb https://d.wanfangdata.com.cn/periodical/zgwl-e202311022 https://doi.org/10.1088/1674-1056/ad04cb |
| UnpaywallVersion | publishedVersion |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 2058-3834 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD70gqgP3sX1UkbQB4XsJplcJvq0FEsRWvvgSgVhmDMzqWBIg5ul2F_vnMxkbUVK8SXk4cwlZ87MfCfnBvDKVFnhFCse2RLLiCyBEQrMIoOpSRFNojgFJx8cFvuL7ONxfrwB79exMKddOPqn7tUnCvYsDA5xYkZ-8xEVjJ8pE2caN2GbCweMKXrv09F4DBeUk4C0rZE62Cj_1cOlO2nTjXsbbq7aTv06U00zRPO0tWpPLlw8e3fh2zhl72_yY7rqcarP_8rm-J_fdA_uBEDK5p70PmzY9gHcGBxD9fIhfDlQ_e531b9jc9aQ1zgb_3CyoYgOU61hF6zgbOkPH9Y1qidAzNyDOVjsJZ2FKT6Cxd6Hz7v7UajFEGkuyj4qc7QOXNlYJ4lCpzWWptK2rlKNiEmtYwfMKsUrmzr9MMmFUE4AykIlTp1RRWz5Y9hqT1v7BJhrU6o8rcoUbSYsr1CZNDM1dYg8NxOYjashdUhUTvUyGjkYzIWQxC1J3JKeWxN4s27R-SQdV9C-dosgw05dXkH38hKd7lDy1ClMkkJ140x2pp7A27WYXGNgFuToT6fnJ2eNtFTBPiHN--k15_YMblEbHxL5HLb6nyv7wmGjHneGPbAD24vDo_nX303jBuQ |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NTxUxcCIYUA8KqPGpYEnkIMm-t98f3gjygvJ5AMOtdtouJGyWjW9fiPx6O9sugiGEhMtmDzNtd2bazux8AXxWRZwawyrydIaZR55AD3OMPYWhChFVICJKTt7bT7eP4x8nyYnrc9rlwlw07ugfmldbKNiS0AXE5SOKm_eoYfxIKD-WOGpUOQNPuzollMF3cNgfxSnVJSCLq8dwfsq7Rrl1L82YuV_As2ndiD-Xoqq6jJ66FPXpjctn_Ap-9cu2MSfnw2mLQ3n1X0XHR3zXArx0iinbsOCL8ETXSzDXBYjKyWv4uSfazTPRfmUbrKLocdb_6WRdMx0masVueMPZxB5CrKlES4oxMw9m1GMr8cwt8w0cj7eONrc915PBk1GetV6WoDZKlvZlEAg01mOmCqnLIpSIGJTSNwpaIaJCh8ZODJI8F0YQslQExqwRqa-jtzBbX9T6HTCDk4kkLLIQdZzrqEChwliVNCBGiRrAqOcIl65gOfXNqHjnOM9zThTjRDFuKTaAL9cYjS3WcQ_smmEEdzt2cg_c6i042SCPQmM4cUrZ9WNuuDSA9WtRecDEzMnSv0GvTi8rrqmTfUAW-PsHru0TzB9-G_Pd7_s7H-A5odssyY8w2_6e6mWjLrW40m2Jv_dRCpU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC50ZFk96D4Uxxct7B52oTXvh7dBFFlQPDiLe2q6ujsqhhicDKK_3q6kR51FRC85VVdIdSX9fakXwA-dR4klViE3KaacIoEcM4y4xkAHiNqXIRUnH58kR8Poz3l87v53UC3MVPzekjNKkuc0HX5Xai9SOAtzSWxRdw_mhieng3_EpyYiNEfOizNuSVfkIpKvqZg6gWavbuoF-Dyuanl_J8uyrd2pClldvDhmDpe6nkejtjshZZdc74wb3FEP__VufM8TfIFFhzXZoHOOrzBjqm_wqc35VKPv8PdYNvuXstljA1ZSQjib_Lxk7XwcJivNXgS42aj7rrC6lA1hXWYvzCLezomZO0yXYXh4cLZ_xN2YBa7CLG14GqOxuMl4yvclWkKY6lyZIg8UIvqF8izmymWYm8BSPz_OMmn3Nk2kb5mKTDwTrkCvuqnMKjC7JpVxkKcBmigzYY5SB5EuSCGGse7D7sT0Qrke5DQKoxRtLDzLBFlLkLVEZ60-_HpaUXf9N96Q_Wl3U7iXcPSG3PaUnKpRhIHlQoKqcL1I1Lrow-8nn3jHjZlzmmelDxd3pTA0nN4nUr32EX3rME8Lu5LHDeg1t2OzabFPg1vO7R8BQ8b4vQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MatChat%3A+A+large+language+model+and+application+service+platform+for+materials+science&rft.jtitle=Chinese+physics+B&rft.au=Chen+%E9%99%88%2C+Zi-Yi+%E5%AD%90%E9%80%B8&rft.au=Xie+%E8%B0%A2%2C+Fan-Kai+%E5%B8%86%E6%81%BA&rft.au=Wan+%E4%B8%87%2C+Meng+%E8%90%8C&rft.au=Yuan+%E8%A2%81%2C+Yang+%E6%89%AC&rft.date=2023-11-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=32&rft.issue=11&rft.spage=118104&rft_id=info:doi/10.1088%2F1674-1056%2Fad04cb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad04cb |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |