A stable particle filter for a class of high-dimensional state-space models
We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or...
Saved in:
| Published in | Advances in applied probability Vol. 49; no. 1; pp. 24 - 48 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge, UK
Cambridge University Press
01.03.2017
Applied Probability Trust |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0001-8678 1475-6064 |
| DOI | 10.1017/apr.2016.77 |
Cover
| Abstract | We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ
d
with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space‒time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space‒time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost (nNd
2), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space‒time particle filter that standard particle filters cannot handle. |
|---|---|
| AbstractList | We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝd with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space-time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space-time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L ≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost 𝒪(nNd²), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space-time particle filter that standard particle filters cannot handle. We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d . For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space‒time particle filter , for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d , as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space‒time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L -Markovian structure ( L ≥ 1, L independent of d ) in the d -dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost ( nNd 2 ), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d . Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space‒time particle filter that standard particle filters cannot handle. We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in â,, d with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space[FIGURE DASH]time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space[FIGURE DASH]time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost [MATHEMATICAL SCRIPT CAPITAL O](nNd 2), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space[FIGURE DASH]time particle filter that standard particle filters cannot handle. We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space‒time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space‒time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost (nNd 2), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space‒time particle filter that standard particle filters cannot handle. |
| Author | Zhou, Yan Crisan, Dan Beskos, Alexandros Kamatani, Kengo Jasra, Ajay |
| Author_xml | – sequence: 1 givenname: Alexandros surname: Beskos fullname: Beskos, Alexandros organization: University College London – sequence: 2 givenname: Dan surname: Crisan fullname: Crisan, Dan organization: Imperial College London – sequence: 3 givenname: Ajay surname: Jasra fullname: Jasra, Ajay email: staja@nus.edu.sg organization: National University of Singapore – sequence: 4 givenname: Kengo surname: Kamatani fullname: Kamatani, Kengo organization: Osaka University – sequence: 5 givenname: Yan surname: Zhou fullname: Zhou, Yan organization: National University of Singapore |
| BookMark | eNp1kM9LwzAYhoNMcFNPnoWCR-lM0rRpj2P4Cwde9Fy-Jl-3jHapSXbwvzdlQ0T09CXwvC8P74xMdnaHhFwxOmeUyTsY3JxTVsylPCFTJmSeFrQQEzKllLK0LGR5Rmbeb-M3kyWdkpdF4gM0HSYDuGBUfLSmC-iS1roEEtWB94ltk41Zb1Jtetx5Y3fQjbGAqR9AYdJbjZ2_IKctdB4vj_ecvD_cvy2f0tXr4_NysUpVVsqQFiByVBWnCFC0PIMCSi4RZK50k2cV51GtaZSWOs8EbbQGjU080TmXmGXn5ObQOzj7sUcf6q3du-jka1aJinFWZTxS7EApZ7132NbKROUoHxyYrma0Hjer42b1uFktZczc_soMzvTgPv-hrw_01gfrvlEhqjIXbDRIj23QN87oNf4Q_aPvCwnYiJE |
| CitedBy_id | crossref_primary_10_3934_fods_2025002 crossref_primary_10_1109_ACCESS_2020_3041928 crossref_primary_10_1016_j_mbs_2024_109260 crossref_primary_10_1007_s11831_021_09694_4 crossref_primary_10_1016_j_csda_2020_107062 crossref_primary_10_1109_TNNLS_2021_3069172 crossref_primary_10_1007_s00332_017_9431_0 crossref_primary_10_1109_TAC_2023_3242344 crossref_primary_10_1007_s10596_023_10264_9 crossref_primary_10_1016_j_jkss_2018_08_004 crossref_primary_10_1137_17M1146865 crossref_primary_10_1146_annurev_statistics_031017_100232 crossref_primary_10_1007_s11222_021_10034_6 crossref_primary_10_5194_gmd_12_629_2019 crossref_primary_10_1080_07362994_2017_1394880 crossref_primary_10_1111_joes_12405 crossref_primary_10_1155_2019_8369565 crossref_primary_10_1109_TSP_2019_2926035 crossref_primary_10_1002_wcc_535 crossref_primary_10_1080_01621459_2021_1974867 crossref_primary_10_1137_18M1167929 crossref_primary_10_1093_jrsssa_qnad056 crossref_primary_10_1002_qj_3551 crossref_primary_10_1177_1369433220963733 crossref_primary_10_1109_TSP_2017_2703684 crossref_primary_10_1016_j_sigpro_2022_108832 crossref_primary_10_1109_TSP_2019_2905816 crossref_primary_10_1016_j_sigpro_2022_108677 crossref_primary_10_1016_j_ymssp_2017_10_033 crossref_primary_10_1137_19M1277606 crossref_primary_10_1016_j_csda_2022_107627 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022038553 crossref_primary_10_1111_insr_12365 crossref_primary_10_1007_s00211_020_01159_3 crossref_primary_10_1007_s11222_020_09957_3 crossref_primary_10_1137_17M1151900 crossref_primary_10_1016_j_jcp_2022_111631 crossref_primary_10_1109_TSP_2017_2733504 crossref_primary_10_1137_21M1450392 crossref_primary_10_1002_qj_4716 |
| Cites_doi | 10.1137/130930364 10.1214/13-AAP951 10.3150/10-BEJ335 10.1017/S0001867800007047 10.1093/biomet/asq062 10.1201/b14924 10.1214/074921708000000228 10.1214/14-AAP1061 10.1214/10-AIHP358 10.1214/EJP.v19-3428 10.1007/978-1-4684-9393-1 10.1111/j.1467-9868.2006.00553.x 10.1007/s11222-013-9429-x |
| ContentType | Journal Article |
| Copyright | Copyright © Applied Probability Trust 2017 |
| Copyright_xml | – notice: Copyright © Applied Probability Trust 2017 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V L7M L~C L~D M0C M0N M2O M7S MBDVC P5Z P62 PADUT PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1017/apr.2016.77 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep (ProQuest) SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) Materials Science Database (Proquest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (Proquest) Engineering Database (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Research Library China Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| DocumentTitleAlternate | Particle filter in high dimensions A. Beskos et al. |
| EISSN | 1475-6064 |
| EndPage | 48 |
| ExternalDocumentID | 10_1017_apr_2016_77 44985412 |
| GroupedDBID | -~X 09C 09E 0R~ 23M 2AX 3V. 5GY 6J9 7WY 8FE 8FG 8FL 8G5 8VB AAAVZ AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAKYL AANRG AARAB AASVR AAUKB ABBHK ABEFU ABFAN ABGDZ ABJCF ABJNI ABMWE ABMYL ABQDR ABQTM ABROB ABTAH ABUWG ABXAU ABXSQ ABYWD ABZCX ACBMC ACCHT ACGFO ACGFS ACIWK ACMTB ACNCT ACQFJ ACTCJ ACTMH ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZWT ADACV ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADODI ADOVH ADOVT ADULT ADVJH AEBAK AEBPU AEGXH AEHGV AELKX AELLO AELPN AENCP AENEX AENGE AEUPB AEYYC AFFUJ AFKQG AFKRA AFLVW AFVYC AFXKK AGBYD AGJUD AGOOT AHQXX AHRGI AIAGR AIGNW AIHIV AIOIP AJAHB AJCYY AJPFC AJQAS AKBRZ AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARAPS ARZZG AS~ ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BDTQF BENPR BESQT BEZIV BGLVJ BHOJU BJBOZ BKOMP BLZWO BMAJL BPHCQ C-6 CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC CS3 D1I DOHLZ DQDLB DSRWC DWQXO EBS EBU ECEWR EFSUC EGQIC EJD F5P FEDTE FRNLG GIFXF GNUQQ GUQSH HCIFZ HGD HQ6 HVGLF H~9 IH6 IOEEP IOO JAA JAAYA JBMMH JBZCM JENOY JHFFW JHPGK JKQEH JLEZI JLXEF JMS JPL JQKCU JSODD JST K1G K60 K6V K6~ K7- KAFGG KB. KCGVB KFECR L6V LHUNA LW7 M0C M0N M2O M7S NIKVX NZEOI O9- P0- P2P P62 PADUT PDBOC PQBIZ PQQKQ PROAC PTHSS PUASD PYCCK QWB RAMDC RBU RCA RNS ROL RPE S6U SA0 SAAAG T9M TN5 U5U UT1 WFFJZ XFK YYP ZDLDU ZGI ZJOSE ZL0 ZMEZD ZY4 ZYDXJ ~02 AAWIL ABAWQ ABVKB ABVZP ABXHF ACDIW ACDLN ACHJO ADNIK AECCQ AFZFC AGLNM AIHAF AKMAY ALRMG AMVHM IPSME PHGZM PHGZT PQBZA AAXMD AAYXX CITATION PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c387t-6a45ec920eaa6f23a6a827ea75cdb53922378bbcd7d5340bddadebbdd00357e33 |
| IEDL.DBID | BENPR |
| ISSN | 0001-8678 |
| IngestDate | Sat Aug 23 12:56:56 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Wed Oct 01 03:17:07 EDT 2025 Thu Jul 03 22:31:40 EDT 2025 Wed Mar 13 05:54:33 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Primary 62M20 particle filter State-space model high dimensions Secondary 60G35 |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-6a45ec920eaa6f23a6a827ea75cdb53922378bbcd7d5340bddadebbdd00357e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1949121932 |
| PQPubID | 31672 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_1949121932 crossref_citationtrail_10_1017_apr_2016_77 crossref_primary_10_1017_apr_2016_77 jstor_primary_44985412 cambridge_journals_10_1017_apr_2016_77 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20170300 20170301 2017-03-00 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 20170300 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Sheffield |
| PublicationTitle | Advances in applied probability |
| PublicationTitleAlternate | Adv. Appl. Probab |
| PublicationYear | 2017 |
| Publisher | Cambridge University Press Applied Probability Trust |
| Publisher_xml | – name: Cambridge University Press – name: Applied Probability Trust |
| References | S000186781600077X_ref14 S000186781600077X_ref12 Doucet (S000186781600077X_ref10) 2011 Naesseth (S000186781600077X_ref13) 2015 S000186781600077X_ref17 S000186781600077X_ref1 S000186781600077X_ref2 S000186781600077X_ref15 S000186781600077X_ref3 S000186781600077X_ref4 S000186781600077X_ref5 S000186781600077X_ref6 S000186781600077X_ref8 Johansen (S000186781600077X_ref11) 2012 S000186781600077X_ref9 Rubin (S000186781600077X_ref16) 1988 Del Moral (S000186781600077X_ref7) 2013; 126 |
| References_xml | – start-page: 395 volume-title: Bayesian Statistics 3 year: 1988 ident: S000186781600077X_ref16 – ident: S000186781600077X_ref12 doi: 10.1137/130930364 – ident: S000186781600077X_ref2 doi: 10.1214/13-AAP951 – start-page: 488 volume-title: Proc. 16th IFAC Symp. on System Identification year: 2012 ident: S000186781600077X_ref11 – ident: S000186781600077X_ref9 doi: 10.3150/10-BEJ335 – ident: S000186781600077X_ref3 doi: 10.1017/S0001867800007047 – start-page: 656 volume-title: The Oxford Handbook of Nonlinear Filtering year: 2011 ident: S000186781600077X_ref10 – ident: S000186781600077X_ref14 doi: 10.1093/biomet/asq062 – volume: 126 volume-title: Mean Field Simulation for Monte Carlo Integration year: 2013 ident: S000186781600077X_ref7 doi: 10.1201/b14924 – ident: S000186781600077X_ref4 doi: 10.1214/074921708000000228 – start-page: 1292 volume-title: Proc. 32nd Internat. Conf. on Machine Learning year: 2015 ident: S000186781600077X_ref13 – ident: S000186781600077X_ref15 doi: 10.1214/14-AAP1061 – ident: S000186781600077X_ref5 doi: 10.1214/10-AIHP358 – ident: S000186781600077X_ref1 doi: 10.1214/EJP.v19-3428 – ident: S000186781600077X_ref6 doi: 10.1007/978-1-4684-9393-1 – ident: S000186781600077X_ref8 doi: 10.1111/j.1467-9868.2006.00553.x – ident: S000186781600077X_ref17 doi: 10.1007/s11222-013-9429-x |
| SSID | ssj0003780 |
| Score | 2.4252582 |
| Snippet | We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ
d
with large d. For... We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝd with large d. For... We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d . For... We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in â,, d with large d. For... |
| SourceID | proquest crossref jstor cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 24 |
| SubjectTerms | Approximation Computer simulation Dimensional stability Filtration Markov chains Monte Carlo simulation Probability State space models |
| Title | A stable particle filter for a class of high-dimensional state-space models |
| URI | https://www.cambridge.org/core/product/identifier/S000186781600077X/type/journal_article https://www.jstor.org/stable/44985412 https://www.proquest.com/docview/1949121932 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1475-6064 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0003780 issn: 0001-8678 databaseCode: AMVHM dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1475-6064 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003780 issn: 0001-8678 databaseCode: BENPR dateStart: 20160701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1475-6064 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003780 issn: 0001-8678 databaseCode: 8FG dateStart: 20160701 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uOhBfBXro-yheBBW02ST3RxEqrQWpUXEQm9hXwFB2mrr_3cnLyoWTzlkDmFmmPkmM_MNQDc0Qve82FIplEcZU5xKrmNqwyCOlE51pLGjO55Eoyl7moWzGkzKXRgcqyxjYhaozULjP_IbV2zHPR_hxt3yk-LVKOyulic0ZHFawdxmFGN1aPrIjNWA5v1g8vJaxeaAi3wpxRXRwsXpYmMPSaTlEulBe9E155s8C7_yVT6y-CdsZ7louA97BYgk_dzqB1Cz80PYHVcMrKsjeO4Th_vUhyXLwjlI-o6dceJQKpFEI2omi5QgXzE1yPGf83OQbMWIukCjLcnu5KyOYTocvD2MaHE4gepA8DWNJAutjn3PShmlfiAjKXxuJQ-1Uc4IDhJwoZQ23IQB85Qx0ljlHthX5DYIWtCYL-b2BAhLfRungtvUuELNmU9YB-lSBzRCzbX22nBZqSop3H-V5KNjPHE6TVCnCedtuCr1mOiCfhyvYHxsF-5WwsucdWO7WCszSCXDWCxC1vPbcF5aaOOjKg86_f_1Gez4mLyzSbNzaKy_vu2Fgx5r1YG6GD52Cq_6AeF-2OY |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONAeKqBF3UKLD7SHSm6zjhM7B1Tx1MKyq6oCiVvqVyQktLvtLkL9c_1tnUmciArEjVMOmUjWeOL5xjPzDcBu5rXrJ0XgRtuES2kVN8oVPGRpkVtXudxRRnc0zgeX8uwqu1qCv20vDJVVtmdifVD7qaM78q8YbBd9QXDj2-wXp6lRlF1tR2iYOFrB79UUY7GxYxj-3GEIN987PcL9_ijEyfHF4YDHKQPcpVoteG5kFlwhkmBMXonU5EYLFYzKnLe4YvSfSlvrvPJZKhPrvfHB4oOScCrQhSi6gBWZygKDv5WD4_H3H50vwE-bJhgM2jX6hdghSKTVZkZ0pP38i1L3eR3-849NieQDN1H7vpM1eBVBK9tvrGwdlsJkA16OOsbX-WsY7jPEmfYmsFk0RlZdUyaeISpmhjlC6WxaMeJH5p5mCjR8IKxuaeJ4sLnA6rk88zdw-Swq3ITlyXQS3gKTlQhFpVWoPAaGaC46IISsENhkTjmX9OBTp6oy_m7zsilVUyXqtCSdlkr14HOrx9JFunOaunHzuPBuJzxrWD4eF9usN6STkbLQmeyLHmy3O3RvUZ3Fvnv69Q6sDi5G5-X56Xi4BS8EAYe6ym0blhe_b8N7hD0L-yHaFoOfz23O_wA-uBbt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stable+particle+filter+for+a+class+of+high-dimensional+state-space+models&rft.jtitle=Advances+in+applied+probability&rft.au=Beskos%2C+Alexandros&rft.au=Crisan%2C+Dan&rft.au=Jasra%2C+Ajay&rft.au=Kamatani%2C+Kengo&rft.date=2017-03-01&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=49&rft.issue=1&rft.spage=24&rft.epage=48&rft_id=info:doi/10.1017%2Fapr.2016.77&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_apr_2016_77 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon |