A stable particle filter for a class of high-dimensional state-space models

We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or...

Full description

Saved in:
Bibliographic Details
Published inAdvances in applied probability Vol. 49; no. 1; pp. 24 - 48
Main Authors Beskos, Alexandros, Crisan, Dan, Jasra, Ajay, Kamatani, Kengo, Zhou, Yan
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.03.2017
Applied Probability Trust
Subjects
Online AccessGet full text
ISSN0001-8678
1475-6064
DOI10.1017/apr.2016.77

Cover

Abstract We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space‒time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space‒time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost (nNd 2), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space‒time particle filter that standard particle filters cannot handle.
AbstractList We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝd with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space-time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space-time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L ≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost 𝒪(nNd²), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space-time particle filter that standard particle filters cannot handle.
We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d . For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space‒time particle filter , for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d , as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space‒time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L -Markovian structure ( L ≥ 1, L independent of d ) in the d -dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost ( nNd 2 ), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d . Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space‒time particle filter that standard particle filters cannot handle.
We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in â,, d with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space[FIGURE DASH]time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space[FIGURE DASH]time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost [MATHEMATICAL SCRIPT CAPITAL O](nNd 2), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space[FIGURE DASH]time particle filter that standard particle filters cannot handle.
We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d. For low-dimensional problems, one of the most popular numerical procedures for consistent inference is the class of approximations termed particle filters or sequential Monte Carlo methods. However, in high dimensions, standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential in d for the algorithm to be stable in an appropriate sense. We develop a new particle filter, called the space‒time particle filter, for a specific family of state-space models in discrete time. This new class of particle filters provides consistent Monte Carlo estimates for any fixed d, as do standard particle filters. Moreover, when there is a spatial mixing element in the dimension of the state vector, the space‒time particle filter will scale much better with d than the standard filter for a class of filtering problems. We illustrate this analytically for a model of a simple independent and identically distributed structure and a model of an L-Markovian structure (L≥ 1, L independent of d) in the d-dimensional space direction, when we show that the algorithm exhibits certain stability properties as d increases at a cost (nNd 2), where n is the time parameter and N is the number of Monte Carlo samples, which are fixed and independent of d. Our theoretical results are also supported by numerical simulations on practical models of complex structures. The results suggest that it is indeed possible to tackle some high-dimensional filtering problems using the space‒time particle filter that standard particle filters cannot handle.
Author Zhou, Yan
Crisan, Dan
Beskos, Alexandros
Kamatani, Kengo
Jasra, Ajay
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Beskos
  fullname: Beskos, Alexandros
  organization: University College London
– sequence: 2
  givenname: Dan
  surname: Crisan
  fullname: Crisan, Dan
  organization: Imperial College London
– sequence: 3
  givenname: Ajay
  surname: Jasra
  fullname: Jasra, Ajay
  email: staja@nus.edu.sg
  organization: National University of Singapore
– sequence: 4
  givenname: Kengo
  surname: Kamatani
  fullname: Kamatani, Kengo
  organization: Osaka University
– sequence: 5
  givenname: Yan
  surname: Zhou
  fullname: Zhou, Yan
  organization: National University of Singapore
BookMark eNp1kM9LwzAYhoNMcFNPnoWCR-lM0rRpj2P4Cwde9Fy-Jl-3jHapSXbwvzdlQ0T09CXwvC8P74xMdnaHhFwxOmeUyTsY3JxTVsylPCFTJmSeFrQQEzKllLK0LGR5Rmbeb-M3kyWdkpdF4gM0HSYDuGBUfLSmC-iS1roEEtWB94ltk41Zb1Jtetx5Y3fQjbGAqR9AYdJbjZ2_IKctdB4vj_ecvD_cvy2f0tXr4_NysUpVVsqQFiByVBWnCFC0PIMCSi4RZK50k2cV51GtaZSWOs8EbbQGjU080TmXmGXn5ObQOzj7sUcf6q3du-jka1aJinFWZTxS7EApZ7132NbKROUoHxyYrma0Hjer42b1uFktZczc_soMzvTgPv-hrw_01gfrvlEhqjIXbDRIj23QN87oNf4Q_aPvCwnYiJE
CitedBy_id crossref_primary_10_3934_fods_2025002
crossref_primary_10_1109_ACCESS_2020_3041928
crossref_primary_10_1016_j_mbs_2024_109260
crossref_primary_10_1007_s11831_021_09694_4
crossref_primary_10_1016_j_csda_2020_107062
crossref_primary_10_1109_TNNLS_2021_3069172
crossref_primary_10_1007_s00332_017_9431_0
crossref_primary_10_1109_TAC_2023_3242344
crossref_primary_10_1007_s10596_023_10264_9
crossref_primary_10_1016_j_jkss_2018_08_004
crossref_primary_10_1137_17M1146865
crossref_primary_10_1146_annurev_statistics_031017_100232
crossref_primary_10_1007_s11222_021_10034_6
crossref_primary_10_5194_gmd_12_629_2019
crossref_primary_10_1080_07362994_2017_1394880
crossref_primary_10_1111_joes_12405
crossref_primary_10_1155_2019_8369565
crossref_primary_10_1109_TSP_2019_2926035
crossref_primary_10_1002_wcc_535
crossref_primary_10_1080_01621459_2021_1974867
crossref_primary_10_1137_18M1167929
crossref_primary_10_1093_jrsssa_qnad056
crossref_primary_10_1002_qj_3551
crossref_primary_10_1177_1369433220963733
crossref_primary_10_1109_TSP_2017_2703684
crossref_primary_10_1016_j_sigpro_2022_108832
crossref_primary_10_1109_TSP_2019_2905816
crossref_primary_10_1016_j_sigpro_2022_108677
crossref_primary_10_1016_j_ymssp_2017_10_033
crossref_primary_10_1137_19M1277606
crossref_primary_10_1016_j_csda_2022_107627
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022038553
crossref_primary_10_1111_insr_12365
crossref_primary_10_1007_s00211_020_01159_3
crossref_primary_10_1007_s11222_020_09957_3
crossref_primary_10_1137_17M1151900
crossref_primary_10_1016_j_jcp_2022_111631
crossref_primary_10_1109_TSP_2017_2733504
crossref_primary_10_1137_21M1450392
crossref_primary_10_1002_qj_4716
Cites_doi 10.1137/130930364
10.1214/13-AAP951
10.3150/10-BEJ335
10.1017/S0001867800007047
10.1093/biomet/asq062
10.1201/b14924
10.1214/074921708000000228
10.1214/14-AAP1061
10.1214/10-AIHP358
10.1214/EJP.v19-3428
10.1007/978-1-4684-9393-1
10.1111/j.1467-9868.2006.00553.x
10.1007/s11222-013-9429-x
ContentType Journal Article
Copyright Copyright © Applied Probability Trust 2017
Copyright_xml – notice: Copyright © Applied Probability Trust 2017
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1017/apr.2016.77
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep (ProQuest)
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
Materials Science Database (Proquest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (Proquest)
Engineering Database (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Particle filter in high dimensions
A. Beskos et al.
EISSN 1475-6064
EndPage 48
ExternalDocumentID 10_1017_apr_2016_77
44985412
GroupedDBID -~X
09C
09E
0R~
23M
2AX
3V.
5GY
6J9
7WY
8FE
8FG
8FL
8G5
8VB
AAAVZ
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAKYL
AANRG
AARAB
AASVR
AAUKB
ABBHK
ABEFU
ABFAN
ABGDZ
ABJCF
ABJNI
ABMWE
ABMYL
ABQDR
ABQTM
ABROB
ABTAH
ABUWG
ABXAU
ABXSQ
ABYWD
ABZCX
ACBMC
ACCHT
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACQFJ
ACTCJ
ACTMH
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZWT
ADACV
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADODI
ADOVH
ADOVT
ADULT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AELKX
AELLO
AELPN
AENCP
AENEX
AENGE
AEUPB
AEYYC
AFFUJ
AFKQG
AFKRA
AFLVW
AFVYC
AFXKK
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIAGR
AIGNW
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKBRZ
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARAPS
ARZZG
AS~
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BDTQF
BENPR
BESQT
BEZIV
BGLVJ
BHOJU
BJBOZ
BKOMP
BLZWO
BMAJL
BPHCQ
C-6
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
CS3
D1I
DOHLZ
DQDLB
DSRWC
DWQXO
EBS
EBU
ECEWR
EFSUC
EGQIC
EJD
F5P
FEDTE
FRNLG
GIFXF
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
H~9
IH6
IOEEP
IOO
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JMS
JPL
JQKCU
JSODD
JST
K1G
K60
K6V
K6~
K7-
KAFGG
KB.
KCGVB
KFECR
L6V
LHUNA
LW7
M0C
M0N
M2O
M7S
NIKVX
NZEOI
O9-
P0-
P2P
P62
PADUT
PDBOC
PQBIZ
PQQKQ
PROAC
PTHSS
PUASD
PYCCK
QWB
RAMDC
RBU
RCA
RNS
ROL
RPE
S6U
SA0
SAAAG
T9M
TN5
U5U
UT1
WFFJZ
XFK
YYP
ZDLDU
ZGI
ZJOSE
ZL0
ZMEZD
ZY4
ZYDXJ
~02
AAWIL
ABAWQ
ABVKB
ABVZP
ABXHF
ACDIW
ACDLN
ACHJO
ADNIK
AECCQ
AFZFC
AGLNM
AIHAF
AKMAY
ALRMG
AMVHM
IPSME
PHGZM
PHGZT
PQBZA
AAXMD
AAYXX
CITATION
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c387t-6a45ec920eaa6f23a6a827ea75cdb53922378bbcd7d5340bddadebbdd00357e33
IEDL.DBID BENPR
ISSN 0001-8678
IngestDate Sat Aug 23 12:56:56 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Wed Oct 01 03:17:07 EDT 2025
Thu Jul 03 22:31:40 EDT 2025
Wed Mar 13 05:54:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Primary 62M20
particle filter
State-space model
high dimensions
Secondary 60G35
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-6a45ec920eaa6f23a6a827ea75cdb53922378bbcd7d5340bddadebbdd00357e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1949121932
PQPubID 31672
PageCount 25
ParticipantIDs proquest_journals_1949121932
crossref_citationtrail_10_1017_apr_2016_77
crossref_primary_10_1017_apr_2016_77
jstor_primary_44985412
cambridge_journals_10_1017_apr_2016_77
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
20170301
2017-03-00
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Sheffield
PublicationTitle Advances in applied probability
PublicationTitleAlternate Adv. Appl. Probab
PublicationYear 2017
Publisher Cambridge University Press
Applied Probability Trust
Publisher_xml – name: Cambridge University Press
– name: Applied Probability Trust
References S000186781600077X_ref14
S000186781600077X_ref12
Doucet (S000186781600077X_ref10) 2011
Naesseth (S000186781600077X_ref13) 2015
S000186781600077X_ref17
S000186781600077X_ref1
S000186781600077X_ref2
S000186781600077X_ref15
S000186781600077X_ref3
S000186781600077X_ref4
S000186781600077X_ref5
S000186781600077X_ref6
S000186781600077X_ref8
Johansen (S000186781600077X_ref11) 2012
S000186781600077X_ref9
Rubin (S000186781600077X_ref16) 1988
Del Moral (S000186781600077X_ref7) 2013; 126
References_xml – start-page: 395
  volume-title: Bayesian Statistics 3
  year: 1988
  ident: S000186781600077X_ref16
– ident: S000186781600077X_ref12
  doi: 10.1137/130930364
– ident: S000186781600077X_ref2
  doi: 10.1214/13-AAP951
– start-page: 488
  volume-title: Proc. 16th IFAC Symp. on System Identification
  year: 2012
  ident: S000186781600077X_ref11
– ident: S000186781600077X_ref9
  doi: 10.3150/10-BEJ335
– ident: S000186781600077X_ref3
  doi: 10.1017/S0001867800007047
– start-page: 656
  volume-title: The Oxford Handbook of Nonlinear Filtering
  year: 2011
  ident: S000186781600077X_ref10
– ident: S000186781600077X_ref14
  doi: 10.1093/biomet/asq062
– volume: 126
  volume-title: Mean Field Simulation for Monte Carlo Integration
  year: 2013
  ident: S000186781600077X_ref7
  doi: 10.1201/b14924
– ident: S000186781600077X_ref4
  doi: 10.1214/074921708000000228
– start-page: 1292
  volume-title: Proc. 32nd Internat. Conf. on Machine Learning
  year: 2015
  ident: S000186781600077X_ref13
– ident: S000186781600077X_ref15
  doi: 10.1214/14-AAP1061
– ident: S000186781600077X_ref5
  doi: 10.1214/10-AIHP358
– ident: S000186781600077X_ref1
  doi: 10.1214/EJP.v19-3428
– ident: S000186781600077X_ref6
  doi: 10.1007/978-1-4684-9393-1
– ident: S000186781600077X_ref8
  doi: 10.1111/j.1467-9868.2006.00553.x
– ident: S000186781600077X_ref17
  doi: 10.1007/s11222-013-9429-x
SSID ssj0003780
Score 2.4252582
Snippet We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d. For...
We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝd with large d. For...
We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in ℝ d with large d . For...
We consider the numerical approximation of the filtering problem in high dimensions, that is, when the hidden state lies in â,, d with large d. For...
SourceID proquest
crossref
jstor
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Approximation
Computer simulation
Dimensional stability
Filtration
Markov chains
Monte Carlo simulation
Probability
State space models
Title A stable particle filter for a class of high-dimensional state-space models
URI https://www.cambridge.org/core/product/identifier/S000186781600077X/type/journal_article
https://www.jstor.org/stable/44985412
https://www.proquest.com/docview/1949121932
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-6064
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: BENPR
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: 8FG
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uOhBfBXro-yheBBW02ST3RxEqrQWpUXEQm9hXwFB2mrr_3cnLyoWTzlkDmFmmPkmM_MNQDc0Qve82FIplEcZU5xKrmNqwyCOlE51pLGjO55Eoyl7moWzGkzKXRgcqyxjYhaozULjP_IbV2zHPR_hxt3yk-LVKOyulic0ZHFawdxmFGN1aPrIjNWA5v1g8vJaxeaAi3wpxRXRwsXpYmMPSaTlEulBe9E155s8C7_yVT6y-CdsZ7louA97BYgk_dzqB1Cz80PYHVcMrKsjeO4Th_vUhyXLwjlI-o6dceJQKpFEI2omi5QgXzE1yPGf83OQbMWIukCjLcnu5KyOYTocvD2MaHE4gepA8DWNJAutjn3PShmlfiAjKXxuJQ-1Uc4IDhJwoZQ23IQB85Qx0ljlHthX5DYIWtCYL-b2BAhLfRungtvUuELNmU9YB-lSBzRCzbX22nBZqSop3H-V5KNjPHE6TVCnCedtuCr1mOiCfhyvYHxsF-5WwsucdWO7WCszSCXDWCxC1vPbcF5aaOOjKg86_f_1Gez4mLyzSbNzaKy_vu2Fgx5r1YG6GD52Cq_6AeF-2OY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONAeKqBF3UKLD7SHSm6zjhM7B1Tx1MKyq6oCiVvqVyQktLvtLkL9c_1tnUmciArEjVMOmUjWeOL5xjPzDcBu5rXrJ0XgRtuES2kVN8oVPGRpkVtXudxRRnc0zgeX8uwqu1qCv20vDJVVtmdifVD7qaM78q8YbBd9QXDj2-wXp6lRlF1tR2iYOFrB79UUY7GxYxj-3GEIN987PcL9_ijEyfHF4YDHKQPcpVoteG5kFlwhkmBMXonU5EYLFYzKnLe4YvSfSlvrvPJZKhPrvfHB4oOScCrQhSi6gBWZygKDv5WD4_H3H50vwE-bJhgM2jX6hdghSKTVZkZ0pP38i1L3eR3-849NieQDN1H7vpM1eBVBK9tvrGwdlsJkA16OOsbX-WsY7jPEmfYmsFk0RlZdUyaeISpmhjlC6WxaMeJH5p5mCjR8IKxuaeJ4sLnA6rk88zdw-Swq3ITlyXQS3gKTlQhFpVWoPAaGaC46IISsENhkTjmX9OBTp6oy_m7zsilVUyXqtCSdlkr14HOrx9JFunOaunHzuPBuJzxrWD4eF9usN6STkbLQmeyLHmy3O3RvUZ3Fvnv69Q6sDi5G5-X56Xi4BS8EAYe6ym0blhe_b8N7hD0L-yHaFoOfz23O_wA-uBbt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stable+particle+filter+for+a+class+of+high-dimensional+state-space+models&rft.jtitle=Advances+in+applied+probability&rft.au=Beskos%2C+Alexandros&rft.au=Crisan%2C+Dan&rft.au=Jasra%2C+Ajay&rft.au=Kamatani%2C+Kengo&rft.date=2017-03-01&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=49&rft.issue=1&rft.spage=24&rft.epage=48&rft_id=info:doi/10.1017%2Fapr.2016.77&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_apr_2016_77
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon