Generic algorithms for halting problem and optimal machines revisited
The halting problem is undecidable --- but can it be solved for "most" inputs? This natural question was considered in a number of papers, in different settings. We revisit their results and show that most of them can be easily proven in a natural framework of optimal machines (considered...
Saved in:
| Published in | Logical methods in computer science Vol. 12, Issue 2; no. 2; pp. 1 - 29 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Logical Methods in Computer Science Association
05.04.2016
Logical Methods in Computer Science e.V |
| Series | Logical Methods in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1860-5974 1860-5974 |
| DOI | 10.2168/LMCS-12(2:1)2016 |
Cover
| Abstract | The halting problem is undecidable --- but can it be solved for "most"
inputs? This natural question was considered in a number of papers, in
different settings. We revisit their results and show that most of them can be
easily proven in a natural framework of optimal machines (considered in
algorithmic information theory) using the notion of Kolmogorov complexity. We
also consider some related questions about this framework and about asymptotic
properties of the halting problem. In particular, we show that the fraction of
terminating programs cannot have a limit, and all limit points are Martin-L\"of
random reals. We then consider mass problems of finding an approximate solution
of halting problem and probabilistic algorithms for them, proving both positive
and negative results. We consider the fraction of terminating programs that
require a long time for termination, and describe this fraction using the busy
beaver function. We also consider approximate versions of separation problems,
and revisit Schnorr's results about optimal numberings showing how they can be
generalized. |
|---|---|
| AbstractList | The halting problem is undecidable --- but can it be solved for "most" inputs? This natural question was considered in a number of papers, in different settings. We revisit their results and show that most of them can be easily proven in a natural framework of optimal machines (considered in algorithmic information theory) using the notion of Kolmogorov complexity. We also consider some related questions about this framework and about asymptotic properties of the halting problem. In particular, we show that the fraction of terminating programs cannot have a limit, and all limit points are Martin-L\"of random reals. We then consider mass problems of finding an approximate solution of halting problem and probabilistic algorithms for them, proving both positive and negative results. We consider the fraction of terminating programs that require a long time for termination, and describe this fraction using the busy beaver function. We also consider approximate versions of separation problems, and revisit Schnorr's results about optimal numberings showing how they can be generalized. The halting problem is undecidable --- but can it be solved for "most" inputs? This natural question was considered in a number of papers, in different settings. We revisit their results and show that most of them can be easily proven in a natural framework of optimal machines (considered in algorithmic information theory) using the notion of Kolmogorov complexity. We also consider some related questions about this framework and about asymptotic properties of the halting problem. In particular, we show that the fraction of terminating programs cannot have a limit, and all limit points are Martin-L\"of random reals. We then consider mass problems of finding an approximate solution of halting problem and probabilistic algorithms for them, proving both positive and negative results. We consider the fraction of terminating programs that require a long time for termination, and describe this fraction using the busy beaver function. We also consider approximate versions of separation problems, and revisit Schnorr's results about optimal numberings showing how they can be generalized. The halting problem is undecidable — but can it be solved for “most” inputs? This natural question was considered in a number of papers, in different settings. We revisit their results and show that most of them can be easily proven in a natural framework of optimal machines (considered in algorithmic information theory) using the notion of Kolmogorov complexity. We also consider some related questions about this framework and about asymptotic properties of the halting problem. In particular, we show that the fraction of terminating programs cannot have a limit, and all limit points are Martin-L¨of random reals. We then consider mass problems of finding an approximate solution of halting problem and probabilistic algorithms for them, proving both positive and negative results. We consider the fraction of terminating programs that require a long time for termination, and describe this fraction using the busy beaver function. We also consider approximate versions of separation problems, and revisit Schnorr’s results about optimal numberings showing how they can be generalized. |
| Author | Bienvenu, Laurent Shen, Alexander Desfontaines, Damien |
| Author_xml | – sequence: 1 givenname: Laurent surname: Bienvenu fullname: Bienvenu, Laurent – sequence: 2 givenname: Damien surname: Desfontaines fullname: Desfontaines, Damien – sequence: 3 givenname: Alexander orcidid: 0000-0001-8605-7734 surname: Shen fullname: Shen, Alexander |
| BackLink | https://hal-lirmm.ccsd.cnrs.fr/lirmm-01486494$$DView record in HAL |
| BookMark | eNp1kc1r3DAQxUVJock29x59TChONbItybmFJV-wpYcmZzHWx66CbC2SkpL_vt5sKG1KdJlhmPd-w9MROZjiZAn5AvSMAZffVt-XP2tgJ-wcThkF_oEcguS07nrRHvzVfyLHOT_Q-TUNSMYPyeW1nWzyusKwjsmXzZgrF1O1wVD8tK62KQ7BjhVOporb4kcM1Yh64yebq2SffPbFms_ko8OQ7fFrXZD7q8u75U29-nF9u7xY1bqRotS8130j-o5aObRSohtYK4wdGu7EoAeDKLiARkouWNe53tBeOyc7C9YYK3izILd7XxPxQW3TfE56VhG9ehnEtFaYitfBKgRKGe-4AYCWAus74RwMouksbdlMWRDYez1OW3z-hSH8MQSqdrGqMOqsgCmmQO1inTVf95o5nn_wNxcrFXwaR0Whlbzt26cdge63dYo5J-v-A-z-7Q2Av5FoX7D4OJWEPrwv_A2Bcpxz |
| CitedBy_id | crossref_primary_10_1093_logcom_exx018 |
| ContentType | Journal Article |
| Copyright | Attribution |
| Copyright_xml | – notice: Attribution |
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY DOA |
| DOI | 10.2168/LMCS-12(2:1)2016 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-5974 |
| EndPage | 29 |
| ExternalDocumentID | oai_doaj_org_article_a1002656d1114012957ff1b735e04271 10.2168/lmcs-12(2:1)2016 oai:HAL:lirmm-01486494v1 10_2168_LMCS_12_2_1_2016 |
| GroupedDBID | .4S .DC 29L 2WC 5GY 5VS AAFWJ AAYXX ADBBV ADMLS ADQAK AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EJD FRP GROUPED_DOAJ J9A KQ8 MK~ ML~ M~E OK1 OVT P2P TR2 TUS XSB 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c387t-69c937950e8b488afb247deb36f7bcbdaa767138867255f9d09cff85e1edde763 |
| IEDL.DBID | UNPAY |
| ISSN | 1860-5974 |
| IngestDate | Fri Oct 03 12:52:01 EDT 2025 Sun Oct 26 04:17:21 EDT 2025 Tue Oct 14 20:41:57 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Tue Jul 01 04:10:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Generic algorithms Halting problem Busy beavers |
| Language | English |
| License | https://arxiv.org/licenses/nonexclusive-distrib/1.0 Attribution: http://creativecommons.org/licenses/by cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-69c937950e8b488afb247deb36f7bcbdaa767138867255f9d09cff85e1edde763 |
| ORCID | 0000-0001-8605-7734 0000-0002-9638-3362 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://lmcs.episciences.org/1633/pdf |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a1002656d1114012957ff1b735e04271 unpaywall_primary_10_2168_lmcs_12_2_1_2016 hal_primary_oai_HAL_lirmm_01486494v1 crossref_primary_10_2168_LMCS_12_2_1_2016 crossref_citationtrail_10_2168_LMCS_12_2_1_2016 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-05 |
| PublicationDateYYYYMMDD | 2016-04-05 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationSeriesTitle | Logical Methods in Computer Science |
| PublicationTitle | Logical methods in computer science |
| PublicationYear | 2016 |
| Publisher | Logical Methods in Computer Science Association Logical Methods in Computer Science e.V |
| Publisher_xml | – name: Logical Methods in Computer Science Association – name: Logical Methods in Computer Science e.V |
| References | 1168:not-found |
| References_xml | – ident: 1168:not-found |
| SSID | ssj0000331826 |
| Score | 2.031059 |
| Snippet | The halting problem is undecidable --- but can it be solved for "most"
inputs? This natural question was considered in a number of papers, in
different... The halting problem is undecidable — but can it be solved for “most” inputs? This natural question was considered in a number of papers, in different settings.... The halting problem is undecidable --- but can it be solved for "most" inputs? This natural question was considered in a number of papers, in different... |
| SourceID | doaj unpaywall hal crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | Computer Science computer science - computational complexity mathematics - logic |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUqLvRSCm3VQEE-5FCQVll_rNfmBhEoQqGXgsTN8nptEml3EyWhiH_fsXcTBVUqF66WbY1m1jPz7Nk3CPW9YlnpiExcXoqEK0ETVTiVGOWFdVwaF0lcb3-J0T2_ecgetlp9hZqwlh64VdzABI5QSDpKOJQ83JpkufekyFnmQpuICHxSqbbAVPTBjIXEuX2XpETIwfh2-Dsh9Cc9J6cQ9MSrOBTp-iG6TEIx5O5TMzcvz6aqtiLN9Wf0qUsR8UUr2j764JoDtLduv4C70_gFXUXK6KnFpnqcAcaf1EsMKSgOL-AQkHDXKwabpsQz8Aw1bFrH2km3xIv4Vzmkm1_R_fXV3XCUdF0REstkvkqEspBSqCx1soDTZ3xBeV4CJhY-L2xRGpMLQJ5Sihzggldlqqz3MnPEgSsDd_IN7TSzxn1HuPSOckYNgUU8LTIjrFGMKSZgxPO0hwZrHWnbUYaHzhWVBugQtKqDVjWhmmqig1Z76HSzYt7SZfxn7mVQ-2ZeILqOA2B-3Zlfv2X-HuqDVl_tMboY62q6qGsdbksFV_wPTDvbWPUfwaraLrcFO3wPwY7Qx7BXLPLJfqCd1eLJHUP-sipO4qf6F_qp6Mg priority: 102 providerName: Directory of Open Access Journals |
| Title | Generic algorithms for halting problem and optimal machines revisited |
| URI | https://hal-lirmm.ccsd.cnrs.fr/lirmm-01486494 https://lmcs.episciences.org/1633/pdf https://doaj.org/article/a1002656d1114012957ff1b735e04271 |
| UnpaywallVersion | publishedVersion |
| Volume | 12, Issue 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: ADMLS dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagO8Bl46foYJMPOzCkbHFiOza3bmpVoXVCgkrjZDmOzaoladWmQ3Dgb-fZSasNJBCXRIqeLcvPfu979sv3EDpyMmWFJSKyWcEjKnkSydzKSEvHjaVC20DiOrnk4yn9cMWuuiSaUOqrMiswxLPO_q_ay3yepqeLwj1EO5wB5O6hnenlx8EXH0wJHkceFLdXkAnhIvQRkeRt8p4cg3_j91xOYOYHR3Lt8x4freuF_v5Nl-UdpzLaQ6PNcNpckpuTdZOfmB-_MTX-c7xP0G4HK_GgXQdP0QNbP0N7m5INuNvBz9Ew0EzPDNbl1_ly1lxXKwywFftbc3BiuKsvg3Vd4DlYkwo6rUK-pV3hZfgTHSDqCzQdDT-fj6OukkJkUpE1EZcGYIhksRU57Fjt8oRmBcTR3GW5yQutMw7RqhA8gxDDySKWxjnBLLFg_sAEvUS9el7bVwgXziY0TTSBRjTOmeZGyzSVKYcvjsZ9dLqZbGU6mnFf7aJUEG549aiLyfknRRKVKKK8evroeNti0VJs_EX2zOtvK-fJscMHmHbV7TWlPa0s4NQC7Dj1B20sc47kWcqsryxC-ugIZvVeH-PBhSpny6pS_oSVU0lvQezddnn8MTCv97sD2_8f4dfosX-FBCD2BvWa5doeALZp8sNwJgDPyc_hYbfKfwHEBfpl |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELege4AXNr5EgU1-2AND8hYnjmPzVqZVFdomJKg0nizHH6wiSas2BcFfzzlxq41JIJ4iWbZ18tl3v7Mvv0Po0Msst44K4grLCZM8JbJ0kmjpuXFMaNeRuF5c8smUfbjKr2ISTVfqqzYrMMSzaP9X_WM-z7KThfX30Q7PAXIP0M708uPoSwimBE9IAMX9E2RKuejmIDR9k76jR-Df-C2X0zHzgyO5DnmPD9bNQv_8oavqhlMZ76LxRpw-l-Tb8botj82vP5ga_ynvHnoUYSUe9fvgMbrnmidod1OyAccT_BSddTTTM4N19XW-nLXX9QoDbMXh1RycGI71ZbBuLJ6DNalh0rrLt3QrvOz-RAeI-gxNx2efTyckVlIgJhNFS7g0AENknjhRwonVvkxZYSGO5r4oTWm1LjhEq0LwAkIML20ijfcid9SB-QMT9BwNmnnjXiBsvUtZlmoKg1hS5pobLbNMZhxaPEuG6GSz2MpEmvFQ7aJSEG4E9ajzi9NPiqYqVVQF9QzR0XbEoqfY-Evf90F_236BHLtrgGVX8awpHWhlAadasOMsXLTlhfe0LLLchcoidIgOYVVvzTEZnatqtqxrFW5YOZPsO3R7u90edwQLer8p2Mv_6fwKPQyfLgEof40G7XLt9gHbtOVB3Nm_ARhr-D8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+algorithms+for+halting+problem+and+optimal+machines+revisited&rft.jtitle=Logical+methods+in+computer+science&rft.au=Bienvenu%2C+Laurent&rft.au=Desfontaines%2C+Damien&rft.au=Shen%2C+Alexander&rft.date=2016-04-05&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=12%2C+Issue+2&rft_id=info:doi/10.2168%2FLMCS-12%282%3A1%292016&rft.externalDBID=n%2Fa&rft.externalDocID=10_2168_LMCS_12_2_1_2016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon |