A Lyapunov-type inequality for a fractional boundary value problem
In this work we obtain a Lyapunov-type inequality for a fractional differential equation subject to Dirichlet-type boundary conditions. Moreover, we apply this inequality to deduce a criteria for the nonexistence of real zeros of a certain Mittag-Leffler function.
Saved in:
Published in | Fractional calculus & applied analysis Vol. 16; no. 4; pp. 978 - 984 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.12.2013
Versita |
Subjects | |
Online Access | Get full text |
ISSN | 1311-0454 1314-2224 |
DOI | 10.2478/s13540-013-0060-5 |
Cover
Abstract | In this work we obtain a Lyapunov-type inequality for a fractional differential equation subject to Dirichlet-type boundary conditions. Moreover, we apply this inequality to deduce a criteria for the nonexistence of real zeros of a certain Mittag-Leffler function. |
---|---|
AbstractList | In this work we obtain a Lyapunov-type inequality for a fractional differential equation subject to Dirichlet-type boundary conditions. Moreover, we apply this inequality to deduce a criteria for the nonexistence of real zeros of a certain Mittag-Leffler function. |
Author | Ferreira, Rui A. C. |
Author_xml | – sequence: 1 givenname: Rui A. C. surname: Ferreira fullname: Ferreira, Rui A. C. email: ruiacferreira@ulusofona.pt organization: Department of Mathematics, Lusophone University of Humanities and Technologies, Center for Research and Development in Mathematics and Applications |
BookMark | eNqNkMtKAzEUhoNUsNY-gLu8QDTXSWYltXiDghtdh8wkKSPTyZjMVObtTa0rQXF1fg58P-d852DWhc4BcEnwFeVSXSfCBMcIE4YwLjASJ2BOGOGIUspnX5kgzAU_A8uUmgoLzrEohZyD2xXcTKYfu7BHw9Q72HTufTRtM0zQhwgN9NHUQxM608IqjJ01cYJ7044O9jFUrdtdgFNv2uSW33MBXu_vXtaPaPP88LRebVDNlByQqEtpC6K4554aXhhbWCsow0RJRakVtsAW-1IayVzphKkoLVVV-rz2lZJsAcixt44hpei87mOzy-dogvXBgz560NmDPnjQIjPyB1M3gzm8M0TTtH-SN0fyw7SDi9Zt4zjloN_CGLOM9DtLCl5KlRvosSHlO7vtv1D2CRxdh8I |
CitedBy_id | crossref_primary_10_1155_2017_5123240 crossref_primary_10_1186_s13660_019_2232_2 crossref_primary_10_1186_s13660_018_1850_4 crossref_primary_10_3934_math_2024239 crossref_primary_10_1007_s11784_019_0683_1 crossref_primary_10_1186_s13660_021_02610_1 crossref_primary_10_1186_s13662_017_1285_0 crossref_primary_10_1216_jie_2021_33_229 crossref_primary_10_1186_s13660_022_02783_3 crossref_primary_10_3934_math_2022064 crossref_primary_10_1016_j_cam_2016_03_035 crossref_primary_10_1186_s13660_019_1965_2 crossref_primary_10_1016_j_trmi_2018_03_005 crossref_primary_10_1186_s13660_017_1374_3 crossref_primary_10_1016_j_aml_2016_10_013 crossref_primary_10_1017_S1446788719000569 crossref_primary_10_1515_fca_2017_0015 crossref_primary_10_1515_fca_2018_0044 crossref_primary_10_1007_s13398_017_0462_z crossref_primary_10_3390_axioms12030301 crossref_primary_10_1007_s40324_017_0124_2 crossref_primary_10_1186_s13662_017_1329_5 crossref_primary_10_1007_s13540_022_00061_z crossref_primary_10_1155_2015_468536 crossref_primary_10_3390_math8010047 crossref_primary_10_1186_s13662_017_1377_x crossref_primary_10_3390_sym13010029 crossref_primary_10_1186_s13660_020_02448_z crossref_primary_10_1186_s13660_016_1199_5 crossref_primary_10_3934_cpaa_2022039 crossref_primary_10_1155_2019_4605076 crossref_primary_10_1142_S1793557124500153 crossref_primary_10_3934_math_2021181 crossref_primary_10_1007_s13226_024_00621_4 crossref_primary_10_1186_s13662_015_0430_x crossref_primary_10_3390_math10214023 crossref_primary_10_1186_s13662_019_2014_7 crossref_primary_10_1007_s40324_017_0135_z crossref_primary_10_1007_s40096_022_00486_w crossref_primary_10_1016_j_jmaa_2013_11_025 crossref_primary_10_1007_s13398_020_00954_9 crossref_primary_10_1140_epjst_e2018_00004_2 crossref_primary_10_1155_2021_3152688 crossref_primary_10_1155_2017_4149320 crossref_primary_10_1515_fca_2019_0041 crossref_primary_10_1080_17476933_2020_1825393 crossref_primary_10_1216_rmj_2024_54_137 crossref_primary_10_3934_dcdss_2020212 crossref_primary_10_1002_mma_4232 crossref_primary_10_3389_fams_2020_00007 crossref_primary_10_1007_s10998_023_00542_5 crossref_primary_10_1002_mma_10297 crossref_primary_10_30755_NSJOM_08271 crossref_primary_10_1016_j_cam_2016_10_009 crossref_primary_10_1007_s13398_016_0362_7 crossref_primary_10_26117_2079_6641_2021_36_3_65_71 crossref_primary_10_1002_mma_5322 crossref_primary_10_1016_j_cam_2017_12_053 crossref_primary_10_1186_s13660_018_1731_x crossref_primary_10_1515_forum_2020_0232 crossref_primary_10_31197_atnaa_471245 crossref_primary_10_1016_j_aml_2019_106075 crossref_primary_10_1155_2020_8234892 crossref_primary_10_1088_1742_6596_1593_1_012007 crossref_primary_10_1186_s13660_019_2050_6 crossref_primary_10_1515_fca_2017_0078 crossref_primary_10_1002_mma_3972 crossref_primary_10_1186_s13660_015_0769_2 crossref_primary_10_1186_s13660_017_1400_5 crossref_primary_10_1007_s12215_024_01124_1 crossref_primary_10_26117_2079_6641_2019_28_3_32_39 crossref_primary_10_1002_mma_9238 crossref_primary_10_30755_NSJOM_07194 crossref_primary_10_1002_mma_4782 crossref_primary_10_1186_s13660_016_1114_0 crossref_primary_10_1186_s13660_020_02351_7 crossref_primary_10_3390_math13010018 crossref_primary_10_1016_j_fss_2016_11_011 crossref_primary_10_1142_S0218348X20501315 crossref_primary_10_1186_s13660_023_03070_5 crossref_primary_10_1186_s13660_016_1132_y crossref_primary_10_1088_1742_6596_1053_1_012002 crossref_primary_10_3390_fractalfract7060454 crossref_primary_10_1016_j_cam_2018_03_007 crossref_primary_10_4236_jamp_2018_67131 crossref_primary_10_3934_mbe_2021359 crossref_primary_10_3390_fractalfract8120754 crossref_primary_10_1140_epjp_i2019_12772_1 |
Cites_doi | 10.1016/j.jmaa.2005.02.052 10.1016/S0304-0208(06)80001-0 10.1007/978-94-011-4339-4_1 |
ContentType | Journal Article |
Copyright | Versita Warsaw and Springer-Verlag Wien 2013 |
Copyright_xml | – notice: Versita Warsaw and Springer-Verlag Wien 2013 |
DBID | AAYXX CITATION |
DOI | 10.2478/s13540-013-0060-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1314-2224 |
EndPage | 984 |
ExternalDocumentID | 10_2478_s13540_013_0060_5 10_2478_s13540_013_0060_5164978 |
GroupedDBID | 06D 0VY 2LR 2WC 30V 3V. 4.4 406 408 8FE 8FG 9-A AACDK AAFPC AAGVJ AAIAL AAJBT AAONY AAPJK AAQCX AARHV AASML AASQH AATNV AAXCG AAYZH ABAKF ABAQN ABFKT ABJCF ABJNI ABRQL ABSOE ABTKH ABUWG ABYKJ ACAOD ACBXY ACDTI ACEFL ACGFS ACIPV ACIWK ACMKP ACPIV ACXLN ACZBO ACZOJ ADGQD ADGYE ADINQ ADJVZ ADOZN AEFQL AEKEB AEMSY AENEX AEQDQ AERZL AESKC AFBAA AFBBN AFCXV AFGNR AFKRA AFLOW AFWTZ AGJBK AGMZJ AGQEE AHBYD AHSBF AIAKS AIGIU AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY AMKLP AMXSW AMYLF ARAPS ASPBG AVWKF AZFZN AZMOX AZQEC BAKPI BAPOH BBCWN BCIFA BENPR BGLVJ BGNMA BLHJL BPHCQ CCPQU CFGNV DPUIP DWQXO EBLON EBS EJD FEDTE FIGPU GNUQQ GQ7 H13 HCIFZ HF~ HMJXF HVGLF HZ~ IAO IWAJR IY9 J9A JZLTJ K6V K7- KOV L6V LLZTM LO0 M0N M4Y M7S NPVJJ NQJWS NU0 OK1 P9R PQQKQ PROAC PTHSS QD8 R9I ROL RSV S1Z S27 S3B SHX SJN SJYHP SMT SOJ T13 TR2 U2A VC2 WK8 WTRAM ~A9 ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA DSRVY AAYXX AFOHR CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c387t-5c97d6184f4f2a46ad6dd5230187822d5d60d0f97a73e9e5ab2298b9f60dfb873 |
IEDL.DBID | U2A |
ISSN | 1311-0454 |
IngestDate | Tue Jul 01 00:57:06 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Sat Sep 06 17:04:29 EDT 2025 Fri Feb 21 02:37:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Secondary: 26D10, 34C10, 33E12 Lyapunov’s inequality Mittag-Leffler function Primary: 34A08, 34A40 fractional derivative, Green’s function |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-5c97d6184f4f2a46ad6dd5230187822d5d60d0f97a73e9e5ab2298b9f60dfb873 |
OpenAccessLink | https://www.degruyter.com/doi/10.2478/s13540-013-0060-5 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_2478_s13540_013_0060_5 crossref_citationtrail_10_2478_s13540_013_0060_5 walterdegruyter_journals_10_2478_s13540_013_0060_5164978 springer_journals_10_2478_s13540_013_0060_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20131200 2013-12-1 2013-12-00 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 20131200 |
PublicationDecade | 2010 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna |
PublicationSubtitle | An International Journal for Theory and Applications |
PublicationTitle | Fractional calculus & applied analysis |
PublicationTitleAbbrev | fcaa |
PublicationYear | 2013 |
Publisher | Springer Vienna Versita |
Publisher_xml | – name: Springer Vienna – name: Versita |
References | Tiryaki (CR8) 2010; 5 Lyapunov (CR4) 1907; 2 Rahimy (CR7) 2010; 4 Bai, Lü (CR1) 2005; 311 Popov (CR6) 2006; 12 Brown, Hinton, Rassias (CR2) 2000 Nahušev (CR5) 1977; 234 Kilbas, Srivastava, Trujillo (CR3) 2006 A M Lyapunov (60_CR4) 1907; 2 AM Nahušev (60_CR5) 1977; 234 AYu Popov (60_CR6) 2006; 12 M Rahimy (60_CR7) 2010; 4 RC Brown (60_CR2) 2000 AA Kilbas (60_CR3) 2006 Z Bai (60_CR1) 2005; 311 A Tiryaki (60_CR8) 2010; 5 |
References_xml | – volume: 234 start-page: 308 issue: 2 year: 1977 end-page: 311 ident: CR5 article-title: The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms publication-title: Dokl. Akad. Nauk SSSR – volume: 2 start-page: 27 year: 1907 end-page: 247 ident: CR4 article-title: Probleme général de la stabilité du mouvement, (French Transl. of a Russian paper dated 1893) publication-title: Ann. Fac. Sci. Univ. Toulouse – volume: 4 start-page: 2453 issue: 49–52 year: 2010 end-page: 2461 ident: CR7 article-title: Applications of fractional differential equations publication-title: Appl. Math. Sci – volume: 12 start-page: 137 issue: 6 year: 2006 end-page: 155 ident: CR6 article-title: On the number of real eigenvalues of a certain boundaryvalue problem for a second-order equation with fractional derivative publication-title: Fundam. Prikl. Mat. – volume: 5 start-page: 231 issue: 2 year: 2010 end-page: 248 ident: CR8 article-title: Recent developments of Lyapunov-type inequalities publication-title: Adv. Dyn. Syst. Appl. – volume: 311 start-page: 495 issue: 2 year: 2005 end-page: 505 ident: CR1 article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.02.052 – year: 2006 ident: CR3 publication-title: Theory and Applications of Fractional Differential Equations doi: 10.1016/S0304-0208(06)80001-0 – start-page: 1 year: 2000 end-page: 25 ident: CR2 article-title: Lyapunov inequalities and their applications publication-title: Survey on Classical Inequalities doi: 10.1007/978-94-011-4339-4_1 – volume: 234 start-page: 308 issue: 2 year: 1977 ident: 60_CR5 publication-title: Dokl. Akad. Nauk SSSR – volume: 12 start-page: 137 issue: 6 year: 2006 ident: 60_CR6 publication-title: Fundam. Prikl. Mat. – volume: 2 start-page: 27 year: 1907 ident: 60_CR4 publication-title: Ann. Fac. Sci. Univ. Toulouse – start-page: 1 volume-title: Survey on Classical Inequalities year: 2000 ident: 60_CR2 doi: 10.1007/978-94-011-4339-4_1 – volume: 311 start-page: 495 issue: 2 year: 2005 ident: 60_CR1 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.02.052 – volume: 4 start-page: 2453 issue: 49–52 year: 2010 ident: 60_CR7 publication-title: Appl. Math. Sci – volume: 5 start-page: 231 issue: 2 year: 2010 ident: 60_CR8 publication-title: Adv. Dyn. Syst. Appl. – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 60_CR3 doi: 10.1016/S0304-0208(06)80001-0 |
SSID | ssib054405957 ssj0000826098 |
Score | 2.3795679 |
Snippet | In this work we obtain a Lyapunov-type inequality for a fractional differential equation subject to Dirichlet-type boundary conditions. Moreover, we apply this... |
SourceID | crossref walterdegruyter springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 978 |
SubjectTerms | Abstract Harmonic Analysis Analysis fractional derivative, Green’s function Functional Analysis Integral Transforms Lyapunov’s inequality Mathematics Mathematics and Statistics Mittag-Leffler function Operational Calculus Primary: 34A08, 34A40 Research Paper Secondary: 26D10, 34C10, 33E12 |
Title | A Lyapunov-type inequality for a fractional boundary value problem |
URI | https://link.springer.com/article/10.2478/s13540-013-0060-5 https://www.degruyter.com/doi/10.2478/s13540-013-0060-5 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6L-6w-DPOX-HgSUOkBQocp3FZjPPkkt2aUsCL6Za10_S_F2i7RGOMXlugzeMB3-PB9wFwRXWUEaIoojHXiEZCI2VzihhxLxiOjQ76KdPnZDKjj3M2b-9xl91p9y4lGWZqf1iZcnFbRn6LAgU1ApxgxLbBDvN0Us6JZ_GocyJGHQSRbSovTMcOQOOgieuZZZCnnGuymz-3-nV96v6kDwYfIX2tzetqXVddujSsQuM9MGjhIxw1_b0PtkxxAPrTDfdqeQjuRvCpzpbrYvGO_AYrdDiyuTpZQ4dQYQbtqrnN4BpSQVVpVUNP-m1gKy9zBGbjh5f7CWqVElBOBK8QyyXXXrrFUhtnNMl0orXf742ERwCa6QRrbCXPODHSsEzFsRRKWvfYKsHJMegVi8KcAJjzQFATUYsJVVIqEuUi4pF2oTKl0gwB7uyT5i2NuFezeEtdOOFNmjYmTZ1JU2_SlA3B9abKsuHQ-K3wTWf0tB1O5W-lxbd--UMlFyG62Pn0Xx86A7uxd5JwkOUc9KrV2lw4OFKpy-B-n6wi0V4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MgGCY6D7rD4mecnxw8aYilhVKO07hM3Xbakt1IKdSL6Za10_TfC7RdojGLXlugzcvX874vPA8AN0ThOAgkQcRnChEcKSTThCAamBfU87Vy-imjcTiYkpcZndX3uPPmtHuTknQrtT2sTFh0n2MbokBOjcALPUS3wY7NMlqPa-r3mkFEiYEgvE7lueXYAGjPaeJaZhlkKeeq7ObvrX7fn5o_aYPOp0tfK_22XJVFky51u1B_H3Rq-Ah7VX8fgC2dHYL2aM29mh-Bhx4clvFilc0_kA2wQoMjq6uTJTQIFcYwXVa3GUxD0qkqLUtoSb81rOVljsG0_zR5HKBaKQElQcQKRBPOlJVuSUnqxySMVaiUjffiyCIARVXoKS_lLGaB5prG0vd5JHlqHqcyYsEJaGXzTJ8CmDBHUINJ6gVEci4DnESYYWVcZUK47gKvsY9Iahpxq2bxLow7YU0qKpMKY1JhTSpoF9yuqywqDo1Nhe8ao4t6OuWbSkc_-uUPlYyHaHzns3996BrsDiajoRg-j1_PwZ5vB4w71HIBWsVypS8NNCnklRuKX40b1EE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA46Qdxh-MT5zMGTEtZH0jTH-RhTt-HBwW6laRIv0o22U_rfm6TtQJGh1zZJyy9p8_0e-T4ArrBwY9_nGGGPCoTdUCCuEoyIr28Qx5PC6qeMJ8Fwip9mZFbrnOZNtXuTkqzONBiWprToLYSyhcuYhr3cNeEKZJUJnMBBZBNsYb1Vm5quqddvFhTBGo6wOq1nf80aTDtWH9ewzCBDP1dlOn8f9fte1bxVG3Q-bSpbyLdsWRZN6tTuSINd0KmhJOxXc78HNmS6D9rjFQ9rfgBu-3BUxotlOv9AJtgKNaasjlGWUKNVGEOVVScb9EDcKixlJTQE4BLWUjOHYDp4eL0bolo1ASV-SAtEEkaFkXFRWHkxDmIRCGFiv25o0IAgInCEoxiNqS-ZJDH3PBZypvRlxUPqH4FWOk_lMYAJtWQ1LlaOjzlj3HeT0KWu0G4zxkx2gdPYJ0pqSnGjbPEeadfCmDSqTBppk0bGpBHpgutVl0XFp7Gu8U1j9Kj-tPJ1rcMf8_KHTtpb1H70yb8edAm2X-4H0ehx8nwKdjyzXmx9yxloFdlSnmuUUvALuxK_AFW82IY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lyapunov-type+inequality+for+a+fractional+boundary+value+problem&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=Ferreira%2C+Rui+A.+C.&rft.date=2013-12-01&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=16&rft.issue=4&rft.spage=978&rft.epage=984&rft_id=info:doi/10.2478%2Fs13540-013-0060-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_s13540_013_0060_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon |