An Improved Density-Based Spatial Clustering of Applications with Noise Algorithm with an Adaptive Parameter Based on the Sparrow Search Algorithm
The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of this algorithm is exceptionally sensitive to the neighborhood radius (Eps) and noise points, and it is hard to obtain the best result quickly...
Saved in:
| Published in | Algorithms Vol. 18; no. 5; p. 273 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a18050273 |
Cover
| Abstract | The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of this algorithm is exceptionally sensitive to the neighborhood radius (Eps) and noise points, and it is hard to obtain the best result quickly and accurately with it. To address this issue, a parameter-adaptive DBSCAN clustering algorithm based on the Sparrow Search Algorithm (SSA), referred to as SSA-DBSCAN, is proposed. This method leverages the local fast search ability of SSA, using the optimal number of clusters and the silhouette coefficient of the dataset as the objective functions to iteratively optimize and select the two input parameters of DBSCAN. This avoids the adverse impact of manually inputting parameters, enabling adaptive clustering with DBSCAN. Experiments on typical synthetic datasets, UCI (University of California, Irvine) real-world datasets, and image segmentation tasks have validated the effectiveness of the SSA-DBSCAN algorithm. Comparative analysis with DBSCAN and other related optimization algorithms demonstrates the clustering performance of SSA-DBSCAN. |
|---|---|
| AbstractList | The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of this algorithm is exceptionally sensitive to the neighborhood radius (Eps) and noise points, and it is hard to obtain the best result quickly and accurately with it. To address this issue, a parameter-adaptive DBSCAN clustering algorithm based on the Sparrow Search Algorithm (SSA), referred to as SSA-DBSCAN, is proposed. This method leverages the local fast search ability of SSA, using the optimal number of clusters and the silhouette coefficient of the dataset as the objective functions to iteratively optimize and select the two input parameters of DBSCAN. This avoids the adverse impact of manually inputting parameters, enabling adaptive clustering with DBSCAN. Experiments on typical synthetic datasets, UCI (University of California, Irvine) real-world datasets, and image segmentation tasks have validated the effectiveness of the SSA-DBSCAN algorithm. Comparative analysis with DBSCAN and other related optimization algorithms demonstrates the clustering performance of SSA-DBSCAN. |
| Audience | Academic |
| Author | Zhang, Shuntao Zhou, Shibo Huang, Zicheng Liang, Zuopeng |
| Author_xml | – sequence: 1 givenname: Zicheng orcidid: 0009-0001-2123-7141 surname: Huang fullname: Huang, Zicheng – sequence: 2 givenname: Zuopeng orcidid: 0009-0003-4902-3406 surname: Liang fullname: Liang, Zuopeng – sequence: 3 givenname: Shibo orcidid: 0009-0009-0342-4638 surname: Zhou fullname: Zhou, Shibo – sequence: 4 givenname: Shuntao surname: Zhang fullname: Zhang, Shuntao |
| BookMark | eNp9kt9vFCEQxzemJrbVB_8DEp80uQoLLPC4nr8uadSk-kxmWfaOyy6swPVy_4Z_sdQ1rSbGkMDM8J1PZhguqjMfvK2q5wRfUarwayASc1wL-qg6J0qpFZOKnv1hP6kuUtpj3HDVkPPqR-vRZppjuLU9emt9cvm0egOpeDczZAcjWo-HlG10fovCgNp5Hp0pN8EndHR5hz4Flyxqx22IxZ2WIHjU9jBnd2vRF4gw2YJACzh4lHf2jh9jOKIbC9HsHgBPq8cDjMk--31eVt_ev_u6_ri6_vxhs26vV4ZKkVfccM67umsUHVjDMO4lpph0gxo4ZR1TRFKBRTf0UjDChegayWrgnaCcQ9kvq83C7QPs9RzdBPGkAzj9KxDiVkPMzoxWEz5IxrEUqqmZEQRITWuhOmpUV_eUF9arhXXwM5yOMI73QIL13WT0_WSK-MUiLs_-_WBT1vtwiL70qmlNiCzd8OZBtYVSgfNDyBHM5JLRrWSUYqYoLqqrf6jK6u3kTPkbgyvxvxJeLgkmhpSiHf5T6E-e3rXg |
| Cites_doi | 10.1007/s10044-024-01298-5 10.1016/j.apenergy.2022.118682 10.1007/s11227-022-04634-w 10.1016/j.patcog.2020.107206 10.1016/j.cja.2020.09.035 10.1109/TPAMI.2007.1046 10.1007/s00500-023-09319-x 10.1016/j.eswa.2013.10.025 10.1109/ACCESS.2023.3307412 10.1109/TKDE.2017.2787640 10.1126/science.1242072 10.1109/DSAA54385.2022.10032412 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a18050273 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_15f8450879624c71a123279b3c9b2d35 10.3390/a18050273 A843304930 10_3390_a18050273 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c387t-5c555b2b693f46400d80301bf9f534b49183707bfd8741577b6842a5b7355ab73 |
| IEDL.DBID | BENPR |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:42:47 EDT 2025 Tue Aug 19 23:32:10 EDT 2025 Fri Jul 25 09:48:00 EDT 2025 Mon Oct 20 22:41:58 EDT 2025 Mon Oct 20 16:55:32 EDT 2025 Thu Oct 16 04:42:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-5c555b2b693f46400d80301bf9f534b49183707bfd8741577b6842a5b7355ab73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0003-4902-3406 0009-0009-0342-4638 0009-0001-2123-7141 |
| OpenAccessLink | https://www.proquest.com/docview/3211846456?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3211846456 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_15f8450879624c71a123279b3c9b2d35 unpaywall_primary_10_3390_a18050273 proquest_journals_3211846456 gale_infotracmisc_A843304930 gale_infotracacademiconefile_A843304930 crossref_primary_10_3390_a18050273 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Tan (ref_1) 2024; 27 (ref_2) 2023; 28 Manaa (ref_27) 2018; 8 Cao (ref_7) 2022; 44 Yang (ref_20) 2022; 78 Ester (ref_5) 1996; 96 Li (ref_13) 2019; 55 Hartigan (ref_26) 1979; 28 Rodriguez (ref_23) 2014; 344 Bryant (ref_12) 2018; 30 Chen (ref_16) 2021; 36 Zhang (ref_3) 2023; 27 ref_19 Zhou (ref_15) 2016; 11 Unnikrishnan (ref_30) 2007; 29 Sunita (ref_11) 2014; 41 Ping (ref_29) 2022; 311 Kim (ref_4) 2023; 5 Wang (ref_31) 1988; 24 Li (ref_8) 2020; 102 Li (ref_14) 2022; 2022 Wang (ref_25) 2018; 54 ref_21 Juan (ref_17) 2021; 34 Lu (ref_6) 2022; 34 Li (ref_10) 2021; 41 Zhang (ref_18) 2023; 11 Dong (ref_24) 2018; 45 Gao (ref_22) 2017; 53 Huang (ref_28) 2022; 2022 Wang (ref_9) 2020; 56 |
| References_xml | – volume: 28 start-page: 8561 year: 2023 ident: ref_2 article-title: AENCIC: A method to estimate the number of clusters based on image complexity to be used in fuzzy clustering algorithms for image segmentation publication-title: Soft Comput. – volume: 24 start-page: 1399 year: 1988 ident: ref_31 article-title: A Global/Local Affinity Graph for Image Segmentation publication-title: Proc. ACM Conf. Comput. Sci. – volume: 34 start-page: 4 year: 2022 ident: ref_6 article-title: A Self-Adaptive Grey DBSCAN Clustering Method publication-title: J. Grey Syst. – volume: 27 start-page: 3 year: 2024 ident: ref_1 article-title: A novel two-stage omni-supervised face clustering algorithm publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-024-01298-5 – volume: 36 start-page: 2713 year: 2021 ident: ref_16 article-title: Wafer graph preprocessing based on optimized DBSCAN clustering algorithm publication-title: J. Control Decis. – volume: 2022 start-page: 3794844 year: 2022 ident: ref_28 article-title: Diagnosis system of microscopic hyperspectral image of hepatobiliary tumors based on convolutional neural network publication-title: Comput. Intel. Neurosc. – volume: 311 start-page: 118682 year: 2022 ident: ref_29 article-title: Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2022.118682 – volume: 28 start-page: 100 year: 1979 ident: ref_26 article-title: A K-Means clustering algorithm publication-title: JR Stat. Soc. Ser. C-Appl. Stat. – volume: 78 start-page: 19566 year: 2022 ident: ref_20 article-title: An Efficient DBSCAN Optimized by Arithmetic Optimization Algorithm with Opposition-Based Learning publication-title: J. Supercomput. doi: 10.1007/s11227-022-04634-w – volume: 102 start-page: 107206 year: 2020 ident: ref_8 article-title: A novel density-based clustering algorithm using the nearest neighbor graph publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107206 – volume: 34 start-page: 165 year: 2021 ident: ref_17 article-title: An unsupervised pattern recognition methodology based on factor analysis and a genetic-DBSCAN algorithm to infer operational conditions from strain measurements in structural applications publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.09.035 – volume: 45 start-page: 5 year: 2018 ident: ref_24 article-title: Kernel Density Estimation-Based K-CFSFDP Clustering Algorithm publication-title: Comput. Sci. – volume: 2022 start-page: 4699573 year: 2022 ident: ref_14 article-title: Partition KMNN-DBSCAN Algorithm and Its Application in Extraction of Rail Damage Data publication-title: Math. Probl. Eng. – volume: 29 start-page: 929 year: 2007 ident: ref_30 article-title: Toward Objective Evaluation of Image Segmentation Algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1046 – ident: ref_21 – volume: 44 start-page: 4 year: 2022 ident: ref_7 article-title: PSO-DBSCAN and SCGAN-Based Unknown Radar Signal Processing Method publication-title: Syst. Eng. Electron. – volume: 53 start-page: 8 year: 2017 ident: ref_22 article-title: Density Ratio-Based Density Peak Clustering Algorithm publication-title: Comput. Eng. Appl. – volume: 27 start-page: 18585 year: 2023 ident: ref_3 article-title: An improved DBSCAN algorithm for hazard recognition of obstacles in unmanned scenes publication-title: Soft Comput. doi: 10.1007/s00500-023-09319-x – volume: 8 start-page: e3 year: 2018 ident: ref_27 article-title: Unsupervised Approach for Email Spam Filtering using Data Mining publication-title: EAI Endorsed Trans. Energy Web – volume: 41 start-page: 7589 year: 2021 ident: ref_10 article-title: GNN-DBSCAN: A new density-based algorithm using grid and the nearest neighbor publication-title: J. Intell. Fuzzy Syst. – volume: 11 start-page: 93 year: 2016 ident: ref_15 article-title: An improved adaptive and fast AF-DBSCAN clustering algorithm publication-title: CAAI Trans. Intell. Syst. – volume: 55 start-page: 1 year: 2019 ident: ref_13 article-title: Research on the Method of Self-Adaptive Determination of DBSCAN Algorithm Parameters publication-title: Comput. Eng. Appl. – volume: 96 start-page: 226 year: 1996 ident: ref_5 article-title: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise publication-title: Proc. Int. Conf. Knowl. Discov. Data Min. – volume: 56 start-page: 45 year: 2020 ident: ref_9 article-title: Improved Adaptive Parameter DBSCAN Clustering Algorithm publication-title: Comput. Eng. Appl. – volume: 41 start-page: 2939 year: 2014 ident: ref_11 article-title: Algorithm to Determine ε-Distance Parameter in Density Based Clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.10.025 – volume: 54 start-page: 6 year: 2018 ident: ref_25 article-title: Density Peak Clustering Algorithm for Automatically Determining Cluster Centers publication-title: Comput. Eng. Appl. – volume: 11 start-page: 91861 year: 2023 ident: ref_18 article-title: WOA-DBSCAN: Application of Whale Optimization Algorithm in DBSCAN Parameter Adaption publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3307412 – volume: 5 start-page: 20 year: 2023 ident: ref_4 article-title: Genetic-Based Keyword Matching DBSCAN in IoT for Discovering Adjacent Clusters publication-title: Comput. Model. Eng. Sci. – volume: 30 start-page: 1109 year: 2018 ident: ref_12 article-title: RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2787640 – volume: 344 start-page: 1492 year: 2014 ident: ref_23 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – ident: ref_19 doi: 10.1109/DSAA54385.2022.10032412 |
| SSID | ssj0065961 |
| Score | 2.3391411 |
| Snippet | The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 273 |
| SubjectTerms | Accuracy Adaptability Adaptive algorithms adaptive parameter Algorithms Cluster analysis Clustering Data mining Datasets DBSACN algorithm Density Electronic data processing Image segmentation Innovations Methods Neighborhoods Optimization Optimization algorithms Parameters Search algorithms sparrow optimization algorithm Statistical methods Synthetic data |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kL-rBb7HuKkEFT2WbNp_H7uqyCC4eXNhbSJpEhGf7eNuH7L_hX7yZpu_5HiJevBSahjTJzCQzmclvAN4pG1SgnpeROVsixHlphY-l77RruslRh_edP1-I80v26Ypf7aT6wpiwDA-cJ-6Y8qhY0iKkFjXrJLWoA0hsSLvaNxN6aaX0xpjKa7DgWtCMI9Qko_7YUlVxRG7Z230mkP4_l-L7cHfdL-3NT7tY7Ow1Z4_gwawkkjZ37jHcCf0TeLhJwEBmeXwKv9qe5FOB4MkHDEUfb8qTtC95gqmGE2uR08UaoRDSBkWGSNoddzXBI1hyMXy_DqRdfBtW6fVHLrQ9ab1d4kpIvlgM38Lf5oaHniSdEdtH9EaSw5V_N_AMLs8-fj09L-ckC2XXKDmWvOOcu9oJ3UQmkkR7hVaSizryhjmmKcLjSBe9QuVDSoeeO8udTJqKTc_ncNAPfXgBRIToZG0rGmvHQozOKxYC7bwUVVA0FPBmM_lmmbE0TLJBkEJmS6ECTpAs2woIfz0VJKYwM1OYfzFFAe-RqAaFdFzZzs53DVI_Ee7KtIrhOY5uqgKO9mom4er2P2_YwszCfW2aZDQr9AiLAt5uWeXvQ3r5P4Z0CPdqTD08xVoewcG4WodXSR8a3euJ9W8BBt8F7g priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZQ9wAcWJ4isCALkDhl87Jj54SyC6sVEtUeqLScLDu2VytKUrUpaPkZ_GJmErdsQUiIS6WmrhMr45lvHv6GkFdSO-kyy2PPjI6R4jzWpfWxbSpTNEOiDs87f5iWpzP2_pyfh4DbKpRVgit-OSjp4Yg8sqMkmUx4ApY2WVj_5muIJAGYxi7WJQOXfa_kgMUnZG82Pas_Dank8N-RTqgA3z7RmUw5ErjsGKGBq_9PjXyb3Fy3C331Tc_n10zOyT5Rm4cdK00-H657c9h8_43H8f9Xc5fcCWiU1qP43CM3XHuf7G86PdCw8R-QH3VLx_CDs_Qt1rz3V_ERGEBLsacxyDA9nq-RcwEsIe08ra_lxSnGeum0u1w5Ws8vuiV8_TJe1C2trV6gyqVnGuvE8LbjxF1LAZzi_EgTSce66F8TPCSzk3cfj0_j0M0hbgop-pg3nHOTm7IqPINVplaiO2Z85XnBDKsy5OERxluJKEcIgylCzY0ASKTh8xGZtF3rHhNaOm9ErtPM54Y5742VzLmssaJMncxcRF5sXq9ajKQdCpwdlAG1lYGIHOGL3w5Anu3hQre8UGHbqox7yQDDiqrMWSMyjQhUoBhXJrcFj8hrFBuF2qBf6kaHQw3wnMirpWrJMGBUFWlEDnZGwi5udn_eCJ4KWmSlCvDOJaaey4i83Arj35f05J9GPSW3cmxiPFRtHpBJv1y7Z4CsevM8bJ-f3Ckcrg priority: 102 providerName: Unpaywall |
| Title | An Improved Density-Based Spatial Clustering of Applications with Noise Algorithm with an Adaptive Parameter Based on the Sparrow Search Algorithm |
| URI | https://www.proquest.com/docview/3211846456 https://www.mdpi.com/1999-4893/18/5/273/pdf?version=1746541640 https://doaj.org/article/15f8450879624c71a123279b3c9b2d35 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SzaHNoemTuE0W0RZ6MrFsy5IPJXiTbEOhZildSE9GsqS0sLW3Gy8lf6O_uBo_NllKezFYFrKteWg0M_oG4K2QRhiqmW9jJX2EOPdloq2vy1RFZRuow_POn_Lkch5_vGJXO5APZ2EwrXLQia2i1nWJPvKTyO1UBIbhktPlTx-rRmF0dSihIfvSCvp9CzG2C3shImONYG9ykc8-D7o5YWlCO3yhyG32TyQVAUNEl61VqQXv_1tF78ODdbWUt7_kYnFvDZo-hke98UiyjtpPYMdUT-FgKMxAejl9Br-zinTeAqPJOaaoN7f-xK1XmmAJYsdy5GyxRogEt3CR2pLsXhiboGuW5PX3G0OyxbWbg-bbj65RViTTcokakswkpnXha7uB64o4WxLHR1RH0qUx3w3wHObTiy9nl35ffMEvI8Ebn5WMMRWqJI2sm_Yg0AJ3T8qmlkWxilOKsDlcWS3QKOFcYURPMsWdBSPd9QWMqroyh0ASYxUPZUBtqGJjrdIiNoaWmieBEdR48HqY_GLZYWwUbm-CFCo2FPJggmTZdEBY7LahXl0XvZQVlFkRO5OTp0kYl5xKNBg5cl2qQh0xD94hUQsU3mYlS9mfQXDfiTBYRSZi9O-kUeDB0VZPJ3Tl9uOBLYpe6G-KOxb14M2GVf79Sy__P8greBhiseE2u_IIRs1qbY6dBdSoMeyK6Ydxz9zj1o_g7ub5LPv6BwbOCTY |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYEClg8xClqHnbsHCqU7UNb2q4q1Eq9BTu2C9KSLLtZVfs3-EH8Njx5bLtCcOslh8SaJJ7xPDzjbwDeC2mECTXzLVXSR4hzXyba-rpIVVw0iTo873wySobn9PMFu1iD3_1ZGCyr7HVio6h1VeAe-XbsIhWBabjk0-Snj12jMLvat9CQXWsFvdNAjHUHO47M4sqFcLOdwz3H7w9RdLB_tjv0uy4DfhELXvusYIypSCVpbB39INACwwRlU8tiqmgaIj4MV1YLtL6cK0xdSaa4M9XSXR3dO7BBY5q64G9jsD86_dLbgoSlSdjiGcVxGmzLUAQMEWRWrGDTLOBvk3APNuflRC6u5Hh8w-YdPIT7nbNKsla6HsGaKR_Dg74RBOn0whP4lZWk3Z0wmuxhSXy98AfOPmqCLY-diJPd8RwhGZyhJJUl2Y20OcGtYDKqvs8MycaXbs7rbz_am7IkmZYT1MjkVGIZGb62JVyVxPmuSB9RJElbNn1N4Cmc3wobnsF6WZXmOZDEWMUjGYQ2UtRYq7SgxoSF5klgRGg8eNtPfj5pMT1yFwshh_IlhzwYIFuWAxCGu7lRTS_zblXnIbOCOheXp0lECx5KdFA5SnmqIh0zDz4iU3NUFvVUFrI78-C-E2G38kxQ3E9K48CDrZWRbpEXq497scg7JTPLr5eEB--WovLvX3rxfyJvYHN4dnKcHx-Ojl7C3QgbHTeVnVuwXk_n5pXzvmr1uhNxAl9ve1X9AdtGP-c |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE58K4IFLB4iFO0eTl2DgilXZaWwqoHKvVm7NguSEuy7GZV7d_g5_TX1ZPHtisEt15ySKxJ4nnaM_4G4A2XhptQU98mSvoIce7LVFtfF5mKiyZRh-edv47T_ePk8wk92YDz_iwMllX2NrEx1LoqcI98ELuVCsc0XDqwXVnE0XD0Yfrbxw5SmGnt22m0InJolmdu-TZ_fzB0vH4bRaOP3_b2_a7DgF_EnNU-LSilKlJpFltHOwg0xyWCspmlcaKSLERsGKas5uh5GVOYtpJUMeempbs6ujfgJkMUdzylPvrUe4GUZmnYIhnFcRYMZMgDitgxa_6vaRPwtzO4A7cX5VQuz-RkcsXbje7D3S5MJXkrVw9gw5QP4V7fAoJ0FuER_MlL0u5LGE2GWAxfL_1d5xk1wWbHTrjJ3mSBYAzORZLKkvxKwpzgJjAZVz_nhuSTUzfD9Y9f7U1ZklzLKdpiciSxgAxf2xKuSuKiVqSP-JGkLZi-JPAYjq-FCduwWValeQIkNVaxSAahjVRirFWaJ8aEhWZpYHhoPHjVT76Ytmgewq2CkENixSEPdpEtqwEIwN3cqGanotNnEVLLExfcsiyNkoKFEkNThvKdqUjH1IN3yFSBZqKeyUJ2px3cdyLglsh5gjtJWRx4sLM20ql3sf64FwvRmZe5uFQGD16vROXfv_T0_0Rewi2nS-LLwfjwGWxF2OG4Kencgc16tjDPXdhVqxeNfBP4ft0KdQEOzz2B |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZQ9wAcWJ4isCALkDhl87Jj54SyC6sVEtUeqLScLDu2VytKUrUpaPkZ_GJmErdsQUiIS6WmrhMr45lvHv6GkFdSO-kyy2PPjI6R4jzWpfWxbSpTNEOiDs87f5iWpzP2_pyfh4DbKpRVgit-OSjp4Yg8sqMkmUx4ApY2WVj_5muIJAGYxi7WJQOXfa_kgMUnZG82Pas_Dank8N-RTqgA3z7RmUw5ErjsGKGBq_9PjXyb3Fy3C331Tc_n10zOyT5Rm4cdK00-H657c9h8_43H8f9Xc5fcCWiU1qP43CM3XHuf7G86PdCw8R-QH3VLx_CDs_Qt1rz3V_ERGEBLsacxyDA9nq-RcwEsIe08ra_lxSnGeum0u1w5Ws8vuiV8_TJe1C2trV6gyqVnGuvE8LbjxF1LAZzi_EgTSce66F8TPCSzk3cfj0_j0M0hbgop-pg3nHOTm7IqPINVplaiO2Z85XnBDKsy5OERxluJKEcIgylCzY0ASKTh8xGZtF3rHhNaOm9ErtPM54Y5742VzLmssaJMncxcRF5sXq9ajKQdCpwdlAG1lYGIHOGL3w5Anu3hQre8UGHbqox7yQDDiqrMWSMyjQhUoBhXJrcFj8hrFBuF2qBf6kaHQw3wnMirpWrJMGBUFWlEDnZGwi5udn_eCJ4KWmSlCvDOJaaey4i83Arj35f05J9GPSW3cmxiPFRtHpBJv1y7Z4CsevM8bJ-f3Ckcrg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Density-Based+Spatial+Clustering+of+Applications+with+Noise+Algorithm+with+an+Adaptive+Parameter+Based+on+the+Sparrow+Search+Algorithm&rft.jtitle=Algorithms&rft.au=Huang+Zicheng&rft.au=Liang+Zuopeng&rft.au=Zhou%2C+Shibo&rft.au=Zhang+Shuntao&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=5&rft.spage=273&rft_id=info:doi/10.3390%2Fa18050273&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |