An Improved Density-Based Spatial Clustering of Applications with Noise Algorithm with an Adaptive Parameter Based on the Sparrow Search Algorithm

The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of this algorithm is exceptionally sensitive to the neighborhood radius (Eps) and noise points, and it is hard to obtain the best result quickly...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 5; p. 273
Main Authors Huang, Zicheng, Liang, Zuopeng, Zhou, Shibo, Zhang, Shuntao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18050273

Cover

Abstract The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of this algorithm is exceptionally sensitive to the neighborhood radius (Eps) and noise points, and it is hard to obtain the best result quickly and accurately with it. To address this issue, a parameter-adaptive DBSCAN clustering algorithm based on the Sparrow Search Algorithm (SSA), referred to as SSA-DBSCAN, is proposed. This method leverages the local fast search ability of SSA, using the optimal number of clusters and the silhouette coefficient of the dataset as the objective functions to iteratively optimize and select the two input parameters of DBSCAN. This avoids the adverse impact of manually inputting parameters, enabling adaptive clustering with DBSCAN. Experiments on typical synthetic datasets, UCI (University of California, Irvine) real-world datasets, and image segmentation tasks have validated the effectiveness of the SSA-DBSCAN algorithm. Comparative analysis with DBSCAN and other related optimization algorithms demonstrates the clustering performance of SSA-DBSCAN.
AbstractList The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of this algorithm is exceptionally sensitive to the neighborhood radius (Eps) and noise points, and it is hard to obtain the best result quickly and accurately with it. To address this issue, a parameter-adaptive DBSCAN clustering algorithm based on the Sparrow Search Algorithm (SSA), referred to as SSA-DBSCAN, is proposed. This method leverages the local fast search ability of SSA, using the optimal number of clusters and the silhouette coefficient of the dataset as the objective functions to iteratively optimize and select the two input parameters of DBSCAN. This avoids the adverse impact of manually inputting parameters, enabling adaptive clustering with DBSCAN. Experiments on typical synthetic datasets, UCI (University of California, Irvine) real-world datasets, and image segmentation tasks have validated the effectiveness of the SSA-DBSCAN algorithm. Comparative analysis with DBSCAN and other related optimization algorithms demonstrates the clustering performance of SSA-DBSCAN.
Audience Academic
Author Zhang, Shuntao
Zhou, Shibo
Huang, Zicheng
Liang, Zuopeng
Author_xml – sequence: 1
  givenname: Zicheng
  orcidid: 0009-0001-2123-7141
  surname: Huang
  fullname: Huang, Zicheng
– sequence: 2
  givenname: Zuopeng
  orcidid: 0009-0003-4902-3406
  surname: Liang
  fullname: Liang, Zuopeng
– sequence: 3
  givenname: Shibo
  orcidid: 0009-0009-0342-4638
  surname: Zhou
  fullname: Zhou, Shibo
– sequence: 4
  givenname: Shuntao
  surname: Zhang
  fullname: Zhang, Shuntao
BookMark eNp9kt9vFCEQxzemJrbVB_8DEp80uQoLLPC4nr8uadSk-kxmWfaOyy6swPVy_4Z_sdQ1rSbGkMDM8J1PZhguqjMfvK2q5wRfUarwayASc1wL-qg6J0qpFZOKnv1hP6kuUtpj3HDVkPPqR-vRZppjuLU9emt9cvm0egOpeDczZAcjWo-HlG10fovCgNp5Hp0pN8EndHR5hz4Flyxqx22IxZ2WIHjU9jBnd2vRF4gw2YJACzh4lHf2jh9jOKIbC9HsHgBPq8cDjMk--31eVt_ev_u6_ri6_vxhs26vV4ZKkVfccM67umsUHVjDMO4lpph0gxo4ZR1TRFKBRTf0UjDChegayWrgnaCcQ9kvq83C7QPs9RzdBPGkAzj9KxDiVkPMzoxWEz5IxrEUqqmZEQRITWuhOmpUV_eUF9arhXXwM5yOMI73QIL13WT0_WSK-MUiLs_-_WBT1vtwiL70qmlNiCzd8OZBtYVSgfNDyBHM5JLRrWSUYqYoLqqrf6jK6u3kTPkbgyvxvxJeLgkmhpSiHf5T6E-e3rXg
Cites_doi 10.1007/s10044-024-01298-5
10.1016/j.apenergy.2022.118682
10.1007/s11227-022-04634-w
10.1016/j.patcog.2020.107206
10.1016/j.cja.2020.09.035
10.1109/TPAMI.2007.1046
10.1007/s00500-023-09319-x
10.1016/j.eswa.2013.10.025
10.1109/ACCESS.2023.3307412
10.1109/TKDE.2017.2787640
10.1126/science.1242072
10.1109/DSAA54385.2022.10032412
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a18050273
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_15f8450879624c71a123279b3c9b2d35
10.3390/a18050273
A843304930
10_3390_a18050273
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c387t-5c555b2b693f46400d80301bf9f534b49183707bfd8741577b6842a5b7355ab73
IEDL.DBID BENPR
ISSN 1999-4893
IngestDate Fri Oct 03 12:42:47 EDT 2025
Tue Aug 19 23:32:10 EDT 2025
Fri Jul 25 09:48:00 EDT 2025
Mon Oct 20 22:41:58 EDT 2025
Mon Oct 20 16:55:32 EDT 2025
Thu Oct 16 04:42:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-5c555b2b693f46400d80301bf9f534b49183707bfd8741577b6842a5b7355ab73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-4902-3406
0009-0009-0342-4638
0009-0001-2123-7141
OpenAccessLink https://www.proquest.com/docview/3211846456?pq-origsite=%requestingapplication%&accountid=15518
PQID 3211846456
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_15f8450879624c71a123279b3c9b2d35
unpaywall_primary_10_3390_a18050273
proquest_journals_3211846456
gale_infotracmisc_A843304930
gale_infotracacademiconefile_A843304930
crossref_primary_10_3390_a18050273
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tan (ref_1) 2024; 27
(ref_2) 2023; 28
Manaa (ref_27) 2018; 8
Cao (ref_7) 2022; 44
Yang (ref_20) 2022; 78
Ester (ref_5) 1996; 96
Li (ref_13) 2019; 55
Hartigan (ref_26) 1979; 28
Rodriguez (ref_23) 2014; 344
Bryant (ref_12) 2018; 30
Chen (ref_16) 2021; 36
Zhang (ref_3) 2023; 27
ref_19
Zhou (ref_15) 2016; 11
Unnikrishnan (ref_30) 2007; 29
Sunita (ref_11) 2014; 41
Ping (ref_29) 2022; 311
Kim (ref_4) 2023; 5
Wang (ref_31) 1988; 24
Li (ref_8) 2020; 102
Li (ref_14) 2022; 2022
Wang (ref_25) 2018; 54
ref_21
Juan (ref_17) 2021; 34
Lu (ref_6) 2022; 34
Li (ref_10) 2021; 41
Zhang (ref_18) 2023; 11
Dong (ref_24) 2018; 45
Gao (ref_22) 2017; 53
Huang (ref_28) 2022; 2022
Wang (ref_9) 2020; 56
References_xml – volume: 28
  start-page: 8561
  year: 2023
  ident: ref_2
  article-title: AENCIC: A method to estimate the number of clusters based on image complexity to be used in fuzzy clustering algorithms for image segmentation
  publication-title: Soft Comput.
– volume: 24
  start-page: 1399
  year: 1988
  ident: ref_31
  article-title: A Global/Local Affinity Graph for Image Segmentation
  publication-title: Proc. ACM Conf. Comput. Sci.
– volume: 34
  start-page: 4
  year: 2022
  ident: ref_6
  article-title: A Self-Adaptive Grey DBSCAN Clustering Method
  publication-title: J. Grey Syst.
– volume: 27
  start-page: 3
  year: 2024
  ident: ref_1
  article-title: A novel two-stage omni-supervised face clustering algorithm
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-024-01298-5
– volume: 36
  start-page: 2713
  year: 2021
  ident: ref_16
  article-title: Wafer graph preprocessing based on optimized DBSCAN clustering algorithm
  publication-title: J. Control Decis.
– volume: 2022
  start-page: 3794844
  year: 2022
  ident: ref_28
  article-title: Diagnosis system of microscopic hyperspectral image of hepatobiliary tumors based on convolutional neural network
  publication-title: Comput. Intel. Neurosc.
– volume: 311
  start-page: 118682
  year: 2022
  ident: ref_29
  article-title: Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2022.118682
– volume: 28
  start-page: 100
  year: 1979
  ident: ref_26
  article-title: A K-Means clustering algorithm
  publication-title: JR Stat. Soc. Ser. C-Appl. Stat.
– volume: 78
  start-page: 19566
  year: 2022
  ident: ref_20
  article-title: An Efficient DBSCAN Optimized by Arithmetic Optimization Algorithm with Opposition-Based Learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04634-w
– volume: 102
  start-page: 107206
  year: 2020
  ident: ref_8
  article-title: A novel density-based clustering algorithm using the nearest neighbor graph
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107206
– volume: 34
  start-page: 165
  year: 2021
  ident: ref_17
  article-title: An unsupervised pattern recognition methodology based on factor analysis and a genetic-DBSCAN algorithm to infer operational conditions from strain measurements in structural applications
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.09.035
– volume: 45
  start-page: 5
  year: 2018
  ident: ref_24
  article-title: Kernel Density Estimation-Based K-CFSFDP Clustering Algorithm
  publication-title: Comput. Sci.
– volume: 2022
  start-page: 4699573
  year: 2022
  ident: ref_14
  article-title: Partition KMNN-DBSCAN Algorithm and Its Application in Extraction of Rail Damage Data
  publication-title: Math. Probl. Eng.
– volume: 29
  start-page: 929
  year: 2007
  ident: ref_30
  article-title: Toward Objective Evaluation of Image Segmentation Algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1046
– ident: ref_21
– volume: 44
  start-page: 4
  year: 2022
  ident: ref_7
  article-title: PSO-DBSCAN and SCGAN-Based Unknown Radar Signal Processing Method
  publication-title: Syst. Eng. Electron.
– volume: 53
  start-page: 8
  year: 2017
  ident: ref_22
  article-title: Density Ratio-Based Density Peak Clustering Algorithm
  publication-title: Comput. Eng. Appl.
– volume: 27
  start-page: 18585
  year: 2023
  ident: ref_3
  article-title: An improved DBSCAN algorithm for hazard recognition of obstacles in unmanned scenes
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-09319-x
– volume: 8
  start-page: e3
  year: 2018
  ident: ref_27
  article-title: Unsupervised Approach for Email Spam Filtering using Data Mining
  publication-title: EAI Endorsed Trans. Energy Web
– volume: 41
  start-page: 7589
  year: 2021
  ident: ref_10
  article-title: GNN-DBSCAN: A new density-based algorithm using grid and the nearest neighbor
  publication-title: J. Intell. Fuzzy Syst.
– volume: 11
  start-page: 93
  year: 2016
  ident: ref_15
  article-title: An improved adaptive and fast AF-DBSCAN clustering algorithm
  publication-title: CAAI Trans. Intell. Syst.
– volume: 55
  start-page: 1
  year: 2019
  ident: ref_13
  article-title: Research on the Method of Self-Adaptive Determination of DBSCAN Algorithm Parameters
  publication-title: Comput. Eng. Appl.
– volume: 96
  start-page: 226
  year: 1996
  ident: ref_5
  article-title: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
  publication-title: Proc. Int. Conf. Knowl. Discov. Data Min.
– volume: 56
  start-page: 45
  year: 2020
  ident: ref_9
  article-title: Improved Adaptive Parameter DBSCAN Clustering Algorithm
  publication-title: Comput. Eng. Appl.
– volume: 41
  start-page: 2939
  year: 2014
  ident: ref_11
  article-title: Algorithm to Determine ε-Distance Parameter in Density Based Clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.10.025
– volume: 54
  start-page: 6
  year: 2018
  ident: ref_25
  article-title: Density Peak Clustering Algorithm for Automatically Determining Cluster Centers
  publication-title: Comput. Eng. Appl.
– volume: 11
  start-page: 91861
  year: 2023
  ident: ref_18
  article-title: WOA-DBSCAN: Application of Whale Optimization Algorithm in DBSCAN Parameter Adaption
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3307412
– volume: 5
  start-page: 20
  year: 2023
  ident: ref_4
  article-title: Genetic-Based Keyword Matching DBSCAN in IoT for Discovering Adjacent Clusters
  publication-title: Comput. Model. Eng. Sci.
– volume: 30
  start-page: 1109
  year: 2018
  ident: ref_12
  article-title: RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2787640
– volume: 344
  start-page: 1492
  year: 2014
  ident: ref_23
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: ref_19
  doi: 10.1109/DSAA54385.2022.10032412
SSID ssj0065961
Score 2.3391411
Snippet The density-based spatial clustering of applications with noise (DBSCAN) is able to cluster arbitrarily structured datasets. However, the clustering result of...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 273
SubjectTerms Accuracy
Adaptability
Adaptive algorithms
adaptive parameter
Algorithms
Cluster analysis
Clustering
Data mining
Datasets
DBSACN algorithm
Density
Electronic data processing
Image segmentation
Innovations
Methods
Neighborhoods
Optimization
Optimization algorithms
Parameters
Search algorithms
sparrow optimization algorithm
Statistical methods
Synthetic data
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kL-rBb7HuKkEFT2WbNp_H7uqyCC4eXNhbSJpEhGf7eNuH7L_hX7yZpu_5HiJevBSahjTJzCQzmclvAN4pG1SgnpeROVsixHlphY-l77RruslRh_edP1-I80v26Ypf7aT6wpiwDA-cJ-6Y8qhY0iKkFjXrJLWoA0hsSLvaNxN6aaX0xpjKa7DgWtCMI9Qko_7YUlVxRG7Z230mkP4_l-L7cHfdL-3NT7tY7Ow1Z4_gwawkkjZ37jHcCf0TeLhJwEBmeXwKv9qe5FOB4MkHDEUfb8qTtC95gqmGE2uR08UaoRDSBkWGSNoddzXBI1hyMXy_DqRdfBtW6fVHLrQ9ab1d4kpIvlgM38Lf5oaHniSdEdtH9EaSw5V_N_AMLs8-fj09L-ckC2XXKDmWvOOcu9oJ3UQmkkR7hVaSizryhjmmKcLjSBe9QuVDSoeeO8udTJqKTc_ncNAPfXgBRIToZG0rGmvHQozOKxYC7bwUVVA0FPBmM_lmmbE0TLJBkEJmS6ECTpAs2woIfz0VJKYwM1OYfzFFAe-RqAaFdFzZzs53DVI_Ee7KtIrhOY5uqgKO9mom4er2P2_YwszCfW2aZDQr9AiLAt5uWeXvQ3r5P4Z0CPdqTD08xVoewcG4WodXSR8a3euJ9W8BBt8F7g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZQ9wAcWJ4isCALkDhl87Jj54SyC6sVEtUeqLScLDu2VytKUrUpaPkZ_GJmErdsQUiIS6WmrhMr45lvHv6GkFdSO-kyy2PPjI6R4jzWpfWxbSpTNEOiDs87f5iWpzP2_pyfh4DbKpRVgit-OSjp4Yg8sqMkmUx4ApY2WVj_5muIJAGYxi7WJQOXfa_kgMUnZG82Pas_Dank8N-RTqgA3z7RmUw5ErjsGKGBq_9PjXyb3Fy3C331Tc_n10zOyT5Rm4cdK00-H657c9h8_43H8f9Xc5fcCWiU1qP43CM3XHuf7G86PdCw8R-QH3VLx_CDs_Qt1rz3V_ERGEBLsacxyDA9nq-RcwEsIe08ra_lxSnGeum0u1w5Ws8vuiV8_TJe1C2trV6gyqVnGuvE8LbjxF1LAZzi_EgTSce66F8TPCSzk3cfj0_j0M0hbgop-pg3nHOTm7IqPINVplaiO2Z85XnBDKsy5OERxluJKEcIgylCzY0ASKTh8xGZtF3rHhNaOm9ErtPM54Y5742VzLmssaJMncxcRF5sXq9ajKQdCpwdlAG1lYGIHOGL3w5Anu3hQre8UGHbqox7yQDDiqrMWSMyjQhUoBhXJrcFj8hrFBuF2qBf6kaHQw3wnMirpWrJMGBUFWlEDnZGwi5udn_eCJ4KWmSlCvDOJaaey4i83Arj35f05J9GPSW3cmxiPFRtHpBJv1y7Z4CsevM8bJ-f3Ckcrg
  priority: 102
  providerName: Unpaywall
Title An Improved Density-Based Spatial Clustering of Applications with Noise Algorithm with an Adaptive Parameter Based on the Sparrow Search Algorithm
URI https://www.proquest.com/docview/3211846456
https://www.mdpi.com/1999-4893/18/5/273/pdf?version=1746541640
https://doaj.org/article/15f8450879624c71a123279b3c9b2d35
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SzaHNoemTuE0W0RZ6MrFsy5IPJXiTbEOhZildSE9GsqS0sLW3Gy8lf6O_uBo_NllKezFYFrKteWg0M_oG4K2QRhiqmW9jJX2EOPdloq2vy1RFZRuow_POn_Lkch5_vGJXO5APZ2EwrXLQia2i1nWJPvKTyO1UBIbhktPlTx-rRmF0dSihIfvSCvp9CzG2C3shImONYG9ykc8-D7o5YWlCO3yhyG32TyQVAUNEl61VqQXv_1tF78ODdbWUt7_kYnFvDZo-hke98UiyjtpPYMdUT-FgKMxAejl9Br-zinTeAqPJOaaoN7f-xK1XmmAJYsdy5GyxRogEt3CR2pLsXhiboGuW5PX3G0OyxbWbg-bbj65RViTTcokakswkpnXha7uB64o4WxLHR1RH0qUx3w3wHObTiy9nl35ffMEvI8Ebn5WMMRWqJI2sm_Yg0AJ3T8qmlkWxilOKsDlcWS3QKOFcYURPMsWdBSPd9QWMqroyh0ASYxUPZUBtqGJjrdIiNoaWmieBEdR48HqY_GLZYWwUbm-CFCo2FPJggmTZdEBY7LahXl0XvZQVlFkRO5OTp0kYl5xKNBg5cl2qQh0xD94hUQsU3mYlS9mfQXDfiTBYRSZi9O-kUeDB0VZPJ3Tl9uOBLYpe6G-KOxb14M2GVf79Sy__P8greBhiseE2u_IIRs1qbY6dBdSoMeyK6Ydxz9zj1o_g7ub5LPv6BwbOCTY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYEClg8xClqHnbsHCqU7UNb2q4q1Eq9BTu2C9KSLLtZVfs3-EH8Njx5bLtCcOslh8SaJJ7xPDzjbwDeC2mECTXzLVXSR4hzXyba-rpIVVw0iTo873wySobn9PMFu1iD3_1ZGCyr7HVio6h1VeAe-XbsIhWBabjk0-Snj12jMLvat9CQXWsFvdNAjHUHO47M4sqFcLOdwz3H7w9RdLB_tjv0uy4DfhELXvusYIypSCVpbB39INACwwRlU8tiqmgaIj4MV1YLtL6cK0xdSaa4M9XSXR3dO7BBY5q64G9jsD86_dLbgoSlSdjiGcVxGmzLUAQMEWRWrGDTLOBvk3APNuflRC6u5Hh8w-YdPIT7nbNKsla6HsGaKR_Dg74RBOn0whP4lZWk3Z0wmuxhSXy98AfOPmqCLY-diJPd8RwhGZyhJJUl2Y20OcGtYDKqvs8MycaXbs7rbz_am7IkmZYT1MjkVGIZGb62JVyVxPmuSB9RJElbNn1N4Cmc3wobnsF6WZXmOZDEWMUjGYQ2UtRYq7SgxoSF5klgRGg8eNtPfj5pMT1yFwshh_IlhzwYIFuWAxCGu7lRTS_zblXnIbOCOheXp0lECx5KdFA5SnmqIh0zDz4iU3NUFvVUFrI78-C-E2G38kxQ3E9K48CDrZWRbpEXq497scg7JTPLr5eEB--WovLvX3rxfyJvYHN4dnKcHx-Ojl7C3QgbHTeVnVuwXk_n5pXzvmr1uhNxAl9ve1X9AdtGP-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE58K4IFLB4iFO0eTl2DgilXZaWwqoHKvVm7NguSEuy7GZV7d_g5_TX1ZPHtisEt15ySKxJ4nnaM_4G4A2XhptQU98mSvoIce7LVFtfF5mKiyZRh-edv47T_ePk8wk92YDz_iwMllX2NrEx1LoqcI98ELuVCsc0XDqwXVnE0XD0Yfrbxw5SmGnt22m0InJolmdu-TZ_fzB0vH4bRaOP3_b2_a7DgF_EnNU-LSilKlJpFltHOwg0xyWCspmlcaKSLERsGKas5uh5GVOYtpJUMeempbs6ujfgJkMUdzylPvrUe4GUZmnYIhnFcRYMZMgDitgxa_6vaRPwtzO4A7cX5VQuz-RkcsXbje7D3S5MJXkrVw9gw5QP4V7fAoJ0FuER_MlL0u5LGE2GWAxfL_1d5xk1wWbHTrjJ3mSBYAzORZLKkvxKwpzgJjAZVz_nhuSTUzfD9Y9f7U1ZklzLKdpiciSxgAxf2xKuSuKiVqSP-JGkLZi-JPAYjq-FCduwWValeQIkNVaxSAahjVRirFWaJ8aEhWZpYHhoPHjVT76Ytmgewq2CkENixSEPdpEtqwEIwN3cqGanotNnEVLLExfcsiyNkoKFEkNThvKdqUjH1IN3yFSBZqKeyUJ2px3cdyLglsh5gjtJWRx4sLM20ql3sf64FwvRmZe5uFQGD16vROXfv_T0_0Rewi2nS-LLwfjwGWxF2OG4Kencgc16tjDPXdhVqxeNfBP4ft0KdQEOzz2B
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZQ9wAcWJ4isCALkDhl87Jj54SyC6sVEtUeqLScLDu2VytKUrUpaPkZ_GJmErdsQUiIS6WmrhMr45lvHv6GkFdSO-kyy2PPjI6R4jzWpfWxbSpTNEOiDs87f5iWpzP2_pyfh4DbKpRVgit-OSjp4Yg8sqMkmUx4ApY2WVj_5muIJAGYxi7WJQOXfa_kgMUnZG82Pas_Dank8N-RTqgA3z7RmUw5ErjsGKGBq_9PjXyb3Fy3C331Tc_n10zOyT5Rm4cdK00-H657c9h8_43H8f9Xc5fcCWiU1qP43CM3XHuf7G86PdCw8R-QH3VLx_CDs_Qt1rz3V_ERGEBLsacxyDA9nq-RcwEsIe08ra_lxSnGeum0u1w5Ws8vuiV8_TJe1C2trV6gyqVnGuvE8LbjxF1LAZzi_EgTSce66F8TPCSzk3cfj0_j0M0hbgop-pg3nHOTm7IqPINVplaiO2Z85XnBDKsy5OERxluJKEcIgylCzY0ASKTh8xGZtF3rHhNaOm9ErtPM54Y5742VzLmssaJMncxcRF5sXq9ajKQdCpwdlAG1lYGIHOGL3w5Anu3hQre8UGHbqox7yQDDiqrMWSMyjQhUoBhXJrcFj8hrFBuF2qBf6kaHQw3wnMirpWrJMGBUFWlEDnZGwi5udn_eCJ4KWmSlCvDOJaaey4i83Arj35f05J9GPSW3cmxiPFRtHpBJv1y7Z4CsevM8bJ-f3Ckcrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Density-Based+Spatial+Clustering+of+Applications+with+Noise+Algorithm+with+an+Adaptive+Parameter+Based+on+the+Sparrow+Search+Algorithm&rft.jtitle=Algorithms&rft.au=Huang+Zicheng&rft.au=Liang+Zuopeng&rft.au=Zhou%2C+Shibo&rft.au=Zhang+Shuntao&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=5&rft.spage=273&rft_id=info:doi/10.3390%2Fa18050273&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon