A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG
Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 62; no. 9; pp. 2269 - 2278 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.09.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2015.2422378 |
Cover
| Abstract | Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection. |
|---|---|
| AbstractList | This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG.
It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study.
Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute.
The performances achieved are comparable with those reported in the literature for fully automated algorithms.
These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection. This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG.GOALThis paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG.It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study.METHODSIt uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study.Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute.RESULTSAccuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute.The performances achieved are comparable with those reported in the literature for fully automated algorithms.CONCLUSIONThe performances achieved are comparable with those reported in the literature for fully automated algorithms.These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.SIGNIFICANCEThese results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection. Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection. |
| Author | Caicedo, Alexander Testelmans, Dries Varon, Carolina Buyse, Bertien Van Huffel, Sabine |
| Author_xml | – sequence: 1 givenname: Carolina surname: Varon fullname: Varon, Carolina email: carolina.varon@esat.kuleuven.be organization: Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics and iMinds Medical IT Department, KU Leuven, Leuven, Belgium – sequence: 2 givenname: Alexander surname: Caicedo fullname: Caicedo, Alexander organization: Katholieke Universiteit Leuven – sequence: 3 givenname: Dries surname: Testelmans fullname: Testelmans, Dries organization: University Hospitals Leuven – sequence: 4 givenname: Bertien surname: Buyse fullname: Buyse, Bertien organization: University Hospitals Leuven – sequence: 5 givenname: Sabine surname: Van Huffel fullname: Van Huffel, Sabine organization: Katholieke Universiteit Leuven |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25879836$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEFP3DAQha2KqiyUH4CQkI9csp2x48Q-pstCK21BFXC2TDIBoyTeOl6k_vtmtQsHDj2NRvrek953xA6GMBBjpwhzRDDf7r__Ws4FoJqLXAhZ6k9shkrpTCiJB2wGgDozwuSH7GgcX6Y313nxhR0KpUujZTFjvyt-E16p41X3FKJPzz1vQ-TpmXi1SaF3ydf8khLVyYeBh5bfdURrXq0Hcvwqhp7f-eGpo2xFruHLxfVX9rl13Ugn-3vMHq6W94sf2er2-ueiWmW11GXKciJJkKNGAYUz4HSrTeFQFgYNNo_KTAtrDW0jAYVsc9BGNaIAbKWAkuQxu9j1rmP4s6Ex2d6PNXWdGyhsRoslFAKU0WpCz_fo5rGnxq6j7138a980TEC5A-oYxjFSa2uf3HZxis53FsFuhdutcLsVbvfCpyR-SL6V_y9ztst4InrnS9C5MqX8BxnAh20 |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2019_05_002 crossref_primary_10_3390_bioengineering10040491 crossref_primary_10_3390_e23030267 crossref_primary_10_1109_TBME_2020_3028204 crossref_primary_10_3389_fphys_2019_01111 crossref_primary_10_1007_s10916_019_1485_0 crossref_primary_10_3390_s21206886 crossref_primary_10_3390_s23042220 crossref_primary_10_1016_j_cmpb_2020_105640 crossref_primary_10_3390_life12101509 crossref_primary_10_3390_s21186264 crossref_primary_10_1109_TIM_2024_3420355 crossref_primary_10_1109_RBME_2022_3220636 crossref_primary_10_1016_j_bspc_2020_102370 crossref_primary_10_1145_3616020 crossref_primary_10_1007_s00521_018_3455_8 crossref_primary_10_1142_S0219519416400042 crossref_primary_10_3390_app15010433 crossref_primary_10_2196_22911 crossref_primary_10_3390_s18020577 crossref_primary_10_1371_journal_pone_0250618 crossref_primary_10_1080_24725854_2023_2255887 crossref_primary_10_1142_S0218126621300087 crossref_primary_10_1080_09720502_2018_1496522 crossref_primary_10_3389_fnins_2024_1324933 crossref_primary_10_1038_s41598_020_62624_5 crossref_primary_10_1109_JBHI_2023_3237690 crossref_primary_10_1109_MIM_2022_9832823 crossref_primary_10_1515_bmt_2022_0067 crossref_primary_10_1080_03091902_2024_2336500 crossref_primary_10_1109_TIM_2023_3279880 crossref_primary_10_3389_fphys_2021_623781 crossref_primary_10_3390_s23218882 crossref_primary_10_1111_anec_12462 crossref_primary_10_1109_JSEN_2024_3367776 crossref_primary_10_1016_j_measurement_2021_110485 crossref_primary_10_3390_s20154323 crossref_primary_10_1088_2057_1976_2_3_035003 crossref_primary_10_1109_JSEN_2021_3128601 crossref_primary_10_1007_s11517_023_02980_2 crossref_primary_10_1016_j_engappai_2018_12_004 crossref_primary_10_1515_bmt_2021_0025 crossref_primary_10_1109_TBME_2020_3004730 crossref_primary_10_1007_s12652_018_0787_2 crossref_primary_10_3390_e23060698 crossref_primary_10_1016_j_compbiomed_2023_107908 crossref_primary_10_1109_JBHI_2023_3314698 crossref_primary_10_3390_diagnostics11122302 crossref_primary_10_7554_eLife_70092 crossref_primary_10_1016_j_compbiomed_2021_105124 crossref_primary_10_1007_s13534_017_0055_y crossref_primary_10_1088_1361_6579_ab57be crossref_primary_10_1007_s10586_024_04309_6 crossref_primary_10_1109_JBHI_2018_2817368 crossref_primary_10_1088_1361_6579_abdf3d crossref_primary_10_3390_e25030399 crossref_primary_10_1016_j_neucom_2016_12_062 crossref_primary_10_1088_1361_6579_ac184e crossref_primary_10_1007_s00034_022_02091_7 crossref_primary_10_1088_1361_6579_ac6b11 crossref_primary_10_3390_jcm9103359 crossref_primary_10_5664_jcsm_8462 crossref_primary_10_3390_s20154157 crossref_primary_10_1088_2057_1976_ab68e9 crossref_primary_10_1109_TBCAS_2021_3134043 crossref_primary_10_7759_cureus_28032 crossref_primary_10_3390_s23229158 crossref_primary_10_1109_TBCAS_2024_3435718 crossref_primary_10_1109_TIM_2024_3481551 crossref_primary_10_1007_s13246_023_01346_0 crossref_primary_10_1142_S021951941950026X crossref_primary_10_1155_2022_7242667 crossref_primary_10_1016_j_knosys_2022_108783 crossref_primary_10_1016_j_dsp_2020_102796 crossref_primary_10_1109_TIM_2022_3151167 crossref_primary_10_1016_j_neucom_2018_03_011 crossref_primary_10_3390_s23104692 crossref_primary_10_1109_TII_2022_3152809 crossref_primary_10_5958_0974_0155_2016_00004_8 crossref_primary_10_3390_e19090489 crossref_primary_10_1109_OJEMB_2024_3405666 crossref_primary_10_1109_JSEN_2017_2690805 crossref_primary_10_12677_BIPHY_2020_81001 crossref_primary_10_1016_j_knosys_2020_106591 crossref_primary_10_1109_JSEN_2020_3016115 crossref_primary_10_1111_epi_16990 crossref_primary_10_1007_s12652_018_0867_3 crossref_primary_10_1136_bmjopen_2019_030996 crossref_primary_10_1109_JBHI_2023_3278657 crossref_primary_10_1016_j_ins_2020_05_051 crossref_primary_10_1016_j_bspc_2021_102685 crossref_primary_10_1371_journal_pone_0194462 crossref_primary_10_1109_ACCESS_2022_3218308 crossref_primary_10_1109_JTEHM_2024_3419805 crossref_primary_10_1088_2057_1976_aafc80 crossref_primary_10_3390_s23115289 crossref_primary_10_1016_j_engappai_2023_106451 crossref_primary_10_1016_j_jsmc_2016_01_005 crossref_primary_10_3390_s21082777 crossref_primary_10_3390_s23094267 crossref_primary_10_1007_s10489_024_06013_9 crossref_primary_10_1007_s11265_021_01722_7 crossref_primary_10_3390_app11146622 crossref_primary_10_1088_1361_6579_ab9481 crossref_primary_10_1109_ACCESS_2017_2775180 crossref_primary_10_1016_j_bspc_2020_101927 crossref_primary_10_1016_j_bspc_2023_104581 crossref_primary_10_1109_JBHI_2018_2884644 crossref_primary_10_1109_MMUL_2022_3146141 crossref_primary_10_1016_j_measurement_2022_111787 crossref_primary_10_1109_JBHI_2017_2740120 crossref_primary_10_1007_s12553_021_00557_3 crossref_primary_10_1016_j_bspc_2022_104401 crossref_primary_10_1016_j_compbiomed_2017_10_004 crossref_primary_10_1007_s41782_021_00138_4 crossref_primary_10_1016_j_bspc_2021_103125 crossref_primary_10_3389_fphys_2016_00515 crossref_primary_10_1016_j_bspc_2021_103402 crossref_primary_10_7717_peerj_7731 crossref_primary_10_1016_j_bspc_2025_107609 crossref_primary_10_1142_S0219519421400078 crossref_primary_10_1007_s42979_020_00205_z crossref_primary_10_5664_jcsm_10532 crossref_primary_10_1007_s40846_021_00646_8 crossref_primary_10_1016_j_neucom_2024_129201 crossref_primary_10_1109_JBHI_2017_2775059 crossref_primary_10_1109_JBHI_2018_2842919 crossref_primary_10_1016_j_cmpb_2020_105626 crossref_primary_10_1016_j_compbiomed_2016_05_006 crossref_primary_10_3390_s19092133 crossref_primary_10_1016_j_neucom_2021_12_001 crossref_primary_10_1088_1361_6579_ac2a70 crossref_primary_10_1109_TIM_2024_3453337 crossref_primary_10_1007_s13246_018_0670_7 crossref_primary_10_1080_17434440_2019_1626233 crossref_primary_10_1109_TAI_2023_3329455 crossref_primary_10_1016_j_compbiomed_2016_08_012 crossref_primary_10_3390_jcm11010192 crossref_primary_10_1016_j_bspc_2023_104689 crossref_primary_10_1109_JBHI_2017_2650199 crossref_primary_10_1007_s41019_016_0011_3 crossref_primary_10_1109_TBME_2016_2607020 crossref_primary_10_1007_s13534_023_00297_5 crossref_primary_10_1109_LSENS_2018_2807584 crossref_primary_10_1080_10255842_2024_2359635 crossref_primary_10_1109_TIM_2021_3132072 crossref_primary_10_1038_s41598_021_95282_2 crossref_primary_10_1109_JSEN_2023_3262747 crossref_primary_10_1016_j_bspc_2021_102906 crossref_primary_10_1049_el_2016_3664 crossref_primary_10_1016_j_eswa_2023_120484 crossref_primary_10_1093_sleep_zsae282 crossref_primary_10_1145_3479432 crossref_primary_10_1016_j_cmpb_2021_106209 crossref_primary_10_1038_s41598_019_41500_x crossref_primary_10_1088_0967_3334_36_8_1691 crossref_primary_10_1371_journal_pone_0272167 crossref_primary_10_1016_j_compbiomed_2025_109769 crossref_primary_10_1016_j_eswa_2021_115950 crossref_primary_10_1007_s12530_022_09445_1 crossref_primary_10_1016_j_bspc_2016_05_009 crossref_primary_10_1016_j_bspc_2025_107631 crossref_primary_10_1109_TBME_2024_3378508 crossref_primary_10_1016_j_bspc_2023_105649 crossref_primary_10_1109_TBME_2020_2987759 crossref_primary_10_1109_TBME_2024_3375759 crossref_primary_10_3390_a17110527 crossref_primary_10_2196_26524 |
| Cites_doi | 10.1109/CIC.2000.898505 10.1109/TBME.2009.2018297 10.1063/1.2711282 10.1109/TITB.2010.2087386 10.1142/5089 10.1093/sleep/30.3.291 10.1093/aje/kws342 10.1109/EMBC.2012.6347398 10.1161/01.CIR.101.23.e215 10.1111/j.1469-8986.1993.tb01731.x 10.1093/sleep/22.5.667 10.1109/TNN.2004.837781 10.1007/BF02345072 10.1007/978-3-540-35488-8_13 10.1093/sleep/30.12.1756 10.1155/2007/32570 10.1088/0967-3334/25/4/015 10.1109/TBME.2012.2186448 10.1109/EMBC.2012.6346633 10.1161/01.CIR.93.5.1043 10.1109/TITB.2008.2004495 10.1109/TBME.2003.812203 10.1007/s11517-011-0853-9 10.1111/j.1475-097X.1996.tb00569.x |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TBME.2015.2422378 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 2278 |
| ExternalDocumentID | 25879836 10_1109_TBME_2015_2422378 7084597 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ICON: NXT_Sleep – fundername: Deep brain stimulation – fundername: European Union's Seventh Framework Program – fundername: DYSCO, “Dynamical systems, control and optimization,” – fundername: IWT grantid: TBM 080658-MRI – fundername: VLIR UOS programs – fundername: European Research Council funderid: 10.13039/501100000781 – fundername: Flemish Government: FWO grantid: G.0427.10N – fundername: ERASMUS EQR – fundername: Integrated EEG-fMRI grantid: G.0108.11 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN RIG 7X8 |
| ID | FETCH-LOGICAL-c387t-4ee3e04181206a90a8f896a1369191db59109c80fd30123f40895d2601f3207e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Thu Oct 02 11:21:10 EDT 2025 Wed Feb 19 02:09:48 EST 2025 Thu Apr 24 23:12:21 EDT 2025 Wed Oct 01 04:08:41 EDT 2025 Wed Aug 27 02:53:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | least-squares support vector machine (LS-SVM) Cardiorespiratory interactions sleep apnea ECG morphology |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-4ee3e04181206a90a8f896a1369191db59109c80fd30123f40895d2601f3207e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25879836 |
| PQID | 1706205985 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1706205985 pubmed_primary_25879836 crossref_citationtrail_10_1109_TBME_2015_2422378 crossref_primary_10_1109_TBME_2015_2422378 ieee_primary_7084597 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Sept. 2015-9-00 2015-Sep 20150901 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-Sept. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 (ref18) 0 ref12 ref15 ref11 suykens (ref27) 2002; 4 ref10 (ref3) 1999; 22 ref1 ref17 caicedo (ref22) 0 ref24 ref23 ref25 ref20 ref21 caples (ref2) 2007; 30 ref8 ref7 ref9 ref4 clifford (ref19) 2006 ref6 ref5 (ref14) 1996; 93 chen (ref26) 2006 thomas (ref16) 2007; 30 |
| References_xml | – ident: ref4 doi: 10.1109/CIC.2000.898505 – ident: ref10 doi: 10.1109/TBME.2009.2018297 – ident: ref24 doi: 10.1063/1.2711282 – ident: ref5 doi: 10.1109/TITB.2010.2087386 – volume: 4 year: 2002 ident: ref27 publication-title: Least Squares Support Vector Machines doi: 10.1142/5089 – volume: 30 start-page: 291 year: 2007 ident: ref2 article-title: Sleep-disordered breathing and cardiovascular risk publication-title: Sleep doi: 10.1093/sleep/30.3.291 – ident: ref1 doi: 10.1093/aje/kws342 – ident: ref23 doi: 10.1109/EMBC.2012.6347398 – ident: ref12 doi: 10.1161/01.CIR.101.23.e215 – ident: ref21 doi: 10.1111/j.1469-8986.1993.tb01731.x – volume: 22 start-page: 667 year: 1999 ident: ref3 article-title: Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research publication-title: Sleep doi: 10.1093/sleep/22.5.667 – ident: ref20 doi: 10.1109/TNN.2004.837781 – ident: ref8 doi: 10.1007/BF02345072 – start-page: 315 year: 2006 ident: ref26 article-title: Combining SVMs with various feature selection strategies publication-title: Feature Extraction doi: 10.1007/978-3-540-35488-8_13 – volume: 30 start-page: 1756 year: 2007 ident: ref16 article-title: Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method publication-title: Sleep doi: 10.1093/sleep/30.12.1756 – ident: ref9 doi: 10.1155/2007/32570 – ident: ref13 doi: 10.1088/0967-3334/25/4/015 – ident: ref11 doi: 10.1109/TBME.2012.2186448 – ident: ref15 doi: 10.1109/EMBC.2012.6346633 – volume: 93 start-page: 1043 year: 1996 ident: ref14 article-title: Heart rate variability: Standards of measurement, physiological interpretation and clinical use publication-title: Circulation doi: 10.1161/01.CIR.93.5.1043 – ident: ref17 doi: 10.1109/TITB.2008.2004495 – start-page: 1 year: 0 ident: ref22 article-title: Cardiopulmonary coupling in sleep apnea assessed by means of orthogonal subspace projection publication-title: Proc 5th Int Conf Adv Med Signal Inform Process – start-page: 113 year: 0 ident: ref18 article-title: Derivation of respiratory signals from multi-lead ECGs publication-title: Proc Comput Cardiol – ident: ref6 doi: 10.1109/TBME.2003.812203 – ident: ref7 doi: 10.1007/s11517-011-0853-9 – ident: ref25 doi: 10.1111/j.1475-097X.1996.tb00569.x – year: 2006 ident: ref19 publication-title: Advanced Methods and Tools for ECG Data Analysis |
| SSID | ssj0014846 |
| Score | 2.6026483 |
| Snippet | Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the... This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. It uses two novel features derived from the ECG, and two... This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG.GOALThis paper presents a methodology for the automatic... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2269 |
| SubjectTerms | Adult Cardiorespiratory interactions ECG Morphology Eigenvalues and eigenfunctions Electrocardiography Electrocardiography - methods Feature extraction Female Heart rate Humans LS-SVM Male Middle Aged Morphology Principal Component Analysis Signal Processing, Computer-Assisted Sleep apnea Sleep Apnea Syndromes - diagnosis Support Vector Machine |
| Title | A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG |
| URI | https://ieeexplore.ieee.org/document/7084597 https://www.ncbi.nlm.nih.gov/pubmed/25879836 https://www.proquest.com/docview/1706205985 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4UGihbHnISJwQ2Xptx7GPS9mlQtpKqK3UW5R1xlCxTVZLwoFfz9jJBoQAccvBnjxmRvM5M_MNwCshbEYuhOTijicUoYpk6WSZeBROGzIZEbk7F-f67Ep9uE6vd-DN0AuDiLH4DMfhMubyy9q14VfZScaNIgC8C7uZ0V2v1pAxUKZryuETcmBhVZ_BnHB7cvl2MQtFXOmY4pGQWZjRJ1KT2Y6Y-Wc4ivNV_g41Y8iZ78Ni-7BdpcmXcdssx-77bzyO__s2D-B-jz3ZtDOWh7CD1QHc-4WR8ADuLPpc-yF8nLLz-hvS-tWnenPTfL5lBHAZAUY2bZs6Ur2yd9jEWq6K1Z5drBDXbLqusGDzTX3LLkjmCpMwxpPNTt8_gqv57PL0LOkHMCROmqxJFKJErgII4LqwvDDeWF1MpLZ0zCuXKWEN6wz3pQzQzCtubFoGkjIvBc9QPoa9qq7wCTDttTbaGiytVbwklKCc5yTcp5krZDkCvtVD7np28jAkY5XHUwq3edBiHrSY91ocwethy7qj5vjX4sOggWFh__FH8HKr7Jz8KiRLigrr9mseaIUEYU-TjuCos4Jh89Z4jv8s9CncDbfuKtGewV6zafE5QZdm-SLa7A-IwOKc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcF4GLAx6PhlJJ4Q6VzHduzHMloKLJXQOmlvUeqcAdElVUl44K_HdtKAECDe8mCfnNyd7nPu7juA54zpxLkQOhc3NHIRKo-WJi4ii8xI5UyGBe7OdC5nF_zdpbjcgZd9LwwihuIzHPrHkMsvKtP4X2UnCVXcAeBrcF1wzkXbrdXnDLhq23LoyLkw07zLYY6oPlm8Sie-jEsMXURiceKn9DGhEt1SM_8MSGHCyt_BZgg609uQbo_b1pp8GTb1cmi-_8bk-L_vcwf2O_RJxq253IUdLA_g1i-chAdwI-2y7YfwYUzm1Td061cfq83n-tMVcRCXOMhIxk1dBbJX8hrrUM1VksqS8xXimozXJeZkuqmuyLmTucLID_Ikk9M39-BiOlmczqJuBENkYpXUEUeMkXIPA6jMNc2VVVrmo1hqd9ErlsKhDW0UtUXswZnlVGlReJoyGzOaYHwEu2VV4gMg0kqppFZYaM1p4XACN5Y64VYkJo-LAdCtHjLT8ZP7MRmrLNxTqM68FjOvxazT4gBe9FvWLTnHvxYfeg30C7uPP4BnW2VnzrN8uiQvsWq-Zp5YiDn0qcQA7rdW0G_eGs_xn4U-hZuzRXqWnb2dv38Ie_4YbV3aI9itNw0-dkCmXj4J9vsDlInl6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Algorithm+for+the+Automatic+Detection+of+Sleep+Apnea+From+Single-Lead+ECG&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Varon%2C+Carolina&rft.au=Caicedo%2C+Alexander&rft.au=Testelmans%2C+Dries&rft.au=Buyse%2C+Bertien&rft.date=2015-09-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=62&rft.issue=9&rft.spage=2269&rft_id=info:doi/10.1109%2FTBME.2015.2422378&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |