A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG

Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 62; no. 9; pp. 2269 - 2278
Main Authors Varon, Carolina, Caicedo, Alexander, Testelmans, Dries, Buyse, Bertien, Van Huffel, Sabine
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2015
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2015.2422378

Cover

Abstract Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.
AbstractList This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. The performances achieved are comparable with those reported in the literature for fully automated algorithms. These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.
This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG.GOALThis paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG.It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study.METHODSIt uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study.Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute.RESULTSAccuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute.The performances achieved are comparable with those reported in the literature for fully automated algorithms.CONCLUSIONThe performances achieved are comparable with those reported in the literature for fully automated algorithms.These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.SIGNIFICANCEThese results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.
Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.
Author Caicedo, Alexander
Testelmans, Dries
Varon, Carolina
Buyse, Bertien
Van Huffel, Sabine
Author_xml – sequence: 1
  givenname: Carolina
  surname: Varon
  fullname: Varon, Carolina
  email: carolina.varon@esat.kuleuven.be
  organization: Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics and iMinds Medical IT Department, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Alexander
  surname: Caicedo
  fullname: Caicedo, Alexander
  organization: Katholieke Universiteit Leuven
– sequence: 3
  givenname: Dries
  surname: Testelmans
  fullname: Testelmans, Dries
  organization: University Hospitals Leuven
– sequence: 4
  givenname: Bertien
  surname: Buyse
  fullname: Buyse, Bertien
  organization: University Hospitals Leuven
– sequence: 5
  givenname: Sabine
  surname: Van Huffel
  fullname: Van Huffel, Sabine
  organization: Katholieke Universiteit Leuven
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25879836$$D View this record in MEDLINE/PubMed
BookMark eNp9kEFP3DAQha2KqiyUH4CQkI9csp2x48Q-pstCK21BFXC2TDIBoyTeOl6k_vtmtQsHDj2NRvrek953xA6GMBBjpwhzRDDf7r__Ws4FoJqLXAhZ6k9shkrpTCiJB2wGgDozwuSH7GgcX6Y313nxhR0KpUujZTFjvyt-E16p41X3FKJPzz1vQ-TpmXi1SaF3ydf8khLVyYeBh5bfdURrXq0Hcvwqhp7f-eGpo2xFruHLxfVX9rl13Ugn-3vMHq6W94sf2er2-ueiWmW11GXKciJJkKNGAYUz4HSrTeFQFgYNNo_KTAtrDW0jAYVsc9BGNaIAbKWAkuQxu9j1rmP4s6Ex2d6PNXWdGyhsRoslFAKU0WpCz_fo5rGnxq6j7138a980TEC5A-oYxjFSa2uf3HZxis53FsFuhdutcLsVbvfCpyR-SL6V_y9ztst4InrnS9C5MqX8BxnAh20
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_cmpb_2019_05_002
crossref_primary_10_3390_bioengineering10040491
crossref_primary_10_3390_e23030267
crossref_primary_10_1109_TBME_2020_3028204
crossref_primary_10_3389_fphys_2019_01111
crossref_primary_10_1007_s10916_019_1485_0
crossref_primary_10_3390_s21206886
crossref_primary_10_3390_s23042220
crossref_primary_10_1016_j_cmpb_2020_105640
crossref_primary_10_3390_life12101509
crossref_primary_10_3390_s21186264
crossref_primary_10_1109_TIM_2024_3420355
crossref_primary_10_1109_RBME_2022_3220636
crossref_primary_10_1016_j_bspc_2020_102370
crossref_primary_10_1145_3616020
crossref_primary_10_1007_s00521_018_3455_8
crossref_primary_10_1142_S0219519416400042
crossref_primary_10_3390_app15010433
crossref_primary_10_2196_22911
crossref_primary_10_3390_s18020577
crossref_primary_10_1371_journal_pone_0250618
crossref_primary_10_1080_24725854_2023_2255887
crossref_primary_10_1142_S0218126621300087
crossref_primary_10_1080_09720502_2018_1496522
crossref_primary_10_3389_fnins_2024_1324933
crossref_primary_10_1038_s41598_020_62624_5
crossref_primary_10_1109_JBHI_2023_3237690
crossref_primary_10_1109_MIM_2022_9832823
crossref_primary_10_1515_bmt_2022_0067
crossref_primary_10_1080_03091902_2024_2336500
crossref_primary_10_1109_TIM_2023_3279880
crossref_primary_10_3389_fphys_2021_623781
crossref_primary_10_3390_s23218882
crossref_primary_10_1111_anec_12462
crossref_primary_10_1109_JSEN_2024_3367776
crossref_primary_10_1016_j_measurement_2021_110485
crossref_primary_10_3390_s20154323
crossref_primary_10_1088_2057_1976_2_3_035003
crossref_primary_10_1109_JSEN_2021_3128601
crossref_primary_10_1007_s11517_023_02980_2
crossref_primary_10_1016_j_engappai_2018_12_004
crossref_primary_10_1515_bmt_2021_0025
crossref_primary_10_1109_TBME_2020_3004730
crossref_primary_10_1007_s12652_018_0787_2
crossref_primary_10_3390_e23060698
crossref_primary_10_1016_j_compbiomed_2023_107908
crossref_primary_10_1109_JBHI_2023_3314698
crossref_primary_10_3390_diagnostics11122302
crossref_primary_10_7554_eLife_70092
crossref_primary_10_1016_j_compbiomed_2021_105124
crossref_primary_10_1007_s13534_017_0055_y
crossref_primary_10_1088_1361_6579_ab57be
crossref_primary_10_1007_s10586_024_04309_6
crossref_primary_10_1109_JBHI_2018_2817368
crossref_primary_10_1088_1361_6579_abdf3d
crossref_primary_10_3390_e25030399
crossref_primary_10_1016_j_neucom_2016_12_062
crossref_primary_10_1088_1361_6579_ac184e
crossref_primary_10_1007_s00034_022_02091_7
crossref_primary_10_1088_1361_6579_ac6b11
crossref_primary_10_3390_jcm9103359
crossref_primary_10_5664_jcsm_8462
crossref_primary_10_3390_s20154157
crossref_primary_10_1088_2057_1976_ab68e9
crossref_primary_10_1109_TBCAS_2021_3134043
crossref_primary_10_7759_cureus_28032
crossref_primary_10_3390_s23229158
crossref_primary_10_1109_TBCAS_2024_3435718
crossref_primary_10_1109_TIM_2024_3481551
crossref_primary_10_1007_s13246_023_01346_0
crossref_primary_10_1142_S021951941950026X
crossref_primary_10_1155_2022_7242667
crossref_primary_10_1016_j_knosys_2022_108783
crossref_primary_10_1016_j_dsp_2020_102796
crossref_primary_10_1109_TIM_2022_3151167
crossref_primary_10_1016_j_neucom_2018_03_011
crossref_primary_10_3390_s23104692
crossref_primary_10_1109_TII_2022_3152809
crossref_primary_10_5958_0974_0155_2016_00004_8
crossref_primary_10_3390_e19090489
crossref_primary_10_1109_OJEMB_2024_3405666
crossref_primary_10_1109_JSEN_2017_2690805
crossref_primary_10_12677_BIPHY_2020_81001
crossref_primary_10_1016_j_knosys_2020_106591
crossref_primary_10_1109_JSEN_2020_3016115
crossref_primary_10_1111_epi_16990
crossref_primary_10_1007_s12652_018_0867_3
crossref_primary_10_1136_bmjopen_2019_030996
crossref_primary_10_1109_JBHI_2023_3278657
crossref_primary_10_1016_j_ins_2020_05_051
crossref_primary_10_1016_j_bspc_2021_102685
crossref_primary_10_1371_journal_pone_0194462
crossref_primary_10_1109_ACCESS_2022_3218308
crossref_primary_10_1109_JTEHM_2024_3419805
crossref_primary_10_1088_2057_1976_aafc80
crossref_primary_10_3390_s23115289
crossref_primary_10_1016_j_engappai_2023_106451
crossref_primary_10_1016_j_jsmc_2016_01_005
crossref_primary_10_3390_s21082777
crossref_primary_10_3390_s23094267
crossref_primary_10_1007_s10489_024_06013_9
crossref_primary_10_1007_s11265_021_01722_7
crossref_primary_10_3390_app11146622
crossref_primary_10_1088_1361_6579_ab9481
crossref_primary_10_1109_ACCESS_2017_2775180
crossref_primary_10_1016_j_bspc_2020_101927
crossref_primary_10_1016_j_bspc_2023_104581
crossref_primary_10_1109_JBHI_2018_2884644
crossref_primary_10_1109_MMUL_2022_3146141
crossref_primary_10_1016_j_measurement_2022_111787
crossref_primary_10_1109_JBHI_2017_2740120
crossref_primary_10_1007_s12553_021_00557_3
crossref_primary_10_1016_j_bspc_2022_104401
crossref_primary_10_1016_j_compbiomed_2017_10_004
crossref_primary_10_1007_s41782_021_00138_4
crossref_primary_10_1016_j_bspc_2021_103125
crossref_primary_10_3389_fphys_2016_00515
crossref_primary_10_1016_j_bspc_2021_103402
crossref_primary_10_7717_peerj_7731
crossref_primary_10_1016_j_bspc_2025_107609
crossref_primary_10_1142_S0219519421400078
crossref_primary_10_1007_s42979_020_00205_z
crossref_primary_10_5664_jcsm_10532
crossref_primary_10_1007_s40846_021_00646_8
crossref_primary_10_1016_j_neucom_2024_129201
crossref_primary_10_1109_JBHI_2017_2775059
crossref_primary_10_1109_JBHI_2018_2842919
crossref_primary_10_1016_j_cmpb_2020_105626
crossref_primary_10_1016_j_compbiomed_2016_05_006
crossref_primary_10_3390_s19092133
crossref_primary_10_1016_j_neucom_2021_12_001
crossref_primary_10_1088_1361_6579_ac2a70
crossref_primary_10_1109_TIM_2024_3453337
crossref_primary_10_1007_s13246_018_0670_7
crossref_primary_10_1080_17434440_2019_1626233
crossref_primary_10_1109_TAI_2023_3329455
crossref_primary_10_1016_j_compbiomed_2016_08_012
crossref_primary_10_3390_jcm11010192
crossref_primary_10_1016_j_bspc_2023_104689
crossref_primary_10_1109_JBHI_2017_2650199
crossref_primary_10_1007_s41019_016_0011_3
crossref_primary_10_1109_TBME_2016_2607020
crossref_primary_10_1007_s13534_023_00297_5
crossref_primary_10_1109_LSENS_2018_2807584
crossref_primary_10_1080_10255842_2024_2359635
crossref_primary_10_1109_TIM_2021_3132072
crossref_primary_10_1038_s41598_021_95282_2
crossref_primary_10_1109_JSEN_2023_3262747
crossref_primary_10_1016_j_bspc_2021_102906
crossref_primary_10_1049_el_2016_3664
crossref_primary_10_1016_j_eswa_2023_120484
crossref_primary_10_1093_sleep_zsae282
crossref_primary_10_1145_3479432
crossref_primary_10_1016_j_cmpb_2021_106209
crossref_primary_10_1038_s41598_019_41500_x
crossref_primary_10_1088_0967_3334_36_8_1691
crossref_primary_10_1371_journal_pone_0272167
crossref_primary_10_1016_j_compbiomed_2025_109769
crossref_primary_10_1016_j_eswa_2021_115950
crossref_primary_10_1007_s12530_022_09445_1
crossref_primary_10_1016_j_bspc_2016_05_009
crossref_primary_10_1016_j_bspc_2025_107631
crossref_primary_10_1109_TBME_2024_3378508
crossref_primary_10_1016_j_bspc_2023_105649
crossref_primary_10_1109_TBME_2020_2987759
crossref_primary_10_1109_TBME_2024_3375759
crossref_primary_10_3390_a17110527
crossref_primary_10_2196_26524
Cites_doi 10.1109/CIC.2000.898505
10.1109/TBME.2009.2018297
10.1063/1.2711282
10.1109/TITB.2010.2087386
10.1142/5089
10.1093/sleep/30.3.291
10.1093/aje/kws342
10.1109/EMBC.2012.6347398
10.1161/01.CIR.101.23.e215
10.1111/j.1469-8986.1993.tb01731.x
10.1093/sleep/22.5.667
10.1109/TNN.2004.837781
10.1007/BF02345072
10.1007/978-3-540-35488-8_13
10.1093/sleep/30.12.1756
10.1155/2007/32570
10.1088/0967-3334/25/4/015
10.1109/TBME.2012.2186448
10.1109/EMBC.2012.6346633
10.1161/01.CIR.93.5.1043
10.1109/TITB.2008.2004495
10.1109/TBME.2003.812203
10.1007/s11517-011-0853-9
10.1111/j.1475-097X.1996.tb00569.x
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBME.2015.2422378
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2278
ExternalDocumentID 25879836
10_1109_TBME_2015_2422378
7084597
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ICON: NXT_Sleep
– fundername: Deep brain stimulation
– fundername: European Union's Seventh Framework Program
– fundername: DYSCO, “Dynamical systems, control and optimization,”
– fundername: IWT
  grantid: TBM 080658-MRI
– fundername: VLIR UOS programs
– fundername: European Research Council
  funderid: 10.13039/501100000781
– fundername: Flemish Government: FWO
  grantid: G.0427.10N
– fundername: ERASMUS EQR
– fundername: Integrated EEG-fMRI
  grantid: G.0108.11
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7X8
ID FETCH-LOGICAL-c387t-4ee3e04181206a90a8f896a1369191db59109c80fd30123f40895d2601f3207e3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Oct 02 11:21:10 EDT 2025
Wed Feb 19 02:09:48 EST 2025
Thu Apr 24 23:12:21 EDT 2025
Wed Oct 01 04:08:41 EDT 2025
Wed Aug 27 02:53:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords least-squares support vector machine (LS-SVM)
Cardiorespiratory interactions
sleep apnea
ECG morphology
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-4ee3e04181206a90a8f896a1369191db59109c80fd30123f40895d2601f3207e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25879836
PQID 1706205985
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1706205985
pubmed_primary_25879836
crossref_citationtrail_10_1109_TBME_2015_2422378
crossref_primary_10_1109_TBME_2015_2422378
ieee_primary_7084597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Sept.
2015-9-00
2015-Sep
20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
(ref18) 0
ref12
ref15
ref11
suykens (ref27) 2002; 4
ref10
(ref3) 1999; 22
ref1
ref17
caicedo (ref22) 0
ref24
ref23
ref25
ref20
ref21
caples (ref2) 2007; 30
ref8
ref7
ref9
ref4
clifford (ref19) 2006
ref6
ref5
(ref14) 1996; 93
chen (ref26) 2006
thomas (ref16) 2007; 30
References_xml – ident: ref4
  doi: 10.1109/CIC.2000.898505
– ident: ref10
  doi: 10.1109/TBME.2009.2018297
– ident: ref24
  doi: 10.1063/1.2711282
– ident: ref5
  doi: 10.1109/TITB.2010.2087386
– volume: 4
  year: 2002
  ident: ref27
  publication-title: Least Squares Support Vector Machines
  doi: 10.1142/5089
– volume: 30
  start-page: 291
  year: 2007
  ident: ref2
  article-title: Sleep-disordered breathing and cardiovascular risk
  publication-title: Sleep
  doi: 10.1093/sleep/30.3.291
– ident: ref1
  doi: 10.1093/aje/kws342
– ident: ref23
  doi: 10.1109/EMBC.2012.6347398
– ident: ref12
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref21
  doi: 10.1111/j.1469-8986.1993.tb01731.x
– volume: 22
  start-page: 667
  year: 1999
  ident: ref3
  article-title: Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research
  publication-title: Sleep
  doi: 10.1093/sleep/22.5.667
– ident: ref20
  doi: 10.1109/TNN.2004.837781
– ident: ref8
  doi: 10.1007/BF02345072
– start-page: 315
  year: 2006
  ident: ref26
  article-title: Combining SVMs with various feature selection strategies
  publication-title: Feature Extraction
  doi: 10.1007/978-3-540-35488-8_13
– volume: 30
  start-page: 1756
  year: 2007
  ident: ref16
  article-title: Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method
  publication-title: Sleep
  doi: 10.1093/sleep/30.12.1756
– ident: ref9
  doi: 10.1155/2007/32570
– ident: ref13
  doi: 10.1088/0967-3334/25/4/015
– ident: ref11
  doi: 10.1109/TBME.2012.2186448
– ident: ref15
  doi: 10.1109/EMBC.2012.6346633
– volume: 93
  start-page: 1043
  year: 1996
  ident: ref14
  article-title: Heart rate variability: Standards of measurement, physiological interpretation and clinical use
  publication-title: Circulation
  doi: 10.1161/01.CIR.93.5.1043
– ident: ref17
  doi: 10.1109/TITB.2008.2004495
– start-page: 1
  year: 0
  ident: ref22
  article-title: Cardiopulmonary coupling in sleep apnea assessed by means of orthogonal subspace projection
  publication-title: Proc 5th Int Conf Adv Med Signal Inform Process
– start-page: 113
  year: 0
  ident: ref18
  article-title: Derivation of respiratory signals from multi-lead ECGs
  publication-title: Proc Comput Cardiol
– ident: ref6
  doi: 10.1109/TBME.2003.812203
– ident: ref7
  doi: 10.1007/s11517-011-0853-9
– ident: ref25
  doi: 10.1111/j.1475-097X.1996.tb00569.x
– year: 2006
  ident: ref19
  publication-title: Advanced Methods and Tools for ECG Data Analysis
SSID ssj0014846
Score 2.6026483
Snippet Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the...
This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. It uses two novel features derived from the ECG, and two...
This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG.GOALThis paper presents a methodology for the automatic...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2269
SubjectTerms Adult
Cardiorespiratory interactions
ECG Morphology
Eigenvalues and eigenfunctions
Electrocardiography
Electrocardiography - methods
Feature extraction
Female
Heart rate
Humans
LS-SVM
Male
Middle Aged
Morphology
Principal Component Analysis
Signal Processing, Computer-Assisted
Sleep apnea
Sleep Apnea Syndromes - diagnosis
Support Vector Machine
Title A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG
URI https://ieeexplore.ieee.org/document/7084597
https://www.ncbi.nlm.nih.gov/pubmed/25879836
https://www.proquest.com/docview/1706205985
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4UGihbHnISJwQ2Xptx7GPS9mlQtpKqK3UW5R1xlCxTVZLwoFfz9jJBoQAccvBnjxmRvM5M_MNwCshbEYuhOTijicUoYpk6WSZeBROGzIZEbk7F-f67Ep9uE6vd-DN0AuDiLH4DMfhMubyy9q14VfZScaNIgC8C7uZ0V2v1pAxUKZryuETcmBhVZ_BnHB7cvl2MQtFXOmY4pGQWZjRJ1KT2Y6Y-Wc4ivNV_g41Y8iZ78Ni-7BdpcmXcdssx-77bzyO__s2D-B-jz3ZtDOWh7CD1QHc-4WR8ADuLPpc-yF8nLLz-hvS-tWnenPTfL5lBHAZAUY2bZs6Ur2yd9jEWq6K1Z5drBDXbLqusGDzTX3LLkjmCpMwxpPNTt8_gqv57PL0LOkHMCROmqxJFKJErgII4LqwvDDeWF1MpLZ0zCuXKWEN6wz3pQzQzCtubFoGkjIvBc9QPoa9qq7wCTDttTbaGiytVbwklKCc5yTcp5krZDkCvtVD7np28jAkY5XHUwq3edBiHrSY91ocwethy7qj5vjX4sOggWFh__FH8HKr7Jz8KiRLigrr9mseaIUEYU-TjuCos4Jh89Z4jv8s9CncDbfuKtGewV6zafE5QZdm-SLa7A-IwOKc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcF4GLAx6PhlJJ4Q6VzHduzHMloKLJXQOmlvUeqcAdElVUl44K_HdtKAECDe8mCfnNyd7nPu7juA54zpxLkQOhc3NHIRKo-WJi4ii8xI5UyGBe7OdC5nF_zdpbjcgZd9LwwihuIzHPrHkMsvKtP4X2UnCVXcAeBrcF1wzkXbrdXnDLhq23LoyLkw07zLYY6oPlm8Sie-jEsMXURiceKn9DGhEt1SM_8MSGHCyt_BZgg609uQbo_b1pp8GTb1cmi-_8bk-L_vcwf2O_RJxq253IUdLA_g1i-chAdwI-2y7YfwYUzm1Td061cfq83n-tMVcRCXOMhIxk1dBbJX8hrrUM1VksqS8xXimozXJeZkuqmuyLmTucLID_Ikk9M39-BiOlmczqJuBENkYpXUEUeMkXIPA6jMNc2VVVrmo1hqd9ErlsKhDW0UtUXswZnlVGlReJoyGzOaYHwEu2VV4gMg0kqppFZYaM1p4XACN5Y64VYkJo-LAdCtHjLT8ZP7MRmrLNxTqM68FjOvxazT4gBe9FvWLTnHvxYfeg30C7uPP4BnW2VnzrN8uiQvsWq-Zp5YiDn0qcQA7rdW0G_eGs_xn4U-hZuzRXqWnb2dv38Ie_4YbV3aI9itNw0-dkCmXj4J9vsDlInl6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Algorithm+for+the+Automatic+Detection+of+Sleep+Apnea+From+Single-Lead+ECG&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Varon%2C+Carolina&rft.au=Caicedo%2C+Alexander&rft.au=Testelmans%2C+Dries&rft.au=Buyse%2C+Bertien&rft.date=2015-09-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=62&rft.issue=9&rft.spage=2269&rft_id=info:doi/10.1109%2FTBME.2015.2422378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon