Overcoming the strength-ductility trade-off of an aluminum matrix composite by novel core-shell structured reinforcing particulates
The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an effective strategy to surmount the inverse relationship between strength and ductility of an A356 Al alloy based PRMMC by in situ synthesizing no...
Saved in:
Published in | Composites. Part B, Engineering Vol. 206; p. 108541 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-8368 1879-1069 |
DOI | 10.1016/j.compositesb.2020.108541 |
Cover
Abstract | The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an effective strategy to surmount the inverse relationship between strength and ductility of an A356 Al alloy based PRMMC by in situ synthesizing novel reinforcing particulates with a special core-shell (CS) structure. Such structure features a Ti core inside a dual-layer shell: the inner layer has a nano-grained (~130 nm) heterogeneous structure, and the outer layer possesses a composite structure composed of a (Al,Si)3Ti substrate with dense dispersion of nanoparticles. As a result, the obtained composite reinforced with such CS reinforcing particulates (CS composite) achieves an unprecedented tensile elongation to failure of 8.3 ± 0.8% and a uniform elongation of 7.1 ± 0.6%, which nearly triples that of the same alloy based composite reinforced with monolithic (Al,Si)3Ti particulates (monolithic composite) and equivalent to corresponding matrix alloy while maintaining high ultimate tensile strength of 373 ± 8.8 MPa and yield strength of 268 ± 7.9 MPa, equivalent to monolithic composite simultaneously. This special architecture of shell renders itself a high capability of stress bearing and good toughness, and the nanoparticles in outer layer further slower crack development, which significantly postpone crack formation in shell. Subsequent propagation of cracks in Ti core is also constrained remarkably by the transformation-induced plasticity effect occurred ahead of crack tips resulting from stress-induced phase transformation of hcp-Ti into fcc-Ti. These factors lead to highest work hardening rate that undergoes a long plateau and thus overcome the strength-ductility trade-off of A356 alloy based PRMMC.
[Display omitted] |
---|---|
AbstractList | The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an effective strategy to surmount the inverse relationship between strength and ductility of an A356 Al alloy based PRMMC by in situ synthesizing novel reinforcing particulates with a special core-shell (CS) structure. Such structure features a Ti core inside a dual-layer shell: the inner layer has a nano-grained (~130 nm) heterogeneous structure, and the outer layer possesses a composite structure composed of a (Al,Si)3Ti substrate with dense dispersion of nanoparticles. As a result, the obtained composite reinforced with such CS reinforcing particulates (CS composite) achieves an unprecedented tensile elongation to failure of 8.3 ± 0.8% and a uniform elongation of 7.1 ± 0.6%, which nearly triples that of the same alloy based composite reinforced with monolithic (Al,Si)3Ti particulates (monolithic composite) and equivalent to corresponding matrix alloy while maintaining high ultimate tensile strength of 373 ± 8.8 MPa and yield strength of 268 ± 7.9 MPa, equivalent to monolithic composite simultaneously. This special architecture of shell renders itself a high capability of stress bearing and good toughness, and the nanoparticles in outer layer further slower crack development, which significantly postpone crack formation in shell. Subsequent propagation of cracks in Ti core is also constrained remarkably by the transformation-induced plasticity effect occurred ahead of crack tips resulting from stress-induced phase transformation of hcp-Ti into fcc-Ti. These factors lead to highest work hardening rate that undergoes a long plateau and thus overcome the strength-ductility trade-off of A356 alloy based PRMMC.
[Display omitted] |
ArticleNumber | 108541 |
Author | Zhang, Xuezheng Chen, Tijun Ma, Siming Ma, Jinyuan Qin, He |
Author_xml | – sequence: 1 givenname: Xuezheng surname: Zhang fullname: Zhang, Xuezheng organization: State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, PR China – sequence: 2 givenname: Tijun surname: Chen fullname: Chen, Tijun email: chentj@lut.cn, chentj1971@126.com organization: State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, PR China – sequence: 3 givenname: Siming surname: Ma fullname: Ma, Siming organization: School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN 47906, USA – sequence: 4 givenname: He surname: Qin fullname: Qin, He organization: State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, PR China – sequence: 5 givenname: Jinyuan surname: Ma fullname: Ma, Jinyuan organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China |
BookMark | eNqNkM1KAzEQgIMo2FbfIT7A1k3S7W5OIsU_KPSi55BNJm3KNilJttizL26WioinnmYYZr6Z-cbo0nkHCN2RckpKMr_fTpXf7X20CWI7pSUd6k01IxdoRJqaF6Sc88ucs4oXDZs312gc47Ysy1nF6Ah9rQ4QMsK6NU4bwDEFcOu0KXSvku1sOuIUpIbCG4O9wdJh2fW5vd_hnUzBfuLfA3B7xM4foMulAEXcQNcNwEzqA2gcwDrjgxp27WVIVvWdzHffoCsjuwi3P3GCPp6f3hevxXL18rZ4XBaKNXUqmGRM1nwGNTe6ohWRXAG0krDG8BmlDW-hZpxK1YLmtJHAiMp5rWltmK7YBPETVwUfYwAj9sHuZDgKUorBptiKPzbFYFOcbObZh3-zyiaZrHdZj-3OIixOBMgvHiwEEZUFp0DbACoJ7e0ZlG-pv6Ep |
CitedBy_id | crossref_primary_10_3390_ceramics4040042 crossref_primary_10_3390_met11091457 crossref_primary_10_1016_j_compositesb_2021_108700 crossref_primary_10_1016_j_compositesa_2023_107657 crossref_primary_10_1016_j_matdes_2023_111818 crossref_primary_10_1557_s43578_023_01128_0 crossref_primary_10_1016_j_compositesb_2024_111479 crossref_primary_10_1007_s12598_023_02308_x crossref_primary_10_1016_j_compositesa_2022_107097 crossref_primary_10_1002_adem_202401392 crossref_primary_10_1016_j_ceramint_2024_10_128 crossref_primary_10_1007_s00170_024_13324_1 crossref_primary_10_1016_j_compositesb_2023_111160 crossref_primary_10_1007_s11665_022_07069_9 crossref_primary_10_15377_2409_983X_2024_11_3 crossref_primary_10_1016_j_jmrt_2021_10_080 crossref_primary_10_1016_j_compositesb_2021_109507 crossref_primary_10_1016_j_matdes_2022_111252 crossref_primary_10_1016_j_matchemphys_2024_129065 crossref_primary_10_1007_s11998_021_00465_1 crossref_primary_10_1016_j_ijplas_2024_104216 crossref_primary_10_1016_j_msea_2024_146355 crossref_primary_10_1007_s40962_022_00863_0 crossref_primary_10_2139_ssrn_4093967 crossref_primary_10_1016_j_compositesb_2021_108678 crossref_primary_10_1016_j_compositesb_2021_108996 crossref_primary_10_1016_j_jallcom_2022_166999 crossref_primary_10_1016_j_jmst_2024_12_103 crossref_primary_10_1016_j_compositesa_2024_108174 crossref_primary_10_1016_j_jmrt_2023_10_241 crossref_primary_10_1007_s10853_023_08752_5 crossref_primary_10_1007_s12540_022_01189_6 crossref_primary_10_1007_s42114_024_01057_4 crossref_primary_10_1016_j_compositesb_2023_110583 crossref_primary_10_1007_s10853_023_09300_x crossref_primary_10_1016_j_msea_2024_147734 crossref_primary_10_3390_ma15072629 crossref_primary_10_1016_j_actamat_2024_120365 crossref_primary_10_1007_s11661_022_06842_8 crossref_primary_10_1016_j_compositesb_2021_108843 crossref_primary_10_1016_j_msea_2023_145518 crossref_primary_10_1007_s11665_023_07818_4 crossref_primary_10_1016_j_compositesb_2022_110243 crossref_primary_10_1016_j_jallcom_2022_163613 crossref_primary_10_1016_j_jmst_2022_06_026 crossref_primary_10_1016_j_matchemphys_2022_126684 crossref_primary_10_1016_j_jmrt_2023_05_204 crossref_primary_10_1016_j_jallcom_2022_167456 crossref_primary_10_1016_j_jmst_2023_02_052 crossref_primary_10_1016_j_compositesb_2021_109331 crossref_primary_10_1016_j_ceramint_2022_10_305 crossref_primary_10_1007_s10853_024_09538_z crossref_primary_10_1557_s43578_021_00389_x crossref_primary_10_3390_ma16062234 crossref_primary_10_1016_j_compositesb_2021_109251 crossref_primary_10_1016_j_matpr_2022_11_095 crossref_primary_10_3390_ma15041288 crossref_primary_10_1007_s10853_024_10053_4 crossref_primary_10_1149_2162_8777_ac8bf9 crossref_primary_10_1016_j_jallcom_2021_162757 crossref_primary_10_1016_j_compositesb_2021_108912 crossref_primary_10_1016_j_msea_2022_144273 crossref_primary_10_1016_j_compositesb_2022_109689 crossref_primary_10_1063_5_0227317 crossref_primary_10_1016_j_compositesb_2021_109266 crossref_primary_10_1016_j_vacuum_2021_110611 crossref_primary_10_1016_j_compositesb_2022_109882 crossref_primary_10_1016_j_vacuum_2021_110574 crossref_primary_10_1016_j_matchar_2024_114381 crossref_primary_10_1016_j_msea_2024_146500 crossref_primary_10_1016_j_jmatprotec_2024_118304 crossref_primary_10_1016_j_msea_2022_144003 |
Cites_doi | 10.1007/s11661-997-0237-9 10.1002/adma.200600310 10.1126/sciadv.aat8712 10.1002/adma.200800214 10.1007/BF02648537 10.1007/BF02661312 10.1016/j.msea.2018.02.065 10.1016/j.compositesb.2020.107794 10.1016/S0921-5093(97)00650-3 10.1002/adma.200501232 10.1016/j.msea.2015.02.002 10.1016/j.jallcom.2020.154872 10.1016/j.compositesb.2020.108223 10.1016/j.compositesb.2019.01.080 10.1016/S0167-6636(98)00027-1 10.1016/j.msea.2003.09.097 10.1038/srep24370 10.1007/BF00544448 10.1016/j.matdes.2020.108685 10.1016/j.jallcom.2017.03.085 10.1063/1.1530718 10.1126/science.aan0177 10.1016/j.compositesb.2017.12.005 10.1016/j.msea.2018.06.009 10.1007/s10853-017-1713-2 10.1016/j.msea.2017.09.080 10.1016/j.actamat.2018.03.053 10.1038/nature01133 10.1016/j.mattod.2017.02.003 10.1016/j.actamat.2018.05.005 10.1016/j.rinma.2020.100103 10.1016/j.msea.2017.02.049 10.1016/j.mattod.2020.04.005 10.1016/j.compositesb.2018.04.043 10.1038/srep11728 10.1038/s41586-020-2361-2 10.1016/j.matchar.2017.12.031 10.1016/j.scriptamat.2016.03.018 10.1179/1743284714Y.0000000644 10.1007/s11661-999-0084-y 10.3390/ma12121967 10.1016/j.msea.2017.08.051 10.1063/1.4767062 10.3139/146.101702 10.1016/j.compositesb.2018.11.034 10.1073/pnas.1517193112 10.1016/j.scriptamat.2013.05.038 10.1103/PhysRevB.65.092106 10.1080/01418619108205577 10.1073/pnas.1914615117 10.1063/1.2870014 10.1016/j.commatsci.2014.05.018 10.1016/j.actamat.2020.03.022 10.1016/j.msea.2017.11.005 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compositesb.2020.108541 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1069 |
ExternalDocumentID | 10_1016_j_compositesb_2020_108541 S1359836820335885 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K ZMT ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AI. AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB HZ~ R2- SEW VH1 ~HD |
ID | FETCH-LOGICAL-c387t-3a33a794e79fd5251a9ceeba138f942289be7392acbed928ae31ccbe7d27f3d53 |
IEDL.DBID | .~1 |
ISSN | 1359-8368 |
IngestDate | Wed Oct 01 02:45:27 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Fri Feb 23 02:46:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metal matrix composites Core-shell structure Toughening mechanism Strengthening mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-3a33a794e79fd5251a9ceeba138f942289be7392acbed928ae31ccbe7d27f3d53 |
ParticipantIDs | crossref_primary_10_1016_j_compositesb_2020_108541 crossref_citationtrail_10_1016_j_compositesb_2020_108541 elsevier_sciencedirect_doi_10_1016_j_compositesb_2020_108541 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Composites. Part B, Engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chan (bib16) 2018 Zhao, Bingert, Zhu, Liao, Valiev, Horita (bib18) 2008; 92 Rashad, Pan, Hu, Asif, Hussain, Jia (bib59) 2015; a630 Sun, Wu, Wang, Lu (bib19) 2020 Ibrahim, Mohamed, Lavernia (bib1) 1991; 26 Gupta, Chaudhari, Daniel (bib3) 2018; 140 Chang, Qian, Shan, Long, Rui, Liao (bib51) 2018; 136 Nayak, Murty (bib15) 2004; 367 Ren, Sun, Xiao, Ding, Sun (bib56) 2014; 92 Nguyen, Chinh, Horita, Langdon (bib41) 2006; 18 Wang, Tieu, Zhu, Chen, Cheng, Yang (bib36) 2020; 198 Hong, Lee, Lim, Kim, Hwang (bib50) 2013; 69 Yadav, Bauri (bib11) 2015; 31 Hirth (bib42) 1972; 3 Honglai Tan (bib46) 1998; 30 Hu, Zhang, Wang, Li, Yin, Song (bib9) 2018; 721 Manna, Chattopadhyay, Nandi, Banhart, Fecht (bib49) 2003; 93 Fu, Jiang, Wardini, MacDonald, Wen, Xiong (bib38) 2018; 4 Hwang, Lee, Park, Zargaran, Kim (bib30) 2020; 191 Kivambe, Ervik, Ryningen, Stokkan (bib44) 2012; 112 Wan, Li, Wang, Hou, Cui, Li (bib8) 2019; 12 Xing, Guo, Han, Yu (bib17) 1997; 28 Yoo (bib55) 1981; 12 Cai, He, Li, Teng, Song, Yan (bib33) 2019; 164 Ma, Zhang, Chen, Wang (bib23) 2020; 191 Wu, Yuan, Yang, Jiang, Zhang, Chen (bib37) 2015; 5 Karakoç, Karabulut, Çıtak (bib58) 2018; 148 Lu, Guo, Li, Wang, Chang, Tang (bib14) 2017; 708 Aguayo Gm, Coss (bib57) 2002; 65 Liu, Weitzer, Schuster, Krendelsberger, Du (bib25) 2008; 99 Wang, Chen, Zhou, Ma (bib27) 2002; 419 Dieter (bib34) 1986 Ma, Li, Zhang, Wang (bib26) 2020; 831 Ma, Zhuang, Wang (bib7) 2019; 176 Zhao, Liao, Cheng, Ma, Zhu (bib28) 2006; 18 Wang, Niu, Chen, Pang, Wu (bib22) 2018; 730 Meng, Chen, Zhang, Zhao (bib32) 2017; 33 Sumino (bib43) 1999; 30 Peng, Wei, Gao (bib39) 2020; 117 Glavicic, Goetz, Barker, Shen, Furrer, Woodfield (bib24) 2007; 39 Yue, Gao, Hu, Xu, Wang, Zhang (bib47) 2020; 582 Zhan, Topping, Bingert, Thornton, Dangelewicz, Li (bib40) 2008; 20 He, Hu, Yen, Cheng, Wang, Luo (bib52) 2017; 357 Meng, Chao, Fan, Maawad, Gan, Lin (bib29) 2018; 153 Lai, Li, Raabe (bib20) 2018; 151 Ma, Zhu (bib45) 2017; 20 Liu, Cheng, Zheng, Wu, Han, Huang (bib6) 2018; 710 Wang, Zhang, Xiao (bib13) 2017; 705 Morris, Lerf (bib5) 1991; 63 Sglavo, Marino, Zhang, Gialanella (bib48) 1997; 239–240 Niu, Wang, Chen, Qian, Liu, Li (bib53) 2017; 707 Liu, Li, Liu (bib54) 2016; 119 Rezaei, Hosseini (bib10) 2017; 689 Himmler, Randelzhofer, Körner (bib12) 2020; 7 Chen, Qin, Zhang (bib4) 2018; 53 Han, Liu, Sun, Wang (bib35) 2020; 185 Wu, Yang, Yuan, Wu, Wei, Huang (bib31) 2015; 112 Wu, Kumar, Wang, Bi, Tomé, Zhang (bib21) 2016; 6 Fedotov (bib2) 2019; 163 Sumino (10.1016/j.compositesb.2020.108541_bib43) 1999; 30 Chang (10.1016/j.compositesb.2020.108541_bib51) 2018; 136 Kivambe (10.1016/j.compositesb.2020.108541_bib44) 2012; 112 Yoo (10.1016/j.compositesb.2020.108541_bib55) 1981; 12 Hu (10.1016/j.compositesb.2020.108541_bib9) 2018; 721 Chen (10.1016/j.compositesb.2020.108541_bib4) 2018; 53 Wu (10.1016/j.compositesb.2020.108541_bib37) 2015; 5 Zhao (10.1016/j.compositesb.2020.108541_bib18) 2008; 92 Wu (10.1016/j.compositesb.2020.108541_bib21) 2016; 6 Han (10.1016/j.compositesb.2020.108541_bib35) 2020; 185 Hirth (10.1016/j.compositesb.2020.108541_bib42) 1972; 3 Sun (10.1016/j.compositesb.2020.108541_bib19) 2020 Wang (10.1016/j.compositesb.2020.108541_bib36) 2020; 198 Meng (10.1016/j.compositesb.2020.108541_bib29) 2018; 153 Liu (10.1016/j.compositesb.2020.108541_bib6) 2018; 710 Dieter (10.1016/j.compositesb.2020.108541_bib34) 1986 Hwang (10.1016/j.compositesb.2020.108541_bib30) 2020; 191 Wang (10.1016/j.compositesb.2020.108541_bib22) 2018; 730 Wang (10.1016/j.compositesb.2020.108541_bib27) 2002; 419 Fu (10.1016/j.compositesb.2020.108541_bib38) 2018; 4 Fedotov (10.1016/j.compositesb.2020.108541_bib2) 2019; 163 Xing (10.1016/j.compositesb.2020.108541_bib17) 1997; 28 Ma (10.1016/j.compositesb.2020.108541_bib26) 2020; 831 Yadav (10.1016/j.compositesb.2020.108541_bib11) 2015; 31 Zhao (10.1016/j.compositesb.2020.108541_bib28) 2006; 18 Zhan (10.1016/j.compositesb.2020.108541_bib40) 2008; 20 Rezaei (10.1016/j.compositesb.2020.108541_bib10) 2017; 689 Liu (10.1016/j.compositesb.2020.108541_bib25) 2008; 99 Ibrahim (10.1016/j.compositesb.2020.108541_bib1) 1991; 26 Honglai Tan (10.1016/j.compositesb.2020.108541_bib46) 1998; 30 Wu (10.1016/j.compositesb.2020.108541_bib31) 2015; 112 Manna (10.1016/j.compositesb.2020.108541_bib49) 2003; 93 Wang (10.1016/j.compositesb.2020.108541_bib13) 2017; 705 Glavicic (10.1016/j.compositesb.2020.108541_bib24) 2007; 39 Nguyen (10.1016/j.compositesb.2020.108541_bib41) 2006; 18 Gupta (10.1016/j.compositesb.2020.108541_bib3) 2018; 140 Cai (10.1016/j.compositesb.2020.108541_bib33) 2019; 164 Ren (10.1016/j.compositesb.2020.108541_bib56) 2014; 92 Ma (10.1016/j.compositesb.2020.108541_bib23) 2020; 191 Wan (10.1016/j.compositesb.2020.108541_bib8) 2019; 12 Nayak (10.1016/j.compositesb.2020.108541_bib15) 2004; 367 Chan (10.1016/j.compositesb.2020.108541_bib16) 2018 Sglavo (10.1016/j.compositesb.2020.108541_bib48) 1997; 239–240 Liu (10.1016/j.compositesb.2020.108541_bib54) 2016; 119 Yue (10.1016/j.compositesb.2020.108541_bib47) 2020; 582 Morris (10.1016/j.compositesb.2020.108541_bib5) 1991; 63 Himmler (10.1016/j.compositesb.2020.108541_bib12) 2020; 7 He (10.1016/j.compositesb.2020.108541_bib52) 2017; 357 Niu (10.1016/j.compositesb.2020.108541_bib53) 2017; 707 Meng (10.1016/j.compositesb.2020.108541_bib32) 2017; 33 Karakoç (10.1016/j.compositesb.2020.108541_bib58) 2018; 148 Rashad (10.1016/j.compositesb.2020.108541_bib59) 2015; a630 Peng (10.1016/j.compositesb.2020.108541_bib39) 2020; 117 Ma (10.1016/j.compositesb.2020.108541_bib7) 2019; 176 Aguayo Gm (10.1016/j.compositesb.2020.108541_bib57) 2002; 65 Hong (10.1016/j.compositesb.2020.108541_bib50) 2013; 69 Lai (10.1016/j.compositesb.2020.108541_bib20) 2018; 151 Lu (10.1016/j.compositesb.2020.108541_bib14) 2017; 708 Ma (10.1016/j.compositesb.2020.108541_bib45) 2017; 20 |
References_xml | – volume: 112 start-page: 14501 year: 2015 ident: bib31 article-title: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 1967 year: 2019 ident: bib8 article-title: Study on in-situ synthesis process of Ti-Al intermetallic compound-reinforced Al matrix composites publication-title: Materials – volume: 69 start-page: 405 year: 2013 end-page: 408 ident: bib50 article-title: Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression publication-title: Scripta Mater – volume: 5 start-page: 11728 year: 2015 ident: bib37 article-title: Nanodomained nickel unite nanocrystal strength with coarse-grain ductility publication-title: Sci Rep – volume: 117 start-page: 5204 year: 2020 end-page: 5209 ident: bib39 article-title: Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength publication-title: Proc Natl Acad Sci USA – volume: 367 start-page: 218 year: 2004 end-page: 224 ident: bib15 article-title: Synthesis and stability of L12-Al publication-title: Mater Sci Eng, A – volume: 92 start-page: 8 year: 2014 end-page: 12 ident: bib56 article-title: Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: a molecular dynamics simulation publication-title: Comput Mater Sci – volume: 707 start-page: 435 year: 2017 end-page: 442 ident: bib53 article-title: Mechanical behavior and deformation mechanism of commercial pure titanium foils publication-title: Mater Sci Eng, A – volume: 176 year: 2019 ident: bib7 article-title: 3D micromechanical simulation of the mechanical behavior of an in-situ Al publication-title: Composites, Part B – start-page: 289 year: 1986 ident: bib34 article-title: Mechanical metallurgy – volume: 20 start-page: 323 year: 2017 end-page: 331 ident: bib45 article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals publication-title: Mater Today – volume: 93 start-page: 1520 year: 2003 end-page: 1524 ident: bib49 article-title: Formation of face-centered-cubic titanium by mechanical attrition publication-title: J Appl Phys – volume: 191 start-page: 108685 year: 2020 ident: bib23 article-title: Microstructure-based numerical simulation of the mechanical properties and fracture of a Ti-Al publication-title: Mater Des – volume: 31 start-page: 494 year: 2015 end-page: 500 ident: bib11 article-title: Development of Cu particles and Cu core-shell particles reinforced Al composite publication-title: Mater Sci Technol – volume: 7 start-page: 100103 year: 2020 ident: bib12 article-title: Formation kinetics and phase stability of in-situ Al publication-title: Results Mater – volume: 20 start-page: 3028 year: 2008 end-page: 3033 ident: bib40 article-title: High tensile ductility and strength in bulk nanostructured nickel** publication-title: Adv Mater – volume: 65 start-page: 263 year: 2002 end-page: 266 ident: bib57 article-title: Elastic stability and electronic structure of fcc Ti, Zr, and Hf: a first-principles study publication-title: Phys Rev B – volume: 18 start-page: 34 year: 2006 end-page: 39 ident: bib41 article-title: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation** publication-title: Adv Mater – volume: 28 start-page: 1079 year: 1997 end-page: 1087 ident: bib17 article-title: Microstructure and mechanical behavior of the NiAl-TiC in situ composite publication-title: Metall Mater Trans A – volume: 151 start-page: 67 year: 2018 end-page: 77 ident: bib20 article-title: ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy publication-title: Acta Mater – volume: 140 start-page: 27 year: 2018 end-page: 34 ident: bib3 article-title: Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al publication-title: Composites, Part B – volume: 710 start-page: 392 year: 2018 end-page: 399 ident: bib6 article-title: Processing and tensile properties of A356 composites containing in situ small-sized Al publication-title: Mater Sci Eng, A – volume: a630 start-page: 36 year: 2015 end-page: 44 ident: bib59 article-title: Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets publication-title: Mater Sci Eng, A – volume: 705 start-page: 160 year: 2017 end-page: 168 ident: bib13 article-title: Effects of powder ratio and annealing temperature on mechanical properties of Cu/Al composites with core-shell structure publication-title: Mater Sci Eng, A – volume: 357 start-page: 1029 year: 2017 ident: bib52 article-title: High dislocation density–induced large ductility in deformed and partitioned steels publication-title: Science – volume: 63 start-page: 1195 year: 1991 end-page: 1206 ident: bib5 article-title: Plastic deformation of the intermetallic Al publication-title: Philos Mag A – volume: 119 start-page: 5 year: 2016 end-page: 8 ident: bib54 article-title: Deformation induced face-centered cubic titanium and its twinning behavior in Ti-6Al-4V publication-title: Scripta Mater – volume: 163 start-page: 139 year: 2019 end-page: 144 ident: bib2 article-title: Interface model of the influence of particle size on the plastic deformation resistance of particle-reinforced metal-matrix composites publication-title: Composites, Part B – volume: 582 start-page: 370 year: 2020 end-page: 374 ident: bib47 article-title: Hierarchically structured diamond composite with exceptional toughness publication-title: Nature – volume: 53 start-page: 2576 year: 2018 end-page: 2593 ident: bib4 article-title: Effects of reheating duration on the microstructure and tensile properties of in situ core–shell-structured particle-reinforced A356 composites fabricated via powder thixoforming publication-title: J Mater Sci – volume: 3 start-page: 3047 year: 1972 end-page: 3067 ident: bib42 article-title: The influence of grain boundaries on mechanical properties publication-title: Metall. Trans. – volume: 164 start-page: 546 year: 2019 end-page: 558 ident: bib33 article-title: In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: microstructure evolution, enhanced tensile properties and strengthening mechanisms publication-title: Composites, Part B – volume: 708 start-page: 834 year: 2017 end-page: 843 ident: bib14 article-title: Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al publication-title: J Alloys Compd – volume: 198 start-page: 108223 year: 2020 ident: bib36 article-title: Achieving the excellent self-lubricity and low wear of TiAl intermetallics through the addition of copper coated graphite publication-title: Composites, Part B – volume: 6 start-page: 24370 year: 2016 ident: bib21 article-title: Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature publication-title: Sci Rep – volume: 191 start-page: 1 year: 2020 end-page: 12 ident: bib30 article-title: Improvement of strength-ductility balance of B2-strengthened lightweight steel publication-title: Acta Mater – volume: 12 start-page: 409 year: 1981 end-page: 418 ident: bib55 article-title: Slip, twinning, and fracture in hexagonal close-packed metals publication-title: Metall. Trans. A – volume: 185 start-page: 107794 year: 2020 ident: bib35 article-title: The role of incoherent interface in evading strength-ductility trade-off dilemma of Ti publication-title: Composites, Part B – volume: 239–240 start-page: 665 year: 1997 end-page: 671 ident: bib48 article-title: Ni publication-title: Mater Sci Eng, A – volume: 39 start-page: 26 year: 2007 ident: bib24 article-title: Modeling of texture evolution during hot forging of Alpha/Beta titanium alloys (preprint) publication-title: Metall Mater Trans A – volume: 721 start-page: 61 year: 2018 end-page: 64 ident: bib9 article-title: A rapid route for synthesizing Ti-(Al publication-title: Mater Sci Eng, A – volume: 30 start-page: 1465 year: 1999 end-page: 1479 ident: bib43 article-title: Deformation behavior of silicon publication-title: Metall Mater Trans A – volume: 730 start-page: 244 year: 2018 end-page: 261 ident: bib22 article-title: Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils publication-title: Mater Sci Eng, A – volume: 689 start-page: 166 year: 2017 end-page: 175 ident: bib10 article-title: Evolution of microstructure and mechanical properties of Al-5 wt% Ti composite fabricated by P/M and hot extrusion: effect of heat treatment publication-title: Mater Sci Eng, A – volume: 33 start-page: 1 year: 2017 end-page: 8 ident: bib32 article-title: Analysis of properties for in situ Al publication-title: Mater Sci Technol – volume: 419 start-page: 912 year: 2002 end-page: 915 ident: bib27 article-title: High tensile ductility in a nanostructured metal publication-title: Nature – volume: 18 start-page: 2280 year: 2006 end-page: 2283 ident: bib28 article-title: Simultaneously increasing the ductility and strength of nanostructured alloys** publication-title: Adv Mater – volume: 831 start-page: 154872 year: 2020 ident: bib26 article-title: Evolution of intermetallic phases in an Al-Si-Ti alloy during solution treatment publication-title: J Alloys Compd – year: 2020 ident: bib19 article-title: Nanostructural metallic materials: structures and mechanical properties publication-title: Mater Today – volume: 153 start-page: 235 year: 2018 end-page: 249 ident: bib29 article-title: Role of layered structure in ductility improvement of layered Ti-Al metal composite publication-title: Acta Mater – volume: 99 start-page: 705 year: 2008 end-page: 711 ident: bib25 article-title: On the reaction scheme and liquidus surface in the ternary system Al-Si-Ti publication-title: Int J Mater Res – volume: 30 start-page: 111 year: 1998 end-page: 123 ident: bib46 article-title: Toughening mechanisms of nano-composite ceramics publication-title: Mech Mater – volume: 112 start-page: 103528 year: 2012 ident: bib44 article-title: On the role of stacking faults on dislocation generation and dislocation cluster formation in multicrystalline silicon publication-title: J Appl Phys – volume: 136 start-page: 257 year: 2018 end-page: 263 ident: bib51 article-title: The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature publication-title: Mater Char – volume: 148 start-page: 68 year: 2018 end-page: 80 ident: bib58 article-title: Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy publication-title: Composites, Part B – volume: 26 start-page: 1137 year: 1991 end-page: 1156 ident: bib1 article-title: Particulate reinforced metal matrix composites -a review publication-title: J Mater Sci – start-page: 359 year: 2018 end-page: 407 ident: bib16 article-title: 13-Intermetallic composites toughened with ductile reinforcements publication-title: Intermetallic matrix composites – volume: 92 year: 2008 ident: bib18 article-title: Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density publication-title: Appl Phys Lett – volume: 4 year: 2018 ident: bib38 article-title: A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength publication-title: Sci. Adv. – volume: 28 start-page: 1079 issue: 4 year: 1997 ident: 10.1016/j.compositesb.2020.108541_bib17 article-title: Microstructure and mechanical behavior of the NiAl-TiC in situ composite publication-title: Metall Mater Trans A doi: 10.1007/s11661-997-0237-9 – volume: 18 start-page: 2280 issue: 17 year: 2006 ident: 10.1016/j.compositesb.2020.108541_bib28 article-title: Simultaneously increasing the ductility and strength of nanostructured alloys** publication-title: Adv Mater doi: 10.1002/adma.200600310 – volume: 4 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib38 article-title: A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength publication-title: Sci. Adv. doi: 10.1126/sciadv.aat8712 – volume: 20 start-page: 3028 year: 2008 ident: 10.1016/j.compositesb.2020.108541_bib40 article-title: High tensile ductility and strength in bulk nanostructured nickel** publication-title: Adv Mater doi: 10.1002/adma.200800214 – volume: 12 start-page: 409 issue: 3 year: 1981 ident: 10.1016/j.compositesb.2020.108541_bib55 article-title: Slip, twinning, and fracture in hexagonal close-packed metals publication-title: Metall. Trans. A doi: 10.1007/BF02648537 – volume: 3 start-page: 3047 issue: 12 year: 1972 ident: 10.1016/j.compositesb.2020.108541_bib42 article-title: The influence of grain boundaries on mechanical properties publication-title: Metall. Trans. doi: 10.1007/BF02661312 – volume: 721 start-page: 61 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib9 article-title: A rapid route for synthesizing Ti-(AlxTiy/UFG Al) core-multishell structured particles reinforced Al matrix composite with promising mechanical properties publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2018.02.065 – volume: 185 start-page: 107794 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib35 article-title: The role of incoherent interface in evading strength-ductility trade-off dilemma of Ti2AlN/TiAl composite: a combined in-situ TEM and atomistic simulations publication-title: Composites, Part B doi: 10.1016/j.compositesb.2020.107794 – volume: 239–240 start-page: 665 year: 1997 ident: 10.1016/j.compositesb.2020.108541_bib48 article-title: Ni3Al intermetallic compound as second phase in Al2O3 ceramic composites publication-title: Mater Sci Eng, A doi: 10.1016/S0921-5093(97)00650-3 – volume: 18 start-page: 34 year: 2006 ident: 10.1016/j.compositesb.2020.108541_bib41 article-title: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation** publication-title: Adv Mater doi: 10.1002/adma.200501232 – volume: a630 start-page: 36 issue: apr.10 year: 2015 ident: 10.1016/j.compositesb.2020.108541_bib59 article-title: Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2015.02.002 – volume: 831 start-page: 154872 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib26 article-title: Evolution of intermetallic phases in an Al-Si-Ti alloy during solution treatment publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.154872 – volume: 198 start-page: 108223 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib36 article-title: Achieving the excellent self-lubricity and low wear of TiAl intermetallics through the addition of copper coated graphite publication-title: Composites, Part B doi: 10.1016/j.compositesb.2020.108223 – volume: 164 start-page: 546 issue: MAY 1 year: 2019 ident: 10.1016/j.compositesb.2020.108541_bib33 article-title: In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: microstructure evolution, enhanced tensile properties and strengthening mechanisms publication-title: Composites, Part B doi: 10.1016/j.compositesb.2019.01.080 – volume: 30 start-page: 111 year: 1998 ident: 10.1016/j.compositesb.2020.108541_bib46 article-title: Toughening mechanisms of nano-composite ceramics publication-title: Mech Mater doi: 10.1016/S0167-6636(98)00027-1 – volume: 367 start-page: 218 issue: 1 year: 2004 ident: 10.1016/j.compositesb.2020.108541_bib15 article-title: Synthesis and stability of L12-Al3Ti by mechanical alloying publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2003.09.097 – volume: 6 start-page: 24370 year: 2016 ident: 10.1016/j.compositesb.2020.108541_bib21 article-title: Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature publication-title: Sci Rep doi: 10.1038/srep24370 – volume: 26 start-page: 1137 issue: 5 year: 1991 ident: 10.1016/j.compositesb.2020.108541_bib1 article-title: Particulate reinforced metal matrix composites -a review publication-title: J Mater Sci doi: 10.1007/BF00544448 – start-page: 359 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib16 article-title: 13-Intermetallic composites toughened with ductile reinforcements – volume: 191 start-page: 108685 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib23 article-title: Microstructure-based numerical simulation of the mechanical properties and fracture of a Ti-Al3Ti core-shell structured particulate reinforced A356 composite publication-title: Mater Des doi: 10.1016/j.matdes.2020.108685 – volume: 708 start-page: 834 year: 2017 ident: 10.1016/j.compositesb.2020.108541_bib14 article-title: Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al3Ti alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.03.085 – volume: 93 start-page: 1520 issue: 3 year: 2003 ident: 10.1016/j.compositesb.2020.108541_bib49 article-title: Formation of face-centered-cubic titanium by mechanical attrition publication-title: J Appl Phys doi: 10.1063/1.1530718 – volume: 357 start-page: 1029 issue: 6355 year: 2017 ident: 10.1016/j.compositesb.2020.108541_bib52 article-title: High dislocation density–induced large ductility in deformed and partitioned steels publication-title: Science doi: 10.1126/science.aan0177 – volume: 140 start-page: 27 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib3 article-title: Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition publication-title: Composites, Part B doi: 10.1016/j.compositesb.2017.12.005 – volume: 730 start-page: 244 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib22 article-title: Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2018.06.009 – volume: 33 start-page: 1 issue: 12 year: 2017 ident: 10.1016/j.compositesb.2020.108541_bib32 article-title: Analysis of properties for in situ Al2O3p/A356 composites synthesised from the Al-SiO2 system publication-title: Mater Sci Technol – volume: 53 start-page: 2576 issue: Suppl 2 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib4 article-title: Effects of reheating duration on the microstructure and tensile properties of in situ core–shell-structured particle-reinforced A356 composites fabricated via powder thixoforming publication-title: J Mater Sci doi: 10.1007/s10853-017-1713-2 – volume: 707 start-page: 435 year: 2017 ident: 10.1016/j.compositesb.2020.108541_bib53 article-title: Mechanical behavior and deformation mechanism of commercial pure titanium foils publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2017.09.080 – volume: 151 start-page: 67 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib20 article-title: ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy publication-title: Acta Mater doi: 10.1016/j.actamat.2018.03.053 – volume: 419 start-page: 912 issue: 6910 year: 2002 ident: 10.1016/j.compositesb.2020.108541_bib27 article-title: High tensile ductility in a nanostructured metal publication-title: Nature doi: 10.1038/nature01133 – volume: 20 start-page: 323 issue: 6 year: 2017 ident: 10.1016/j.compositesb.2020.108541_bib45 article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals publication-title: Mater Today doi: 10.1016/j.mattod.2017.02.003 – volume: 153 start-page: 235 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib29 article-title: Role of layered structure in ductility improvement of layered Ti-Al metal composite publication-title: Acta Mater doi: 10.1016/j.actamat.2018.05.005 – volume: 7 start-page: 100103 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib12 article-title: Formation kinetics and phase stability of in-situ Al3Ti particles in aluminium casting alloys with varying Si content publication-title: Results Mater doi: 10.1016/j.rinma.2020.100103 – volume: 176 issue: Nov.1 year: 2019 ident: 10.1016/j.compositesb.2020.108541_bib7 article-title: 3D micromechanical simulation of the mechanical behavior of an in-situ Al3Ti/A356 composite publication-title: Composites, Part B – volume: 689 start-page: 166 year: 2017 ident: 10.1016/j.compositesb.2020.108541_bib10 article-title: Evolution of microstructure and mechanical properties of Al-5 wt% Ti composite fabricated by P/M and hot extrusion: effect of heat treatment publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2017.02.049 – year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib19 article-title: Nanostructural metallic materials: structures and mechanical properties publication-title: Mater Today doi: 10.1016/j.mattod.2020.04.005 – volume: 148 start-page: 68 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib58 article-title: Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy publication-title: Composites, Part B doi: 10.1016/j.compositesb.2018.04.043 – volume: 5 start-page: 11728 year: 2015 ident: 10.1016/j.compositesb.2020.108541_bib37 article-title: Nanodomained nickel unite nanocrystal strength with coarse-grain ductility publication-title: Sci Rep doi: 10.1038/srep11728 – volume: 582 start-page: 370 issue: 7812 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib47 article-title: Hierarchically structured diamond composite with exceptional toughness publication-title: Nature doi: 10.1038/s41586-020-2361-2 – volume: 136 start-page: 257 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib51 article-title: The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature publication-title: Mater Char doi: 10.1016/j.matchar.2017.12.031 – volume: 119 start-page: 5 year: 2016 ident: 10.1016/j.compositesb.2020.108541_bib54 article-title: Deformation induced face-centered cubic titanium and its twinning behavior in Ti-6Al-4V publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2016.03.018 – volume: 31 start-page: 494 issue: 4 year: 2015 ident: 10.1016/j.compositesb.2020.108541_bib11 article-title: Development of Cu particles and Cu core-shell particles reinforced Al composite publication-title: Mater Sci Technol doi: 10.1179/1743284714Y.0000000644 – volume: 30 start-page: 1465 issue: 6 year: 1999 ident: 10.1016/j.compositesb.2020.108541_bib43 article-title: Deformation behavior of silicon publication-title: Metall Mater Trans A doi: 10.1007/s11661-999-0084-y – volume: 12 start-page: 1967 year: 2019 ident: 10.1016/j.compositesb.2020.108541_bib8 article-title: Study on in-situ synthesis process of Ti-Al intermetallic compound-reinforced Al matrix composites publication-title: Materials doi: 10.3390/ma12121967 – volume: 39 start-page: 26 year: 2007 ident: 10.1016/j.compositesb.2020.108541_bib24 article-title: Modeling of texture evolution during hot forging of Alpha/Beta titanium alloys (preprint) publication-title: Metall Mater Trans A – volume: 705 start-page: 160 year: 2017 ident: 10.1016/j.compositesb.2020.108541_bib13 article-title: Effects of powder ratio and annealing temperature on mechanical properties of Cu/Al composites with core-shell structure publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2017.08.051 – volume: 112 start-page: 103528 issue: 10 year: 2012 ident: 10.1016/j.compositesb.2020.108541_bib44 article-title: On the role of stacking faults on dislocation generation and dislocation cluster formation in multicrystalline silicon publication-title: J Appl Phys doi: 10.1063/1.4767062 – volume: 99 start-page: 705 issue: 7 year: 2008 ident: 10.1016/j.compositesb.2020.108541_bib25 article-title: On the reaction scheme and liquidus surface in the ternary system Al-Si-Ti publication-title: Int J Mater Res doi: 10.3139/146.101702 – volume: 163 start-page: 139 year: 2019 ident: 10.1016/j.compositesb.2020.108541_bib2 article-title: Interface model of the influence of particle size on the plastic deformation resistance of particle-reinforced metal-matrix composites publication-title: Composites, Part B doi: 10.1016/j.compositesb.2018.11.034 – start-page: 289 year: 1986 ident: 10.1016/j.compositesb.2020.108541_bib34 – volume: 112 start-page: 14501 issue: 47 year: 2015 ident: 10.1016/j.compositesb.2020.108541_bib31 article-title: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1517193112 – volume: 69 start-page: 405 issue: 5 year: 2013 ident: 10.1016/j.compositesb.2020.108541_bib50 article-title: Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2013.05.038 – volume: 65 start-page: 263 issue: 9 year: 2002 ident: 10.1016/j.compositesb.2020.108541_bib57 article-title: Elastic stability and electronic structure of fcc Ti, Zr, and Hf: a first-principles study publication-title: Phys Rev B doi: 10.1103/PhysRevB.65.092106 – volume: 63 start-page: 1195 issue: 6 year: 1991 ident: 10.1016/j.compositesb.2020.108541_bib5 article-title: Plastic deformation of the intermetallic Al3Ti publication-title: Philos Mag A doi: 10.1080/01418619108205577 – volume: 117 start-page: 5204 issue: 10 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib39 article-title: Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1914615117 – volume: 92 year: 2008 ident: 10.1016/j.compositesb.2020.108541_bib18 article-title: Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density publication-title: Appl Phys Lett doi: 10.1063/1.2870014 – volume: 92 start-page: 8 year: 2014 ident: 10.1016/j.compositesb.2020.108541_bib56 article-title: Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: a molecular dynamics simulation publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.05.018 – volume: 191 start-page: 1 year: 2020 ident: 10.1016/j.compositesb.2020.108541_bib30 article-title: Improvement of strength-ductility balance of B2-strengthened lightweight steel publication-title: Acta Mater doi: 10.1016/j.actamat.2020.03.022 – volume: 710 start-page: 392 year: 2018 ident: 10.1016/j.compositesb.2020.108541_bib6 article-title: Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2017.11.005 |
SSID | ssj0004532 |
Score | 2.5659103 |
Snippet | The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108541 |
SubjectTerms | Core-shell structure Metal matrix composites Strengthening mechanism Toughening mechanism |
Title | Overcoming the strength-ductility trade-off of an aluminum matrix composite by novel core-shell structured reinforcing particulates |
URI | https://dx.doi.org/10.1016/j.compositesb.2020.108541 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4Xdtks80GvJRiqYr1oIXewmazq5U2LX2IvXjxjzuTpLWCoOAtCTvsMjM7M4FvviHkXNtAQVVhGIdIiKTaHlwpUWUillZ7nqlxH_ud79q1Vse76YpugTQWvTAIq8xjfxbT02idf6nk2qyMer3Kg4Pkc7wGKYxzISU2miP7F_j0xbuzwhieDinDxQxXr5OzL4wXwrYRG2UmEfwquiniTnjOzzlqJe80t8lWXjDSenamHVIwyS7ZXKER3CMf9-CPsAm8UKjnKPZ_JE_TZ4Zcroh9ndPpWMWGDa2lQ0tVQhXEpF4yG9ABUvS_0eURaTSnyfDV9CnyW7IJ4kRpRjI7G5uYjk1Ktapxr1GqKJz_ZSb7pNO8emy0WD5cgWku_SnjinMFl9H4gY0FVDkqgHwZKYdLGyAvWBAZH4onpSMTB65Uhjsanv3Y9S2PBT8gxWSYmENCAx5JbTmvujryjKoFSiJNvQ_WqQoh_RKRC3WGOmcexwEY_XABMXsJVywRoiXCzBIl4i5FRxn9xl-ELhc2C7_5Ughp4nfxo_-JH5MNF3EvKbL7hBTBQuYUCpdpVE49s0zW6te3rfYnRaTzHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gI-D-MS3K3hd2mSzzQa8iFjqqx5swVvYbHa1omlpq-jZP-5MktYKgoK3JOywy8zszAS--QbgyLhIY1VhucBISKTaAV4pWeUyVc4Ega2JkPqdr5u1Rju4uJN3U3A66oUhWGUZ-4uYnkfr8kul1Gal1-lUbj0inxM1TGFCSKXkNMziXh46--zJ-WWjOUEans8po_WcBObg8AvmRchtgkfZQYJ_i34OupOB93Oamkg99WVYKmtGdlIcawWmbLYKixNMgmvwcYMuiZvgC8OSjlELSHY_fOBE50rw13c27OvU8q5zrOuYzpjGsNTJXp7ZM7H0v7HxEVnyzrLuq31iRHHJBwQVZQXP7Evfpqxvc7ZVQ3v1cl3RCDA7WId2_ax12uDlfAVuhAqHXGghNN5HG0YulVjo6AhTZqI9oVxE1GBRYkOsn7RJbBr5SlvhGXwOUz90IpViA2aybmY3gUUiUcYJUfVNElhdi7QipvoQDVSVUoVboEbqjE1JPk4zMJ7iEcrsMZ6wREyWiAtLbIE_Fu0VDBx_EToe2Sz-5k4xZorfxbf_J34A843W9VV8dd683IEFn2AwOdB7F2bQWnYP65hhsl_66Sd8ZPXJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+the+strength-ductility+trade-off+of+an+aluminum+matrix+composite+by+novel+core-shell+structured+reinforcing+particulates&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Zhang%2C+Xuezheng&rft.au=Chen%2C+Tijun&rft.au=Ma%2C+Siming&rft.au=Qin%2C+He&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=206&rft_id=info:doi/10.1016%2Fj.compositesb.2020.108541&rft.externalDocID=S1359836820335885 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |