Overcoming the strength-ductility trade-off of an aluminum matrix composite by novel core-shell structured reinforcing particulates

The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an effective strategy to surmount the inverse relationship between strength and ductility of an A356 Al alloy based PRMMC by in situ synthesizing no...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 206; p. 108541
Main Authors Zhang, Xuezheng, Chen, Tijun, Ma, Siming, Qin, He, Ma, Jinyuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2021
Subjects
Online AccessGet full text
ISSN1359-8368
1879-1069
DOI10.1016/j.compositesb.2020.108541

Cover

Abstract The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an effective strategy to surmount the inverse relationship between strength and ductility of an A356 Al alloy based PRMMC by in situ synthesizing novel reinforcing particulates with a special core-shell (CS) structure. Such structure features a Ti core inside a dual-layer shell: the inner layer has a nano-grained (~130 nm) heterogeneous structure, and the outer layer possesses a composite structure composed of a (Al,Si)3Ti substrate with dense dispersion of nanoparticles. As a result, the obtained composite reinforced with such CS reinforcing particulates (CS composite) achieves an unprecedented tensile elongation to failure of 8.3 ± 0.8% and a uniform elongation of 7.1 ± 0.6%, which nearly triples that of the same alloy based composite reinforced with monolithic (Al,Si)3Ti particulates (monolithic composite) and equivalent to corresponding matrix alloy while maintaining high ultimate tensile strength of 373 ± 8.8 MPa and yield strength of 268 ± 7.9 MPa, equivalent to monolithic composite simultaneously. This special architecture of shell renders itself a high capability of stress bearing and good toughness, and the nanoparticles in outer layer further slower crack development, which significantly postpone crack formation in shell. Subsequent propagation of cracks in Ti core is also constrained remarkably by the transformation-induced plasticity effect occurred ahead of crack tips resulting from stress-induced phase transformation of hcp-Ti into fcc-Ti. These factors lead to highest work hardening rate that undergoes a long plateau and thus overcome the strength-ductility trade-off of A356 alloy based PRMMC. [Display omitted]
AbstractList The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an effective strategy to surmount the inverse relationship between strength and ductility of an A356 Al alloy based PRMMC by in situ synthesizing novel reinforcing particulates with a special core-shell (CS) structure. Such structure features a Ti core inside a dual-layer shell: the inner layer has a nano-grained (~130 nm) heterogeneous structure, and the outer layer possesses a composite structure composed of a (Al,Si)3Ti substrate with dense dispersion of nanoparticles. As a result, the obtained composite reinforced with such CS reinforcing particulates (CS composite) achieves an unprecedented tensile elongation to failure of 8.3 ± 0.8% and a uniform elongation of 7.1 ± 0.6%, which nearly triples that of the same alloy based composite reinforced with monolithic (Al,Si)3Ti particulates (monolithic composite) and equivalent to corresponding matrix alloy while maintaining high ultimate tensile strength of 373 ± 8.8 MPa and yield strength of 268 ± 7.9 MPa, equivalent to monolithic composite simultaneously. This special architecture of shell renders itself a high capability of stress bearing and good toughness, and the nanoparticles in outer layer further slower crack development, which significantly postpone crack formation in shell. Subsequent propagation of cracks in Ti core is also constrained remarkably by the transformation-induced plasticity effect occurred ahead of crack tips resulting from stress-induced phase transformation of hcp-Ti into fcc-Ti. These factors lead to highest work hardening rate that undergoes a long plateau and thus overcome the strength-ductility trade-off of A356 alloy based PRMMC. [Display omitted]
ArticleNumber 108541
Author Zhang, Xuezheng
Chen, Tijun
Ma, Siming
Ma, Jinyuan
Qin, He
Author_xml – sequence: 1
  givenname: Xuezheng
  surname: Zhang
  fullname: Zhang, Xuezheng
  organization: State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, PR China
– sequence: 2
  givenname: Tijun
  surname: Chen
  fullname: Chen, Tijun
  email: chentj@lut.cn, chentj1971@126.com
  organization: State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, PR China
– sequence: 3
  givenname: Siming
  surname: Ma
  fullname: Ma, Siming
  organization: School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN 47906, USA
– sequence: 4
  givenname: He
  surname: Qin
  fullname: Qin, He
  organization: State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, PR China
– sequence: 5
  givenname: Jinyuan
  surname: Ma
  fullname: Ma, Jinyuan
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
BookMark eNqNkM1KAzEQgIMo2FbfIT7A1k3S7W5OIsU_KPSi55BNJm3KNilJttizL26WioinnmYYZr6Z-cbo0nkHCN2RckpKMr_fTpXf7X20CWI7pSUd6k01IxdoRJqaF6Sc88ucs4oXDZs312gc47Ysy1nF6Ah9rQ4QMsK6NU4bwDEFcOu0KXSvku1sOuIUpIbCG4O9wdJh2fW5vd_hnUzBfuLfA3B7xM4foMulAEXcQNcNwEzqA2gcwDrjgxp27WVIVvWdzHffoCsjuwi3P3GCPp6f3hevxXL18rZ4XBaKNXUqmGRM1nwGNTe6ohWRXAG0krDG8BmlDW-hZpxK1YLmtJHAiMp5rWltmK7YBPETVwUfYwAj9sHuZDgKUorBptiKPzbFYFOcbObZh3-zyiaZrHdZj-3OIixOBMgvHiwEEZUFp0DbACoJ7e0ZlG-pv6Ep
CitedBy_id crossref_primary_10_3390_ceramics4040042
crossref_primary_10_3390_met11091457
crossref_primary_10_1016_j_compositesb_2021_108700
crossref_primary_10_1016_j_compositesa_2023_107657
crossref_primary_10_1016_j_matdes_2023_111818
crossref_primary_10_1557_s43578_023_01128_0
crossref_primary_10_1016_j_compositesb_2024_111479
crossref_primary_10_1007_s12598_023_02308_x
crossref_primary_10_1016_j_compositesa_2022_107097
crossref_primary_10_1002_adem_202401392
crossref_primary_10_1016_j_ceramint_2024_10_128
crossref_primary_10_1007_s00170_024_13324_1
crossref_primary_10_1016_j_compositesb_2023_111160
crossref_primary_10_1007_s11665_022_07069_9
crossref_primary_10_15377_2409_983X_2024_11_3
crossref_primary_10_1016_j_jmrt_2021_10_080
crossref_primary_10_1016_j_compositesb_2021_109507
crossref_primary_10_1016_j_matdes_2022_111252
crossref_primary_10_1016_j_matchemphys_2024_129065
crossref_primary_10_1007_s11998_021_00465_1
crossref_primary_10_1016_j_ijplas_2024_104216
crossref_primary_10_1016_j_msea_2024_146355
crossref_primary_10_1007_s40962_022_00863_0
crossref_primary_10_2139_ssrn_4093967
crossref_primary_10_1016_j_compositesb_2021_108678
crossref_primary_10_1016_j_compositesb_2021_108996
crossref_primary_10_1016_j_jallcom_2022_166999
crossref_primary_10_1016_j_jmst_2024_12_103
crossref_primary_10_1016_j_compositesa_2024_108174
crossref_primary_10_1016_j_jmrt_2023_10_241
crossref_primary_10_1007_s10853_023_08752_5
crossref_primary_10_1007_s12540_022_01189_6
crossref_primary_10_1007_s42114_024_01057_4
crossref_primary_10_1016_j_compositesb_2023_110583
crossref_primary_10_1007_s10853_023_09300_x
crossref_primary_10_1016_j_msea_2024_147734
crossref_primary_10_3390_ma15072629
crossref_primary_10_1016_j_actamat_2024_120365
crossref_primary_10_1007_s11661_022_06842_8
crossref_primary_10_1016_j_compositesb_2021_108843
crossref_primary_10_1016_j_msea_2023_145518
crossref_primary_10_1007_s11665_023_07818_4
crossref_primary_10_1016_j_compositesb_2022_110243
crossref_primary_10_1016_j_jallcom_2022_163613
crossref_primary_10_1016_j_jmst_2022_06_026
crossref_primary_10_1016_j_matchemphys_2022_126684
crossref_primary_10_1016_j_jmrt_2023_05_204
crossref_primary_10_1016_j_jallcom_2022_167456
crossref_primary_10_1016_j_jmst_2023_02_052
crossref_primary_10_1016_j_compositesb_2021_109331
crossref_primary_10_1016_j_ceramint_2022_10_305
crossref_primary_10_1007_s10853_024_09538_z
crossref_primary_10_1557_s43578_021_00389_x
crossref_primary_10_3390_ma16062234
crossref_primary_10_1016_j_compositesb_2021_109251
crossref_primary_10_1016_j_matpr_2022_11_095
crossref_primary_10_3390_ma15041288
crossref_primary_10_1007_s10853_024_10053_4
crossref_primary_10_1149_2162_8777_ac8bf9
crossref_primary_10_1016_j_jallcom_2021_162757
crossref_primary_10_1016_j_compositesb_2021_108912
crossref_primary_10_1016_j_msea_2022_144273
crossref_primary_10_1016_j_compositesb_2022_109689
crossref_primary_10_1063_5_0227317
crossref_primary_10_1016_j_compositesb_2021_109266
crossref_primary_10_1016_j_vacuum_2021_110611
crossref_primary_10_1016_j_compositesb_2022_109882
crossref_primary_10_1016_j_vacuum_2021_110574
crossref_primary_10_1016_j_matchar_2024_114381
crossref_primary_10_1016_j_msea_2024_146500
crossref_primary_10_1016_j_jmatprotec_2024_118304
crossref_primary_10_1016_j_msea_2022_144003
Cites_doi 10.1007/s11661-997-0237-9
10.1002/adma.200600310
10.1126/sciadv.aat8712
10.1002/adma.200800214
10.1007/BF02648537
10.1007/BF02661312
10.1016/j.msea.2018.02.065
10.1016/j.compositesb.2020.107794
10.1016/S0921-5093(97)00650-3
10.1002/adma.200501232
10.1016/j.msea.2015.02.002
10.1016/j.jallcom.2020.154872
10.1016/j.compositesb.2020.108223
10.1016/j.compositesb.2019.01.080
10.1016/S0167-6636(98)00027-1
10.1016/j.msea.2003.09.097
10.1038/srep24370
10.1007/BF00544448
10.1016/j.matdes.2020.108685
10.1016/j.jallcom.2017.03.085
10.1063/1.1530718
10.1126/science.aan0177
10.1016/j.compositesb.2017.12.005
10.1016/j.msea.2018.06.009
10.1007/s10853-017-1713-2
10.1016/j.msea.2017.09.080
10.1016/j.actamat.2018.03.053
10.1038/nature01133
10.1016/j.mattod.2017.02.003
10.1016/j.actamat.2018.05.005
10.1016/j.rinma.2020.100103
10.1016/j.msea.2017.02.049
10.1016/j.mattod.2020.04.005
10.1016/j.compositesb.2018.04.043
10.1038/srep11728
10.1038/s41586-020-2361-2
10.1016/j.matchar.2017.12.031
10.1016/j.scriptamat.2016.03.018
10.1179/1743284714Y.0000000644
10.1007/s11661-999-0084-y
10.3390/ma12121967
10.1016/j.msea.2017.08.051
10.1063/1.4767062
10.3139/146.101702
10.1016/j.compositesb.2018.11.034
10.1073/pnas.1517193112
10.1016/j.scriptamat.2013.05.038
10.1103/PhysRevB.65.092106
10.1080/01418619108205577
10.1073/pnas.1914615117
10.1063/1.2870014
10.1016/j.commatsci.2014.05.018
10.1016/j.actamat.2020.03.022
10.1016/j.msea.2017.11.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesb.2020.108541
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
ExternalDocumentID 10_1016_j_compositesb_2020_108541
S1359836820335885
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AI.
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
VH1
~HD
ID FETCH-LOGICAL-c387t-3a33a794e79fd5251a9ceeba138f942289be7392acbed928ae31ccbe7d27f3d53
IEDL.DBID .~1
ISSN 1359-8368
IngestDate Wed Oct 01 02:45:27 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal matrix composites
Core-shell structure
Toughening mechanism
Strengthening mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-3a33a794e79fd5251a9ceeba138f942289be7392acbed928ae31ccbe7d27f3d53
ParticipantIDs crossref_primary_10_1016_j_compositesb_2020_108541
crossref_citationtrail_10_1016_j_compositesb_2020_108541
elsevier_sciencedirect_doi_10_1016_j_compositesb_2020_108541
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Composites. Part B, Engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chan (bib16) 2018
Zhao, Bingert, Zhu, Liao, Valiev, Horita (bib18) 2008; 92
Rashad, Pan, Hu, Asif, Hussain, Jia (bib59) 2015; a630
Sun, Wu, Wang, Lu (bib19) 2020
Ibrahim, Mohamed, Lavernia (bib1) 1991; 26
Gupta, Chaudhari, Daniel (bib3) 2018; 140
Chang, Qian, Shan, Long, Rui, Liao (bib51) 2018; 136
Nayak, Murty (bib15) 2004; 367
Ren, Sun, Xiao, Ding, Sun (bib56) 2014; 92
Nguyen, Chinh, Horita, Langdon (bib41) 2006; 18
Wang, Tieu, Zhu, Chen, Cheng, Yang (bib36) 2020; 198
Hong, Lee, Lim, Kim, Hwang (bib50) 2013; 69
Yadav, Bauri (bib11) 2015; 31
Hirth (bib42) 1972; 3
Honglai Tan (bib46) 1998; 30
Hu, Zhang, Wang, Li, Yin, Song (bib9) 2018; 721
Manna, Chattopadhyay, Nandi, Banhart, Fecht (bib49) 2003; 93
Fu, Jiang, Wardini, MacDonald, Wen, Xiong (bib38) 2018; 4
Hwang, Lee, Park, Zargaran, Kim (bib30) 2020; 191
Kivambe, Ervik, Ryningen, Stokkan (bib44) 2012; 112
Wan, Li, Wang, Hou, Cui, Li (bib8) 2019; 12
Xing, Guo, Han, Yu (bib17) 1997; 28
Yoo (bib55) 1981; 12
Cai, He, Li, Teng, Song, Yan (bib33) 2019; 164
Ma, Zhang, Chen, Wang (bib23) 2020; 191
Wu, Yuan, Yang, Jiang, Zhang, Chen (bib37) 2015; 5
Karakoç, Karabulut, Çıtak (bib58) 2018; 148
Lu, Guo, Li, Wang, Chang, Tang (bib14) 2017; 708
Aguayo Gm, Coss (bib57) 2002; 65
Liu, Weitzer, Schuster, Krendelsberger, Du (bib25) 2008; 99
Wang, Chen, Zhou, Ma (bib27) 2002; 419
Dieter (bib34) 1986
Ma, Li, Zhang, Wang (bib26) 2020; 831
Ma, Zhuang, Wang (bib7) 2019; 176
Zhao, Liao, Cheng, Ma, Zhu (bib28) 2006; 18
Wang, Niu, Chen, Pang, Wu (bib22) 2018; 730
Meng, Chen, Zhang, Zhao (bib32) 2017; 33
Sumino (bib43) 1999; 30
Peng, Wei, Gao (bib39) 2020; 117
Glavicic, Goetz, Barker, Shen, Furrer, Woodfield (bib24) 2007; 39
Yue, Gao, Hu, Xu, Wang, Zhang (bib47) 2020; 582
Zhan, Topping, Bingert, Thornton, Dangelewicz, Li (bib40) 2008; 20
He, Hu, Yen, Cheng, Wang, Luo (bib52) 2017; 357
Meng, Chao, Fan, Maawad, Gan, Lin (bib29) 2018; 153
Lai, Li, Raabe (bib20) 2018; 151
Ma, Zhu (bib45) 2017; 20
Liu, Cheng, Zheng, Wu, Han, Huang (bib6) 2018; 710
Wang, Zhang, Xiao (bib13) 2017; 705
Morris, Lerf (bib5) 1991; 63
Sglavo, Marino, Zhang, Gialanella (bib48) 1997; 239–240
Niu, Wang, Chen, Qian, Liu, Li (bib53) 2017; 707
Liu, Li, Liu (bib54) 2016; 119
Rezaei, Hosseini (bib10) 2017; 689
Himmler, Randelzhofer, Körner (bib12) 2020; 7
Chen, Qin, Zhang (bib4) 2018; 53
Han, Liu, Sun, Wang (bib35) 2020; 185
Wu, Yang, Yuan, Wu, Wei, Huang (bib31) 2015; 112
Wu, Kumar, Wang, Bi, Tomé, Zhang (bib21) 2016; 6
Fedotov (bib2) 2019; 163
Sumino (10.1016/j.compositesb.2020.108541_bib43) 1999; 30
Chang (10.1016/j.compositesb.2020.108541_bib51) 2018; 136
Kivambe (10.1016/j.compositesb.2020.108541_bib44) 2012; 112
Yoo (10.1016/j.compositesb.2020.108541_bib55) 1981; 12
Hu (10.1016/j.compositesb.2020.108541_bib9) 2018; 721
Chen (10.1016/j.compositesb.2020.108541_bib4) 2018; 53
Wu (10.1016/j.compositesb.2020.108541_bib37) 2015; 5
Zhao (10.1016/j.compositesb.2020.108541_bib18) 2008; 92
Wu (10.1016/j.compositesb.2020.108541_bib21) 2016; 6
Han (10.1016/j.compositesb.2020.108541_bib35) 2020; 185
Hirth (10.1016/j.compositesb.2020.108541_bib42) 1972; 3
Sun (10.1016/j.compositesb.2020.108541_bib19) 2020
Wang (10.1016/j.compositesb.2020.108541_bib36) 2020; 198
Meng (10.1016/j.compositesb.2020.108541_bib29) 2018; 153
Liu (10.1016/j.compositesb.2020.108541_bib6) 2018; 710
Dieter (10.1016/j.compositesb.2020.108541_bib34) 1986
Hwang (10.1016/j.compositesb.2020.108541_bib30) 2020; 191
Wang (10.1016/j.compositesb.2020.108541_bib22) 2018; 730
Wang (10.1016/j.compositesb.2020.108541_bib27) 2002; 419
Fu (10.1016/j.compositesb.2020.108541_bib38) 2018; 4
Fedotov (10.1016/j.compositesb.2020.108541_bib2) 2019; 163
Xing (10.1016/j.compositesb.2020.108541_bib17) 1997; 28
Ma (10.1016/j.compositesb.2020.108541_bib26) 2020; 831
Yadav (10.1016/j.compositesb.2020.108541_bib11) 2015; 31
Zhao (10.1016/j.compositesb.2020.108541_bib28) 2006; 18
Zhan (10.1016/j.compositesb.2020.108541_bib40) 2008; 20
Rezaei (10.1016/j.compositesb.2020.108541_bib10) 2017; 689
Liu (10.1016/j.compositesb.2020.108541_bib25) 2008; 99
Ibrahim (10.1016/j.compositesb.2020.108541_bib1) 1991; 26
Honglai Tan (10.1016/j.compositesb.2020.108541_bib46) 1998; 30
Wu (10.1016/j.compositesb.2020.108541_bib31) 2015; 112
Manna (10.1016/j.compositesb.2020.108541_bib49) 2003; 93
Wang (10.1016/j.compositesb.2020.108541_bib13) 2017; 705
Glavicic (10.1016/j.compositesb.2020.108541_bib24) 2007; 39
Nguyen (10.1016/j.compositesb.2020.108541_bib41) 2006; 18
Gupta (10.1016/j.compositesb.2020.108541_bib3) 2018; 140
Cai (10.1016/j.compositesb.2020.108541_bib33) 2019; 164
Ren (10.1016/j.compositesb.2020.108541_bib56) 2014; 92
Ma (10.1016/j.compositesb.2020.108541_bib23) 2020; 191
Wan (10.1016/j.compositesb.2020.108541_bib8) 2019; 12
Nayak (10.1016/j.compositesb.2020.108541_bib15) 2004; 367
Chan (10.1016/j.compositesb.2020.108541_bib16) 2018
Sglavo (10.1016/j.compositesb.2020.108541_bib48) 1997; 239–240
Liu (10.1016/j.compositesb.2020.108541_bib54) 2016; 119
Yue (10.1016/j.compositesb.2020.108541_bib47) 2020; 582
Morris (10.1016/j.compositesb.2020.108541_bib5) 1991; 63
Himmler (10.1016/j.compositesb.2020.108541_bib12) 2020; 7
He (10.1016/j.compositesb.2020.108541_bib52) 2017; 357
Niu (10.1016/j.compositesb.2020.108541_bib53) 2017; 707
Meng (10.1016/j.compositesb.2020.108541_bib32) 2017; 33
Karakoç (10.1016/j.compositesb.2020.108541_bib58) 2018; 148
Rashad (10.1016/j.compositesb.2020.108541_bib59) 2015; a630
Peng (10.1016/j.compositesb.2020.108541_bib39) 2020; 117
Ma (10.1016/j.compositesb.2020.108541_bib7) 2019; 176
Aguayo Gm (10.1016/j.compositesb.2020.108541_bib57) 2002; 65
Hong (10.1016/j.compositesb.2020.108541_bib50) 2013; 69
Lai (10.1016/j.compositesb.2020.108541_bib20) 2018; 151
Lu (10.1016/j.compositesb.2020.108541_bib14) 2017; 708
Ma (10.1016/j.compositesb.2020.108541_bib45) 2017; 20
References_xml – volume: 112
  start-page: 14501
  year: 2015
  ident: bib31
  article-title: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 1967
  year: 2019
  ident: bib8
  article-title: Study on in-situ synthesis process of Ti-Al intermetallic compound-reinforced Al matrix composites
  publication-title: Materials
– volume: 69
  start-page: 405
  year: 2013
  end-page: 408
  ident: bib50
  article-title: Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression
  publication-title: Scripta Mater
– volume: 5
  start-page: 11728
  year: 2015
  ident: bib37
  article-title: Nanodomained nickel unite nanocrystal strength with coarse-grain ductility
  publication-title: Sci Rep
– volume: 117
  start-page: 5204
  year: 2020
  end-page: 5209
  ident: bib39
  article-title: Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength
  publication-title: Proc Natl Acad Sci USA
– volume: 367
  start-page: 218
  year: 2004
  end-page: 224
  ident: bib15
  article-title: Synthesis and stability of L12-Al
  publication-title: Mater Sci Eng, A
– volume: 92
  start-page: 8
  year: 2014
  end-page: 12
  ident: bib56
  article-title: Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: a molecular dynamics simulation
  publication-title: Comput Mater Sci
– volume: 707
  start-page: 435
  year: 2017
  end-page: 442
  ident: bib53
  article-title: Mechanical behavior and deformation mechanism of commercial pure titanium foils
  publication-title: Mater Sci Eng, A
– volume: 176
  year: 2019
  ident: bib7
  article-title: 3D micromechanical simulation of the mechanical behavior of an in-situ Al
  publication-title: Composites, Part B
– start-page: 289
  year: 1986
  ident: bib34
  article-title: Mechanical metallurgy
– volume: 20
  start-page: 323
  year: 2017
  end-page: 331
  ident: bib45
  article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals
  publication-title: Mater Today
– volume: 93
  start-page: 1520
  year: 2003
  end-page: 1524
  ident: bib49
  article-title: Formation of face-centered-cubic titanium by mechanical attrition
  publication-title: J Appl Phys
– volume: 191
  start-page: 108685
  year: 2020
  ident: bib23
  article-title: Microstructure-based numerical simulation of the mechanical properties and fracture of a Ti-Al
  publication-title: Mater Des
– volume: 31
  start-page: 494
  year: 2015
  end-page: 500
  ident: bib11
  article-title: Development of Cu particles and Cu core-shell particles reinforced Al composite
  publication-title: Mater Sci Technol
– volume: 7
  start-page: 100103
  year: 2020
  ident: bib12
  article-title: Formation kinetics and phase stability of in-situ Al
  publication-title: Results Mater
– volume: 20
  start-page: 3028
  year: 2008
  end-page: 3033
  ident: bib40
  article-title: High tensile ductility and strength in bulk nanostructured nickel**
  publication-title: Adv Mater
– volume: 65
  start-page: 263
  year: 2002
  end-page: 266
  ident: bib57
  article-title: Elastic stability and electronic structure of fcc Ti, Zr, and Hf: a first-principles study
  publication-title: Phys Rev B
– volume: 18
  start-page: 34
  year: 2006
  end-page: 39
  ident: bib41
  article-title: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation**
  publication-title: Adv Mater
– volume: 28
  start-page: 1079
  year: 1997
  end-page: 1087
  ident: bib17
  article-title: Microstructure and mechanical behavior of the NiAl-TiC in situ composite
  publication-title: Metall Mater Trans A
– volume: 151
  start-page: 67
  year: 2018
  end-page: 77
  ident: bib20
  article-title: ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy
  publication-title: Acta Mater
– volume: 140
  start-page: 27
  year: 2018
  end-page: 34
  ident: bib3
  article-title: Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al
  publication-title: Composites, Part B
– volume: 710
  start-page: 392
  year: 2018
  end-page: 399
  ident: bib6
  article-title: Processing and tensile properties of A356 composites containing in situ small-sized Al
  publication-title: Mater Sci Eng, A
– volume: a630
  start-page: 36
  year: 2015
  end-page: 44
  ident: bib59
  article-title: Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets
  publication-title: Mater Sci Eng, A
– volume: 705
  start-page: 160
  year: 2017
  end-page: 168
  ident: bib13
  article-title: Effects of powder ratio and annealing temperature on mechanical properties of Cu/Al composites with core-shell structure
  publication-title: Mater Sci Eng, A
– volume: 357
  start-page: 1029
  year: 2017
  ident: bib52
  article-title: High dislocation density–induced large ductility in deformed and partitioned steels
  publication-title: Science
– volume: 63
  start-page: 1195
  year: 1991
  end-page: 1206
  ident: bib5
  article-title: Plastic deformation of the intermetallic Al
  publication-title: Philos Mag A
– volume: 119
  start-page: 5
  year: 2016
  end-page: 8
  ident: bib54
  article-title: Deformation induced face-centered cubic titanium and its twinning behavior in Ti-6Al-4V
  publication-title: Scripta Mater
– volume: 163
  start-page: 139
  year: 2019
  end-page: 144
  ident: bib2
  article-title: Interface model of the influence of particle size on the plastic deformation resistance of particle-reinforced metal-matrix composites
  publication-title: Composites, Part B
– volume: 582
  start-page: 370
  year: 2020
  end-page: 374
  ident: bib47
  article-title: Hierarchically structured diamond composite with exceptional toughness
  publication-title: Nature
– volume: 53
  start-page: 2576
  year: 2018
  end-page: 2593
  ident: bib4
  article-title: Effects of reheating duration on the microstructure and tensile properties of in situ core–shell-structured particle-reinforced A356 composites fabricated via powder thixoforming
  publication-title: J Mater Sci
– volume: 3
  start-page: 3047
  year: 1972
  end-page: 3067
  ident: bib42
  article-title: The influence of grain boundaries on mechanical properties
  publication-title: Metall. Trans.
– volume: 164
  start-page: 546
  year: 2019
  end-page: 558
  ident: bib33
  article-title: In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: microstructure evolution, enhanced tensile properties and strengthening mechanisms
  publication-title: Composites, Part B
– volume: 708
  start-page: 834
  year: 2017
  end-page: 843
  ident: bib14
  article-title: Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al
  publication-title: J Alloys Compd
– volume: 198
  start-page: 108223
  year: 2020
  ident: bib36
  article-title: Achieving the excellent self-lubricity and low wear of TiAl intermetallics through the addition of copper coated graphite
  publication-title: Composites, Part B
– volume: 6
  start-page: 24370
  year: 2016
  ident: bib21
  article-title: Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature
  publication-title: Sci Rep
– volume: 191
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib30
  article-title: Improvement of strength-ductility balance of B2-strengthened lightweight steel
  publication-title: Acta Mater
– volume: 12
  start-page: 409
  year: 1981
  end-page: 418
  ident: bib55
  article-title: Slip, twinning, and fracture in hexagonal close-packed metals
  publication-title: Metall. Trans. A
– volume: 185
  start-page: 107794
  year: 2020
  ident: bib35
  article-title: The role of incoherent interface in evading strength-ductility trade-off dilemma of Ti
  publication-title: Composites, Part B
– volume: 239–240
  start-page: 665
  year: 1997
  end-page: 671
  ident: bib48
  article-title: Ni
  publication-title: Mater Sci Eng, A
– volume: 39
  start-page: 26
  year: 2007
  ident: bib24
  article-title: Modeling of texture evolution during hot forging of Alpha/Beta titanium alloys (preprint)
  publication-title: Metall Mater Trans A
– volume: 721
  start-page: 61
  year: 2018
  end-page: 64
  ident: bib9
  article-title: A rapid route for synthesizing Ti-(Al
  publication-title: Mater Sci Eng, A
– volume: 30
  start-page: 1465
  year: 1999
  end-page: 1479
  ident: bib43
  article-title: Deformation behavior of silicon
  publication-title: Metall Mater Trans A
– volume: 730
  start-page: 244
  year: 2018
  end-page: 261
  ident: bib22
  article-title: Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils
  publication-title: Mater Sci Eng, A
– volume: 689
  start-page: 166
  year: 2017
  end-page: 175
  ident: bib10
  article-title: Evolution of microstructure and mechanical properties of Al-5 wt% Ti composite fabricated by P/M and hot extrusion: effect of heat treatment
  publication-title: Mater Sci Eng, A
– volume: 33
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib32
  article-title: Analysis of properties for in situ Al
  publication-title: Mater Sci Technol
– volume: 419
  start-page: 912
  year: 2002
  end-page: 915
  ident: bib27
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
– volume: 18
  start-page: 2280
  year: 2006
  end-page: 2283
  ident: bib28
  article-title: Simultaneously increasing the ductility and strength of nanostructured alloys**
  publication-title: Adv Mater
– volume: 831
  start-page: 154872
  year: 2020
  ident: bib26
  article-title: Evolution of intermetallic phases in an Al-Si-Ti alloy during solution treatment
  publication-title: J Alloys Compd
– year: 2020
  ident: bib19
  article-title: Nanostructural metallic materials: structures and mechanical properties
  publication-title: Mater Today
– volume: 153
  start-page: 235
  year: 2018
  end-page: 249
  ident: bib29
  article-title: Role of layered structure in ductility improvement of layered Ti-Al metal composite
  publication-title: Acta Mater
– volume: 99
  start-page: 705
  year: 2008
  end-page: 711
  ident: bib25
  article-title: On the reaction scheme and liquidus surface in the ternary system Al-Si-Ti
  publication-title: Int J Mater Res
– volume: 30
  start-page: 111
  year: 1998
  end-page: 123
  ident: bib46
  article-title: Toughening mechanisms of nano-composite ceramics
  publication-title: Mech Mater
– volume: 112
  start-page: 103528
  year: 2012
  ident: bib44
  article-title: On the role of stacking faults on dislocation generation and dislocation cluster formation in multicrystalline silicon
  publication-title: J Appl Phys
– volume: 136
  start-page: 257
  year: 2018
  end-page: 263
  ident: bib51
  article-title: The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature
  publication-title: Mater Char
– volume: 148
  start-page: 68
  year: 2018
  end-page: 80
  ident: bib58
  article-title: Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy
  publication-title: Composites, Part B
– volume: 26
  start-page: 1137
  year: 1991
  end-page: 1156
  ident: bib1
  article-title: Particulate reinforced metal matrix composites -a review
  publication-title: J Mater Sci
– start-page: 359
  year: 2018
  end-page: 407
  ident: bib16
  article-title: 13-Intermetallic composites toughened with ductile reinforcements
  publication-title: Intermetallic matrix composites
– volume: 92
  year: 2008
  ident: bib18
  article-title: Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density
  publication-title: Appl Phys Lett
– volume: 4
  year: 2018
  ident: bib38
  article-title: A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength
  publication-title: Sci. Adv.
– volume: 28
  start-page: 1079
  issue: 4
  year: 1997
  ident: 10.1016/j.compositesb.2020.108541_bib17
  article-title: Microstructure and mechanical behavior of the NiAl-TiC in situ composite
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-997-0237-9
– volume: 18
  start-page: 2280
  issue: 17
  year: 2006
  ident: 10.1016/j.compositesb.2020.108541_bib28
  article-title: Simultaneously increasing the ductility and strength of nanostructured alloys**
  publication-title: Adv Mater
  doi: 10.1002/adma.200600310
– volume: 4
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib38
  article-title: A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat8712
– volume: 20
  start-page: 3028
  year: 2008
  ident: 10.1016/j.compositesb.2020.108541_bib40
  article-title: High tensile ductility and strength in bulk nanostructured nickel**
  publication-title: Adv Mater
  doi: 10.1002/adma.200800214
– volume: 12
  start-page: 409
  issue: 3
  year: 1981
  ident: 10.1016/j.compositesb.2020.108541_bib55
  article-title: Slip, twinning, and fracture in hexagonal close-packed metals
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02648537
– volume: 3
  start-page: 3047
  issue: 12
  year: 1972
  ident: 10.1016/j.compositesb.2020.108541_bib42
  article-title: The influence of grain boundaries on mechanical properties
  publication-title: Metall. Trans.
  doi: 10.1007/BF02661312
– volume: 721
  start-page: 61
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib9
  article-title: A rapid route for synthesizing Ti-(AlxTiy/UFG Al) core-multishell structured particles reinforced Al matrix composite with promising mechanical properties
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2018.02.065
– volume: 185
  start-page: 107794
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib35
  article-title: The role of incoherent interface in evading strength-ductility trade-off dilemma of Ti2AlN/TiAl composite: a combined in-situ TEM and atomistic simulations
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.107794
– volume: 239–240
  start-page: 665
  year: 1997
  ident: 10.1016/j.compositesb.2020.108541_bib48
  article-title: Ni3Al intermetallic compound as second phase in Al2O3 ceramic composites
  publication-title: Mater Sci Eng, A
  doi: 10.1016/S0921-5093(97)00650-3
– volume: 18
  start-page: 34
  year: 2006
  ident: 10.1016/j.compositesb.2020.108541_bib41
  article-title: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation**
  publication-title: Adv Mater
  doi: 10.1002/adma.200501232
– volume: a630
  start-page: 36
  issue: apr.10
  year: 2015
  ident: 10.1016/j.compositesb.2020.108541_bib59
  article-title: Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2015.02.002
– volume: 831
  start-page: 154872
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib26
  article-title: Evolution of intermetallic phases in an Al-Si-Ti alloy during solution treatment
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2020.154872
– volume: 198
  start-page: 108223
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib36
  article-title: Achieving the excellent self-lubricity and low wear of TiAl intermetallics through the addition of copper coated graphite
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.108223
– volume: 164
  start-page: 546
  issue: MAY 1
  year: 2019
  ident: 10.1016/j.compositesb.2020.108541_bib33
  article-title: In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: microstructure evolution, enhanced tensile properties and strengthening mechanisms
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2019.01.080
– volume: 30
  start-page: 111
  year: 1998
  ident: 10.1016/j.compositesb.2020.108541_bib46
  article-title: Toughening mechanisms of nano-composite ceramics
  publication-title: Mech Mater
  doi: 10.1016/S0167-6636(98)00027-1
– volume: 367
  start-page: 218
  issue: 1
  year: 2004
  ident: 10.1016/j.compositesb.2020.108541_bib15
  article-title: Synthesis and stability of L12-Al3Ti by mechanical alloying
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2003.09.097
– volume: 6
  start-page: 24370
  year: 2016
  ident: 10.1016/j.compositesb.2020.108541_bib21
  article-title: Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature
  publication-title: Sci Rep
  doi: 10.1038/srep24370
– volume: 26
  start-page: 1137
  issue: 5
  year: 1991
  ident: 10.1016/j.compositesb.2020.108541_bib1
  article-title: Particulate reinforced metal matrix composites -a review
  publication-title: J Mater Sci
  doi: 10.1007/BF00544448
– start-page: 359
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib16
  article-title: 13-Intermetallic composites toughened with ductile reinforcements
– volume: 191
  start-page: 108685
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib23
  article-title: Microstructure-based numerical simulation of the mechanical properties and fracture of a Ti-Al3Ti core-shell structured particulate reinforced A356 composite
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.108685
– volume: 708
  start-page: 834
  year: 2017
  ident: 10.1016/j.compositesb.2020.108541_bib14
  article-title: Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al3Ti alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.03.085
– volume: 93
  start-page: 1520
  issue: 3
  year: 2003
  ident: 10.1016/j.compositesb.2020.108541_bib49
  article-title: Formation of face-centered-cubic titanium by mechanical attrition
  publication-title: J Appl Phys
  doi: 10.1063/1.1530718
– volume: 357
  start-page: 1029
  issue: 6355
  year: 2017
  ident: 10.1016/j.compositesb.2020.108541_bib52
  article-title: High dislocation density–induced large ductility in deformed and partitioned steels
  publication-title: Science
  doi: 10.1126/science.aan0177
– volume: 140
  start-page: 27
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib3
  article-title: Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2017.12.005
– volume: 730
  start-page: 244
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib22
  article-title: Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2018.06.009
– volume: 33
  start-page: 1
  issue: 12
  year: 2017
  ident: 10.1016/j.compositesb.2020.108541_bib32
  article-title: Analysis of properties for in situ Al2O3p/A356 composites synthesised from the Al-SiO2 system
  publication-title: Mater Sci Technol
– volume: 53
  start-page: 2576
  issue: Suppl 2
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib4
  article-title: Effects of reheating duration on the microstructure and tensile properties of in situ core–shell-structured particle-reinforced A356 composites fabricated via powder thixoforming
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1713-2
– volume: 707
  start-page: 435
  year: 2017
  ident: 10.1016/j.compositesb.2020.108541_bib53
  article-title: Mechanical behavior and deformation mechanism of commercial pure titanium foils
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2017.09.080
– volume: 151
  start-page: 67
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib20
  article-title: ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.03.053
– volume: 419
  start-page: 912
  issue: 6910
  year: 2002
  ident: 10.1016/j.compositesb.2020.108541_bib27
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
  doi: 10.1038/nature01133
– volume: 20
  start-page: 323
  issue: 6
  year: 2017
  ident: 10.1016/j.compositesb.2020.108541_bib45
  article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2017.02.003
– volume: 153
  start-page: 235
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib29
  article-title: Role of layered structure in ductility improvement of layered Ti-Al metal composite
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.05.005
– volume: 7
  start-page: 100103
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib12
  article-title: Formation kinetics and phase stability of in-situ Al3Ti particles in aluminium casting alloys with varying Si content
  publication-title: Results Mater
  doi: 10.1016/j.rinma.2020.100103
– volume: 176
  issue: Nov.1
  year: 2019
  ident: 10.1016/j.compositesb.2020.108541_bib7
  article-title: 3D micromechanical simulation of the mechanical behavior of an in-situ Al3Ti/A356 composite
  publication-title: Composites, Part B
– volume: 689
  start-page: 166
  year: 2017
  ident: 10.1016/j.compositesb.2020.108541_bib10
  article-title: Evolution of microstructure and mechanical properties of Al-5 wt% Ti composite fabricated by P/M and hot extrusion: effect of heat treatment
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2017.02.049
– year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib19
  article-title: Nanostructural metallic materials: structures and mechanical properties
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2020.04.005
– volume: 148
  start-page: 68
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib58
  article-title: Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2018.04.043
– volume: 5
  start-page: 11728
  year: 2015
  ident: 10.1016/j.compositesb.2020.108541_bib37
  article-title: Nanodomained nickel unite nanocrystal strength with coarse-grain ductility
  publication-title: Sci Rep
  doi: 10.1038/srep11728
– volume: 582
  start-page: 370
  issue: 7812
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib47
  article-title: Hierarchically structured diamond composite with exceptional toughness
  publication-title: Nature
  doi: 10.1038/s41586-020-2361-2
– volume: 136
  start-page: 257
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib51
  article-title: The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature
  publication-title: Mater Char
  doi: 10.1016/j.matchar.2017.12.031
– volume: 119
  start-page: 5
  year: 2016
  ident: 10.1016/j.compositesb.2020.108541_bib54
  article-title: Deformation induced face-centered cubic titanium and its twinning behavior in Ti-6Al-4V
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2016.03.018
– volume: 31
  start-page: 494
  issue: 4
  year: 2015
  ident: 10.1016/j.compositesb.2020.108541_bib11
  article-title: Development of Cu particles and Cu core-shell particles reinforced Al composite
  publication-title: Mater Sci Technol
  doi: 10.1179/1743284714Y.0000000644
– volume: 30
  start-page: 1465
  issue: 6
  year: 1999
  ident: 10.1016/j.compositesb.2020.108541_bib43
  article-title: Deformation behavior of silicon
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-999-0084-y
– volume: 12
  start-page: 1967
  year: 2019
  ident: 10.1016/j.compositesb.2020.108541_bib8
  article-title: Study on in-situ synthesis process of Ti-Al intermetallic compound-reinforced Al matrix composites
  publication-title: Materials
  doi: 10.3390/ma12121967
– volume: 39
  start-page: 26
  year: 2007
  ident: 10.1016/j.compositesb.2020.108541_bib24
  article-title: Modeling of texture evolution during hot forging of Alpha/Beta titanium alloys (preprint)
  publication-title: Metall Mater Trans A
– volume: 705
  start-page: 160
  year: 2017
  ident: 10.1016/j.compositesb.2020.108541_bib13
  article-title: Effects of powder ratio and annealing temperature on mechanical properties of Cu/Al composites with core-shell structure
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2017.08.051
– volume: 112
  start-page: 103528
  issue: 10
  year: 2012
  ident: 10.1016/j.compositesb.2020.108541_bib44
  article-title: On the role of stacking faults on dislocation generation and dislocation cluster formation in multicrystalline silicon
  publication-title: J Appl Phys
  doi: 10.1063/1.4767062
– volume: 99
  start-page: 705
  issue: 7
  year: 2008
  ident: 10.1016/j.compositesb.2020.108541_bib25
  article-title: On the reaction scheme and liquidus surface in the ternary system Al-Si-Ti
  publication-title: Int J Mater Res
  doi: 10.3139/146.101702
– volume: 163
  start-page: 139
  year: 2019
  ident: 10.1016/j.compositesb.2020.108541_bib2
  article-title: Interface model of the influence of particle size on the plastic deformation resistance of particle-reinforced metal-matrix composites
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2018.11.034
– start-page: 289
  year: 1986
  ident: 10.1016/j.compositesb.2020.108541_bib34
– volume: 112
  start-page: 14501
  issue: 47
  year: 2015
  ident: 10.1016/j.compositesb.2020.108541_bib31
  article-title: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1517193112
– volume: 69
  start-page: 405
  issue: 5
  year: 2013
  ident: 10.1016/j.compositesb.2020.108541_bib50
  article-title: Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2013.05.038
– volume: 65
  start-page: 263
  issue: 9
  year: 2002
  ident: 10.1016/j.compositesb.2020.108541_bib57
  article-title: Elastic stability and electronic structure of fcc Ti, Zr, and Hf: a first-principles study
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.65.092106
– volume: 63
  start-page: 1195
  issue: 6
  year: 1991
  ident: 10.1016/j.compositesb.2020.108541_bib5
  article-title: Plastic deformation of the intermetallic Al3Ti
  publication-title: Philos Mag A
  doi: 10.1080/01418619108205577
– volume: 117
  start-page: 5204
  issue: 10
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib39
  article-title: Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1914615117
– volume: 92
  year: 2008
  ident: 10.1016/j.compositesb.2020.108541_bib18
  article-title: Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2870014
– volume: 92
  start-page: 8
  year: 2014
  ident: 10.1016/j.compositesb.2020.108541_bib56
  article-title: Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: a molecular dynamics simulation
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2014.05.018
– volume: 191
  start-page: 1
  year: 2020
  ident: 10.1016/j.compositesb.2020.108541_bib30
  article-title: Improvement of strength-ductility balance of B2-strengthened lightweight steel
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.03.022
– volume: 710
  start-page: 392
  year: 2018
  ident: 10.1016/j.compositesb.2020.108541_bib6
  article-title: Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2017.11.005
SSID ssj0004532
Score 2.5659103
Snippet The trade-off between strength and ductility of particulate reinforced metal matrix composites (PRMMCs) has been a longstanding puzzle. Here we propose an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108541
SubjectTerms Core-shell structure
Metal matrix composites
Strengthening mechanism
Toughening mechanism
Title Overcoming the strength-ductility trade-off of an aluminum matrix composite by novel core-shell structured reinforcing particulates
URI https://dx.doi.org/10.1016/j.compositesb.2020.108541
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4Xdtks80GvJRiqYr1oIXewmazq5U2LX2IvXjxjzuTpLWCoOAtCTvsMjM7M4FvviHkXNtAQVVhGIdIiKTaHlwpUWUillZ7nqlxH_ud79q1Vse76YpugTQWvTAIq8xjfxbT02idf6nk2qyMer3Kg4Pkc7wGKYxzISU2miP7F_j0xbuzwhieDinDxQxXr5OzL4wXwrYRG2UmEfwquiniTnjOzzlqJe80t8lWXjDSenamHVIwyS7ZXKER3CMf9-CPsAm8UKjnKPZ_JE_TZ4Zcroh9ndPpWMWGDa2lQ0tVQhXEpF4yG9ABUvS_0eURaTSnyfDV9CnyW7IJ4kRpRjI7G5uYjk1Ktapxr1GqKJz_ZSb7pNO8emy0WD5cgWku_SnjinMFl9H4gY0FVDkqgHwZKYdLGyAvWBAZH4onpSMTB65Uhjsanv3Y9S2PBT8gxWSYmENCAx5JbTmvujryjKoFSiJNvQ_WqQoh_RKRC3WGOmcexwEY_XABMXsJVywRoiXCzBIl4i5FRxn9xl-ELhc2C7_5Ughp4nfxo_-JH5MNF3EvKbL7hBTBQuYUCpdpVE49s0zW6te3rfYnRaTzHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gI-D-MS3K3hd2mSzzQa8iFjqqx5swVvYbHa1omlpq-jZP-5MktYKgoK3JOywy8zszAS--QbgyLhIY1VhucBISKTaAV4pWeUyVc4Ega2JkPqdr5u1Rju4uJN3U3A66oUhWGUZ-4uYnkfr8kul1Gal1-lUbj0inxM1TGFCSKXkNMziXh46--zJ-WWjOUEans8po_WcBObg8AvmRchtgkfZQYJ_i34OupOB93Oamkg99WVYKmtGdlIcawWmbLYKixNMgmvwcYMuiZvgC8OSjlELSHY_fOBE50rw13c27OvU8q5zrOuYzpjGsNTJXp7ZM7H0v7HxEVnyzrLuq31iRHHJBwQVZQXP7Evfpqxvc7ZVQ3v1cl3RCDA7WId2_ax12uDlfAVuhAqHXGghNN5HG0YulVjo6AhTZqI9oVxE1GBRYkOsn7RJbBr5SlvhGXwOUz90IpViA2aybmY3gUUiUcYJUfVNElhdi7QipvoQDVSVUoVboEbqjE1JPk4zMJ7iEcrsMZ6wREyWiAtLbIE_Fu0VDBx_EToe2Sz-5k4xZorfxbf_J34A843W9VV8dd683IEFn2AwOdB7F2bQWnYP65hhsl_66Sd8ZPXJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+the+strength-ductility+trade-off+of+an+aluminum+matrix+composite+by+novel+core-shell+structured+reinforcing+particulates&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Zhang%2C+Xuezheng&rft.au=Chen%2C+Tijun&rft.au=Ma%2C+Siming&rft.au=Qin%2C+He&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=206&rft_id=info:doi/10.1016%2Fj.compositesb.2020.108541&rft.externalDocID=S1359836820335885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon