StimEMG: An Electromyogram Recording System With Real-Time Removal of Time-Varying Electrical Stimulation Artifacts

A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulati...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 1305 - 1315
Main Authors Zhao, Jiashun, Yuan, Rui, Shin, Henry, Ji, Run, Zheng, Yang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2025.3555572

Cover

Abstract A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R<inline-formula> <tex-math notation="LaTeX">{}^{{2}}\text {)} </tex-math></inline-formula> between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, <inline-formula> <tex-math notation="LaTeX">0.98\pm 0.0044 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.65\pm 0.3217 </tex-math></inline-formula>; experimental study, <inline-formula> <tex-math notation="LaTeX">0.99\pm 0.0024 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.52\pm 0.2105 </tex-math></inline-formula>). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: <inline-formula> <tex-math notation="LaTeX">12.83\pm 2.1745 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.54\pm 1.3106 </tex-math></inline-formula>) and higher noise rejection ratio (experimental study:<inline-formula> <tex-math notation="LaTeX">2.32\pm 0.7046 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.92\pm 0.8014 </tex-math></inline-formula>). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system.
AbstractList A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R <tex-math notation="LaTeX">^{{2}}\text {)}$ </tex-math> between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, <tex-math notation="LaTeX">$0.98\pm 0.0044$ </tex-math> v.s. <tex-math notation="LaTeX">$0.65\pm 0.3217$ </tex-math>; experimental study, <tex-math notation="LaTeX">$0.99\pm 0.0024$ </tex-math> v.s. <tex-math notation="LaTeX">$0.52\pm 0.2105$ </tex-math>). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: <tex-math notation="LaTeX">$12.83\pm 2.1745$ </tex-math> v.s. <tex-math notation="LaTeX">$1.54\pm 1.3106$ </tex-math>) and higher noise rejection ratio (experimental study: <tex-math notation="LaTeX">$2.32\pm 0.7046$ </tex-math> v.s. <tex-math notation="LaTeX">$1.92\pm 0.8014$ </tex-math>). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system.
A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R2) between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, 0.98±0.0044 v.s. 0.65±0.3217; experimental study, 0.99±0.0024 v.s. 0.52±0.2105). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: 12.83±2.1745 v.s. 1.54±1.3106) and higher noise rejection ratio (experimental study:2.32±0.7046 v.s. 1.92±0.8014). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system.A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R2) between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, 0.98±0.0044 v.s. 0.65±0.3217; experimental study, 0.99±0.0024 v.s. 0.52±0.2105). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: 12.83±2.1745 v.s. 1.54±1.3106) and higher noise rejection ratio (experimental study:2.32±0.7046 v.s. 1.92±0.8014). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system.
A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R<inline-formula> <tex-math notation="LaTeX">{}^{{2}}\text {)} </tex-math></inline-formula> between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, <inline-formula> <tex-math notation="LaTeX">0.98\pm 0.0044 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.65\pm 0.3217 </tex-math></inline-formula>; experimental study, <inline-formula> <tex-math notation="LaTeX">0.99\pm 0.0024 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.52\pm 0.2105 </tex-math></inline-formula>). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: <inline-formula> <tex-math notation="LaTeX">12.83\pm 2.1745 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.54\pm 1.3106 </tex-math></inline-formula>) and higher noise rejection ratio (experimental study:<inline-formula> <tex-math notation="LaTeX">2.32\pm 0.7046 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.92\pm 0.8014 </tex-math></inline-formula>). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system.
A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R ^{{2}}\text {)}$ between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, $0.98\pm 0.0044$ v.s. $0.65\pm 0.3217$ ; experimental study, $0.99\pm 0.0024$ v.s. $0.52\pm 0.2105$ ). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: $12.83\pm 2.1745$ v.s. $1.54\pm 1.3106$ ) and higher noise rejection ratio (experimental study: $2.32\pm 0.7046$ v.s. $1.92\pm 0.8014$ ). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system.
Author Yuan, Rui
Shin, Henry
Zhao, Jiashun
Zheng, Yang
Ji, Run
Author_xml – sequence: 1
  givenname: Jiashun
  surname: Zhao
  fullname: Zhao, Jiashun
  email: zhaojiashun70@stu.xjtu.edu.cn
  organization: Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Rui
  surname: Yuan
  fullname: Yuan, Rui
  email: YR2021@stu.xjtu.edu.cn
  organization: Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Henry
  orcidid: 0000-0001-5465-0306
  surname: Shin
  fullname: Shin, Henry
  email: henryhongsukshin@uor.edu.cn
  organization: School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
– sequence: 4
  givenname: Run
  orcidid: 0000-0001-9787-1563
  surname: Ji
  fullname: Ji, Run
  email: jirun@nrcrta.cn
  organization: National Research Center for Rehabilitation Technical Aids, Beijing, China
– sequence: 5
  givenname: Yang
  orcidid: 0000-0001-9118-8333
  surname: Zheng
  fullname: Zheng, Yang
  email: yzheng@mail.xjtu.edu.cn
  organization: Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40168535$$D View this record in MEDLINE/PubMed
BookMark eNplUk1v1DAUtFAR_YA_gBDKkUsWf8YOt1W1lEoFpO4CR-vZsRdXSbzEWar993WapULgg_38PDNvpPE5Oulj7xB6TfCCEFy_33xZ364WFFOxYCIvSZ-hMyKEKjEl-GSqGS85o_gUnad0hzGRlZAv0CnHpFKCiTOU1mPoVp-vPhTLvli1zo5D7A5xO0BX3Dobhyb022J9SKPrih9h_Jm70Jab0LlcdfE3tEX0xXQvv8NwmNCzTLD5aVLftzCG2BfLYQwe7Jheouce2uReHc8L9O3janP5qbz5enV9ubwpLVNyLPNmasorqeraeOuZ8Lbi1lkPxCnhQDFbGUYb65T0jZFccC-pkZgzQxpgF-h61m0i3OndELpsUEcI-rERh62G7Mm2TjsAY2wN0vOGK_A1k4YbACWpwDVmWYvNWvt-B4d7aNsnQYL1FIce-zQ4PcWhj3Fk1ruZtRvir71Lo-5Csq5toXdxnzQjSlBCqlpk6NsjdG861zyp_4kqA-gMsENMeZL_z8Djf_jXwJuZFJxzfxFqLgRR7AEDG7Dd
CODEN ITNSB3
Cites_doi 10.1109/10.775402
10.2147/MDER.S123464
10.1038/s41551-018-0323-x
10.1109/7333.928576
10.1142/S0129065718500545
10.1016/j.jneumeth.2010.08.011
10.3390/s140712598
10.1016/S0140-6736(18)31269-8
10.1111/j.1525-1403.2009.00213.x
10.1109/ACCESS.2021.3077644
10.1080/10400435.2024.2382857
10.1109/JTEHM.2016.2567420
10.1109/TNSRE.2019.2947785
10.3389/fneur.2023.1272992
10.1186/s12938-020-00773-4
10.1016/j.bspc.2015.06.007
10.1163/156855701321138969
10.1109/IEMBS.1989.96322
10.1109/NER.2015.7146700
10.1186/1743-0003-8-64
10.1177/1545968311419301
10.1109/TNSRE.2023.3311819
10.1016/j.neulet.2009.06.063
10.1109/ICECS46596.2019.8965115
10.1109/TNSRE.2003.819791
10.1109/86.593293
10.1109/TNSRE.2019.2910387
10.1088/1741-2552/abf68c
10.1152/jappl.1984.56.3.568
10.1016/j.conb.2018.01.012
10.1109/ISBB.2015.7344938
10.1109/TNSRE.2015.2496334
10.1109/JBHI.2020.2989747
10.2340/16501977-0941
10.1155/2018/3238165
10.1109/JSEN.2018.2848726
10.1088/1757-899X/263/5/052025
10.1109/TBCAS.2013.2274574
10.1088/1741-2552/ad3850
10.1109/TNSRE.2016.2624763
10.1186/2040-7378-6-9
10.1109/TBME.1982.324948
10.1038/s41467-018-04673-z
10.1159/000441085
10.1109/IEMBS.2004.1404150
10.1088/1741-2552/aab90f
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2025.3555572
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1315
ExternalDocumentID oai_doaj_org_article_eaabbc9a7f4d48af937b4baa87250903
10.1109/tnsre.2025.3555572
40168535
10_1109_TNSRE_2025_3555572
10945518
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Qin Chuang Yuan Talent Project
  grantid: QCYRCXM-2022-34
  funderid: 10.13039/501100001809
– fundername: Scientific and Technological Innovation (STI) 2030—Major Projects
  grantid: 2022ZD0209800
– fundername: National Natural Science Foundation of China
  grantid: 52105309; 12072081
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c387t-387b92467899bfcf35fc64cecfa1e85ea83c6b32dce87fdb7454f72b7043b1da3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:44:16 EDT 2025
Sun Sep 07 11:10:04 EDT 2025
Fri Jul 11 18:50:33 EDT 2025
Mon Jul 21 05:34:53 EDT 2025
Wed Oct 01 06:36:27 EDT 2025
Wed Aug 27 02:04:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-387b92467899bfcf35fc64cecfa1e85ea83c6b32dce87fdb7454f72b7043b1da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9118-8333
0000-0001-9787-1563
0000-0001-5465-0306
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10945518
PMID 40168535
PQID 3185211695
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_40168535
doaj_primary_oai_doaj_org_article_eaabbc9a7f4d48af937b4baa87250903
crossref_primary_10_1109_TNSRE_2025_3555572
unpaywall_primary_10_1109_tnsre_2025_3555572
ieee_primary_10945518
proquest_miscellaneous_3185211695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Merletti (ref19) 1992; 19
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1109/10.775402
– ident: ref46
  doi: 10.2147/MDER.S123464
– ident: ref13
  doi: 10.1038/s41551-018-0323-x
– ident: ref24
  doi: 10.1109/7333.928576
– ident: ref33
  doi: 10.1142/S0129065718500545
– ident: ref15
  doi: 10.1016/j.jneumeth.2010.08.011
– ident: ref17
  doi: 10.3390/s140712598
– ident: ref2
  doi: 10.1016/S0140-6736(18)31269-8
– ident: ref47
  doi: 10.1111/j.1525-1403.2009.00213.x
– ident: ref23
  doi: 10.1109/ACCESS.2021.3077644
– ident: ref11
  doi: 10.1080/10400435.2024.2382857
– ident: ref43
  doi: 10.1109/JTEHM.2016.2567420
– ident: ref42
  doi: 10.1109/TNSRE.2019.2947785
– ident: ref12
  doi: 10.3389/fneur.2023.1272992
– ident: ref4
  doi: 10.1186/s12938-020-00773-4
– ident: ref30
  doi: 10.1016/j.bspc.2015.06.007
– ident: ref20
  doi: 10.1163/156855701321138969
– ident: ref37
  doi: 10.1109/IEMBS.1989.96322
– ident: ref8
  doi: 10.1109/NER.2015.7146700
– ident: ref25
  doi: 10.1186/1743-0003-8-64
– ident: ref45
  doi: 10.1177/1545968311419301
– ident: ref35
  doi: 10.1109/TNSRE.2023.3311819
– ident: ref39
  doi: 10.1016/j.neulet.2009.06.063
– ident: ref16
  doi: 10.1109/ICECS46596.2019.8965115
– ident: ref18
  doi: 10.1109/TNSRE.2003.819791
– ident: ref22
  doi: 10.1109/86.593293
– ident: ref32
  doi: 10.1109/TNSRE.2019.2910387
– ident: ref27
  doi: 10.1088/1741-2552/abf68c
– ident: ref44
  doi: 10.1152/jappl.1984.56.3.568
– ident: ref21
  doi: 10.1016/j.conb.2018.01.012
– ident: ref10
  doi: 10.1109/ISBB.2015.7344938
– ident: ref29
  doi: 10.1109/TNSRE.2015.2496334
– ident: ref34
  doi: 10.1109/JBHI.2020.2989747
– ident: ref6
  doi: 10.2340/16501977-0941
– ident: ref3
  doi: 10.1155/2018/3238165
– ident: ref9
  doi: 10.1109/JSEN.2018.2848726
– ident: ref14
  doi: 10.1088/1757-899X/263/5/052025
– ident: ref28
  doi: 10.1109/TBCAS.2013.2274574
– ident: ref40
  doi: 10.1088/1741-2552/ad3850
– ident: ref31
  doi: 10.1109/TNSRE.2016.2624763
– ident: ref7
  doi: 10.1186/2040-7378-6-9
– volume: 19
  start-page: 293
  issue: 4
  year: 1992
  ident: ref19
  article-title: Electrically evoked myoelectric signals
  publication-title: Crit. Rev. Biomed. Eng.
– ident: ref38
  doi: 10.1109/TBME.1982.324948
– ident: ref5
  doi: 10.1038/s41467-018-04673-z
– ident: ref1
  doi: 10.1159/000441085
– ident: ref26
  doi: 10.1109/IEMBS.2004.1404150
– ident: ref41
  doi: 10.1088/1741-2552/aab90f
SSID ssj0017657
Score 2.442499
Snippet A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to...
SourceID doaj
unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1305
SubjectTerms adaptive filter
Adaptive filters
Adult
Algorithms
Band-pass filters
Computer Simulation
Computer Systems
Correlation
Dermis
Electric Stimulation - methods
Electrical stimulation
Electromyography
Electromyography - instrumentation
Electromyography - methods
EMG
Equipment Design
Female
Humans
Impedance
Iron
Male
Muscle Contraction - physiology
Muscle, Skeletal - physiology
Muscles
Real-time systems
recursive least squares
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
stimulation artifact
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDoqVAoCAjARcwTeJXzK1FWyqk9tBuobfIT1FpN1t1s6r67xnb2dWuQOLCLU_H4xnrm4k93yD0rnYAi1XghJvSEQYQQ4zzFfFWCGcCa4KLicKnZ-Lkkn2_4ldrpb7inrBMD5wH7sBrbYxVWgbmWKMDwKlhRutGAnirzPNZNmoZTA3rB1Ikjk-YzowwWpfLdJlSHYzPLs5HEBjW_DNgLeey3oCkxNw_lFr5m9f5CG0vuht9f6cnkzUkOn6CHg8uJD7MXd9BD3y3i96v0wXjceYKwB_w-QYT91M0v-ivp6PTb1_wYYdHuQbO9D7t0cI5FAUsw5nHHP-87n_BVT0hMVMEjqYzMEw8Cziekx_6NiZJDc1EbePY-lAQLHUw5k3M99Dl8Wj89YQMhReIpY3sI9-ugbgMcEwpE2ygPFjBrLdBV77hXjfUCkNrZ30jgzOScRZkbWTJqKmcps_QVjfr_AuEgy0N44YaKjzjHuJtCj6JFrVUHsI_XaCPy7FvbzK_RpviklK1SVNt1FQ7aKpAR1E9qycjN3a6ABbTDhbT_stiCrQXlbv2OcUiL12B3i613cIciwsnuvOzxbxNGeZVJRQv0PNsBqu3IT4V4PLAnU8ru_hDkr4DATckefk_JHmFHsY28x-hfbTV3y78a_CRevMmTYffs5ENRw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZQ9wA8cB2QcZGRgBdwl8SXxLwV1DEhrUJbC-Mpsh1bTGvTaU2Fxq_nOHarFvYAb3EuThwf5_tO7PMdhF7lNcBi5jjhOq0JA4ghurYZsUaIWjtWutoHCh-NxOGEfT7lp1Emx8fCbM7fZ6ncbxtACnDjct4HZOS8gM_tjuDAu3toZzL6MvgeBFEZYbTTYAR8LIl3ZFYRMtdWsoVCnVh_zK5yHdG8jW4umwt19VNNpxvgc3A3ZDFadJqFfs3JeX_Z6r759Yei47-16x66EzkoHgSjuY9u2OYBer2pN4zHQWwAv8HHW1LeD9HipD2bDY8-vceDBg9DEp3ZVbfICwdfFsAQByF0_O2s_QF71ZT4UBPYms3BsvHcYV8mX9Wlj7KK1Xhzwb72mFGse0AfeLHYRZOD4fjjIYmZG4ihZdF6wV4Njh0AoZTaGUe5M4IZa5zKbMmtKqkRmua1sWXhal0wzlyR6yJlVGe1oo9Qr5k39gnCzqSacU01FZZxCw47BVKjRF5IC_6jStDbVU9WF0Ggo-ocm1RW49HJ8bDyL7mKLzlBH3xnr8_04trdDuibKo7VyiqltZGqcKxmpXLA4DTTSpUF8EWZ0gTtelPZuJ1kXtguQS9XtlPBIPUzL6qx8-Wi6kLUs0xInqDHwajWV4ODK4AzwZF3ayv7qyWduWy1ZO__Tn-Kbvli-Hn0DPXay6V9DnSq1S_iOPoNxcwYDw
  priority: 102
  providerName: Unpaywall
Title StimEMG: An Electromyogram Recording System With Real-Time Removal of Time-Varying Electrical Stimulation Artifacts
URI https://ieeexplore.ieee.org/document/10945518
https://www.ncbi.nlm.nih.gov/pubmed/40168535
https://www.proquest.com/docview/3185211695
https://doi.org/10.1109/tnsre.2025.3555572
https://doaj.org/article/eaabbc9a7f4d48af937b4baa87250903
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYeIA98DkgfFRGAl4gJYm_Et4K6piQVqGthfEU2Y6tTbTJtCZC46_nbKdVy4fEWxI5iU_3O92d7fsdQi-yCtxialnMVFLFFFxMrCqTxkZzXilLc1u5QuGjCT-c0U-n7LQvVve1MMYYf_jMDN2l38uvGt25pTKw8II6BrEdtCNyHoq11lsGgntaT7BgGlOSJasKmaR4O52cHI8hF8zYENwrY8L1sIHEgoOvYlsOyfP2941W_hZz7qEbXX0hr37I-XzDDx3cRpOVBOH4yfdh16qh_vkbueN_i3gH3eojUjwKELqLrpn6Hnq5yT6Mp4F6AL_Cx1vE3vfR8qQ9X4yPPr7DoxqPQ0udxZU_8oVDZguuEQdadPz1vD2Dp3Ieu8ITuFo0gHPcWOzu4y_y0tVc9Z9x4MHu631_MT9BV4ax3Eezg_H0w2Hc93GINclF6-h7FaR54BaLQlltCbOaU220lanJmZE50VyRrNImF7ZSgjJqRaZEQolKK0keoN26qc0jhK1OFGWKKMINZQbSdwIhjuSZKAxkkzJCr1fKLC8CXUfp05ykKD0KSoeCskdBhN47fa9HOqpt_wBUUvaWWxopldKFFJZWNJcW4jlFlZS5gOixSEiE9p0aN34XNBih5yv4lGCybh9G1qbplqUvWE9TXrAIPQy4Wr-9QmWE3qyB9ockbQ0Cbkny-B-TeIJuumFhzegp2m0vO_MMoqhWDfzqw8Db0ABdn00-j779Ai0WGng
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOZQeeBYwz0UCLuBge3f94FZQSoAmhzaF3qzd9a5akdhVYwuVX8_srhMlPCRujmU7Hs03mhnvft8AvEgqTIux4SGXURUyTDGhrHQcapWmlTQsN5UlCo8n6eiYfT7hJz1Z3XFhtNZu85ke2EO3ll81qrOfyjDCC2YVxK7CNc4Y456utVo0yFIn7IkxzEJGk2jJkYmKt9PJ0eEQu8GEDzDBcp7ZKTbYWqSYrfhGSnLK_f2olb9VnTuw3dXn4vKHmM3WMtH-TZgsbfAbUL4PulYO1M_f5B3_28hbcKOvScmeB9FtuKLrO_ByXX-YTL34AHlFDjekve_C4qg9mw_HH9-RvZoM_VCd-aXb9EV8b4vJkXhhdPLtrD3Fs2IWWuoJHs0bRDppDLG_w6_iwrKu-sdY-BD79H7CmHtBS8RY7MLx_nD6YRT2kxxCRfOstQK-Ehs9TIxFIY0ylBuVMqWVEbHOuRY5VamkSaV0nplKZowzkyUyixiVcSXoPdiqm1o_AGJUJBmXVNJUM66xgadY5Ig0yQqN_aQI4PXSmeW5F-woXaMTFaVDQWlRUPYoCOC99ffqSiu27U6gS8o-dksthJSqEJlhFcuFwYpOMilEnmH9WEQ0gF3rxrW_8x4M4PkSPiUGrV2JEbVuukXpKOtxnBY8gPseV6u7l6gM4M0KaH9Y0tZo4IYlD__xEs9gezQdH5QHnyZfHsF1e4v_gvQYttqLTj_BmqqVT10k_QKSLxsg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZQ94B44DogwCYjAS_gksSXJHsrU8eEtAptLYynyFcx0abTmgqNX89x7FYt7AHecnXi-Djfd2yf7yD0KjcAi5njhKvUEAYQQ5SxGbFaCKMcK53xgcInI3E8YZ_O-XmUyfGxMJvz91lavW8bQApw43LeB2TkvIDf7Y7gwLt7aGcy-jz4FgRRGWG002AEfCyJd2RWETI3FrKFQp1Yf8yuchPRvINuL5tLef1TTqcb4HN0L2QxWnSahX7NyY_-slV9_esPRcd_q9d9dDdyUDwIRvMA3bLNQ_R6U28Yj4PYAH6DT7ekvB-hxVl7MRuefDzAgwYPQxKd2XW3yAsHXxbAEAchdPz1ov0OR-WU-FAT2JrNwbLx3GG_T77IKx9lFYvx5oJ96TGjWPeCPvBisYsmR8Px4TGJmRuIpmXResFeBY4dAGFVKacd5U4Lpq12MrMlt7KkWiiaG23LwhlVMM5ckasiZVRlRtLHqNfMG_sUYadTxbiiigrLuAWHnQKpkSIvKgv-o0zQ21VL1pdBoKPuHJu0qsejs9Nh7T9yHT9ygj74xl5f6cW1uwPQNnXsq7WVUildycIxw0rpgMEppqQsC-CLVUoTtOtNZeNxFfPCdgl6ubKdGjqpn3mRjZ0vF3UXop5louIJehKMan03OLgCOBOcebe2sr9q0pnLVk2e_d_lz_2ARM7C4NEL1GuvlnYP6FSr9mM_-g3FchgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StimEMG%3A+An+Electromyogram+Recording+System+With+Real-Time+Removal+of+Time-Varying+Electrical+Stimulation+Artifacts&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhao%2C+Jiashun&rft.au=Yuan%2C+Rui&rft.au=Shin%2C+Henry&rft.au=Ji%2C+Run&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=33&rft.spage=1305&rft.epage=1315&rft_id=info:doi/10.1109%2FTNSRE.2025.3555572&rft_id=info%3Apmid%2F40168535&rft.externalDocID=10945518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon