StimEMG: An Electromyogram Recording System With Real-Time Removal of Time-Varying Electrical Stimulation Artifacts
A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulati...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 1305 - 1315 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2025.3555572 |
Cover
| Abstract | A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R<inline-formula> <tex-math notation="LaTeX">{}^{{2}}\text {)} </tex-math></inline-formula> between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, <inline-formula> <tex-math notation="LaTeX">0.98\pm 0.0044 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.65\pm 0.3217 </tex-math></inline-formula>; experimental study, <inline-formula> <tex-math notation="LaTeX">0.99\pm 0.0024 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.52\pm 0.2105 </tex-math></inline-formula>). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: <inline-formula> <tex-math notation="LaTeX">12.83\pm 2.1745 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.54\pm 1.3106 </tex-math></inline-formula>) and higher noise rejection ratio (experimental study:<inline-formula> <tex-math notation="LaTeX">2.32\pm 0.7046 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.92\pm 0.8014 </tex-math></inline-formula>). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system. |
|---|---|
| AbstractList | A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R <tex-math notation="LaTeX">^{{2}}\text {)}$ </tex-math> between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, <tex-math notation="LaTeX">$0.98\pm 0.0044$ </tex-math> v.s. <tex-math notation="LaTeX">$0.65\pm 0.3217$ </tex-math>; experimental study, <tex-math notation="LaTeX">$0.99\pm 0.0024$ </tex-math> v.s. <tex-math notation="LaTeX">$0.52\pm 0.2105$ </tex-math>). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: <tex-math notation="LaTeX">$12.83\pm 2.1745$ </tex-math> v.s. <tex-math notation="LaTeX">$1.54\pm 1.3106$ </tex-math>) and higher noise rejection ratio (experimental study: <tex-math notation="LaTeX">$2.32\pm 0.7046$ </tex-math> v.s. <tex-math notation="LaTeX">$1.92\pm 0.8014$ </tex-math>). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system. A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R2) between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, 0.98±0.0044 v.s. 0.65±0.3217; experimental study, 0.99±0.0024 v.s. 0.52±0.2105). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: 12.83±2.1745 v.s. 1.54±1.3106) and higher noise rejection ratio (experimental study:2.32±0.7046 v.s. 1.92±0.8014). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system.A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R2) between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, 0.98±0.0044 v.s. 0.65±0.3217; experimental study, 0.99±0.0024 v.s. 0.52±0.2105). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: 12.83±2.1745 v.s. 1.54±1.3106) and higher noise rejection ratio (experimental study:2.32±0.7046 v.s. 1.92±0.8014). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system. A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R<inline-formula> <tex-math notation="LaTeX">{}^{{2}}\text {)} </tex-math></inline-formula> between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, <inline-formula> <tex-math notation="LaTeX">0.98\pm 0.0044 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.65\pm 0.3217 </tex-math></inline-formula>; experimental study, <inline-formula> <tex-math notation="LaTeX">0.99\pm 0.0024 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">0.52\pm 0.2105 </tex-math></inline-formula>). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: <inline-formula> <tex-math notation="LaTeX">12.83\pm 2.1745 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.54\pm 1.3106 </tex-math></inline-formula>) and higher noise rejection ratio (experimental study:<inline-formula> <tex-math notation="LaTeX">2.32\pm 0.7046 </tex-math></inline-formula> v.s. <inline-formula> <tex-math notation="LaTeX">1.92\pm 0.8014 </tex-math></inline-formula>). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system. A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to paralytic patients in maintaining and recovering their motor abilities. However, the closed-loop FES system with real-time adjustment of stimulation parameters tends to introduce time-varying stimulation artifacts in EMG signals, challenging the removal of stimulation artifacts that aims at more accurate monitoring of muscle contraction status. Therefore, an EMG acquisition system that embeds a stimulation artifact generation (SAG) circuit and the Recursive Least Squares (RLS) adaptive filter was developed in this study and named StimEMG. The SAG-RLS strategy was tested using the simulated contaminated EMG signals and the StimEMG system was tested in an experimental study with 8 subjects. Both the simulation and the experimental study showed that the SAG-RLS method obtained a higher correlation (R ^{{2}}\text {)}$ between the denoised EMG and the corresponding clean EMG or EMG segments compared with the current Gram-Schmidt-based (GSB) method (simulation study, $0.98\pm 0.0044$ v.s. $0.65\pm 0.3217$ ; experimental study, $0.99\pm 0.0024$ v.s. $0.52\pm 0.2105$ ). Meanwhile, the SAG-RLS method can suppress stimulation artifact more effectively, resulting a higher signal-to-noise ratio (simulation study: $12.83\pm 2.1745$ v.s. $1.54\pm 1.3106$ ) and higher noise rejection ratio (experimental study: $2.32\pm 0.7046$ v.s. $1.92\pm 0.8014$ ). The significantly improved performance is speculated to result from the ability of the SAG unit to precisely and timely capture the variation of the stimulation artifacts caused by the change of stimulation parameters, unlike previous methods relying on the stability of the characteristic of stimulation artifacts in the contaminated EMG signals. The developed StimEMG system provides a robust EMG acquisition module for the closed-loop FES system. |
| Author | Yuan, Rui Shin, Henry Zhao, Jiashun Zheng, Yang Ji, Run |
| Author_xml | – sequence: 1 givenname: Jiashun surname: Zhao fullname: Zhao, Jiashun email: zhaojiashun70@stu.xjtu.edu.cn organization: Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Rui surname: Yuan fullname: Yuan, Rui email: YR2021@stu.xjtu.edu.cn organization: Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 3 givenname: Henry orcidid: 0000-0001-5465-0306 surname: Shin fullname: Shin, Henry email: henryhongsukshin@uor.edu.cn organization: School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China – sequence: 4 givenname: Run orcidid: 0000-0001-9787-1563 surname: Ji fullname: Ji, Run email: jirun@nrcrta.cn organization: National Research Center for Rehabilitation Technical Aids, Beijing, China – sequence: 5 givenname: Yang orcidid: 0000-0001-9118-8333 surname: Zheng fullname: Zheng, Yang email: yzheng@mail.xjtu.edu.cn organization: Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40168535$$D View this record in MEDLINE/PubMed |
| BookMark | eNplUk1v1DAUtFAR_YA_gBDKkUsWf8YOt1W1lEoFpO4CR-vZsRdXSbzEWar993WapULgg_38PDNvpPE5Oulj7xB6TfCCEFy_33xZ364WFFOxYCIvSZ-hMyKEKjEl-GSqGS85o_gUnad0hzGRlZAv0CnHpFKCiTOU1mPoVp-vPhTLvli1zo5D7A5xO0BX3Dobhyb022J9SKPrih9h_Jm70Jab0LlcdfE3tEX0xXQvv8NwmNCzTLD5aVLftzCG2BfLYQwe7Jheouce2uReHc8L9O3janP5qbz5enV9ubwpLVNyLPNmasorqeraeOuZ8Lbi1lkPxCnhQDFbGUYb65T0jZFccC-pkZgzQxpgF-h61m0i3OndELpsUEcI-rERh62G7Mm2TjsAY2wN0vOGK_A1k4YbACWpwDVmWYvNWvt-B4d7aNsnQYL1FIce-zQ4PcWhj3Fk1ruZtRvir71Lo-5Csq5toXdxnzQjSlBCqlpk6NsjdG861zyp_4kqA-gMsENMeZL_z8Djf_jXwJuZFJxzfxFqLgRR7AEDG7Dd |
| CODEN | ITNSB3 |
| Cites_doi | 10.1109/10.775402 10.2147/MDER.S123464 10.1038/s41551-018-0323-x 10.1109/7333.928576 10.1142/S0129065718500545 10.1016/j.jneumeth.2010.08.011 10.3390/s140712598 10.1016/S0140-6736(18)31269-8 10.1111/j.1525-1403.2009.00213.x 10.1109/ACCESS.2021.3077644 10.1080/10400435.2024.2382857 10.1109/JTEHM.2016.2567420 10.1109/TNSRE.2019.2947785 10.3389/fneur.2023.1272992 10.1186/s12938-020-00773-4 10.1016/j.bspc.2015.06.007 10.1163/156855701321138969 10.1109/IEMBS.1989.96322 10.1109/NER.2015.7146700 10.1186/1743-0003-8-64 10.1177/1545968311419301 10.1109/TNSRE.2023.3311819 10.1016/j.neulet.2009.06.063 10.1109/ICECS46596.2019.8965115 10.1109/TNSRE.2003.819791 10.1109/86.593293 10.1109/TNSRE.2019.2910387 10.1088/1741-2552/abf68c 10.1152/jappl.1984.56.3.568 10.1016/j.conb.2018.01.012 10.1109/ISBB.2015.7344938 10.1109/TNSRE.2015.2496334 10.1109/JBHI.2020.2989747 10.2340/16501977-0941 10.1155/2018/3238165 10.1109/JSEN.2018.2848726 10.1088/1757-899X/263/5/052025 10.1109/TBCAS.2013.2274574 10.1088/1741-2552/ad3850 10.1109/TNSRE.2016.2624763 10.1186/2040-7378-6-9 10.1109/TBME.1982.324948 10.1038/s41467-018-04673-z 10.1159/000441085 10.1109/IEMBS.2004.1404150 10.1088/1741-2552/aab90f |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY DOA |
| DOI | 10.1109/TNSRE.2025.3555572 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 1315 |
| ExternalDocumentID | oai_doaj_org_article_eaabbc9a7f4d48af937b4baa87250903 10.1109/tnsre.2025.3555572 40168535 10_1109_TNSRE_2025_3555572 10945518 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Qin Chuang Yuan Talent Project grantid: QCYRCXM-2022-34 funderid: 10.13039/501100001809 – fundername: Scientific and Technological Innovation (STI) 2030—Major Projects grantid: 2022ZD0209800 – fundername: National Natural Science Foundation of China grantid: 52105309; 12072081 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c387t-387b92467899bfcf35fc64cecfa1e85ea83c6b32dce87fdb7454f72b7043b1da3 |
| IEDL.DBID | RIE |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:44:16 EDT 2025 Sun Sep 07 11:10:04 EDT 2025 Fri Jul 11 18:50:33 EDT 2025 Mon Jul 21 05:34:53 EDT 2025 Wed Oct 01 06:36:27 EDT 2025 Wed Aug 27 02:04:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-387b92467899bfcf35fc64cecfa1e85ea83c6b32dce87fdb7454f72b7043b1da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9118-8333 0000-0001-9787-1563 0000-0001-5465-0306 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10945518 |
| PMID | 40168535 |
| PQID | 3185211695 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_40168535 doaj_primary_oai_doaj_org_article_eaabbc9a7f4d48af937b4baa87250903 crossref_primary_10_1109_TNSRE_2025_3555572 unpaywall_primary_10_1109_tnsre_2025_3555572 ieee_primary_10945518 proquest_miscellaneous_3185211695 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Merletti (ref19) 1992; 19 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref36 doi: 10.1109/10.775402 – ident: ref46 doi: 10.2147/MDER.S123464 – ident: ref13 doi: 10.1038/s41551-018-0323-x – ident: ref24 doi: 10.1109/7333.928576 – ident: ref33 doi: 10.1142/S0129065718500545 – ident: ref15 doi: 10.1016/j.jneumeth.2010.08.011 – ident: ref17 doi: 10.3390/s140712598 – ident: ref2 doi: 10.1016/S0140-6736(18)31269-8 – ident: ref47 doi: 10.1111/j.1525-1403.2009.00213.x – ident: ref23 doi: 10.1109/ACCESS.2021.3077644 – ident: ref11 doi: 10.1080/10400435.2024.2382857 – ident: ref43 doi: 10.1109/JTEHM.2016.2567420 – ident: ref42 doi: 10.1109/TNSRE.2019.2947785 – ident: ref12 doi: 10.3389/fneur.2023.1272992 – ident: ref4 doi: 10.1186/s12938-020-00773-4 – ident: ref30 doi: 10.1016/j.bspc.2015.06.007 – ident: ref20 doi: 10.1163/156855701321138969 – ident: ref37 doi: 10.1109/IEMBS.1989.96322 – ident: ref8 doi: 10.1109/NER.2015.7146700 – ident: ref25 doi: 10.1186/1743-0003-8-64 – ident: ref45 doi: 10.1177/1545968311419301 – ident: ref35 doi: 10.1109/TNSRE.2023.3311819 – ident: ref39 doi: 10.1016/j.neulet.2009.06.063 – ident: ref16 doi: 10.1109/ICECS46596.2019.8965115 – ident: ref18 doi: 10.1109/TNSRE.2003.819791 – ident: ref22 doi: 10.1109/86.593293 – ident: ref32 doi: 10.1109/TNSRE.2019.2910387 – ident: ref27 doi: 10.1088/1741-2552/abf68c – ident: ref44 doi: 10.1152/jappl.1984.56.3.568 – ident: ref21 doi: 10.1016/j.conb.2018.01.012 – ident: ref10 doi: 10.1109/ISBB.2015.7344938 – ident: ref29 doi: 10.1109/TNSRE.2015.2496334 – ident: ref34 doi: 10.1109/JBHI.2020.2989747 – ident: ref6 doi: 10.2340/16501977-0941 – ident: ref3 doi: 10.1155/2018/3238165 – ident: ref9 doi: 10.1109/JSEN.2018.2848726 – ident: ref14 doi: 10.1088/1757-899X/263/5/052025 – ident: ref28 doi: 10.1109/TBCAS.2013.2274574 – ident: ref40 doi: 10.1088/1741-2552/ad3850 – ident: ref31 doi: 10.1109/TNSRE.2016.2624763 – ident: ref7 doi: 10.1186/2040-7378-6-9 – volume: 19 start-page: 293 issue: 4 year: 1992 ident: ref19 article-title: Electrically evoked myoelectric signals publication-title: Crit. Rev. Biomed. Eng. – ident: ref38 doi: 10.1109/TBME.1982.324948 – ident: ref5 doi: 10.1038/s41467-018-04673-z – ident: ref1 doi: 10.1159/000441085 – ident: ref26 doi: 10.1109/IEMBS.2004.1404150 – ident: ref41 doi: 10.1088/1741-2552/aab90f |
| SSID | ssj0017657 |
| Score | 2.442499 |
| Snippet | A closed-loop Functional Electrical Stimulation (FES) system that incorporates electromyogram (EMG) signal feedback provides more effective assistance to... |
| SourceID | doaj unpaywall proquest pubmed crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1305 |
| SubjectTerms | adaptive filter Adaptive filters Adult Algorithms Band-pass filters Computer Simulation Computer Systems Correlation Dermis Electric Stimulation - methods Electrical stimulation Electromyography Electromyography - instrumentation Electromyography - methods EMG Equipment Design Female Humans Impedance Iron Male Muscle Contraction - physiology Muscle, Skeletal - physiology Muscles Real-time systems recursive least squares Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Signal-To-Noise Ratio stimulation artifact Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDoqVAoCAjARcwTeJXzK1FWyqk9tBuobfIT1FpN1t1s6r67xnb2dWuQOLCLU_H4xnrm4k93yD0rnYAi1XghJvSEQYQQ4zzFfFWCGcCa4KLicKnZ-Lkkn2_4ldrpb7inrBMD5wH7sBrbYxVWgbmWKMDwKlhRutGAnirzPNZNmoZTA3rB1Ikjk-YzowwWpfLdJlSHYzPLs5HEBjW_DNgLeey3oCkxNw_lFr5m9f5CG0vuht9f6cnkzUkOn6CHg8uJD7MXd9BD3y3i96v0wXjceYKwB_w-QYT91M0v-ivp6PTb1_wYYdHuQbO9D7t0cI5FAUsw5nHHP-87n_BVT0hMVMEjqYzMEw8Cziekx_6NiZJDc1EbePY-lAQLHUw5k3M99Dl8Wj89YQMhReIpY3sI9-ugbgMcEwpE2ygPFjBrLdBV77hXjfUCkNrZ30jgzOScRZkbWTJqKmcps_QVjfr_AuEgy0N44YaKjzjHuJtCj6JFrVUHsI_XaCPy7FvbzK_RpviklK1SVNt1FQ7aKpAR1E9qycjN3a6ABbTDhbT_stiCrQXlbv2OcUiL12B3i613cIciwsnuvOzxbxNGeZVJRQv0PNsBqu3IT4V4PLAnU8ru_hDkr4DATckefk_JHmFHsY28x-hfbTV3y78a_CRevMmTYffs5ENRw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZQ9wA8cB2QcZGRgBdwl8SXxLwV1DEhrUJbC-Mpsh1bTGvTaU2Fxq_nOHarFvYAb3EuThwf5_tO7PMdhF7lNcBi5jjhOq0JA4ghurYZsUaIWjtWutoHCh-NxOGEfT7lp1Emx8fCbM7fZ6ncbxtACnDjct4HZOS8gM_tjuDAu3toZzL6MvgeBFEZYbTTYAR8LIl3ZFYRMtdWsoVCnVh_zK5yHdG8jW4umwt19VNNpxvgc3A3ZDFadJqFfs3JeX_Z6r759Yei47-16x66EzkoHgSjuY9u2OYBer2pN4zHQWwAv8HHW1LeD9HipD2bDY8-vceDBg9DEp3ZVbfICwdfFsAQByF0_O2s_QF71ZT4UBPYms3BsvHcYV8mX9Wlj7KK1Xhzwb72mFGse0AfeLHYRZOD4fjjIYmZG4ihZdF6wV4Njh0AoZTaGUe5M4IZa5zKbMmtKqkRmua1sWXhal0wzlyR6yJlVGe1oo9Qr5k39gnCzqSacU01FZZxCw47BVKjRF5IC_6jStDbVU9WF0Ggo-ocm1RW49HJ8bDyL7mKLzlBH3xnr8_04trdDuibKo7VyiqltZGqcKxmpXLA4DTTSpUF8EWZ0gTtelPZuJ1kXtguQS9XtlPBIPUzL6qx8-Wi6kLUs0xInqDHwajWV4ODK4AzwZF3ayv7qyWduWy1ZO__Tn-Kbvli-Hn0DPXay6V9DnSq1S_iOPoNxcwYDw priority: 102 providerName: Unpaywall |
| Title | StimEMG: An Electromyogram Recording System With Real-Time Removal of Time-Varying Electrical Stimulation Artifacts |
| URI | https://ieeexplore.ieee.org/document/10945518 https://www.ncbi.nlm.nih.gov/pubmed/40168535 https://www.proquest.com/docview/3185211695 https://doi.org/10.1109/tnsre.2025.3555572 https://doaj.org/article/eaabbc9a7f4d48af937b4baa87250903 |
| UnpaywallVersion | publishedVersion |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYeIA98DkgfFRGAl4gJYm_Et4K6piQVqGthfEU2Y6tTbTJtCZC46_nbKdVy4fEWxI5iU_3O92d7fsdQi-yCtxialnMVFLFFFxMrCqTxkZzXilLc1u5QuGjCT-c0U-n7LQvVve1MMYYf_jMDN2l38uvGt25pTKw8II6BrEdtCNyHoq11lsGgntaT7BgGlOSJasKmaR4O52cHI8hF8zYENwrY8L1sIHEgoOvYlsOyfP2941W_hZz7qEbXX0hr37I-XzDDx3cRpOVBOH4yfdh16qh_vkbueN_i3gH3eojUjwKELqLrpn6Hnq5yT6Mp4F6AL_Cx1vE3vfR8qQ9X4yPPr7DoxqPQ0udxZU_8oVDZguuEQdadPz1vD2Dp3Ieu8ITuFo0gHPcWOzu4y_y0tVc9Z9x4MHu631_MT9BV4ax3Eezg_H0w2Hc93GINclF6-h7FaR54BaLQlltCbOaU220lanJmZE50VyRrNImF7ZSgjJqRaZEQolKK0keoN26qc0jhK1OFGWKKMINZQbSdwIhjuSZKAxkkzJCr1fKLC8CXUfp05ykKD0KSoeCskdBhN47fa9HOqpt_wBUUvaWWxopldKFFJZWNJcW4jlFlZS5gOixSEiE9p0aN34XNBih5yv4lGCybh9G1qbplqUvWE9TXrAIPQy4Wr-9QmWE3qyB9ockbQ0Cbkny-B-TeIJuumFhzegp2m0vO_MMoqhWDfzqw8Db0ABdn00-j779Ai0WGng |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOZQeeBYwz0UCLuBge3f94FZQSoAmhzaF3qzd9a5akdhVYwuVX8_srhMlPCRujmU7Hs03mhnvft8AvEgqTIux4SGXURUyTDGhrHQcapWmlTQsN5UlCo8n6eiYfT7hJz1Z3XFhtNZu85ke2EO3ll81qrOfyjDCC2YVxK7CNc4Y456utVo0yFIn7IkxzEJGk2jJkYmKt9PJ0eEQu8GEDzDBcp7ZKTbYWqSYrfhGSnLK_f2olb9VnTuw3dXn4vKHmM3WMtH-TZgsbfAbUL4PulYO1M_f5B3_28hbcKOvScmeB9FtuKLrO_ByXX-YTL34AHlFDjekve_C4qg9mw_HH9-RvZoM_VCd-aXb9EV8b4vJkXhhdPLtrD3Fs2IWWuoJHs0bRDppDLG_w6_iwrKu-sdY-BD79H7CmHtBS8RY7MLx_nD6YRT2kxxCRfOstQK-Ehs9TIxFIY0ylBuVMqWVEbHOuRY5VamkSaV0nplKZowzkyUyixiVcSXoPdiqm1o_AGJUJBmXVNJUM66xgadY5Ig0yQqN_aQI4PXSmeW5F-woXaMTFaVDQWlRUPYoCOC99ffqSiu27U6gS8o-dksthJSqEJlhFcuFwYpOMilEnmH9WEQ0gF3rxrW_8x4M4PkSPiUGrV2JEbVuukXpKOtxnBY8gPseV6u7l6gM4M0KaH9Y0tZo4IYlD__xEs9gezQdH5QHnyZfHsF1e4v_gvQYttqLTj_BmqqVT10k_QKSLxsg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZQ94B44DogwCYjAS_gksSXJHsrU8eEtAptLYynyFcx0abTmgqNX89x7FYt7AHecnXi-Djfd2yf7yD0KjcAi5njhKvUEAYQQ5SxGbFaCKMcK53xgcInI3E8YZ_O-XmUyfGxMJvz91lavW8bQApw43LeB2TkvIDf7Y7gwLt7aGcy-jz4FgRRGWG002AEfCyJd2RWETI3FrKFQp1Yf8yuchPRvINuL5tLef1TTqcb4HN0L2QxWnSahX7NyY_-slV9_esPRcd_q9d9dDdyUDwIRvMA3bLNQ_R6U28Yj4PYAH6DT7ekvB-hxVl7MRuefDzAgwYPQxKd2XW3yAsHXxbAEAchdPz1ov0OR-WU-FAT2JrNwbLx3GG_T77IKx9lFYvx5oJ96TGjWPeCPvBisYsmR8Px4TGJmRuIpmXResFeBY4dAGFVKacd5U4Lpq12MrMlt7KkWiiaG23LwhlVMM5ckasiZVRlRtLHqNfMG_sUYadTxbiiigrLuAWHnQKpkSIvKgv-o0zQ21VL1pdBoKPuHJu0qsejs9Nh7T9yHT9ygj74xl5f6cW1uwPQNnXsq7WVUildycIxw0rpgMEppqQsC-CLVUoTtOtNZeNxFfPCdgl6ubKdGjqpn3mRjZ0vF3UXop5louIJehKMan03OLgCOBOcebe2sr9q0pnLVk2e_d_lz_2ARM7C4NEL1GuvlnYP6FSr9mM_-g3FchgM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StimEMG%3A+An+Electromyogram+Recording+System+With+Real-Time+Removal+of+Time-Varying+Electrical+Stimulation+Artifacts&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhao%2C+Jiashun&rft.au=Yuan%2C+Rui&rft.au=Shin%2C+Henry&rft.au=Ji%2C+Run&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=33&rft.spage=1305&rft.epage=1315&rft_id=info:doi/10.1109%2FTNSRE.2025.3555572&rft_id=info%3Apmid%2F40168535&rft.externalDocID=10945518 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |