Mixing Cell: a Device to Mimic Extent of Lubrication and Shear in Continuous Tubular Blenders
Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amou...
Saved in:
Published in | AAPS PharmSciTech Vol. 20; no. 7; p. 262 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-9932 1530-9932 |
DOI | 10.1208/s12249-019-1473-1 |
Cover
Abstract | Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale “mixing cell” which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication—evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments—occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process. |
---|---|
AbstractList | Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process. Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process. |
ArticleNumber | 262 |
Author | Escotet-Espinoza, M. Sebastian Liu, Zhanjie Moghtadernejad, Sara Schäfer, Elisabeth Muzzio, Fernando |
Author_xml | – sequence: 1 givenname: Sara orcidid: 0000-0002-4692-6947 surname: Moghtadernejad fullname: Moghtadernejad, Sara email: sara.moghtadernejad@csulb.edu organization: Department of Chemical Engineering, California State University – sequence: 2 givenname: M. Sebastian surname: Escotet-Espinoza fullname: Escotet-Espinoza, M. Sebastian organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey – sequence: 3 givenname: Zhanjie surname: Liu fullname: Liu, Zhanjie organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey – sequence: 4 givenname: Elisabeth surname: Schäfer fullname: Schäfer, Elisabeth organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey, The Janssen Pharmaceutical Companies of Johnson and Johnson – sequence: 5 givenname: Fernando surname: Muzzio fullname: Muzzio, Fernando email: fjmuzzio@yahoo.com organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31338701$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOAyEUQInRaH18gBvD0s0oj5kOuNP6TGpcqEtDKHOnYqZQgTH691JbjXHhCkLOgcvZRuvOO0Bon5Ijyog4jpSxUhaEyoKWNS_oGhrQipNCSs7Wf-230HaML4QwTiXfRFucci5qQgfo6da-WzfFI-i6E6zxObxZAzh5fGtn1uCL9wQuYd_icT8J1uhkvcPaNfj-GXTA1uGRd8m63vcRP_STvsunZx24BkLcRRut7iLsrdYd9Hh58TC6LsZ3Vzej03Fh8hip4KVshDYTYVhZVdVQmoYQwQTT0A4b2goDbSlLXUNVUS2JaURttCiHoq5JaVq-gw6X986Df-0hJjWz0eQvaQd5LsXYkHPGhWQZPVih_WQGjZoHO9PhQ30nyQBdAib4GAO0PwglapFdLbOrnF0tsquFU_9xjE1fqVLQtvvXZEsz5lfcFIJ68X1wOdY_0ifgzJT- |
CitedBy_id | crossref_primary_10_1016_j_powtec_2024_120016 crossref_primary_10_1080_02726351_2024_2416894 |
Cites_doi | 10.1111/j.2044-8317.2012.02047.x 10.1016/j.powtec.2016.12.010 10.1155/S1173912603000178 10.1007/s12247-018-9313-5 10.1016/j.cep.2008.01.009 10.1016/j.powtec.2018.05.023 10.1016/j.ces.2010.06.036 10.1016/j.ijpharm.2012.02.040 10.1016/j.ejpb.2010.01.007 10.1002/jps.2600590523 10.1016/j.ijpharm.2018.12.066 10.1016/j.powtec.2009.04.010 10.3390/lubricants2010021 10.1208/s12249-012-9895-z 10.1016/j.ces.2010.01.036 10.1016/j.jpba.2015.10.012 10.1016/j.ijpharm.2014.08.036 10.1080/0020739760070204 10.1016/j.ijpharm.2006.12.013 10.1016/j.powtec.2010.11.038 10.1016/j.ijpharm.2010.07.033 10.1016/j.powtec.2009.10.021 10.1205/cherd05032 10.1016/j.ces.2010.10.045 10.1002/jps.2600811214 10.1016/j.ijpharm.2018.03.036 10.1016/j.powtec.2018.10.040 10.1016/j.powtec.2018.12.051 10.1016/0378-5173(88)90130-5 10.1002/jps.2600661006 10.1016/j.powtec.2017.09.028 10.1016/j.ijpharm.2017.01.010 10.1016/j.ijpharm.2018.11.076 10.1080/03639045.2018.1451877 10.1016/j.powtec.2018.08.042 10.1016/j.ijpharm.2016.04.064 10.1016/j.ijpharm.2018.01.003 10.1021/acs.langmuir.6b03589 |
ContentType | Journal Article |
Copyright | American Association of Pharmaceutical Scientists 2019 |
Copyright_xml | – notice: American Association of Pharmaceutical Scientists 2019 |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1208/s12249-019-1473-1 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1530-9932 |
ExternalDocumentID | 31338701 10_1208_s12249_019_1473_1 |
Genre | Journal Article |
GroupedDBID | --- -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 406 408 40D 40E 53G 5GY 5VS 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACKNC ACMDZ ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAWUL BDATZ BGNMA CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HG6 HH5 HMJXF HRMNR IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LLZTM M4Y MA- NPVJJ NQJWS NU0 O93 O9I O9J OK1 P2P PF0 PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TR2 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7U Z7V Z7W Z7X Z81 Z87 ZMTXR ZOVNA ~A9 -Y2 2VQ 4.4 AANXM AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABULA ACBXY ACMFV ACSTC AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW AOIJS ATHPR AYFIA BSONS C1A CAG CITATION COF EN4 GX1 H13 HYE HZ~ LGEZI LOTEE NADUK NXXTH O9- OVD S1Z TEORI NPM 7X8 ABRTQ |
ID | FETCH-LOGICAL-c387t-349d8acb8c2455569cd008282aef6d1f8cef494a7e551a90cd87ca84687704cf3 |
IEDL.DBID | U2A |
ISSN | 1530-9932 |
IngestDate | Thu Sep 04 17:59:55 EDT 2025 Wed Feb 19 02:32:16 EST 2025 Tue Jul 01 01:45:34 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Fri Feb 21 02:33:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | tablet tensile strength extent of lubrication continuous process development continuous mixing batch mixing pharmaceutical ingredients |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-349d8acb8c2455569cd008282aef6d1f8cef494a7e551a90cd87ca84687704cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4692-6947 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1208/s12249-019-1473-1.pdf |
PMID | 31338701 |
PQID | 2263323892 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2263323892 pubmed_primary_31338701 crossref_primary_10_1208_s12249_019_1473_1 crossref_citationtrail_10_1208_s12249_019_1473_1 springer_journals_10_1208_s12249_019_1473_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | AAPS PharmSciTech |
PublicationTitleAbbrev | AAPS PharmSciTech |
PublicationTitleAlternate | AAPS PharmSciTech |
PublicationYear | 2019 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | KhanARaynerGDRobustness to non-normality of common tests for the many-sample location problemJ Appl Math Decis Sci20037418720610.1155/S1173912603000178 KetterhagenRRMullarneyMPKresevicJBlackwoodDComputational approaches to predict the effect of shear during processing of lubricated pharmaceutical blendsPowder Technol20183354274391:CAS:528:DC%2BC1cXhtVKnsb7L10.1016/j.powtec.2018.05.023 KanjiGKEffect of non-normality on the power in analysis of variance: a simulation studyInt J Math Educ Sci Technol19767215516010.1080/0020739760070204 Braido D. Characterization and modeling the dissolution performance of tablets focusing on powder processing effects. 2012. Hausner D, Moore AC. Continuous manufacturing current status. Features. 2018. Muzzio FJ. Mixing mechanics: practical powder blending: micromixing, in Powder and Bulk Engineering. 2016. LantzBThe impact of sample non-normality on ANOVA and alternative methodsBr J Math Stat Psychol201366222424410.1111/j.2044-8317.2012.02047.x PortilloPMVanaraseAUIngramASevilleJKInvestigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPTChem Eng Sci2010655685566810.1016/j.ces.2010.06.036 LiJWuYLubricants in pharmaceutical solid dosage formsLubricants20142121431:CAS:528:DC%2BC2MXhvV2qtr7P10.3390/lubricants2010021 GaoYVanaraseAMuzzioFJIerapetritouMCharacterizing continuous powder mixing using residence time distributionChem Eng Sci20116634174251:CAS:528:DC%2BC3MXhtlaiuw%3D%3D10.1016/j.ces.2010.10.045 SnickabVKumarcAVerstraetendMPandelaereaKDhondtdJDiPretorobGDe BeerdTVervaetaCVanhoorneaVImpact of material properties and process variables on the residence time distribution in twin screw feeding equipmentInt J Pharm201955620021610.1016/j.ijpharm.2018.11.076 KushnerJSchlackAHCommercial scale validation of a process scale-up model for lubricant blending of pharmaceutical powdersInt J Pharm201447511471551:CAS:528:DC%2BC2cXhsVars7jN10.1016/j.ijpharm.2014.08.036 Van SnickBHolmanJCunninghamCKumarAVercruysseJDe BeerTRemonJPVervaetCContinuous direct compression as manufacturing platform for sustained release tabletsInt J Pharm2017519139040710.1016/j.ijpharm.2017.01.010 Markarian J. Continuous manufacturing presses In: Equipment and Processing Report. 2017;10. FellJTNewtonAJMDetermination of tablet strength by the diametral-compression testJ Pharm Sci19705956886911:CAS:528:DyaE3cXkt1yrtbw%3D10.1002/jps.2600590523 Gaspar F, Gil M, Matos N. Continuous processing: meeting the need for new manufacturing strategies. 2016. MarikhKBerthiauxHBarantsevaMVEPonomarevDFlow analysis and Markov chain modelling to quantify the agitation effect in a continuous powder mixerChem Eng Res Des20068411105910741:CAS:528:DC%2BD2sXkvVc%3D10.1205/cherd05032 MillerTAYorkPPharmaceutical tablet lubricationInt J Pharm1988411–21191:CAS:528:DyaL1cXotF2jtg%3D%3D10.1016/0378-5173(88)90130-5 MoghtadernejadSEscotet-EspinozaMSOkaSSinghRLiuZRomán-OspinoALiTRazaviTSPanikarSScicoloneJCallegariGHausnerDMuzzioFJA training on: continuous manufacturing (direct compaction) of solid dose pharmaceutical productsJ Pharm Innov201813215518710.1007/s12247-018-9313-5 BostijnaNDhondtaJRyckaertaASzabóaEDhondtbWVan SnickcdBVanhoornecVVervaetcCDe BeeraTA multivariate approach to predict the volumetric and gravimetric feeding behavior of a low feed rate feeder based on raw material propertiesInt J Pharm201955734235310.1016/j.ijpharm.2018.12.066 VargasJMNielsenSCárdenasVGonzalezAAymatEYAlmodovarEClasseGColónYSanchezERomañachRJProcess analytical technology in continuous manufacturing of a commercial pharmaceutical productInt J Pharm20185381–21671781:CAS:528:DC%2BC1cXhvVCgu74%3D10.1016/j.ijpharm.2018.01.003 PortilloPMIerapetritouMGMuzzioFJEffects of rotation rate, mixing angle, and cohesion in two continuous mixers—a statistical approachPowder Technol20091942172271:CAS:528:DC%2BD1MXnt1emsrk%3D10.1016/j.powtec.2009.04.010 MehrotraALlusaMFaqihALevinMMuzzioFJInfluence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearateInt J Pharm200733622842911:CAS:528:DC%2BD2sXkvFWqu7s%3D10.1016/j.ijpharm.2006.12.013 OkaSMoghtadernejadSLiuZHausnerDMuzzioFJLubrication in continuous tubular powder blendersPharm Technol2016401144451:CAS:528:DC%2BC1cXnsVOhu7g%3D Pallone F. JrPallone & FDA commissioner Gottlieb visit Rutgers university to discuss innovative pharmaceutical manufacturing. House of representatives official website: frank Pallone, Jr Press Release. 2018. WangYOsorioJGLiTMuzzioFJControlled shear system and resonant acoustic mixing: effects on lubrication and flow properties of pharmaceutical blendsPowder Technol20173223323391:CAS:528:DC%2BC2sXhsFCisLvF10.1016/j.powtec.2017.09.028 Editors P. Vertex receives FDA approval for continuously manufactured drug product. Editors Notes. 2018. BlackwoodDKetterhagenWKresevicJKushnerJMoriartyJMullarneyMPQuantifying and reducing powder shear sensitivity when manufacturing capsules with lubricantsDrug Dev Ind Pharm2018448135013561:CAS:528:DC%2BC1cXovFGmsLk%3D10.1080/03639045.2018.1451877 ShahACMlodozeniecAARMechanism of surface lubrication: influence of duration of lubricant-excipient mixing on processing characteristics of powders and properties of compressed tabletsJ Pharm Sci19776610137713821:CAS:528:DyaE1cXislOmsg%3D%3D10.1002/jps.2600661006 VanaraseAUAlcalaMRozoJIJMuzzioFJRomanachRJReal-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopyChem Eng Sci20106521572857331:CAS:528:DC%2BC3cXht1Kqur%2FO10.1016/j.ces.2010.01.036 Escotet-EspinozaMSMoghtadernejadSScicoloneJWangYPereiraGSchäferEVighTKlingeleersDIerapetritouMMuzzioFJUsing a material property library to find surrogate materials for pharmaceutical process developmentPowder Technol20183396596761:CAS:528:DC%2BC1cXhs1eisrjO10.1016/j.powtec.2018.08.042 EditorsPFDA to promote continuous manufacturing2017 RazaviSCallegariGDrazerGCuitinoAToward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturingInt J Pharm20165071–283891:CAS:528:DC%2BC28XotFamtb4%3D10.1016/j.ijpharm.2016.04.064 WangYLiTMuzzioFJGlasserBJPredicting feeder performance based on material flow propertiesPowder Technol20173081351481:CAS:528:DC%2BC28XitVOks7bE10.1016/j.powtec.2016.12.010 KushnerJMooreFScale-up model describing the impact of lubrication on tablet tensile strengthInt J Pharm2010399119301:CAS:528:DC%2BC3cXhtFOisbzK10.1016/j.ijpharm.2010.07.033 LeinonenUIJalonenHUVihervaaraPALaineESUPhysical and lubrication properties of magnesium stearateJ Pharm Sci19928112119411981:CAS:528:DyaK3sXms1OitQ%3D%3D10.1002/jps.2600811214 LiuZWangYMuzzioFJCallegariGDrazerGCapillary drop penetration method to characterize the liquid wetting of powdersLangmuir201733156651:CAS:528:DC%2BC28XhvFKns73I10.1021/acs.langmuir.6b03589 Editors P. Hovione plans commercial continuous manufacturing facility. PTSM: Pharmaceutical Technology Sourcing and Management. 2016;11. VanaraseAUA.F.J.M. Effect of operating conditions and design parameters in a continuous powder mixerPowder Technol2011208126361:CAS:528:DC%2BC3MXit1Wht7k%3D10.1016/j.powtec.2010.11.038 Editors P. EMA approves Janssen drug made via continuous manufacturing. Editors Notes. 2017. Escotet-EspinozaMSMoghtadernejadSOkaSWangZWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMMuzzioFJIerapetritouMEffect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: application of modelsPowder Technol20193445255441:CAS:528:DC%2BC1cXisFGiurbP10.1016/j.powtec.2018.12.051 BerthiauxHMarikhKGatumelCContinuous mixing of powder mixtures with pharmaceutical process constraintsChem Eng Process20084712231523221:CAS:528:DC%2BD1cXht1Kjtb3K10.1016/j.cep.2008.01.009 HernandezEPawarPKeyvanGWangYVelezNCallegariGCuitinoAMichniak-KohnBMuzzioFJRomañachRJPrediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strainJ Pharm Biomed Anal20161175685761:CAS:528:DC%2BC2MXhslWrtL7N10.1016/j.jpba.2015.10.012 KushnerJIncorporating Turbula mixers into a blending scale-up model for evaluating the effect of magnesium stearate on tablet tensile strength and bulk specific volumeInt J Pharm201242911111:CAS:528:DC%2BC38XkslWit7k%3D10.1016/j.ijpharm.2012.02.040 Escotet-EspinozaMSMoghtadernejadSOkaSWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMIerapetritouMMuzzioFJEffect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: experimental evaluationPowder Technol201934274476310.1016/j.powtec.2018.10.040 Robinson K. Continuous manufacturing: the facts and the future. Manuf Chem. 2019. WangJWenHDesaiDLubrication in tablet formulationsEur J Pharm Biopharm20107511510.1016/j.ejpb.2010.01.007 LlusaMLevinMSneeRDMuzzioFJMeasuring the hydrophobicity of lubricated blends of pharmaceutical excipientsPowder Technol201019811011071:CAS:528:DC%2BD1MXhsF2jtLfE10.1016/j.powtec.2009.10.021 Escotet-EspinozaMSVadodariaSSinghRMuzzioFJIerapetritouMGModeling the effects of material properties on tablet compaction: a building block for controlling both batch and continuous pharmaceutical manufacturing processesInt J Pharm201854312742871:CAS:528:DC%2BC1cXntFSju74%3D10.1016/j.ijpharm.2018.03.036 ZhouQTQuLGengenbachTLarsonIStewartPJMortonDAEffect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalersAAPS PharmSciTech2013141384410.1208/s12249-012-9895-z AU Vanarase (1473_CR41) 2010; 65 J Wang (1473_CR28) 2010; 75 Y Gao (1473_CR22) 2011; 66 UI Leinonen (1473_CR31) 1992; 81 J Li (1473_CR19) 2014; 2 Y Wang (1473_CR32) 2017; 322 1473_CR2 1473_CR1 S Oka (1473_CR26) 2016; 40 1473_CR6 1473_CR5 1473_CR4 1473_CR8 1473_CR7 M Llusa (1473_CR15) 2010; 198 S Moghtadernejad (1473_CR42) 2018; 13 AU Vanarase (1473_CR23) 2011; 208 RR Ketterhagen (1473_CR34) 2018; 335 GK Kanji (1473_CR47) 1976; 7 N Bostijna (1473_CR11) 2019; 557 A Mehrotra (1473_CR14) 2007; 336 A Khan (1473_CR46) 2003; 7 P Editors (1473_CR3) 2017 K Marikh (1473_CR49) 2006; 84 MS Escotet-Espinoza (1473_CR24) 2019; 342 1473_CR36 1473_CR21 B Van Snick (1473_CR50) 2017; 519 JT Fell (1473_CR44) 1970; 59 MS Escotet-Espinoza (1473_CR12) 2018; 339 E Hernandez (1473_CR37) 2016; 117 Z Liu (1473_CR43) 2017; 33 PM Portillo (1473_CR16) 2009; 194 S Razavi (1473_CR18) 2016; 507 JM Vargas (1473_CR20) 2018; 538 MS Escotet-Espinoza (1473_CR25) 2019; 344 J Kushner (1473_CR40) 2014; 475 D Blackwood (1473_CR33) 2018; 44 J Kushner (1473_CR39) 2010; 399 MS Escotet-Espinoza (1473_CR27) 2018; 543 J Kushner (1473_CR38) 2012; 429 TA Miller (1473_CR29) 1988; 41 B Lantz (1473_CR45) 2013; 66 H Berthiaux (1473_CR48) 2008; 47 V Snickab (1473_CR10) 2019; 556 PM Portillo (1473_CR17) 2010; 65 QT Zhou (1473_CR35) 2013; 14 Y Wang (1473_CR9) 2017; 308 AC Shah (1473_CR30) 1977; 66 1473_CR13 |
References_xml | – reference: Escotet-EspinozaMSMoghtadernejadSOkaSWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMIerapetritouMMuzzioFJEffect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: experimental evaluationPowder Technol201934274476310.1016/j.powtec.2018.10.040 – reference: HernandezEPawarPKeyvanGWangYVelezNCallegariGCuitinoAMichniak-KohnBMuzzioFJRomañachRJPrediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strainJ Pharm Biomed Anal20161175685761:CAS:528:DC%2BC2MXhslWrtL7N10.1016/j.jpba.2015.10.012 – reference: MoghtadernejadSEscotet-EspinozaMSOkaSSinghRLiuZRomán-OspinoALiTRazaviTSPanikarSScicoloneJCallegariGHausnerDMuzzioFJA training on: continuous manufacturing (direct compaction) of solid dose pharmaceutical productsJ Pharm Innov201813215518710.1007/s12247-018-9313-5 – reference: KhanARaynerGDRobustness to non-normality of common tests for the many-sample location problemJ Appl Math Decis Sci20037418720610.1155/S1173912603000178 – reference: BlackwoodDKetterhagenWKresevicJKushnerJMoriartyJMullarneyMPQuantifying and reducing powder shear sensitivity when manufacturing capsules with lubricantsDrug Dev Ind Pharm2018448135013561:CAS:528:DC%2BC1cXovFGmsLk%3D10.1080/03639045.2018.1451877 – reference: Editors P. Hovione plans commercial continuous manufacturing facility. PTSM: Pharmaceutical Technology Sourcing and Management. 2016;11. – reference: Editors P. Vertex receives FDA approval for continuously manufactured drug product. Editors Notes. 2018. – reference: OkaSMoghtadernejadSLiuZHausnerDMuzzioFJLubrication in continuous tubular powder blendersPharm Technol2016401144451:CAS:528:DC%2BC1cXnsVOhu7g%3D – reference: Gaspar F, Gil M, Matos N. Continuous processing: meeting the need for new manufacturing strategies. 2016. – reference: Muzzio FJ. Mixing mechanics: practical powder blending: micromixing, in Powder and Bulk Engineering. 2016. – reference: ShahACMlodozeniecAARMechanism of surface lubrication: influence of duration of lubricant-excipient mixing on processing characteristics of powders and properties of compressed tabletsJ Pharm Sci19776610137713821:CAS:528:DyaE1cXislOmsg%3D%3D10.1002/jps.2600661006 – reference: VanaraseAUAlcalaMRozoJIJMuzzioFJRomanachRJReal-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopyChem Eng Sci20106521572857331:CAS:528:DC%2BC3cXht1Kqur%2FO10.1016/j.ces.2010.01.036 – reference: GaoYVanaraseAMuzzioFJIerapetritouMCharacterizing continuous powder mixing using residence time distributionChem Eng Sci20116634174251:CAS:528:DC%2BC3MXhtlaiuw%3D%3D10.1016/j.ces.2010.10.045 – reference: VanaraseAUA.F.J.M. Effect of operating conditions and design parameters in a continuous powder mixerPowder Technol2011208126361:CAS:528:DC%2BC3MXit1Wht7k%3D10.1016/j.powtec.2010.11.038 – reference: Escotet-EspinozaMSMoghtadernejadSScicoloneJWangYPereiraGSchäferEVighTKlingeleersDIerapetritouMMuzzioFJUsing a material property library to find surrogate materials for pharmaceutical process developmentPowder Technol20183396596761:CAS:528:DC%2BC1cXhs1eisrjO10.1016/j.powtec.2018.08.042 – reference: WangYLiTMuzzioFJGlasserBJPredicting feeder performance based on material flow propertiesPowder Technol20173081351481:CAS:528:DC%2BC28XitVOks7bE10.1016/j.powtec.2016.12.010 – reference: MillerTAYorkPPharmaceutical tablet lubricationInt J Pharm1988411–21191:CAS:528:DyaL1cXotF2jtg%3D%3D10.1016/0378-5173(88)90130-5 – reference: RazaviSCallegariGDrazerGCuitinoAToward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturingInt J Pharm20165071–283891:CAS:528:DC%2BC28XotFamtb4%3D10.1016/j.ijpharm.2016.04.064 – reference: Escotet-EspinozaMSMoghtadernejadSOkaSWangZWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMMuzzioFJIerapetritouMEffect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: application of modelsPowder Technol20193445255441:CAS:528:DC%2BC1cXisFGiurbP10.1016/j.powtec.2018.12.051 – reference: Hausner D, Moore AC. Continuous manufacturing current status. Features. 2018. – reference: Braido D. Characterization and modeling the dissolution performance of tablets focusing on powder processing effects. 2012. – reference: BerthiauxHMarikhKGatumelCContinuous mixing of powder mixtures with pharmaceutical process constraintsChem Eng Process20084712231523221:CAS:528:DC%2BD1cXht1Kjtb3K10.1016/j.cep.2008.01.009 – reference: LeinonenUIJalonenHUVihervaaraPALaineESUPhysical and lubrication properties of magnesium stearateJ Pharm Sci19928112119411981:CAS:528:DyaK3sXms1OitQ%3D%3D10.1002/jps.2600811214 – reference: MehrotraALlusaMFaqihALevinMMuzzioFJInfluence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearateInt J Pharm200733622842911:CAS:528:DC%2BD2sXkvFWqu7s%3D10.1016/j.ijpharm.2006.12.013 – reference: EditorsPFDA to promote continuous manufacturing2017 – reference: Robinson K. Continuous manufacturing: the facts and the future. Manuf Chem. 2019. – reference: KetterhagenRRMullarneyMPKresevicJBlackwoodDComputational approaches to predict the effect of shear during processing of lubricated pharmaceutical blendsPowder Technol20183354274391:CAS:528:DC%2BC1cXhtVKnsb7L10.1016/j.powtec.2018.05.023 – reference: Editors P. EMA approves Janssen drug made via continuous manufacturing. Editors Notes. 2017. – reference: Pallone F. JrPallone & FDA commissioner Gottlieb visit Rutgers university to discuss innovative pharmaceutical manufacturing. House of representatives official website: frank Pallone, Jr Press Release. 2018. – reference: LiJWuYLubricants in pharmaceutical solid dosage formsLubricants20142121431:CAS:528:DC%2BC2MXhvV2qtr7P10.3390/lubricants2010021 – reference: VargasJMNielsenSCárdenasVGonzalezAAymatEYAlmodovarEClasseGColónYSanchezERomañachRJProcess analytical technology in continuous manufacturing of a commercial pharmaceutical productInt J Pharm20185381–21671781:CAS:528:DC%2BC1cXhvVCgu74%3D10.1016/j.ijpharm.2018.01.003 – reference: Markarian J. Continuous manufacturing presses In: Equipment and Processing Report. 2017;10. – reference: Van SnickBHolmanJCunninghamCKumarAVercruysseJDe BeerTRemonJPVervaetCContinuous direct compression as manufacturing platform for sustained release tabletsInt J Pharm2017519139040710.1016/j.ijpharm.2017.01.010 – reference: PortilloPMIerapetritouMGMuzzioFJEffects of rotation rate, mixing angle, and cohesion in two continuous mixers—a statistical approachPowder Technol20091942172271:CAS:528:DC%2BD1MXnt1emsrk%3D10.1016/j.powtec.2009.04.010 – reference: LantzBThe impact of sample non-normality on ANOVA and alternative methodsBr J Math Stat Psychol201366222424410.1111/j.2044-8317.2012.02047.x – reference: LiuZWangYMuzzioFJCallegariGDrazerGCapillary drop penetration method to characterize the liquid wetting of powdersLangmuir201733156651:CAS:528:DC%2BC28XhvFKns73I10.1021/acs.langmuir.6b03589 – reference: FellJTNewtonAJMDetermination of tablet strength by the diametral-compression testJ Pharm Sci19705956886911:CAS:528:DyaE3cXkt1yrtbw%3D10.1002/jps.2600590523 – reference: WangYOsorioJGLiTMuzzioFJControlled shear system and resonant acoustic mixing: effects on lubrication and flow properties of pharmaceutical blendsPowder Technol20173223323391:CAS:528:DC%2BC2sXhsFCisLvF10.1016/j.powtec.2017.09.028 – reference: KushnerJMooreFScale-up model describing the impact of lubrication on tablet tensile strengthInt J Pharm2010399119301:CAS:528:DC%2BC3cXhtFOisbzK10.1016/j.ijpharm.2010.07.033 – reference: LlusaMLevinMSneeRDMuzzioFJMeasuring the hydrophobicity of lubricated blends of pharmaceutical excipientsPowder Technol201019811011071:CAS:528:DC%2BD1MXhsF2jtLfE10.1016/j.powtec.2009.10.021 – reference: PortilloPMVanaraseAUIngramASevilleJKInvestigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPTChem Eng Sci2010655685566810.1016/j.ces.2010.06.036 – reference: WangJWenHDesaiDLubrication in tablet formulationsEur J Pharm Biopharm20107511510.1016/j.ejpb.2010.01.007 – reference: KushnerJSchlackAHCommercial scale validation of a process scale-up model for lubricant blending of pharmaceutical powdersInt J Pharm201447511471551:CAS:528:DC%2BC2cXhsVars7jN10.1016/j.ijpharm.2014.08.036 – reference: MarikhKBerthiauxHBarantsevaMVEPonomarevDFlow analysis and Markov chain modelling to quantify the agitation effect in a continuous powder mixerChem Eng Res Des20068411105910741:CAS:528:DC%2BD2sXkvVc%3D10.1205/cherd05032 – reference: ZhouQTQuLGengenbachTLarsonIStewartPJMortonDAEffect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalersAAPS PharmSciTech2013141384410.1208/s12249-012-9895-z – reference: Escotet-EspinozaMSVadodariaSSinghRMuzzioFJIerapetritouMGModeling the effects of material properties on tablet compaction: a building block for controlling both batch and continuous pharmaceutical manufacturing processesInt J Pharm201854312742871:CAS:528:DC%2BC1cXntFSju74%3D10.1016/j.ijpharm.2018.03.036 – reference: SnickabVKumarcAVerstraetendMPandelaereaKDhondtdJDiPretorobGDe BeerdTVervaetaCVanhoorneaVImpact of material properties and process variables on the residence time distribution in twin screw feeding equipmentInt J Pharm201955620021610.1016/j.ijpharm.2018.11.076 – reference: KushnerJIncorporating Turbula mixers into a blending scale-up model for evaluating the effect of magnesium stearate on tablet tensile strength and bulk specific volumeInt J Pharm201242911111:CAS:528:DC%2BC38XkslWit7k%3D10.1016/j.ijpharm.2012.02.040 – reference: KanjiGKEffect of non-normality on the power in analysis of variance: a simulation studyInt J Math Educ Sci Technol19767215516010.1080/0020739760070204 – reference: BostijnaNDhondtaJRyckaertaASzabóaEDhondtbWVan SnickcdBVanhoornecVVervaetcCDe BeeraTA multivariate approach to predict the volumetric and gravimetric feeding behavior of a low feed rate feeder based on raw material propertiesInt J Pharm201955734235310.1016/j.ijpharm.2018.12.066 – ident: 1473_CR4 – ident: 1473_CR8 – volume-title: FDA to promote continuous manufacturing year: 2017 ident: 1473_CR3 – volume: 66 start-page: 224 issue: 2 year: 2013 ident: 1473_CR45 publication-title: Br J Math Stat Psychol doi: 10.1111/j.2044-8317.2012.02047.x – ident: 1473_CR1 – volume: 308 start-page: 135 year: 2017 ident: 1473_CR9 publication-title: Powder Technol doi: 10.1016/j.powtec.2016.12.010 – volume: 7 start-page: 187 issue: 4 year: 2003 ident: 1473_CR46 publication-title: J Appl Math Decis Sci doi: 10.1155/S1173912603000178 – volume: 40 start-page: 44 issue: 11 year: 2016 ident: 1473_CR26 publication-title: Pharm Technol – volume: 13 start-page: 155 issue: 2 year: 2018 ident: 1473_CR42 publication-title: J Pharm Innov doi: 10.1007/s12247-018-9313-5 – ident: 1473_CR36 – ident: 1473_CR5 – volume: 47 start-page: 2315 issue: 12 year: 2008 ident: 1473_CR48 publication-title: Chem Eng Process doi: 10.1016/j.cep.2008.01.009 – volume: 335 start-page: 427 year: 2018 ident: 1473_CR34 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.05.023 – volume: 65 start-page: 5685 year: 2010 ident: 1473_CR17 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2010.06.036 – volume: 429 start-page: 1 issue: 1 year: 2012 ident: 1473_CR38 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2012.02.040 – volume: 75 start-page: 1 year: 2010 ident: 1473_CR28 publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2010.01.007 – volume: 59 start-page: 688 issue: 5 year: 1970 ident: 1473_CR44 publication-title: J Pharm Sci doi: 10.1002/jps.2600590523 – volume: 557 start-page: 342 year: 2019 ident: 1473_CR11 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2018.12.066 – volume: 194 start-page: 217 year: 2009 ident: 1473_CR16 publication-title: Powder Technol doi: 10.1016/j.powtec.2009.04.010 – volume: 2 start-page: 21 issue: 1 year: 2014 ident: 1473_CR19 publication-title: Lubricants doi: 10.3390/lubricants2010021 – ident: 1473_CR21 – ident: 1473_CR2 – volume: 14 start-page: 38 issue: 1 year: 2013 ident: 1473_CR35 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-012-9895-z – volume: 65 start-page: 5728 issue: 21 year: 2010 ident: 1473_CR41 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2010.01.036 – volume: 117 start-page: 568 year: 2016 ident: 1473_CR37 publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2015.10.012 – volume: 475 start-page: 147 issue: 1 year: 2014 ident: 1473_CR40 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2014.08.036 – ident: 1473_CR6 – volume: 7 start-page: 155 issue: 2 year: 1976 ident: 1473_CR47 publication-title: Int J Math Educ Sci Technol doi: 10.1080/0020739760070204 – volume: 336 start-page: 284 issue: 2 year: 2007 ident: 1473_CR14 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2006.12.013 – volume: 208 start-page: 26 issue: 1 year: 2011 ident: 1473_CR23 publication-title: Powder Technol doi: 10.1016/j.powtec.2010.11.038 – volume: 399 start-page: 19 issue: 1 year: 2010 ident: 1473_CR39 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2010.07.033 – volume: 198 start-page: 101 issue: 1 year: 2010 ident: 1473_CR15 publication-title: Powder Technol doi: 10.1016/j.powtec.2009.10.021 – volume: 84 start-page: 1059 issue: 11 year: 2006 ident: 1473_CR49 publication-title: Chem Eng Res Des doi: 10.1205/cherd05032 – volume: 66 start-page: 417 issue: 3 year: 2011 ident: 1473_CR22 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2010.10.045 – volume: 81 start-page: 1194 issue: 12 year: 1992 ident: 1473_CR31 publication-title: J Pharm Sci doi: 10.1002/jps.2600811214 – volume: 543 start-page: 274 issue: 1 year: 2018 ident: 1473_CR27 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2018.03.036 – ident: 1473_CR7 – ident: 1473_CR13 – volume: 342 start-page: 744 year: 2019 ident: 1473_CR24 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.10.040 – volume: 344 start-page: 525 year: 2019 ident: 1473_CR25 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.12.051 – volume: 41 start-page: 1 issue: 1–2 year: 1988 ident: 1473_CR29 publication-title: Int J Pharm doi: 10.1016/0378-5173(88)90130-5 – volume: 66 start-page: 1377 issue: 10 year: 1977 ident: 1473_CR30 publication-title: J Pharm Sci doi: 10.1002/jps.2600661006 – volume: 322 start-page: 332 year: 2017 ident: 1473_CR32 publication-title: Powder Technol doi: 10.1016/j.powtec.2017.09.028 – volume: 519 start-page: 390 issue: 1 year: 2017 ident: 1473_CR50 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2017.01.010 – volume: 556 start-page: 200 year: 2019 ident: 1473_CR10 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2018.11.076 – volume: 44 start-page: 1350 issue: 8 year: 2018 ident: 1473_CR33 publication-title: Drug Dev Ind Pharm doi: 10.1080/03639045.2018.1451877 – volume: 339 start-page: 659 year: 2018 ident: 1473_CR12 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.08.042 – volume: 507 start-page: 83 issue: 1–2 year: 2016 ident: 1473_CR18 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2016.04.064 – volume: 538 start-page: 167 issue: 1–2 year: 2018 ident: 1473_CR20 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2018.01.003 – volume: 33 start-page: 56 issue: 1 year: 2017 ident: 1473_CR43 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03589 |
SSID | ssj0023193 |
Score | 2.233819 |
Snippet | Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 262 |
SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Pharmacology/Toxicology Pharmacy Research Article |
Title | Mixing Cell: a Device to Mimic Extent of Lubrication and Shear in Continuous Tubular Blenders |
URI | https://link.springer.com/article/10.1208/s12249-019-1473-1 https://www.ncbi.nlm.nih.gov/pubmed/31338701 https://www.proquest.com/docview/2263323892 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZ4XLggHgtbHtUgrTiwRJsmTuxwK1BAu3TFoZXggCzHsaVIJUUkkei_Z5xHEeIhcbedyN_Y_uyZ-YaQXy6SZGm476C5MIcaxR0ZGu1wpSWLYxlpapOTh__DqzH9exvcNnnceRvt3rokq526UkBw-Z_c-oBsbE_k9CjDwRfJcmDlpNCIx15_fstCm_Ib9-WH3d4eQO9Y5TuPaHXQXKyR1YYhQr-GdJ0s6GyDHN7UEtOzYxi9Zkzlx3AIN6_i07NNcj9Mn3FYONOTyQlIONd2K4BiCsP0IVUwsI_eBUwNXJfxU_NgBzJLoKptDWkGVrAqzcppmcOojG2YKpxOqopz-Q8yvhiMzq6cpoSCo3zOCsenUcKlirnyaBAEYaSSSrTOk9qESc8gJIZGVDKNzElGrko4UxI5CWfMpcr4W2Qpm2b6JwHeCyR1Y6MVUgLNY8nCwLjSU2EUGoS8Q9x2XoVq9MVtmYuJsPcMhELUUAiEQlgoRK9DjuZdHmtxja8aH7RgCVwC1q8hM41zIZBB-j5Sjwj_YbtGcT6cb-_gzMXev1tYRbNK88-_tfOt1rtkxavsy4b47ZGl4qnU-0hVirhLlvuXd_8G3cpEXwCEm-JC |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYYHNhlGmyDbgPepKmHjYg0cWKHG7-qAm3VQytxQZbj2FKkkk5NIo3_fs_50Qp1TNrddiJ_z_b3_J6_R8h3F0myNNx30FyYQ43ijgyNdrjSksWxjDS1j5NH43Awo3cPwUPzjjtvs93bkGS1U1cKCC4_y20MyOb2RE6PMhz8DdmxUUbrcc28i5WXhTblN-HLv3Z7eQBtsMqNiGh10PTfk3cNQ4SLGtI9sqWzfdKd1BLTz6cwXb-Yyk-hC5O1-PTzB_I4Sn_jsHCl5_NzkHCt7VYAxQJG6VOq4MZeehewMDAs42VzYQcyS6CqbQ1pBlawKs3KRZnDtIxtmipczquKc_lHMuvfTK8GTlNCwVE-Z4Xj0yjhUsVceTQIgjBSSSVa50ltwqRnEBJDIyqZRuYkI1clnCmJnIQz5lJl_E9kO1tk-pAA7wWSurHRCimB5rFkYWBc6akwCg1C3iFuO69CNfritszFXFg_A6EQNRQCoRAWCtHrkB-rLr9qcY1_Nf7WgiVwCdi4hsw0zoVABun7SD0i_IeDGsXVcL71wZmLvX-2sIpmleavf-vzf7U-IbuD6Wgohrfj-y_krVfZmk33-0q2i2Wpj5C2FPFxZaZ_AA8R45E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJceD_Kc5BQD9C02Y0TO9xKu0uh3WoPW6kckLEdW4pYslWTSJRfzziPraCAhLjbsTP-bH_2jL8BeBkSSVZORAHBhQfMGRGoxNlAGKu41iq1zD9Onh4l-8fsw0l80uU5Lfto994l2b5p8CpNRbV9mrlWDSEU26X3B_k4nzQYMk4NXYU15lNIDGBt593Hg_HqzEUIizpn5m8r_rwdXeKYl_yjzbYzuQmf-w630SZftupKb5nvv2g5_scf3YIbHSXFnRZDt-GKLe7AxqzVtD7fxPnFE61yEzdwdqF2fX4XPk3zb9Qo7trF4g0q3LN-7cFqidP8a25w7G_ZK1w6PKz1WXdDiKrIsEmmjXmBXiErL-plXeK81j4uFt8umhR35T04noznu_tBl7MhMJHgVRCxNBPKaGFGLI7jJDVZo5I3UtYl2dARBhxLmeKWqJpKQ5MJbhSRIMF5yIyL7sOgWBb2IaAYxoqF2llDHMQKrXgSu1CNTJImjjC2DmE_dNJ0guY-r8ZC-oMNGVW2RpVkVOmNKofr8GpV5bRV8_hb4Rc9HiTNOe9IUYUlW0iirFFEXCelPjxogbL6XOQP_Tyk2q_7QZfdslD-ua1H_1T6OVyb7U3k4fujg8dwfdSAxocXPoFBdVbbp0STKv2smwo_AE_HCUo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixing+Cell%3A+a+Device+to+Mimic+Extent+of+Lubrication+and+Shear+in+Continuous+Tubular+Blenders&rft.jtitle=AAPS+PharmSciTech&rft.au=Moghtadernejad%2C+Sara&rft.au=Escotet-Espinoza%2C+M+Sebastian&rft.au=Liu%2C+Zhanjie&rft.au=Sch%C3%A4fer%2C+Elisabeth&rft.date=2019-10-01&rft.eissn=1530-9932&rft.volume=20&rft.issue=7&rft.spage=262&rft_id=info:doi/10.1208%2Fs12249-019-1473-1&rft_id=info%3Apmid%2F31338701&rft.externalDocID=31338701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon |