Mixing Cell: a Device to Mimic Extent of Lubrication and Shear in Continuous Tubular Blenders

Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amou...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 20; no. 7; p. 262
Main Authors Moghtadernejad, Sara, Escotet-Espinoza, M. Sebastian, Liu, Zhanjie, Schäfer, Elisabeth, Muzzio, Fernando
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2019
Subjects
Online AccessGet full text
ISSN1530-9932
1530-9932
DOI10.1208/s12249-019-1473-1

Cover

Abstract Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale “mixing cell” which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication—evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments—occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.
AbstractList Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.
Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.
ArticleNumber 262
Author Escotet-Espinoza, M. Sebastian
Liu, Zhanjie
Moghtadernejad, Sara
Schäfer, Elisabeth
Muzzio, Fernando
Author_xml – sequence: 1
  givenname: Sara
  orcidid: 0000-0002-4692-6947
  surname: Moghtadernejad
  fullname: Moghtadernejad, Sara
  email: sara.moghtadernejad@csulb.edu
  organization: Department of Chemical Engineering, California State University
– sequence: 2
  givenname: M. Sebastian
  surname: Escotet-Espinoza
  fullname: Escotet-Espinoza, M. Sebastian
  organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey
– sequence: 3
  givenname: Zhanjie
  surname: Liu
  fullname: Liu, Zhanjie
  organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey
– sequence: 4
  givenname: Elisabeth
  surname: Schäfer
  fullname: Schäfer, Elisabeth
  organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey, The Janssen Pharmaceutical Companies of Johnson and Johnson
– sequence: 5
  givenname: Fernando
  surname: Muzzio
  fullname: Muzzio, Fernando
  email: fjmuzzio@yahoo.com
  organization: Department of Chemical and Biochemical Engineering. Rutgers, The State University of New Jersey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31338701$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOAyEUQInRaH18gBvD0s0oj5kOuNP6TGpcqEtDKHOnYqZQgTH691JbjXHhCkLOgcvZRuvOO0Bon5Ijyog4jpSxUhaEyoKWNS_oGhrQipNCSs7Wf-230HaML4QwTiXfRFucci5qQgfo6da-WzfFI-i6E6zxObxZAzh5fGtn1uCL9wQuYd_icT8J1uhkvcPaNfj-GXTA1uGRd8m63vcRP_STvsunZx24BkLcRRut7iLsrdYd9Hh58TC6LsZ3Vzej03Fh8hip4KVshDYTYVhZVdVQmoYQwQTT0A4b2goDbSlLXUNVUS2JaURttCiHoq5JaVq-gw6X986Df-0hJjWz0eQvaQd5LsXYkHPGhWQZPVih_WQGjZoHO9PhQ30nyQBdAib4GAO0PwglapFdLbOrnF0tsquFU_9xjE1fqVLQtvvXZEsz5lfcFIJ68X1wOdY_0ifgzJT-
CitedBy_id crossref_primary_10_1016_j_powtec_2024_120016
crossref_primary_10_1080_02726351_2024_2416894
Cites_doi 10.1111/j.2044-8317.2012.02047.x
10.1016/j.powtec.2016.12.010
10.1155/S1173912603000178
10.1007/s12247-018-9313-5
10.1016/j.cep.2008.01.009
10.1016/j.powtec.2018.05.023
10.1016/j.ces.2010.06.036
10.1016/j.ijpharm.2012.02.040
10.1016/j.ejpb.2010.01.007
10.1002/jps.2600590523
10.1016/j.ijpharm.2018.12.066
10.1016/j.powtec.2009.04.010
10.3390/lubricants2010021
10.1208/s12249-012-9895-z
10.1016/j.ces.2010.01.036
10.1016/j.jpba.2015.10.012
10.1016/j.ijpharm.2014.08.036
10.1080/0020739760070204
10.1016/j.ijpharm.2006.12.013
10.1016/j.powtec.2010.11.038
10.1016/j.ijpharm.2010.07.033
10.1016/j.powtec.2009.10.021
10.1205/cherd05032
10.1016/j.ces.2010.10.045
10.1002/jps.2600811214
10.1016/j.ijpharm.2018.03.036
10.1016/j.powtec.2018.10.040
10.1016/j.powtec.2018.12.051
10.1016/0378-5173(88)90130-5
10.1002/jps.2600661006
10.1016/j.powtec.2017.09.028
10.1016/j.ijpharm.2017.01.010
10.1016/j.ijpharm.2018.11.076
10.1080/03639045.2018.1451877
10.1016/j.powtec.2018.08.042
10.1016/j.ijpharm.2016.04.064
10.1016/j.ijpharm.2018.01.003
10.1021/acs.langmuir.6b03589
ContentType Journal Article
Copyright American Association of Pharmaceutical Scientists 2019
Copyright_xml – notice: American Association of Pharmaceutical Scientists 2019
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1208/s12249-019-1473-1
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1530-9932
ExternalDocumentID 31338701
10_1208_s12249_019_1473_1
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
408
40D
40E
53G
5GY
5VS
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAWUL
BDATZ
BGNMA
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HH5
HMJXF
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OK1
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TR2
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z87
ZMTXR
ZOVNA
~A9
-Y2
2VQ
4.4
AANXM
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABULA
ACBXY
ACMFV
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AOIJS
ATHPR
AYFIA
BSONS
C1A
CAG
CITATION
COF
EN4
GX1
H13
HYE
HZ~
LGEZI
LOTEE
NADUK
NXXTH
O9-
OVD
S1Z
TEORI
NPM
7X8
ABRTQ
ID FETCH-LOGICAL-c387t-349d8acb8c2455569cd008282aef6d1f8cef494a7e551a90cd87ca84687704cf3
IEDL.DBID U2A
ISSN 1530-9932
IngestDate Thu Sep 04 17:59:55 EDT 2025
Wed Feb 19 02:32:16 EST 2025
Tue Jul 01 01:45:34 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Fri Feb 21 02:33:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords tablet tensile strength
extent of lubrication
continuous process development
continuous mixing
batch mixing
pharmaceutical ingredients
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-349d8acb8c2455569cd008282aef6d1f8cef494a7e551a90cd87ca84687704cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4692-6947
OpenAccessLink https://link.springer.com/content/pdf/10.1208/s12249-019-1473-1.pdf
PMID 31338701
PQID 2263323892
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2263323892
pubmed_primary_31338701
crossref_primary_10_1208_s12249_019_1473_1
crossref_citationtrail_10_1208_s12249_019_1473_1
springer_journals_10_1208_s12249_019_1473_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle AAPS PharmSciTech
PublicationTitleAbbrev AAPS PharmSciTech
PublicationTitleAlternate AAPS PharmSciTech
PublicationYear 2019
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References KhanARaynerGDRobustness to non-normality of common tests for the many-sample location problemJ Appl Math Decis Sci20037418720610.1155/S1173912603000178
KetterhagenRRMullarneyMPKresevicJBlackwoodDComputational approaches to predict the effect of shear during processing of lubricated pharmaceutical blendsPowder Technol20183354274391:CAS:528:DC%2BC1cXhtVKnsb7L10.1016/j.powtec.2018.05.023
KanjiGKEffect of non-normality on the power in analysis of variance: a simulation studyInt J Math Educ Sci Technol19767215516010.1080/0020739760070204
Braido D. Characterization and modeling the dissolution performance of tablets focusing on powder processing effects. 2012.
Hausner D, Moore AC. Continuous manufacturing current status. Features. 2018.
Muzzio FJ. Mixing mechanics: practical powder blending: micromixing, in Powder and Bulk Engineering. 2016.
LantzBThe impact of sample non-normality on ANOVA and alternative methodsBr J Math Stat Psychol201366222424410.1111/j.2044-8317.2012.02047.x
PortilloPMVanaraseAUIngramASevilleJKInvestigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPTChem Eng Sci2010655685566810.1016/j.ces.2010.06.036
LiJWuYLubricants in pharmaceutical solid dosage formsLubricants20142121431:CAS:528:DC%2BC2MXhvV2qtr7P10.3390/lubricants2010021
GaoYVanaraseAMuzzioFJIerapetritouMCharacterizing continuous powder mixing using residence time distributionChem Eng Sci20116634174251:CAS:528:DC%2BC3MXhtlaiuw%3D%3D10.1016/j.ces.2010.10.045
SnickabVKumarcAVerstraetendMPandelaereaKDhondtdJDiPretorobGDe BeerdTVervaetaCVanhoorneaVImpact of material properties and process variables on the residence time distribution in twin screw feeding equipmentInt J Pharm201955620021610.1016/j.ijpharm.2018.11.076
KushnerJSchlackAHCommercial scale validation of a process scale-up model for lubricant blending of pharmaceutical powdersInt J Pharm201447511471551:CAS:528:DC%2BC2cXhsVars7jN10.1016/j.ijpharm.2014.08.036
Van SnickBHolmanJCunninghamCKumarAVercruysseJDe BeerTRemonJPVervaetCContinuous direct compression as manufacturing platform for sustained release tabletsInt J Pharm2017519139040710.1016/j.ijpharm.2017.01.010
Markarian J. Continuous manufacturing presses In: Equipment and Processing Report. 2017;10.
FellJTNewtonAJMDetermination of tablet strength by the diametral-compression testJ Pharm Sci19705956886911:CAS:528:DyaE3cXkt1yrtbw%3D10.1002/jps.2600590523
Gaspar F, Gil M, Matos N. Continuous processing: meeting the need for new manufacturing strategies. 2016.
MarikhKBerthiauxHBarantsevaMVEPonomarevDFlow analysis and Markov chain modelling to quantify the agitation effect in a continuous powder mixerChem Eng Res Des20068411105910741:CAS:528:DC%2BD2sXkvVc%3D10.1205/cherd05032
MillerTAYorkPPharmaceutical tablet lubricationInt J Pharm1988411–21191:CAS:528:DyaL1cXotF2jtg%3D%3D10.1016/0378-5173(88)90130-5
MoghtadernejadSEscotet-EspinozaMSOkaSSinghRLiuZRomán-OspinoALiTRazaviTSPanikarSScicoloneJCallegariGHausnerDMuzzioFJA training on: continuous manufacturing (direct compaction) of solid dose pharmaceutical productsJ Pharm Innov201813215518710.1007/s12247-018-9313-5
BostijnaNDhondtaJRyckaertaASzabóaEDhondtbWVan SnickcdBVanhoornecVVervaetcCDe BeeraTA multivariate approach to predict the volumetric and gravimetric feeding behavior of a low feed rate feeder based on raw material propertiesInt J Pharm201955734235310.1016/j.ijpharm.2018.12.066
VargasJMNielsenSCárdenasVGonzalezAAymatEYAlmodovarEClasseGColónYSanchezERomañachRJProcess analytical technology in continuous manufacturing of a commercial pharmaceutical productInt J Pharm20185381–21671781:CAS:528:DC%2BC1cXhvVCgu74%3D10.1016/j.ijpharm.2018.01.003
PortilloPMIerapetritouMGMuzzioFJEffects of rotation rate, mixing angle, and cohesion in two continuous mixers—a statistical approachPowder Technol20091942172271:CAS:528:DC%2BD1MXnt1emsrk%3D10.1016/j.powtec.2009.04.010
MehrotraALlusaMFaqihALevinMMuzzioFJInfluence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearateInt J Pharm200733622842911:CAS:528:DC%2BD2sXkvFWqu7s%3D10.1016/j.ijpharm.2006.12.013
OkaSMoghtadernejadSLiuZHausnerDMuzzioFJLubrication in continuous tubular powder blendersPharm Technol2016401144451:CAS:528:DC%2BC1cXnsVOhu7g%3D
Pallone F. JrPallone & FDA commissioner Gottlieb visit Rutgers university to discuss innovative pharmaceutical manufacturing. House of representatives official website: frank Pallone, Jr Press Release. 2018.
WangYOsorioJGLiTMuzzioFJControlled shear system and resonant acoustic mixing: effects on lubrication and flow properties of pharmaceutical blendsPowder Technol20173223323391:CAS:528:DC%2BC2sXhsFCisLvF10.1016/j.powtec.2017.09.028
Editors P. Vertex receives FDA approval for continuously manufactured drug product. Editors Notes. 2018.
BlackwoodDKetterhagenWKresevicJKushnerJMoriartyJMullarneyMPQuantifying and reducing powder shear sensitivity when manufacturing capsules with lubricantsDrug Dev Ind Pharm2018448135013561:CAS:528:DC%2BC1cXovFGmsLk%3D10.1080/03639045.2018.1451877
ShahACMlodozeniecAARMechanism of surface lubrication: influence of duration of lubricant-excipient mixing on processing characteristics of powders and properties of compressed tabletsJ Pharm Sci19776610137713821:CAS:528:DyaE1cXislOmsg%3D%3D10.1002/jps.2600661006
VanaraseAUAlcalaMRozoJIJMuzzioFJRomanachRJReal-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopyChem Eng Sci20106521572857331:CAS:528:DC%2BC3cXht1Kqur%2FO10.1016/j.ces.2010.01.036
Escotet-EspinozaMSMoghtadernejadSScicoloneJWangYPereiraGSchäferEVighTKlingeleersDIerapetritouMMuzzioFJUsing a material property library to find surrogate materials for pharmaceutical process developmentPowder Technol20183396596761:CAS:528:DC%2BC1cXhs1eisrjO10.1016/j.powtec.2018.08.042
EditorsPFDA to promote continuous manufacturing2017
RazaviSCallegariGDrazerGCuitinoAToward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturingInt J Pharm20165071–283891:CAS:528:DC%2BC28XotFamtb4%3D10.1016/j.ijpharm.2016.04.064
WangYLiTMuzzioFJGlasserBJPredicting feeder performance based on material flow propertiesPowder Technol20173081351481:CAS:528:DC%2BC28XitVOks7bE10.1016/j.powtec.2016.12.010
KushnerJMooreFScale-up model describing the impact of lubrication on tablet tensile strengthInt J Pharm2010399119301:CAS:528:DC%2BC3cXhtFOisbzK10.1016/j.ijpharm.2010.07.033
LeinonenUIJalonenHUVihervaaraPALaineESUPhysical and lubrication properties of magnesium stearateJ Pharm Sci19928112119411981:CAS:528:DyaK3sXms1OitQ%3D%3D10.1002/jps.2600811214
LiuZWangYMuzzioFJCallegariGDrazerGCapillary drop penetration method to characterize the liquid wetting of powdersLangmuir201733156651:CAS:528:DC%2BC28XhvFKns73I10.1021/acs.langmuir.6b03589
Editors P. Hovione plans commercial continuous manufacturing facility. PTSM: Pharmaceutical Technology Sourcing and Management. 2016;11.
VanaraseAUA.F.J.M. Effect of operating conditions and design parameters in a continuous powder mixerPowder Technol2011208126361:CAS:528:DC%2BC3MXit1Wht7k%3D10.1016/j.powtec.2010.11.038
Editors P. EMA approves Janssen drug made via continuous manufacturing. Editors Notes. 2017.
Escotet-EspinozaMSMoghtadernejadSOkaSWangZWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMMuzzioFJIerapetritouMEffect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: application of modelsPowder Technol20193445255441:CAS:528:DC%2BC1cXisFGiurbP10.1016/j.powtec.2018.12.051
BerthiauxHMarikhKGatumelCContinuous mixing of powder mixtures with pharmaceutical process constraintsChem Eng Process20084712231523221:CAS:528:DC%2BD1cXht1Kjtb3K10.1016/j.cep.2008.01.009
HernandezEPawarPKeyvanGWangYVelezNCallegariGCuitinoAMichniak-KohnBMuzzioFJRomañachRJPrediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strainJ Pharm Biomed Anal20161175685761:CAS:528:DC%2BC2MXhslWrtL7N10.1016/j.jpba.2015.10.012
KushnerJIncorporating Turbula mixers into a blending scale-up model for evaluating the effect of magnesium stearate on tablet tensile strength and bulk specific volumeInt J Pharm201242911111:CAS:528:DC%2BC38XkslWit7k%3D10.1016/j.ijpharm.2012.02.040
Escotet-EspinozaMSMoghtadernejadSOkaSWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMIerapetritouMMuzzioFJEffect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: experimental evaluationPowder Technol201934274476310.1016/j.powtec.2018.10.040
Robinson K. Continuous manufacturing: the facts and the future. Manuf Chem. 2019.
WangJWenHDesaiDLubrication in tablet formulationsEur J Pharm Biopharm20107511510.1016/j.ejpb.2010.01.007
LlusaMLevinMSneeRDMuzzioFJMeasuring the hydrophobicity of lubricated blends of pharmaceutical excipientsPowder Technol201019811011071:CAS:528:DC%2BD1MXhsF2jtLfE10.1016/j.powtec.2009.10.021
Escotet-EspinozaMSVadodariaSSinghRMuzzioFJIerapetritouMGModeling the effects of material properties on tablet compaction: a building block for controlling both batch and continuous pharmaceutical manufacturing processesInt J Pharm201854312742871:CAS:528:DC%2BC1cXntFSju74%3D10.1016/j.ijpharm.2018.03.036
ZhouQTQuLGengenbachTLarsonIStewartPJMortonDAEffect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalersAAPS PharmSciTech2013141384410.1208/s12249-012-9895-z
AU Vanarase (1473_CR41) 2010; 65
J Wang (1473_CR28) 2010; 75
Y Gao (1473_CR22) 2011; 66
UI Leinonen (1473_CR31) 1992; 81
J Li (1473_CR19) 2014; 2
Y Wang (1473_CR32) 2017; 322
1473_CR2
1473_CR1
S Oka (1473_CR26) 2016; 40
1473_CR6
1473_CR5
1473_CR4
1473_CR8
1473_CR7
M Llusa (1473_CR15) 2010; 198
S Moghtadernejad (1473_CR42) 2018; 13
AU Vanarase (1473_CR23) 2011; 208
RR Ketterhagen (1473_CR34) 2018; 335
GK Kanji (1473_CR47) 1976; 7
N Bostijna (1473_CR11) 2019; 557
A Mehrotra (1473_CR14) 2007; 336
A Khan (1473_CR46) 2003; 7
P Editors (1473_CR3) 2017
K Marikh (1473_CR49) 2006; 84
MS Escotet-Espinoza (1473_CR24) 2019; 342
1473_CR36
1473_CR21
B Van Snick (1473_CR50) 2017; 519
JT Fell (1473_CR44) 1970; 59
MS Escotet-Espinoza (1473_CR12) 2018; 339
E Hernandez (1473_CR37) 2016; 117
Z Liu (1473_CR43) 2017; 33
PM Portillo (1473_CR16) 2009; 194
S Razavi (1473_CR18) 2016; 507
JM Vargas (1473_CR20) 2018; 538
MS Escotet-Espinoza (1473_CR25) 2019; 344
J Kushner (1473_CR40) 2014; 475
D Blackwood (1473_CR33) 2018; 44
J Kushner (1473_CR39) 2010; 399
MS Escotet-Espinoza (1473_CR27) 2018; 543
J Kushner (1473_CR38) 2012; 429
TA Miller (1473_CR29) 1988; 41
B Lantz (1473_CR45) 2013; 66
H Berthiaux (1473_CR48) 2008; 47
V Snickab (1473_CR10) 2019; 556
PM Portillo (1473_CR17) 2010; 65
QT Zhou (1473_CR35) 2013; 14
Y Wang (1473_CR9) 2017; 308
AC Shah (1473_CR30) 1977; 66
1473_CR13
References_xml – reference: Escotet-EspinozaMSMoghtadernejadSOkaSWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMIerapetritouMMuzzioFJEffect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: experimental evaluationPowder Technol201934274476310.1016/j.powtec.2018.10.040
– reference: HernandezEPawarPKeyvanGWangYVelezNCallegariGCuitinoAMichniak-KohnBMuzzioFJRomañachRJPrediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strainJ Pharm Biomed Anal20161175685761:CAS:528:DC%2BC2MXhslWrtL7N10.1016/j.jpba.2015.10.012
– reference: MoghtadernejadSEscotet-EspinozaMSOkaSSinghRLiuZRomán-OspinoALiTRazaviTSPanikarSScicoloneJCallegariGHausnerDMuzzioFJA training on: continuous manufacturing (direct compaction) of solid dose pharmaceutical productsJ Pharm Innov201813215518710.1007/s12247-018-9313-5
– reference: KhanARaynerGDRobustness to non-normality of common tests for the many-sample location problemJ Appl Math Decis Sci20037418720610.1155/S1173912603000178
– reference: BlackwoodDKetterhagenWKresevicJKushnerJMoriartyJMullarneyMPQuantifying and reducing powder shear sensitivity when manufacturing capsules with lubricantsDrug Dev Ind Pharm2018448135013561:CAS:528:DC%2BC1cXovFGmsLk%3D10.1080/03639045.2018.1451877
– reference: Editors P. Hovione plans commercial continuous manufacturing facility. PTSM: Pharmaceutical Technology Sourcing and Management. 2016;11.
– reference: Editors P. Vertex receives FDA approval for continuously manufactured drug product. Editors Notes. 2018.
– reference: OkaSMoghtadernejadSLiuZHausnerDMuzzioFJLubrication in continuous tubular powder blendersPharm Technol2016401144451:CAS:528:DC%2BC1cXnsVOhu7g%3D
– reference: Gaspar F, Gil M, Matos N. Continuous processing: meeting the need for new manufacturing strategies. 2016.
– reference: Muzzio FJ. Mixing mechanics: practical powder blending: micromixing, in Powder and Bulk Engineering. 2016.
– reference: ShahACMlodozeniecAARMechanism of surface lubrication: influence of duration of lubricant-excipient mixing on processing characteristics of powders and properties of compressed tabletsJ Pharm Sci19776610137713821:CAS:528:DyaE1cXislOmsg%3D%3D10.1002/jps.2600661006
– reference: VanaraseAUAlcalaMRozoJIJMuzzioFJRomanachRJReal-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopyChem Eng Sci20106521572857331:CAS:528:DC%2BC3cXht1Kqur%2FO10.1016/j.ces.2010.01.036
– reference: GaoYVanaraseAMuzzioFJIerapetritouMCharacterizing continuous powder mixing using residence time distributionChem Eng Sci20116634174251:CAS:528:DC%2BC3MXhtlaiuw%3D%3D10.1016/j.ces.2010.10.045
– reference: VanaraseAUA.F.J.M. Effect of operating conditions and design parameters in a continuous powder mixerPowder Technol2011208126361:CAS:528:DC%2BC3MXit1Wht7k%3D10.1016/j.powtec.2010.11.038
– reference: Escotet-EspinozaMSMoghtadernejadSScicoloneJWangYPereiraGSchäferEVighTKlingeleersDIerapetritouMMuzzioFJUsing a material property library to find surrogate materials for pharmaceutical process developmentPowder Technol20183396596761:CAS:528:DC%2BC1cXhs1eisrjO10.1016/j.powtec.2018.08.042
– reference: WangYLiTMuzzioFJGlasserBJPredicting feeder performance based on material flow propertiesPowder Technol20173081351481:CAS:528:DC%2BC28XitVOks7bE10.1016/j.powtec.2016.12.010
– reference: MillerTAYorkPPharmaceutical tablet lubricationInt J Pharm1988411–21191:CAS:528:DyaL1cXotF2jtg%3D%3D10.1016/0378-5173(88)90130-5
– reference: RazaviSCallegariGDrazerGCuitinoAToward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturingInt J Pharm20165071–283891:CAS:528:DC%2BC28XotFamtb4%3D10.1016/j.ijpharm.2016.04.064
– reference: Escotet-EspinozaMSMoghtadernejadSOkaSWangZWangYRoman-OspinoASchäferECappuynsPVan AsscheIFutranMMuzzioFJIerapetritouMEffect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: application of modelsPowder Technol20193445255441:CAS:528:DC%2BC1cXisFGiurbP10.1016/j.powtec.2018.12.051
– reference: Hausner D, Moore AC. Continuous manufacturing current status. Features. 2018.
– reference: Braido D. Characterization and modeling the dissolution performance of tablets focusing on powder processing effects. 2012.
– reference: BerthiauxHMarikhKGatumelCContinuous mixing of powder mixtures with pharmaceutical process constraintsChem Eng Process20084712231523221:CAS:528:DC%2BD1cXht1Kjtb3K10.1016/j.cep.2008.01.009
– reference: LeinonenUIJalonenHUVihervaaraPALaineESUPhysical and lubrication properties of magnesium stearateJ Pharm Sci19928112119411981:CAS:528:DyaK3sXms1OitQ%3D%3D10.1002/jps.2600811214
– reference: MehrotraALlusaMFaqihALevinMMuzzioFJInfluence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearateInt J Pharm200733622842911:CAS:528:DC%2BD2sXkvFWqu7s%3D10.1016/j.ijpharm.2006.12.013
– reference: EditorsPFDA to promote continuous manufacturing2017
– reference: Robinson K. Continuous manufacturing: the facts and the future. Manuf Chem. 2019.
– reference: KetterhagenRRMullarneyMPKresevicJBlackwoodDComputational approaches to predict the effect of shear during processing of lubricated pharmaceutical blendsPowder Technol20183354274391:CAS:528:DC%2BC1cXhtVKnsb7L10.1016/j.powtec.2018.05.023
– reference: Editors P. EMA approves Janssen drug made via continuous manufacturing. Editors Notes. 2017.
– reference: Pallone F. JrPallone & FDA commissioner Gottlieb visit Rutgers university to discuss innovative pharmaceutical manufacturing. House of representatives official website: frank Pallone, Jr Press Release. 2018.
– reference: LiJWuYLubricants in pharmaceutical solid dosage formsLubricants20142121431:CAS:528:DC%2BC2MXhvV2qtr7P10.3390/lubricants2010021
– reference: VargasJMNielsenSCárdenasVGonzalezAAymatEYAlmodovarEClasseGColónYSanchezERomañachRJProcess analytical technology in continuous manufacturing of a commercial pharmaceutical productInt J Pharm20185381–21671781:CAS:528:DC%2BC1cXhvVCgu74%3D10.1016/j.ijpharm.2018.01.003
– reference: Markarian J. Continuous manufacturing presses In: Equipment and Processing Report. 2017;10.
– reference: Van SnickBHolmanJCunninghamCKumarAVercruysseJDe BeerTRemonJPVervaetCContinuous direct compression as manufacturing platform for sustained release tabletsInt J Pharm2017519139040710.1016/j.ijpharm.2017.01.010
– reference: PortilloPMIerapetritouMGMuzzioFJEffects of rotation rate, mixing angle, and cohesion in two continuous mixers—a statistical approachPowder Technol20091942172271:CAS:528:DC%2BD1MXnt1emsrk%3D10.1016/j.powtec.2009.04.010
– reference: LantzBThe impact of sample non-normality on ANOVA and alternative methodsBr J Math Stat Psychol201366222424410.1111/j.2044-8317.2012.02047.x
– reference: LiuZWangYMuzzioFJCallegariGDrazerGCapillary drop penetration method to characterize the liquid wetting of powdersLangmuir201733156651:CAS:528:DC%2BC28XhvFKns73I10.1021/acs.langmuir.6b03589
– reference: FellJTNewtonAJMDetermination of tablet strength by the diametral-compression testJ Pharm Sci19705956886911:CAS:528:DyaE3cXkt1yrtbw%3D10.1002/jps.2600590523
– reference: WangYOsorioJGLiTMuzzioFJControlled shear system and resonant acoustic mixing: effects on lubrication and flow properties of pharmaceutical blendsPowder Technol20173223323391:CAS:528:DC%2BC2sXhsFCisLvF10.1016/j.powtec.2017.09.028
– reference: KushnerJMooreFScale-up model describing the impact of lubrication on tablet tensile strengthInt J Pharm2010399119301:CAS:528:DC%2BC3cXhtFOisbzK10.1016/j.ijpharm.2010.07.033
– reference: LlusaMLevinMSneeRDMuzzioFJMeasuring the hydrophobicity of lubricated blends of pharmaceutical excipientsPowder Technol201019811011071:CAS:528:DC%2BD1MXhsF2jtLfE10.1016/j.powtec.2009.10.021
– reference: PortilloPMVanaraseAUIngramASevilleJKInvestigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPTChem Eng Sci2010655685566810.1016/j.ces.2010.06.036
– reference: WangJWenHDesaiDLubrication in tablet formulationsEur J Pharm Biopharm20107511510.1016/j.ejpb.2010.01.007
– reference: KushnerJSchlackAHCommercial scale validation of a process scale-up model for lubricant blending of pharmaceutical powdersInt J Pharm201447511471551:CAS:528:DC%2BC2cXhsVars7jN10.1016/j.ijpharm.2014.08.036
– reference: MarikhKBerthiauxHBarantsevaMVEPonomarevDFlow analysis and Markov chain modelling to quantify the agitation effect in a continuous powder mixerChem Eng Res Des20068411105910741:CAS:528:DC%2BD2sXkvVc%3D10.1205/cherd05032
– reference: ZhouQTQuLGengenbachTLarsonIStewartPJMortonDAEffect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalersAAPS PharmSciTech2013141384410.1208/s12249-012-9895-z
– reference: Escotet-EspinozaMSVadodariaSSinghRMuzzioFJIerapetritouMGModeling the effects of material properties on tablet compaction: a building block for controlling both batch and continuous pharmaceutical manufacturing processesInt J Pharm201854312742871:CAS:528:DC%2BC1cXntFSju74%3D10.1016/j.ijpharm.2018.03.036
– reference: SnickabVKumarcAVerstraetendMPandelaereaKDhondtdJDiPretorobGDe BeerdTVervaetaCVanhoorneaVImpact of material properties and process variables on the residence time distribution in twin screw feeding equipmentInt J Pharm201955620021610.1016/j.ijpharm.2018.11.076
– reference: KushnerJIncorporating Turbula mixers into a blending scale-up model for evaluating the effect of magnesium stearate on tablet tensile strength and bulk specific volumeInt J Pharm201242911111:CAS:528:DC%2BC38XkslWit7k%3D10.1016/j.ijpharm.2012.02.040
– reference: KanjiGKEffect of non-normality on the power in analysis of variance: a simulation studyInt J Math Educ Sci Technol19767215516010.1080/0020739760070204
– reference: BostijnaNDhondtaJRyckaertaASzabóaEDhondtbWVan SnickcdBVanhoornecVVervaetcCDe BeeraTA multivariate approach to predict the volumetric and gravimetric feeding behavior of a low feed rate feeder based on raw material propertiesInt J Pharm201955734235310.1016/j.ijpharm.2018.12.066
– ident: 1473_CR4
– ident: 1473_CR8
– volume-title: FDA to promote continuous manufacturing
  year: 2017
  ident: 1473_CR3
– volume: 66
  start-page: 224
  issue: 2
  year: 2013
  ident: 1473_CR45
  publication-title: Br J Math Stat Psychol
  doi: 10.1111/j.2044-8317.2012.02047.x
– ident: 1473_CR1
– volume: 308
  start-page: 135
  year: 2017
  ident: 1473_CR9
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2016.12.010
– volume: 7
  start-page: 187
  issue: 4
  year: 2003
  ident: 1473_CR46
  publication-title: J Appl Math Decis Sci
  doi: 10.1155/S1173912603000178
– volume: 40
  start-page: 44
  issue: 11
  year: 2016
  ident: 1473_CR26
  publication-title: Pharm Technol
– volume: 13
  start-page: 155
  issue: 2
  year: 2018
  ident: 1473_CR42
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-018-9313-5
– ident: 1473_CR36
– ident: 1473_CR5
– volume: 47
  start-page: 2315
  issue: 12
  year: 2008
  ident: 1473_CR48
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2008.01.009
– volume: 335
  start-page: 427
  year: 2018
  ident: 1473_CR34
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.05.023
– volume: 65
  start-page: 5685
  year: 2010
  ident: 1473_CR17
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2010.06.036
– volume: 429
  start-page: 1
  issue: 1
  year: 2012
  ident: 1473_CR38
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2012.02.040
– volume: 75
  start-page: 1
  year: 2010
  ident: 1473_CR28
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2010.01.007
– volume: 59
  start-page: 688
  issue: 5
  year: 1970
  ident: 1473_CR44
  publication-title: J Pharm Sci
  doi: 10.1002/jps.2600590523
– volume: 557
  start-page: 342
  year: 2019
  ident: 1473_CR11
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2018.12.066
– volume: 194
  start-page: 217
  year: 2009
  ident: 1473_CR16
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2009.04.010
– volume: 2
  start-page: 21
  issue: 1
  year: 2014
  ident: 1473_CR19
  publication-title: Lubricants
  doi: 10.3390/lubricants2010021
– ident: 1473_CR21
– ident: 1473_CR2
– volume: 14
  start-page: 38
  issue: 1
  year: 2013
  ident: 1473_CR35
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-012-9895-z
– volume: 65
  start-page: 5728
  issue: 21
  year: 2010
  ident: 1473_CR41
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2010.01.036
– volume: 117
  start-page: 568
  year: 2016
  ident: 1473_CR37
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2015.10.012
– volume: 475
  start-page: 147
  issue: 1
  year: 2014
  ident: 1473_CR40
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2014.08.036
– ident: 1473_CR6
– volume: 7
  start-page: 155
  issue: 2
  year: 1976
  ident: 1473_CR47
  publication-title: Int J Math Educ Sci Technol
  doi: 10.1080/0020739760070204
– volume: 336
  start-page: 284
  issue: 2
  year: 2007
  ident: 1473_CR14
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2006.12.013
– volume: 208
  start-page: 26
  issue: 1
  year: 2011
  ident: 1473_CR23
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2010.11.038
– volume: 399
  start-page: 19
  issue: 1
  year: 2010
  ident: 1473_CR39
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2010.07.033
– volume: 198
  start-page: 101
  issue: 1
  year: 2010
  ident: 1473_CR15
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2009.10.021
– volume: 84
  start-page: 1059
  issue: 11
  year: 2006
  ident: 1473_CR49
  publication-title: Chem Eng Res Des
  doi: 10.1205/cherd05032
– volume: 66
  start-page: 417
  issue: 3
  year: 2011
  ident: 1473_CR22
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2010.10.045
– volume: 81
  start-page: 1194
  issue: 12
  year: 1992
  ident: 1473_CR31
  publication-title: J Pharm Sci
  doi: 10.1002/jps.2600811214
– volume: 543
  start-page: 274
  issue: 1
  year: 2018
  ident: 1473_CR27
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2018.03.036
– ident: 1473_CR7
– ident: 1473_CR13
– volume: 342
  start-page: 744
  year: 2019
  ident: 1473_CR24
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.10.040
– volume: 344
  start-page: 525
  year: 2019
  ident: 1473_CR25
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.12.051
– volume: 41
  start-page: 1
  issue: 1–2
  year: 1988
  ident: 1473_CR29
  publication-title: Int J Pharm
  doi: 10.1016/0378-5173(88)90130-5
– volume: 66
  start-page: 1377
  issue: 10
  year: 1977
  ident: 1473_CR30
  publication-title: J Pharm Sci
  doi: 10.1002/jps.2600661006
– volume: 322
  start-page: 332
  year: 2017
  ident: 1473_CR32
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2017.09.028
– volume: 519
  start-page: 390
  issue: 1
  year: 2017
  ident: 1473_CR50
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2017.01.010
– volume: 556
  start-page: 200
  year: 2019
  ident: 1473_CR10
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2018.11.076
– volume: 44
  start-page: 1350
  issue: 8
  year: 2018
  ident: 1473_CR33
  publication-title: Drug Dev Ind Pharm
  doi: 10.1080/03639045.2018.1451877
– volume: 339
  start-page: 659
  year: 2018
  ident: 1473_CR12
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.08.042
– volume: 507
  start-page: 83
  issue: 1–2
  year: 2016
  ident: 1473_CR18
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2016.04.064
– volume: 538
  start-page: 167
  issue: 1–2
  year: 2018
  ident: 1473_CR20
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2018.01.003
– volume: 33
  start-page: 56
  issue: 1
  year: 2017
  ident: 1473_CR43
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b03589
SSID ssj0023193
Score 2.233819
Snippet Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Pharmacology/Toxicology
Pharmacy
Research Article
Title Mixing Cell: a Device to Mimic Extent of Lubrication and Shear in Continuous Tubular Blenders
URI https://link.springer.com/article/10.1208/s12249-019-1473-1
https://www.ncbi.nlm.nih.gov/pubmed/31338701
https://www.proquest.com/docview/2263323892
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZ4XLggHgtbHtUgrTiwRJsmTuxwK1BAu3TFoZXggCzHsaVIJUUkkei_Z5xHEeIhcbedyN_Y_uyZ-YaQXy6SZGm476C5MIcaxR0ZGu1wpSWLYxlpapOTh__DqzH9exvcNnnceRvt3rokq526UkBw-Z_c-oBsbE_k9CjDwRfJcmDlpNCIx15_fstCm_Ib9-WH3d4eQO9Y5TuPaHXQXKyR1YYhQr-GdJ0s6GyDHN7UEtOzYxi9Zkzlx3AIN6_i07NNcj9Mn3FYONOTyQlIONd2K4BiCsP0IVUwsI_eBUwNXJfxU_NgBzJLoKptDWkGVrAqzcppmcOojG2YKpxOqopz-Q8yvhiMzq6cpoSCo3zOCsenUcKlirnyaBAEYaSSSrTOk9qESc8gJIZGVDKNzElGrko4UxI5CWfMpcr4W2Qpm2b6JwHeCyR1Y6MVUgLNY8nCwLjSU2EUGoS8Q9x2XoVq9MVtmYuJsPcMhELUUAiEQlgoRK9DjuZdHmtxja8aH7RgCVwC1q8hM41zIZBB-j5Sjwj_YbtGcT6cb-_gzMXev1tYRbNK88-_tfOt1rtkxavsy4b47ZGl4qnU-0hVirhLlvuXd_8G3cpEXwCEm-JC
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYYHNhlGmyDbgPepKmHjYg0cWKHG7-qAm3VQytxQZbj2FKkkk5NIo3_fs_50Qp1TNrddiJ_z_b3_J6_R8h3F0myNNx30FyYQ43ijgyNdrjSksWxjDS1j5NH43Awo3cPwUPzjjtvs93bkGS1U1cKCC4_y20MyOb2RE6PMhz8DdmxUUbrcc28i5WXhTblN-HLv3Z7eQBtsMqNiGh10PTfk3cNQ4SLGtI9sqWzfdKd1BLTz6cwXb-Yyk-hC5O1-PTzB_I4Sn_jsHCl5_NzkHCt7VYAxQJG6VOq4MZeehewMDAs42VzYQcyS6CqbQ1pBlawKs3KRZnDtIxtmipczquKc_lHMuvfTK8GTlNCwVE-Z4Xj0yjhUsVceTQIgjBSSSVa50ltwqRnEBJDIyqZRuYkI1clnCmJnIQz5lJl_E9kO1tk-pAA7wWSurHRCimB5rFkYWBc6akwCg1C3iFuO69CNfritszFXFg_A6EQNRQCoRAWCtHrkB-rLr9qcY1_Nf7WgiVwCdi4hsw0zoVABun7SD0i_IeDGsXVcL71wZmLvX-2sIpmleavf-vzf7U-IbuD6Wgohrfj-y_krVfZmk33-0q2i2Wpj5C2FPFxZaZ_AA8R45E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJceD_Kc5BQD9C02Y0TO9xKu0uh3WoPW6kckLEdW4pYslWTSJRfzziPraCAhLjbsTP-bH_2jL8BeBkSSVZORAHBhQfMGRGoxNlAGKu41iq1zD9Onh4l-8fsw0l80uU5Lfto994l2b5p8CpNRbV9mrlWDSEU26X3B_k4nzQYMk4NXYU15lNIDGBt593Hg_HqzEUIizpn5m8r_rwdXeKYl_yjzbYzuQmf-w630SZftupKb5nvv2g5_scf3YIbHSXFnRZDt-GKLe7AxqzVtD7fxPnFE61yEzdwdqF2fX4XPk3zb9Qo7trF4g0q3LN-7cFqidP8a25w7G_ZK1w6PKz1WXdDiKrIsEmmjXmBXiErL-plXeK81j4uFt8umhR35T04noznu_tBl7MhMJHgVRCxNBPKaGFGLI7jJDVZo5I3UtYl2dARBhxLmeKWqJpKQ5MJbhSRIMF5yIyL7sOgWBb2IaAYxoqF2llDHMQKrXgSu1CNTJImjjC2DmE_dNJ0guY-r8ZC-oMNGVW2RpVkVOmNKofr8GpV5bRV8_hb4Rc9HiTNOe9IUYUlW0iirFFEXCelPjxogbL6XOQP_Tyk2q_7QZfdslD-ua1H_1T6OVyb7U3k4fujg8dwfdSAxocXPoFBdVbbp0STKv2smwo_AE_HCUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixing+Cell%3A+a+Device+to+Mimic+Extent+of+Lubrication+and+Shear+in+Continuous+Tubular+Blenders&rft.jtitle=AAPS+PharmSciTech&rft.au=Moghtadernejad%2C+Sara&rft.au=Escotet-Espinoza%2C+M+Sebastian&rft.au=Liu%2C+Zhanjie&rft.au=Sch%C3%A4fer%2C+Elisabeth&rft.date=2019-10-01&rft.eissn=1530-9932&rft.volume=20&rft.issue=7&rft.spage=262&rft_id=info:doi/10.1208%2Fs12249-019-1473-1&rft_id=info%3Apmid%2F31338701&rft.externalDocID=31338701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon