Automated interpretation of congenital heart disease from multi-view echocardiograms

•The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart disease.•Powerful baselines to explore the key-frame-based and video-based multi-view diagnose.•A depthwise separable convolution-based efficient mu...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 69; p. 101942
Main Authors Wang, Jing, Liu, Xiaofeng, Wang, Fangyun, Zheng, Lin, Gao, Fengqiao, Zhang, Hanwen, Zhang, Xin, Xie, Wanqing, Wang, Binbin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2020.101942

Cover

Abstract •The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart disease.•Powerful baselines to explore the key-frame-based and video-based multi-view diagnose.•A depthwise separable convolution-based efficient multi-channel CNN architecture.•Four video aggregation schemes are developed to process video frames. [Display omitted] Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD.
AbstractList •The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart disease.•Powerful baselines to explore the key-frame-based and video-based multi-view diagnose.•A depthwise separable convolution-based efficient multi-channel CNN architecture.•Four video aggregation schemes are developed to process video frames. [Display omitted] Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD.
Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD.
Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD.Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD.
ArticleNumber 101942
Author Zhang, Xin
Wang, Binbin
Zhang, Hanwen
Xie, Wanqing
Zheng, Lin
Wang, Jing
Gao, Fengqiao
Liu, Xiaofeng
Wang, Fangyun
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 10069, China
– sequence: 2
  givenname: Xiaofeng
  surname: Liu
  fullname: Liu, Xiaofeng
  organization: Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15232 USA
– sequence: 3
  givenname: Fangyun
  surname: Wang
  fullname: Wang, Fangyun
  organization: Heart Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 10045, China
– sequence: 4
  givenname: Lin
  surname: Zheng
  fullname: Zheng, Lin
  organization: Heart Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 10045, China
– sequence: 5
  givenname: Fengqiao
  surname: Gao
  fullname: Gao, Fengqiao
  organization: Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 10069, China
– sequence: 6
  givenname: Hanwen
  surname: Zhang
  fullname: Zhang, Hanwen
  organization: Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 10069, China
– sequence: 7
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  email: zhangxin1651@163.com
  organization: Heart Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 10045, China
– sequence: 8
  givenname: Wanqing
  surname: Xie
  fullname: Xie, Wanqing
  email: wxie1@hrbeu.edu.cn
  organization: College of mathematical sciences, Harbin engineering university, Harbin, China
– sequence: 9
  givenname: Binbin
  surname: Wang
  fullname: Wang, Binbin
  email: wbbahu@163.com
  organization: Center for Genetics, National Research Institute for Family Planning, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33418465$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHTEUhkNR6kf7CwploBs3c833zCy6ENG2IHRj1yH35ERzmZncJpmW_nujo124cHXC4XkP4XlPyMEcZyTkE6MbRpk-320mdMFuOOVPm0Hyd-SYCc3aXnJx8P_N1BE5yXlHKe2kpO_JkRCS9VKrY3J7sZQ42YKuCXPBtE9YbAlxbqJvIM53OIdix-YebSqNCxltxsanODXTMpbQ_gn4t0G4j2CTC_Eu2Sl_IIfejhk_Ps9T8uv66vbye3vz89uPy4ubFkTflZYPHDi4jnshhO2ERlDCQ6-HLYBkuKW9QwaoXd95Csp1mnqvhdoOveMgxCk5W-_uU_y9YC5mChlwHO2MccmGy04rrYRSFf3yCt3FJc31d4YrycTAhNCV-vxMLdsq1-xTmGz6Z158VWBYAUgx54TeQFh9lWTDaBg1j92YnXnqxjx2Y9Zuala8yr6cfzv1dU1hFVllJ5Mh4AwVTAjFuBjezD8Ae_Co8w
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3545829
crossref_primary_10_1016_j_bspc_2024_106074
crossref_primary_10_1515_jpm_2023_0041
crossref_primary_10_1109_TNNLS_2022_3192315
crossref_primary_10_1016_j_jscai_2025_102567
crossref_primary_10_1161_CIRCIMAGING_122_014519
crossref_primary_10_1080_21681163_2022_2032361
crossref_primary_10_1017_S1047951121004212
crossref_primary_10_1016_j_echo_2023_12_013
crossref_primary_10_3389_fradi_2022_881777
crossref_primary_10_3390_jcm11030690
crossref_primary_10_3389_fcvm_2023_985657
crossref_primary_10_1002_med4_75
crossref_primary_10_34133_research_0319
crossref_primary_10_1097_HCO_0000000000000927
crossref_primary_10_1142_S0129065724500540
crossref_primary_10_34133_2022_9790653
crossref_primary_10_1016_j_echo_2022_08_009
crossref_primary_10_32604_cmes_2022_020870
crossref_primary_10_1016_j_jacadv_2022_100153
crossref_primary_10_47992_IJCSBE_2581_6942_0202
crossref_primary_10_1109_TPAMI_2021_3077397
crossref_primary_10_1007_s00371_023_02794_1
crossref_primary_10_3390_electronics13020326
crossref_primary_10_1016_j_artmed_2024_102866
crossref_primary_10_1155_2023_5650378
crossref_primary_10_1136_wjps_2023_000580
crossref_primary_10_1016_j_bspc_2024_106701
crossref_primary_10_1016_j_cmpb_2024_108037
crossref_primary_10_1109_JBHI_2021_3092628
crossref_primary_10_1016_j_compmedimag_2022_102128
crossref_primary_10_3390_diagnostics14020132
crossref_primary_10_31083_j_rcm2509335
crossref_primary_10_3390_diagnostics12122899
crossref_primary_10_3390_children12010014
crossref_primary_10_1038_s41598_025_88567_3
Cites_doi 10.1053/j.jvca.2018.05.039
10.1001/jama.2017.14585
10.1097/00029330-200612010-00011
10.1016/j.media.2017.01.003
10.1097/MD.0000000000002158
10.1001/archpedi.162.10.969
10.1007/978-3-319-54427-4_22
10.1016/j.siny.2019.101034
10.1007/s12013-015-0551-6
10.1023/A:1022627411411
10.1007/s12519-011-0326-0
10.1007/978-3-030-00919-9_14
10.1016/S0140-6736(14)60198-7
10.1016/j.jacc.2011.08.025
10.1038/nature21056
10.1109/TMI.2008.2004421
10.1186/1471-2458-14-152
10.1093/ehjci/jey211
10.1109/CVPR.2005.38
10.1038/s41591-018-0107-6
10.1117/1.JMI.4.1.014502
10.1109/CVPR.2017.717
10.1016/j.media.2013.05.003
10.1038/nature14539
10.1016/j.echo.2006.09.001
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Apr 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Apr 2021
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2020.101942
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 33418465
10_1016_j_media_2020_101942
S1361841520303066
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-292c2cd72f333a736ec53fc869bcc41eb08de1ce6d87f0c5d760ff635b98d2c33
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 10:04:16 EDT 2025
Tue Oct 07 06:47:15 EDT 2025
Wed Feb 19 02:29:34 EST 2025
Wed Oct 29 21:19:28 EDT 2025
Thu Apr 24 23:06:13 EDT 2025
Fri Feb 23 02:47:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-channel networks
Neural aggregation
41A10
65D05
65D17
Congenital heart disease
41A05
Multi-view learning
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-292c2cd72f333a736ec53fc869bcc41eb08de1ce6d87f0c5d760ff635b98d2c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33418465
PQID 2541391336
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2476565355
proquest_journals_2541391336
pubmed_primary_33418465
crossref_citationtrail_10_1016_j_media_2020_101942
crossref_primary_10_1016_j_media_2020_101942
elsevier_sciencedirect_doi_10_1016_j_media_2020_101942
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Luo, Qin, Wang, Ye, Pan, Huang, Luo, Guo, Peng, Wang (bib0036) 2019; 33
Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. IEEE. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 60–65
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib0012) 2017; 542
Kwitt, Vasconcelos, Razzaque, Aylward (bib0019) 2013; 17
Chang, Gurvitz, Rodriguez (bib0005) 2008; 162
Liu, Zou, Song, Yang, You, K. Vijaya Kumar (bib0034) 2018
Wu, Li, Xia, Ji, Liang, Ma, Li, Wu, Wang, Zhao (bib0049) 2014; 14
Zou, Yu, Liu, Kumar, Wang (bib0058) 2019
Henderson, Islam, Bachman, Pineau, Precup, Meger (bib0016) 2017
Zhou, Andonian, Torralba (bib0056) 2018
Lai, Geva, Shirali, Frommelt, Humes, Brook, Pignatelli, Rychik (bib0020) 2006; 19
Hoshen (bib0017) 2017
Zheng, Barbu, Georgescu, Scheuering, Comaniciu (bib0055) 2008; 27
Zhang, Zeng, Zhao, Lu (bib0053) 2015; 94
Gao, Nevatia (bib0013) 2018
Liu, Zou, Che, Ding, Jia, You, Kumar (bib0033) 2019
Zhao, Ma, Ge, Liu, Yan, Wu, Ye, Liang, Zhang, Gao (bib0054) 2014; 384
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib0018) 2017
Maraci, M.A., Xie, W., Noble, J. A., 2018. Can dilated convolutions capture ultrasound video dynamics?Springer. International Workshop on Machine Learning in Medical Imaging, 116–124.
Yang, Ren, Zhang, Chen, Wen, Li, Hua (bib0051) 2017
Watters, Zoran, Weber, Battaglia, Pascanu, Tacchetti (bib0047) 2017
Liu, B.V.K, Yang, Tang, You (bib0027) 2018
Liu, Guo, Jia, Kumar (bib0029) 2019
Lee, D., Lee, J., Kim, K.E., 2016. Multi-view automatic lip-reading using neural network. Springer. Asian conference on computer vision, 290–302.
Yang, LI, LÜ, Liu (bib0052) 2009; 122
LeCun, Bengio, Hinton (bib0021) 2015; 521
Liu, Wang, Yang, Lei, Liu, Li, Ni, Wang (bib0025) 2019
Battaglia, Pascanu, Lai, Rezende (bib0002) 2016
Tran, Bourdev, Fergus, Torresani, Paluri (bib0044) 2015
Liu, Xing, Yang, Kuo, El Fakhri, Woo (bib0032) 2020
Sun, Liu, Lu, Zheng, Zhang (bib0042) 2015; 72
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0043) 2016
Bejnordi, Veta, Van Diest, Van Ginneken, Karssemeijer, Litjens, Van Der Laak, Hermsen, Manson, Balkenhol (bib0003) 2017; 318
WU, LÜ, Liu (bib0048) 2006; 119
Liu, Guo, Li, You, B. V. K (bib0030) 2019
van der Linde, Konings, Slager, Witsenburg, Helbing, Takkenberg, Roos-Hesselink (bib0023) 2011; 58
Liu (bib0026) 2020
Pereira, Bueno, Rodriguez, Perrin, Marx, Cardinale, Salgo, del Nido (bib0039) 2017; 4
Pruetz, J.D., Wang, S.S., Noori, S., 2019. Delivery room emergencies in critical congenital heart diseases. Elsevier. Seminars in Fetal and Neonatal Medicine, 101034.
Wang, Girshick, Gupta, He (bib0046) 2018
Litjens, Ciompi, Wolterink, de Vos, Leiner, Teuwen, Išgum (bib0024) 2019; 12
Liu, Han, Qiao, Ge, Li, Lu (bib0031) 2019
Dai, Zhu, Liang, Wang, Wang, Mao (bib0009) 2011; 7
Liu, Yan, Ouyang (bib0035) 2017
Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T., 2017. See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification. IEEE. Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, 6776–6785
Che, Liu, Li, Ge, Zhang, Xiong, Bengio (bib0006) 2019
Liu, Fan, Kong, Xie, Lu, You (bib0028) 2020
Han, Liu, Sheng, Ren, Han, You, Liu, Luo (bib0014) 2020
Diller, Babu-Narayan, Li, Radojevic, Kempny, Uebing, Dimopoulos, Baumgartner, Gatzoulis, Orwat (bib0011) 2019; 20
De Fauw, Ledsam, Romera-Paredes, Nikolov, Tomasev, Blackwell, Askham, Glorot, O’Donoghue, Visentin (bib0010) 2018; 24
Bai, Kolter, Koltun (bib0001) 2018
Yang, F.S.Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M., 2018. Learning to compare: Relation network for few-shot learning.
He, Liu, Fan, You (bib0015) 2020
Maraci, Bridge, Napolitano, Papageorghiou, Noble (bib0037) 2017; 37
Cortes, Vapnik (bib0007) 1995; 20
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0045) 2017
Simonyan, Zisserman (bib0041) 2014
Criminisi, Shotton, Bucciarelli (bib0008) 2009
Maraci (10.1016/j.media.2020.101942_bib0037) 2017; 37
Tran (10.1016/j.media.2020.101942_bib0044) 2015
Simonyan (10.1016/j.media.2020.101942_bib0041) 2014
Hoshen (10.1016/j.media.2020.101942_bib0017) 2017
Lai (10.1016/j.media.2020.101942_bib0020) 2006; 19
10.1016/j.media.2020.101942_bib0040
Liu (10.1016/j.media.2020.101942_bib0025) 2019
Han (10.1016/j.media.2020.101942_bib0014) 2020
Cortes (10.1016/j.media.2020.101942_bib0007) 1995; 20
10.1016/j.media.2020.101942_bib0004
Watters (10.1016/j.media.2020.101942_bib0047) 2017
Liu (10.1016/j.media.2020.101942_bib0035) 2017
Liu (10.1016/j.media.2020.101942_sbref0029) 2019
Szegedy (10.1016/j.media.2020.101942_bib0043) 2016
Yang (10.1016/j.media.2020.101942_bib0052) 2009; 122
Zou (10.1016/j.media.2020.101942_bib0058) 2019
Diller (10.1016/j.media.2020.101942_bib0011) 2019; 20
Wu (10.1016/j.media.2020.101942_bib0049) 2014; 14
Che (10.1016/j.media.2020.101942_bib0006) 2019
LeCun (10.1016/j.media.2020.101942_bib0021) 2015; 521
Zhao (10.1016/j.media.2020.101942_bib0054) 2014; 384
Dai (10.1016/j.media.2020.101942_bib0009) 2011; 7
Liu (10.1016/j.media.2020.101942_bib0028) 2020
10.1016/j.media.2020.101942_bib0050
WU (10.1016/j.media.2020.101942_bib0048) 2006; 119
Wang (10.1016/j.media.2020.101942_bib0046) 2018
Yang (10.1016/j.media.2020.101942_bib0051) 2017
Vaswani (10.1016/j.media.2020.101942_bib0045) 2017
10.1016/j.media.2020.101942_bib0057
He (10.1016/j.media.2020.101942_bib0015) 2020
Sun (10.1016/j.media.2020.101942_bib0042) 2015; 72
Liu (10.1016/j.media.2020.101942_sbref0034) 2018
Zhang (10.1016/j.media.2020.101942_bib0053) 2015; 94
Esteva (10.1016/j.media.2020.101942_bib0012) 2017; 542
Zhou (10.1016/j.media.2020.101942_bib0056) 2018
Liu (10.1016/j.media.2020.101942_bib0033) 2019
Gao (10.1016/j.media.2020.101942_bib0013) 2018
Luo (10.1016/j.media.2020.101942_bib0036) 2019; 33
Criminisi (10.1016/j.media.2020.101942_bib0008) 2009
Liu (10.1016/j.media.2020.101942_sbref0031) 2019
Bejnordi (10.1016/j.media.2020.101942_bib0003) 2017; 318
10.1016/j.media.2020.101942_bib0022
Liu (10.1016/j.media.2020.101942_bib0030) 2019
Liu (10.1016/j.media.2020.101942_bib0026) 2020
Henderson (10.1016/j.media.2020.101942_bib0016) 2017
Pereira (10.1016/j.media.2020.101942_bib0039) 2017; 4
Howard (10.1016/j.media.2020.101942_bib0018) 2017
Litjens (10.1016/j.media.2020.101942_bib0024) 2019; 12
Kwitt (10.1016/j.media.2020.101942_bib0019) 2013; 17
Bai (10.1016/j.media.2020.101942_bib0001) 2018
Battaglia (10.1016/j.media.2020.101942_bib0002) 2016
Liu (10.1016/j.media.2020.101942_bib0027) 2018
De Fauw (10.1016/j.media.2020.101942_bib0010) 2018; 24
Liu (10.1016/j.media.2020.101942_bib0032) 2020
van der Linde (10.1016/j.media.2020.101942_bib0023) 2011; 58
Chang (10.1016/j.media.2020.101942_bib0005) 2008; 162
Zheng (10.1016/j.media.2020.101942_bib0055) 2008; 27
10.1016/j.media.2020.101942_bib0038
References_xml – year: 2019
  ident: bib0031
  article-title: Unimodal-uniform constrained wasserstein training for medical diagnosis
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– volume: 122
  start-page: 1128
  year: 2009
  end-page: 1132
  ident: bib0052
  article-title: Incidence of congenital heart disease in beijing, china
  publication-title: Chin. Med. J.
– volume: 27
  start-page: 1668
  year: 2008
  end-page: 1681
  ident: bib0055
  article-title: Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features
  publication-title: IEEE Trans. Med. Imaging
– year: 2019
  ident: bib0030
  article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets
  publication-title: ICCV
– volume: 14
  start-page: 152
  year: 2014
  ident: bib0049
  article-title: Prevalence of congenital heart defect in guangdong province, 2008–2012
  publication-title: BMC Public Health
– start-page: 2701
  year: 2017
  end-page: 2711
  ident: bib0017
  article-title: Vain: Attentional Multi-agent Predictive Modeling
  publication-title: Advances in Neural Information Processing Systems
– reference: Yang, F.S.Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M., 2018. Learning to compare: Relation network for few-shot learning.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0007
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 24
  start-page: 1342
  year: 2018
  end-page: 1350
  ident: bib0010
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat. Med.
– reference: Lee, D., Lee, J., Kim, K.E., 2016. Multi-view automatic lip-reading using neural network. Springer. Asian conference on computer vision, 290–302.
– volume: 119
  start-page: 2005
  year: 2006
  end-page: 2012
  ident: bib0048
  article-title: Recent progress of pediatric cardiac surgery in china
  publication-title: Chin. Med. J.
– reference: Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T., 2017. See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification. IEEE. Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, 6776–6785
– volume: 17
  start-page: 712
  year: 2013
  end-page: 722
  ident: bib0019
  article-title: Localizing target structures in ultrasound video–a phantom study
  publication-title: Med. Image Anal.
– volume: 162
  start-page: 969
  year: 2008
  end-page: 974
  ident: bib0005
  article-title: Missed diagnosis of critical congenital heart disease
  publication-title: Archives of pediatrics & adolescent medicine
– year: 2017
  ident: bib0018
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arXiv:1704.04861
– year: 2018
  ident: bib0034
  article-title: Ordinal regression with neuron stick-breaking for medical diagnosis
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– year: 2018
  ident: bib0056
  article-title: Temporal relational reasoning in videos
  publication-title: In ECCV
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0043
  article-title: Rethinking the Inception Architecture for Computer Vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0014
  article-title: Wasserstein Loss-based Deep Object Detection
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– year: 2019
  ident: bib0033
  article-title: Conservative Wasserstein Training for Pose Estimation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 4
  start-page: 014502
  year: 2017
  ident: bib0039
  article-title: Automated detection of coarctation of aorta in neonates from two-dimensional echocardiograms
  publication-title: J. Med. Imaging
– start-page: 4539
  year: 2017
  end-page: 4547
  ident: bib0047
  article-title: Visual Interaction Networks: Learning a Physics Simulator from Video
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: bib0028
  article-title: Unimodal regularized neuron stick-breaking for ordinal classification
  publication-title: Neurocomputing
– year: 2020
  ident: bib0015
  article-title: Image2Audio: Facilitating Semi-supervised Audio Emotion Recognition with Facial Expression Image
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– volume: 33
  start-page: 428
  year: 2019
  end-page: 432
  ident: bib0036
  article-title: Outcomes of infant cardiac surgery for congenital heart disease concomitant with persistent pneumonia: a retrospective cohort study
  publication-title: J. Cardiothorac. Vasc. Anesth.
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib0012
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 20
  start-page: 925
  year: 2019
  end-page: 931
  ident: bib0011
  article-title: Utility of machine learning algorithms in assessing patients with a systemic right ventricle
  publication-title: European Heart Journal-Cardiovascular Imaging
– volume: 72
  start-page: 857
  year: 2015
  end-page: 860
  ident: bib0042
  article-title: Congenital heart disease: causes, diagnosis, symptoms, and treatments
  publication-title: Cell Biochem. Biophys.
– reference: Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. IEEE. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 60–65,
– year: 2017
  ident: bib0016
  article-title: Deep reinforcement learning that matters
  publication-title: arXiv preprint arXiv:1709.06560
– reference: Maraci, M.A., Xie, W., Noble, J. A., 2018. Can dilated convolutions capture ultrasound video dynamics?Springer. International Workshop on Machine Learning in Medical Imaging, 116–124.
– year: 2019
  ident: bib0058
  article-title: Confidence regularized self-training
  publication-title: ICCV
– start-page: 4489
  year: 2015
  end-page: 4497
  ident: bib0044
  article-title: Learning Spatiotemporal Features with 3DConvolutional Networks
  publication-title: Proceedings of the IEEE international conference on computer vision
– year: 2020
  ident: bib0032
  article-title: Symmetric-constrained Irregular Structure Inpainting for Brain Mri Registration with Tumor Pathology
  publication-title: MICCAI BrainLes
– year: 2018
  ident: bib0046
  article-title: Non-local Neural Networks
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 58
  start-page: 2241
  year: 2011
  end-page: 2247
  ident: bib0023
  article-title: Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis
  publication-title: J. Am. Coll. Cardiol.
– year: 2020
  ident: bib0026
  article-title: Disentanglement for discriminative visual recognition
  publication-title: arXiv preprint arXiv:2006.07810
– start-page: 4362
  year: 2017
  end-page: 4371
  ident: bib0051
  article-title: Neural Aggregation Network for Video Face Recognition
  publication-title: IEEE CVPR
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: bib0003
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
– volume: 19
  start-page: 1413
  year: 2006
  end-page: 1430
  ident: bib0020
  article-title: Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric council of the american society of echocardiography
  publication-title: Journal of the American Society of Echocardiography
– year: 2018
  ident: bib0027
  article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets
  publication-title: European Conference on Computer Vision
– year: 2014
  ident: bib0041
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: bib0045
  article-title: Attention Is All You Need
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 1549
  year: 2019
  end-page: 1565
  ident: bib0024
  article-title: State-of-the-art deep learning in cardiovascular image analysis
  publication-title: JACC: Cardiovascular Imaging
– volume: 37
  start-page: 22
  year: 2017
  end-page: 36
  ident: bib0037
  article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat
  publication-title: Med. Image Anal.
– reference: Pruetz, J.D., Wang, S.S., Noori, S., 2019. Delivery room emergencies in critical congenital heart diseases. Elsevier. Seminars in Fetal and Neonatal Medicine, 101034.
– volume: 384
  start-page: 747
  year: 2014
  end-page: 754
  ident: bib0054
  article-title: Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in china: a prospective study
  publication-title: The Lancet
– start-page: 69
  year: 2009
  end-page: 80
  ident: bib0008
  article-title: Decision Forests with Long-range Spatial Context for Organ Localization in Ct Volumes
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0021
  article-title: Deep learning
  publication-title: Nature
– year: 2019
  ident: bib0025
  article-title: Deep learning in medical ultrasound analysis: a review
  publication-title: Engineering
– year: 2018
  ident: bib0013
  article-title: Revisiting temporal modeling for video-based person reid
  publication-title: arXiv preprint arXiv:1805.02104
– volume: 94
  year: 2015
  ident: bib0053
  article-title: Diagnostic value of fetal echocardiography for congenital heart disease: a systematic review and meta-analysis
  publication-title: Medicine (Baltimore)
– start-page: 5790
  year: 2017
  end-page: 5799
  ident: bib0035
  article-title: Quality Aware Network for Set to Set Recognition
  publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit.
– year: 2018
  ident: bib0001
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv preprint arXiv:1803.01271
– volume: 7
  start-page: 302
  year: 2011
  ident: bib0009
  article-title: Birth defects surveillance in china
  publication-title: World journal of pediatrics
– year: 2019
  ident: bib0029
  article-title: Dependency-aware attention control for imageset-based face recognition
– year: 2019
  ident: bib0006
  article-title: Deep verifier networks: verification of deep discriminative models with deep generative models
  publication-title: arXiv preprint arXiv:1911.07421
– start-page: 4502
  year: 2016
  end-page: 4510
  ident: bib0002
  article-title: Interaction Networks for Learning about Objects, Relations and Physics
  publication-title: Advances in neural information processing systems
– year: 2019
  ident: 10.1016/j.media.2020.101942_bib0033
  article-title: Conservative Wasserstein Training for Pose Estimation
– volume: 33
  start-page: 428
  year: 2019
  ident: 10.1016/j.media.2020.101942_bib0036
  article-title: Outcomes of infant cardiac surgery for congenital heart disease concomitant with persistent pneumonia: a retrospective cohort study
  publication-title: J. Cardiothorac. Vasc. Anesth.
  doi: 10.1053/j.jvca.2018.05.039
– volume: 318
  start-page: 2199
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0003
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– year: 2018
  ident: 10.1016/j.media.2020.101942_bib0056
  article-title: Temporal relational reasoning in videos
  publication-title: In ECCV
– year: 2019
  ident: 10.1016/j.media.2020.101942_bib0006
  article-title: Deep verifier networks: verification of deep discriminative models with deep generative models
  publication-title: arXiv preprint arXiv:1911.07421
– volume: 119
  start-page: 2005
  year: 2006
  ident: 10.1016/j.media.2020.101942_bib0048
  article-title: Recent progress of pediatric cardiac surgery in china
  publication-title: Chin. Med. J.
  doi: 10.1097/00029330-200612010-00011
– volume: 37
  start-page: 22
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0037
  article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.01.003
– year: 2019
  ident: 10.1016/j.media.2020.101942_bib0058
  article-title: Confidence regularized self-training
  publication-title: ICCV
– volume: 94
  year: 2015
  ident: 10.1016/j.media.2020.101942_bib0053
  article-title: Diagnostic value of fetal echocardiography for congenital heart disease: a systematic review and meta-analysis
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000002158
– volume: 162
  start-page: 969
  year: 2008
  ident: 10.1016/j.media.2020.101942_bib0005
  article-title: Missed diagnosis of critical congenital heart disease
  publication-title: Archives of pediatrics & adolescent medicine
  doi: 10.1001/archpedi.162.10.969
– start-page: 5790
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0035
  article-title: Quality Aware Network for Set to Set Recognition
– ident: 10.1016/j.media.2020.101942_bib0022
  doi: 10.1007/978-3-319-54427-4_22
– year: 2019
  ident: 10.1016/j.media.2020.101942_sbref0031
  article-title: Unimodal-uniform constrained wasserstein training for medical diagnosis
– ident: 10.1016/j.media.2020.101942_bib0040
  doi: 10.1016/j.siny.2019.101034
– volume: 72
  start-page: 857
  year: 2015
  ident: 10.1016/j.media.2020.101942_bib0042
  article-title: Congenital heart disease: causes, diagnosis, symptoms, and treatments
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-015-0551-6
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.media.2020.101942_bib0007
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– year: 2019
  ident: 10.1016/j.media.2020.101942_bib0025
  article-title: Deep learning in medical ultrasound analysis: a review
  publication-title: Engineering
– volume: 12
  start-page: 1549
  year: 2019
  ident: 10.1016/j.media.2020.101942_bib0024
  article-title: State-of-the-art deep learning in cardiovascular image analysis
  publication-title: JACC: Cardiovascular Imaging
– volume: 7
  start-page: 302
  year: 2011
  ident: 10.1016/j.media.2020.101942_bib0009
  article-title: Birth defects surveillance in china
  publication-title: World journal of pediatrics
  doi: 10.1007/s12519-011-0326-0
– ident: 10.1016/j.media.2020.101942_bib0038
  doi: 10.1007/978-3-030-00919-9_14
– year: 2020
  ident: 10.1016/j.media.2020.101942_bib0014
  article-title: Wasserstein Loss-based Deep Object Detection
– year: 2018
  ident: 10.1016/j.media.2020.101942_bib0013
  article-title: Revisiting temporal modeling for video-based person reid
  publication-title: arXiv preprint arXiv:1805.02104
– volume: 384
  start-page: 747
  year: 2014
  ident: 10.1016/j.media.2020.101942_bib0054
  article-title: Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in china: a prospective study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)60198-7
– year: 2018
  ident: 10.1016/j.media.2020.101942_bib0046
  article-title: Non-local Neural Networks
– year: 2020
  ident: 10.1016/j.media.2020.101942_bib0015
  article-title: Image2Audio: Facilitating Semi-supervised Audio Emotion Recognition with Facial Expression Image
– year: 2017
  ident: 10.1016/j.media.2020.101942_bib0016
  article-title: Deep reinforcement learning that matters
  publication-title: arXiv preprint arXiv:1709.06560
– start-page: 4362
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0051
  article-title: Neural Aggregation Network for Video Face Recognition
– year: 2017
  ident: 10.1016/j.media.2020.101942_bib0018
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arXiv:1704.04861
– start-page: 4502
  year: 2016
  ident: 10.1016/j.media.2020.101942_bib0002
  article-title: Interaction Networks for Learning about Objects, Relations and Physics
– year: 2020
  ident: 10.1016/j.media.2020.101942_bib0032
  article-title: Symmetric-constrained Irregular Structure Inpainting for Brain Mri Registration with Tumor Pathology
– volume: 58
  start-page: 2241
  year: 2011
  ident: 10.1016/j.media.2020.101942_bib0023
  article-title: Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2011.08.025
– year: 2020
  ident: 10.1016/j.media.2020.101942_bib0028
  article-title: Unimodal regularized neuron stick-breaking for ordinal classification
  publication-title: Neurocomputing
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0012
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– start-page: 4489
  year: 2015
  ident: 10.1016/j.media.2020.101942_bib0044
  article-title: Learning Spatiotemporal Features with 3DConvolutional Networks
– volume: 27
  start-page: 1668
  year: 2008
  ident: 10.1016/j.media.2020.101942_bib0055
  article-title: Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2004421
– volume: 14
  start-page: 152
  year: 2014
  ident: 10.1016/j.media.2020.101942_bib0049
  article-title: Prevalence of congenital heart defect in guangdong province, 2008–2012
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-14-152
– start-page: 5998
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0045
  article-title: Attention Is All You Need
– volume: 20
  start-page: 925
  year: 2019
  ident: 10.1016/j.media.2020.101942_bib0011
  article-title: Utility of machine learning algorithms in assessing patients with a systemic right ventricle
  publication-title: European Heart Journal-Cardiovascular Imaging
  doi: 10.1093/ehjci/jey211
– year: 2019
  ident: 10.1016/j.media.2020.101942_sbref0029
– ident: 10.1016/j.media.2020.101942_bib0004
  doi: 10.1109/CVPR.2005.38
– ident: 10.1016/j.media.2020.101942_bib0050
– volume: 24
  start-page: 1342
  year: 2018
  ident: 10.1016/j.media.2020.101942_bib0010
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0107-6
– year: 2019
  ident: 10.1016/j.media.2020.101942_bib0030
  article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets
– volume: 4
  start-page: 014502
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0039
  article-title: Automated detection of coarctation of aorta in neonates from two-dimensional echocardiograms
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.1.014502
– ident: 10.1016/j.media.2020.101942_bib0057
  doi: 10.1109/CVPR.2017.717
– start-page: 2701
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0017
  article-title: Vain: Attentional Multi-agent Predictive Modeling
– start-page: 2818
  year: 2016
  ident: 10.1016/j.media.2020.101942_bib0043
  article-title: Rethinking the Inception Architecture for Computer Vision
– year: 2018
  ident: 10.1016/j.media.2020.101942_sbref0034
  article-title: Ordinal regression with neuron stick-breaking for medical diagnosis
– start-page: 69
  year: 2009
  ident: 10.1016/j.media.2020.101942_bib0008
  article-title: Decision Forests with Long-range Spatial Context for Organ Localization in Ct Volumes
– year: 2018
  ident: 10.1016/j.media.2020.101942_bib0001
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv preprint arXiv:1803.01271
– year: 2020
  ident: 10.1016/j.media.2020.101942_bib0026
  article-title: Disentanglement for discriminative visual recognition
  publication-title: arXiv preprint arXiv:2006.07810
– year: 2014
  ident: 10.1016/j.media.2020.101942_bib0041
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– year: 2018
  ident: 10.1016/j.media.2020.101942_bib0027
  article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets
– start-page: 4539
  year: 2017
  ident: 10.1016/j.media.2020.101942_bib0047
  article-title: Visual Interaction Networks: Learning a Physics Simulator from Video
– volume: 17
  start-page: 712
  year: 2013
  ident: 10.1016/j.media.2020.101942_bib0019
  article-title: Localizing target structures in ultrasound video–a phantom study
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.05.003
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.media.2020.101942_bib0021
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 122
  start-page: 1128
  year: 2009
  ident: 10.1016/j.media.2020.101942_bib0052
  article-title: Incidence of congenital heart disease in beijing, china
  publication-title: Chin. Med. J.
– volume: 19
  start-page: 1413
  year: 2006
  ident: 10.1016/j.media.2020.101942_bib0020
  article-title: Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric council of the american society of echocardiography
  publication-title: Journal of the American Society of Echocardiography
  doi: 10.1016/j.echo.2006.09.001
SSID ssj0007440
Score 2.5532358
Snippet •The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart...
Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101942
SubjectTerms Ablation
Accuracy
Annotations
Automation
Birth defects
Cardiovascular disease
Cardiovascular diseases
Classification
Congenital defects
Congenital diseases
Congenital heart disease
Convolution
Coronary artery disease
Diagnosis
Echocardiography
Frames (data processing)
Heart diseases
Labels
Learning algorithms
Machine learning
Model accuracy
Multi-channel networks
Multi-view learning
Neural aggregation
Patients
Physicians
Training
Two dimensional models
Ultrasonic imaging
Ventricle
Video data
Title Automated interpretation of congenital heart disease from multi-view echocardiograms
URI https://dx.doi.org/10.1016/j.media.2020.101942
https://www.ncbi.nlm.nih.gov/pubmed/33418465
https://www.proquest.com/docview/2541391336
https://www.proquest.com/docview/2476565355
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLaqIiE4oFJe25YqSBwJO5vMJDPHpWpZHu2FFvUW7SSOtAjtVnT2ym-vncks7aE9cBopk0iR49iflc82wPvSFhG1srIhXyfLaBvZatNKcm1oTCyKueXc4dMzM7sov15Wl1twNOTCMK0y2_7epidrnUfGWZrjq8Vi_GOiuVkJ-R_SUwK-XHa7LC13Mfj49x_Ngwvg9blXE8mzh8pDieOVsjMoSFRppCnVfd7pPvSZvNDJDjzL8FFM-x0-hy1c7sLTW0UFd-HxaX4ufwHn03W3IkiKQSzukAvFKgoKhEl5uGeI4K7WnchvNYIzTkQiGkp-NxBIFtIn2iozua5fwsXJ8fnRTOY2CtLr2nZSNcorH6yKWuu51QZ9paOvTdN6X06wLeqAE48m1DYWvgrWFDESEGmbOiiv9SvYXq6W-AYE1iYUtdfY1IS8QmSWH4ZYFS1agzgfgRrE53yuMc6tLn67gUz2yyWZO5a562U-gg-bRVd9iY2Hp5vhXNwdTXHkBB5eeDCcossX9dpRfEwYmAJ1M4J3m990xfjdZL7E1ZrmlJZQb0XqO4LX_elvNqoJBRCEq_b-d1f78EQxTSaRgQ5gu_uzxreEc7r2MCnyITyafvk2O6Pv50_ff05vAEom_b0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB0BlQo9VC2faSm4Uo-YbOxde_eIECgFwqVB4mZl7bEUhBIEmyu_vWOvNy0HOHDdtSVrPJ55o3kzA_Ar15lHKTSvyNfx3OuK11LVnFwbKuWzbKJD7fDoWg1v8ovb4nYFTrtamECrTLa_tenRWqcv_STN_sN02v8zkGFYCfkf0lMCvmoVPuSF0CECO37-x_MIHfDa4qsBD8u71kOR5BXLMyhKFPFLlYvX3NNr8DO6ofMv8DnhR3bSHvErrOBsEz7911VwEz6OUr58C8Yni2ZOmBQdm75gF7K5ZxQJk_aEoSEsjLVuWErWsFBywiLTkIfEAUMykTbyVgOV62kbbs7PxqdDnuYocCtL3XBRCSus08JLKSdaKrSF9LZUVW1tPsA6Kx0OLCpXap_ZwmmVeU9IpK5KJ6yUO7A2m89wDxiWymWllViVBL2cDzQ_dL7IatQKcdID0YnP2NRkPMy6uDcdm-zORJmbIHPTyrwHR8tND22PjbeXq-5ezAtVMeQF3t64392iSS_1yVCATCCYInXVg5_L3_TGQuJkMsP5gtbkmmBvQfrbg9329pcHlQQDCMMV3957qkNYH45HV-bq9_Xld9gQgTMTmUH7sNY8LvAHgZ6mPohK_RcwDf3D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+interpretation+of+congenital+heart+disease+from+multi-view+echocardiograms&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Jing&rft.au=Liu%2C+Xiaofeng&rft.au=Wang%2C+Fangyun&rft.au=Zheng%2C+Lin&rft.date=2021-04-01&rft.eissn=1361-8423&rft.volume=69&rft.spage=101942&rft_id=info:doi/10.1016%2Fj.media.2020.101942&rft_id=info%3Apmid%2F33418465&rft.externalDocID=33418465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon