Automated interpretation of congenital heart disease from multi-view echocardiograms
•The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart disease.•Powerful baselines to explore the key-frame-based and video-based multi-view diagnose.•A depthwise separable convolution-based efficient mu...
Saved in:
| Published in | Medical image analysis Vol. 69; p. 101942 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.04.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8423 |
| DOI | 10.1016/j.media.2020.101942 |
Cover
| Abstract | •The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart disease.•Powerful baselines to explore the key-frame-based and video-based multi-view diagnose.•A depthwise separable convolution-based efficient multi-channel CNN architecture.•Four video aggregation schemes are developed to process video frames.
[Display omitted]
Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided.
The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD. |
|---|---|
| AbstractList | •The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart disease.•Powerful baselines to explore the key-frame-based and video-based multi-view diagnose.•A depthwise separable convolution-based efficient multi-channel CNN architecture.•Four video aggregation schemes are developed to process video frames.
[Display omitted]
Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided.
The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD. Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD. Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD.Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames from five views. Limited by the availability of multi-view data, most methods have to rely on the insufficient single view analysis. This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework. We collect the five-view echocardiograms video records of 1308 subjects (including normal controls, ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both disease labels and standard-view key-frame labels. Depthwise separable convolution-based multi-channel networks are adopted to largely reduce the network parameters. We also approach the imbalanced class problem by augmenting the positive training samples. Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of 95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further alleviate the work of key-frame selection in real-world implementation, we propose an adaptive soft attention scheme to directly explore the raw video data. Four kinds of neural aggregation methods are systematically investigated to fuse the information of an arbitrary number of frames in a video. Moreover, with a view detection module, the system can work without the view records. Our video-based model can diagnose with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification) in a collected 2D video testing set, which does not need key-frame selection and view annotation in testing. The detailed ablation study and the interpretability analysis are provided. The presented model has high diagnostic rates for VSD and ASD that can be potentially applied to the clinical practice in the future. The short-term automated machine learning process can partially replace and promote the long-term professional training of primary doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation for early diagnosis and timely treatment of children with CHD. |
| ArticleNumber | 101942 |
| Author | Zhang, Xin Wang, Binbin Zhang, Hanwen Xie, Wanqing Zheng, Lin Wang, Jing Gao, Fengqiao Liu, Xiaofeng Wang, Fangyun |
| Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing organization: Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 10069, China – sequence: 2 givenname: Xiaofeng surname: Liu fullname: Liu, Xiaofeng organization: Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15232 USA – sequence: 3 givenname: Fangyun surname: Wang fullname: Wang, Fangyun organization: Heart Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 10045, China – sequence: 4 givenname: Lin surname: Zheng fullname: Zheng, Lin organization: Heart Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 10045, China – sequence: 5 givenname: Fengqiao surname: Gao fullname: Gao, Fengqiao organization: Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 10069, China – sequence: 6 givenname: Hanwen surname: Zhang fullname: Zhang, Hanwen organization: Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 10069, China – sequence: 7 givenname: Xin surname: Zhang fullname: Zhang, Xin email: zhangxin1651@163.com organization: Heart Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 10045, China – sequence: 8 givenname: Wanqing surname: Xie fullname: Xie, Wanqing email: wxie1@hrbeu.edu.cn organization: College of mathematical sciences, Harbin engineering university, Harbin, China – sequence: 9 givenname: Binbin surname: Wang fullname: Wang, Binbin email: wbbahu@163.com organization: Center for Genetics, National Research Institute for Family Planning, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33418465$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LHTEUhkNR6kf7CwploBs3c833zCy6ENG2IHRj1yH35ERzmZncJpmW_nujo124cHXC4XkP4XlPyMEcZyTkE6MbRpk-320mdMFuOOVPm0Hyd-SYCc3aXnJx8P_N1BE5yXlHKe2kpO_JkRCS9VKrY3J7sZQ42YKuCXPBtE9YbAlxbqJvIM53OIdix-YebSqNCxltxsanODXTMpbQ_gn4t0G4j2CTC_Eu2Sl_IIfejhk_Ps9T8uv66vbye3vz89uPy4ubFkTflZYPHDi4jnshhO2ERlDCQ6-HLYBkuKW9QwaoXd95Csp1mnqvhdoOveMgxCk5W-_uU_y9YC5mChlwHO2MccmGy04rrYRSFf3yCt3FJc31d4YrycTAhNCV-vxMLdsq1-xTmGz6Z158VWBYAUgx54TeQFh9lWTDaBg1j92YnXnqxjx2Y9Zuala8yr6cfzv1dU1hFVllJ5Mh4AwVTAjFuBjezD8Ae_Co8w |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3545829 crossref_primary_10_1016_j_bspc_2024_106074 crossref_primary_10_1515_jpm_2023_0041 crossref_primary_10_1109_TNNLS_2022_3192315 crossref_primary_10_1016_j_jscai_2025_102567 crossref_primary_10_1161_CIRCIMAGING_122_014519 crossref_primary_10_1080_21681163_2022_2032361 crossref_primary_10_1017_S1047951121004212 crossref_primary_10_1016_j_echo_2023_12_013 crossref_primary_10_3389_fradi_2022_881777 crossref_primary_10_3390_jcm11030690 crossref_primary_10_3389_fcvm_2023_985657 crossref_primary_10_1002_med4_75 crossref_primary_10_34133_research_0319 crossref_primary_10_1097_HCO_0000000000000927 crossref_primary_10_1142_S0129065724500540 crossref_primary_10_34133_2022_9790653 crossref_primary_10_1016_j_echo_2022_08_009 crossref_primary_10_32604_cmes_2022_020870 crossref_primary_10_1016_j_jacadv_2022_100153 crossref_primary_10_47992_IJCSBE_2581_6942_0202 crossref_primary_10_1109_TPAMI_2021_3077397 crossref_primary_10_1007_s00371_023_02794_1 crossref_primary_10_3390_electronics13020326 crossref_primary_10_1016_j_artmed_2024_102866 crossref_primary_10_1155_2023_5650378 crossref_primary_10_1136_wjps_2023_000580 crossref_primary_10_1016_j_bspc_2024_106701 crossref_primary_10_1016_j_cmpb_2024_108037 crossref_primary_10_1109_JBHI_2021_3092628 crossref_primary_10_1016_j_compmedimag_2022_102128 crossref_primary_10_3390_diagnostics14020132 crossref_primary_10_31083_j_rcm2509335 crossref_primary_10_3390_diagnostics12122899 crossref_primary_10_3390_children12010014 crossref_primary_10_1038_s41598_025_88567_3 |
| Cites_doi | 10.1053/j.jvca.2018.05.039 10.1001/jama.2017.14585 10.1097/00029330-200612010-00011 10.1016/j.media.2017.01.003 10.1097/MD.0000000000002158 10.1001/archpedi.162.10.969 10.1007/978-3-319-54427-4_22 10.1016/j.siny.2019.101034 10.1007/s12013-015-0551-6 10.1023/A:1022627411411 10.1007/s12519-011-0326-0 10.1007/978-3-030-00919-9_14 10.1016/S0140-6736(14)60198-7 10.1016/j.jacc.2011.08.025 10.1038/nature21056 10.1109/TMI.2008.2004421 10.1186/1471-2458-14-152 10.1093/ehjci/jey211 10.1109/CVPR.2005.38 10.1038/s41591-018-0107-6 10.1117/1.JMI.4.1.014502 10.1109/CVPR.2017.717 10.1016/j.media.2013.05.003 10.1038/nature14539 10.1016/j.echo.2006.09.001 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. Copyright Elsevier BV Apr 2021 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Apr 2021 |
| DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| DOI | 10.1016/j.media.2020.101942 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 33418465 10_1016_j_media_2020_101942 S1361841520303066 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c387t-292c2cd72f333a736ec53fc869bcc41eb08de1ce6d87f0c5d760ff635b98d2c33 |
| IEDL.DBID | .~1 |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Sun Sep 28 10:04:16 EDT 2025 Tue Oct 07 06:47:15 EDT 2025 Wed Feb 19 02:29:34 EST 2025 Wed Oct 29 21:19:28 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Fri Feb 23 02:47:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-channel networks Neural aggregation 41A10 65D05 65D17 Congenital heart disease 41A05 Multi-view learning |
| Language | English |
| License | Copyright © 2020 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-292c2cd72f333a736ec53fc869bcc41eb08de1ce6d87f0c5d760ff635b98d2c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 33418465 |
| PQID | 2541391336 |
| PQPubID | 2045428 |
| ParticipantIDs | proquest_miscellaneous_2476565355 proquest_journals_2541391336 pubmed_primary_33418465 crossref_citationtrail_10_1016_j_media_2020_101942 crossref_primary_10_1016_j_media_2020_101942 elsevier_sciencedirect_doi_10_1016_j_media_2020_101942 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Luo, Qin, Wang, Ye, Pan, Huang, Luo, Guo, Peng, Wang (bib0036) 2019; 33 Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. IEEE. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 60–65 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib0012) 2017; 542 Kwitt, Vasconcelos, Razzaque, Aylward (bib0019) 2013; 17 Chang, Gurvitz, Rodriguez (bib0005) 2008; 162 Liu, Zou, Song, Yang, You, K. Vijaya Kumar (bib0034) 2018 Wu, Li, Xia, Ji, Liang, Ma, Li, Wu, Wang, Zhao (bib0049) 2014; 14 Zou, Yu, Liu, Kumar, Wang (bib0058) 2019 Henderson, Islam, Bachman, Pineau, Precup, Meger (bib0016) 2017 Zhou, Andonian, Torralba (bib0056) 2018 Lai, Geva, Shirali, Frommelt, Humes, Brook, Pignatelli, Rychik (bib0020) 2006; 19 Hoshen (bib0017) 2017 Zheng, Barbu, Georgescu, Scheuering, Comaniciu (bib0055) 2008; 27 Zhang, Zeng, Zhao, Lu (bib0053) 2015; 94 Gao, Nevatia (bib0013) 2018 Liu, Zou, Che, Ding, Jia, You, Kumar (bib0033) 2019 Zhao, Ma, Ge, Liu, Yan, Wu, Ye, Liang, Zhang, Gao (bib0054) 2014; 384 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib0018) 2017 Maraci, M.A., Xie, W., Noble, J. A., 2018. Can dilated convolutions capture ultrasound video dynamics?Springer. International Workshop on Machine Learning in Medical Imaging, 116–124. Yang, Ren, Zhang, Chen, Wen, Li, Hua (bib0051) 2017 Watters, Zoran, Weber, Battaglia, Pascanu, Tacchetti (bib0047) 2017 Liu, B.V.K, Yang, Tang, You (bib0027) 2018 Liu, Guo, Jia, Kumar (bib0029) 2019 Lee, D., Lee, J., Kim, K.E., 2016. Multi-view automatic lip-reading using neural network. Springer. Asian conference on computer vision, 290–302. Yang, LI, LÜ, Liu (bib0052) 2009; 122 LeCun, Bengio, Hinton (bib0021) 2015; 521 Liu, Wang, Yang, Lei, Liu, Li, Ni, Wang (bib0025) 2019 Battaglia, Pascanu, Lai, Rezende (bib0002) 2016 Tran, Bourdev, Fergus, Torresani, Paluri (bib0044) 2015 Liu, Xing, Yang, Kuo, El Fakhri, Woo (bib0032) 2020 Sun, Liu, Lu, Zheng, Zhang (bib0042) 2015; 72 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0043) 2016 Bejnordi, Veta, Van Diest, Van Ginneken, Karssemeijer, Litjens, Van Der Laak, Hermsen, Manson, Balkenhol (bib0003) 2017; 318 WU, LÜ, Liu (bib0048) 2006; 119 Liu, Guo, Li, You, B. V. K (bib0030) 2019 van der Linde, Konings, Slager, Witsenburg, Helbing, Takkenberg, Roos-Hesselink (bib0023) 2011; 58 Liu (bib0026) 2020 Pereira, Bueno, Rodriguez, Perrin, Marx, Cardinale, Salgo, del Nido (bib0039) 2017; 4 Pruetz, J.D., Wang, S.S., Noori, S., 2019. Delivery room emergencies in critical congenital heart diseases. Elsevier. Seminars in Fetal and Neonatal Medicine, 101034. Wang, Girshick, Gupta, He (bib0046) 2018 Litjens, Ciompi, Wolterink, de Vos, Leiner, Teuwen, Išgum (bib0024) 2019; 12 Liu, Han, Qiao, Ge, Li, Lu (bib0031) 2019 Dai, Zhu, Liang, Wang, Wang, Mao (bib0009) 2011; 7 Liu, Yan, Ouyang (bib0035) 2017 Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T., 2017. See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification. IEEE. Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, 6776–6785 Che, Liu, Li, Ge, Zhang, Xiong, Bengio (bib0006) 2019 Liu, Fan, Kong, Xie, Lu, You (bib0028) 2020 Han, Liu, Sheng, Ren, Han, You, Liu, Luo (bib0014) 2020 Diller, Babu-Narayan, Li, Radojevic, Kempny, Uebing, Dimopoulos, Baumgartner, Gatzoulis, Orwat (bib0011) 2019; 20 De Fauw, Ledsam, Romera-Paredes, Nikolov, Tomasev, Blackwell, Askham, Glorot, O’Donoghue, Visentin (bib0010) 2018; 24 Bai, Kolter, Koltun (bib0001) 2018 Yang, F.S.Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M., 2018. Learning to compare: Relation network for few-shot learning. He, Liu, Fan, You (bib0015) 2020 Maraci, Bridge, Napolitano, Papageorghiou, Noble (bib0037) 2017; 37 Cortes, Vapnik (bib0007) 1995; 20 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0045) 2017 Simonyan, Zisserman (bib0041) 2014 Criminisi, Shotton, Bucciarelli (bib0008) 2009 Maraci (10.1016/j.media.2020.101942_bib0037) 2017; 37 Tran (10.1016/j.media.2020.101942_bib0044) 2015 Simonyan (10.1016/j.media.2020.101942_bib0041) 2014 Hoshen (10.1016/j.media.2020.101942_bib0017) 2017 Lai (10.1016/j.media.2020.101942_bib0020) 2006; 19 10.1016/j.media.2020.101942_bib0040 Liu (10.1016/j.media.2020.101942_bib0025) 2019 Han (10.1016/j.media.2020.101942_bib0014) 2020 Cortes (10.1016/j.media.2020.101942_bib0007) 1995; 20 10.1016/j.media.2020.101942_bib0004 Watters (10.1016/j.media.2020.101942_bib0047) 2017 Liu (10.1016/j.media.2020.101942_bib0035) 2017 Liu (10.1016/j.media.2020.101942_sbref0029) 2019 Szegedy (10.1016/j.media.2020.101942_bib0043) 2016 Yang (10.1016/j.media.2020.101942_bib0052) 2009; 122 Zou (10.1016/j.media.2020.101942_bib0058) 2019 Diller (10.1016/j.media.2020.101942_bib0011) 2019; 20 Wu (10.1016/j.media.2020.101942_bib0049) 2014; 14 Che (10.1016/j.media.2020.101942_bib0006) 2019 LeCun (10.1016/j.media.2020.101942_bib0021) 2015; 521 Zhao (10.1016/j.media.2020.101942_bib0054) 2014; 384 Dai (10.1016/j.media.2020.101942_bib0009) 2011; 7 Liu (10.1016/j.media.2020.101942_bib0028) 2020 10.1016/j.media.2020.101942_bib0050 WU (10.1016/j.media.2020.101942_bib0048) 2006; 119 Wang (10.1016/j.media.2020.101942_bib0046) 2018 Yang (10.1016/j.media.2020.101942_bib0051) 2017 Vaswani (10.1016/j.media.2020.101942_bib0045) 2017 10.1016/j.media.2020.101942_bib0057 He (10.1016/j.media.2020.101942_bib0015) 2020 Sun (10.1016/j.media.2020.101942_bib0042) 2015; 72 Liu (10.1016/j.media.2020.101942_sbref0034) 2018 Zhang (10.1016/j.media.2020.101942_bib0053) 2015; 94 Esteva (10.1016/j.media.2020.101942_bib0012) 2017; 542 Zhou (10.1016/j.media.2020.101942_bib0056) 2018 Liu (10.1016/j.media.2020.101942_bib0033) 2019 Gao (10.1016/j.media.2020.101942_bib0013) 2018 Luo (10.1016/j.media.2020.101942_bib0036) 2019; 33 Criminisi (10.1016/j.media.2020.101942_bib0008) 2009 Liu (10.1016/j.media.2020.101942_sbref0031) 2019 Bejnordi (10.1016/j.media.2020.101942_bib0003) 2017; 318 10.1016/j.media.2020.101942_bib0022 Liu (10.1016/j.media.2020.101942_bib0030) 2019 Liu (10.1016/j.media.2020.101942_bib0026) 2020 Henderson (10.1016/j.media.2020.101942_bib0016) 2017 Pereira (10.1016/j.media.2020.101942_bib0039) 2017; 4 Howard (10.1016/j.media.2020.101942_bib0018) 2017 Litjens (10.1016/j.media.2020.101942_bib0024) 2019; 12 Kwitt (10.1016/j.media.2020.101942_bib0019) 2013; 17 Bai (10.1016/j.media.2020.101942_bib0001) 2018 Battaglia (10.1016/j.media.2020.101942_bib0002) 2016 Liu (10.1016/j.media.2020.101942_bib0027) 2018 De Fauw (10.1016/j.media.2020.101942_bib0010) 2018; 24 Liu (10.1016/j.media.2020.101942_bib0032) 2020 van der Linde (10.1016/j.media.2020.101942_bib0023) 2011; 58 Chang (10.1016/j.media.2020.101942_bib0005) 2008; 162 Zheng (10.1016/j.media.2020.101942_bib0055) 2008; 27 10.1016/j.media.2020.101942_bib0038 |
| References_xml | – year: 2019 ident: bib0031 article-title: Unimodal-uniform constrained wasserstein training for medical diagnosis publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – volume: 122 start-page: 1128 year: 2009 end-page: 1132 ident: bib0052 article-title: Incidence of congenital heart disease in beijing, china publication-title: Chin. Med. J. – volume: 27 start-page: 1668 year: 2008 end-page: 1681 ident: bib0055 article-title: Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features publication-title: IEEE Trans. Med. Imaging – year: 2019 ident: bib0030 article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets publication-title: ICCV – volume: 14 start-page: 152 year: 2014 ident: bib0049 article-title: Prevalence of congenital heart defect in guangdong province, 2008–2012 publication-title: BMC Public Health – start-page: 2701 year: 2017 end-page: 2711 ident: bib0017 article-title: Vain: Attentional Multi-agent Predictive Modeling publication-title: Advances in Neural Information Processing Systems – reference: Yang, F.S.Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M., 2018. Learning to compare: Relation network for few-shot learning. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0007 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 24 start-page: 1342 year: 2018 end-page: 1350 ident: bib0010 article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease publication-title: Nat. Med. – reference: Lee, D., Lee, J., Kim, K.E., 2016. Multi-view automatic lip-reading using neural network. Springer. Asian conference on computer vision, 290–302. – volume: 119 start-page: 2005 year: 2006 end-page: 2012 ident: bib0048 article-title: Recent progress of pediatric cardiac surgery in china publication-title: Chin. Med. J. – reference: Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T., 2017. See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification. IEEE. Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, 6776–6785 – volume: 17 start-page: 712 year: 2013 end-page: 722 ident: bib0019 article-title: Localizing target structures in ultrasound video–a phantom study publication-title: Med. Image Anal. – volume: 162 start-page: 969 year: 2008 end-page: 974 ident: bib0005 article-title: Missed diagnosis of critical congenital heart disease publication-title: Archives of pediatrics & adolescent medicine – year: 2017 ident: bib0018 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: arXiv preprint arXiv:1704.04861 – year: 2018 ident: bib0034 article-title: Ordinal regression with neuron stick-breaking for medical diagnosis publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – year: 2018 ident: bib0056 article-title: Temporal relational reasoning in videos publication-title: In ECCV – start-page: 2818 year: 2016 end-page: 2826 ident: bib0043 article-title: Rethinking the Inception Architecture for Computer Vision publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bib0014 article-title: Wasserstein Loss-based Deep Object Detection publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops – year: 2019 ident: bib0033 article-title: Conservative Wasserstein Training for Pose Estimation publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) – volume: 4 start-page: 014502 year: 2017 ident: bib0039 article-title: Automated detection of coarctation of aorta in neonates from two-dimensional echocardiograms publication-title: J. Med. Imaging – start-page: 4539 year: 2017 end-page: 4547 ident: bib0047 article-title: Visual Interaction Networks: Learning a Physics Simulator from Video publication-title: Advances in Neural Information Processing Systems – year: 2020 ident: bib0028 article-title: Unimodal regularized neuron stick-breaking for ordinal classification publication-title: Neurocomputing – year: 2020 ident: bib0015 article-title: Image2Audio: Facilitating Semi-supervised Audio Emotion Recognition with Facial Expression Image publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops – volume: 33 start-page: 428 year: 2019 end-page: 432 ident: bib0036 article-title: Outcomes of infant cardiac surgery for congenital heart disease concomitant with persistent pneumonia: a retrospective cohort study publication-title: J. Cardiothorac. Vasc. Anesth. – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib0012 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 20 start-page: 925 year: 2019 end-page: 931 ident: bib0011 article-title: Utility of machine learning algorithms in assessing patients with a systemic right ventricle publication-title: European Heart Journal-Cardiovascular Imaging – volume: 72 start-page: 857 year: 2015 end-page: 860 ident: bib0042 article-title: Congenital heart disease: causes, diagnosis, symptoms, and treatments publication-title: Cell Biochem. Biophys. – reference: Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. IEEE. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 60–65, – year: 2017 ident: bib0016 article-title: Deep reinforcement learning that matters publication-title: arXiv preprint arXiv:1709.06560 – reference: Maraci, M.A., Xie, W., Noble, J. A., 2018. Can dilated convolutions capture ultrasound video dynamics?Springer. International Workshop on Machine Learning in Medical Imaging, 116–124. – year: 2019 ident: bib0058 article-title: Confidence regularized self-training publication-title: ICCV – start-page: 4489 year: 2015 end-page: 4497 ident: bib0044 article-title: Learning Spatiotemporal Features with 3DConvolutional Networks publication-title: Proceedings of the IEEE international conference on computer vision – year: 2020 ident: bib0032 article-title: Symmetric-constrained Irregular Structure Inpainting for Brain Mri Registration with Tumor Pathology publication-title: MICCAI BrainLes – year: 2018 ident: bib0046 article-title: Non-local Neural Networks publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 58 start-page: 2241 year: 2011 end-page: 2247 ident: bib0023 article-title: Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis publication-title: J. Am. Coll. Cardiol. – year: 2020 ident: bib0026 article-title: Disentanglement for discriminative visual recognition publication-title: arXiv preprint arXiv:2006.07810 – start-page: 4362 year: 2017 end-page: 4371 ident: bib0051 article-title: Neural Aggregation Network for Video Face Recognition publication-title: IEEE CVPR – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: bib0003 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA – volume: 19 start-page: 1413 year: 2006 end-page: 1430 ident: bib0020 article-title: Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric council of the american society of echocardiography publication-title: Journal of the American Society of Echocardiography – year: 2018 ident: bib0027 article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets publication-title: European Conference on Computer Vision – year: 2014 ident: bib0041 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – start-page: 5998 year: 2017 end-page: 6008 ident: bib0045 article-title: Attention Is All You Need publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 1549 year: 2019 end-page: 1565 ident: bib0024 article-title: State-of-the-art deep learning in cardiovascular image analysis publication-title: JACC: Cardiovascular Imaging – volume: 37 start-page: 22 year: 2017 end-page: 36 ident: bib0037 article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat publication-title: Med. Image Anal. – reference: Pruetz, J.D., Wang, S.S., Noori, S., 2019. Delivery room emergencies in critical congenital heart diseases. Elsevier. Seminars in Fetal and Neonatal Medicine, 101034. – volume: 384 start-page: 747 year: 2014 end-page: 754 ident: bib0054 article-title: Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in china: a prospective study publication-title: The Lancet – start-page: 69 year: 2009 end-page: 80 ident: bib0008 article-title: Decision Forests with Long-range Spatial Context for Organ Localization in Ct Volumes publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI) – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0021 article-title: Deep learning publication-title: Nature – year: 2019 ident: bib0025 article-title: Deep learning in medical ultrasound analysis: a review publication-title: Engineering – year: 2018 ident: bib0013 article-title: Revisiting temporal modeling for video-based person reid publication-title: arXiv preprint arXiv:1805.02104 – volume: 94 year: 2015 ident: bib0053 article-title: Diagnostic value of fetal echocardiography for congenital heart disease: a systematic review and meta-analysis publication-title: Medicine (Baltimore) – start-page: 5790 year: 2017 end-page: 5799 ident: bib0035 article-title: Quality Aware Network for Set to Set Recognition publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – year: 2018 ident: bib0001 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv preprint arXiv:1803.01271 – volume: 7 start-page: 302 year: 2011 ident: bib0009 article-title: Birth defects surveillance in china publication-title: World journal of pediatrics – year: 2019 ident: bib0029 article-title: Dependency-aware attention control for imageset-based face recognition – year: 2019 ident: bib0006 article-title: Deep verifier networks: verification of deep discriminative models with deep generative models publication-title: arXiv preprint arXiv:1911.07421 – start-page: 4502 year: 2016 end-page: 4510 ident: bib0002 article-title: Interaction Networks for Learning about Objects, Relations and Physics publication-title: Advances in neural information processing systems – year: 2019 ident: 10.1016/j.media.2020.101942_bib0033 article-title: Conservative Wasserstein Training for Pose Estimation – volume: 33 start-page: 428 year: 2019 ident: 10.1016/j.media.2020.101942_bib0036 article-title: Outcomes of infant cardiac surgery for congenital heart disease concomitant with persistent pneumonia: a retrospective cohort study publication-title: J. Cardiothorac. Vasc. Anesth. doi: 10.1053/j.jvca.2018.05.039 – volume: 318 start-page: 2199 year: 2017 ident: 10.1016/j.media.2020.101942_bib0003 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – year: 2018 ident: 10.1016/j.media.2020.101942_bib0056 article-title: Temporal relational reasoning in videos publication-title: In ECCV – year: 2019 ident: 10.1016/j.media.2020.101942_bib0006 article-title: Deep verifier networks: verification of deep discriminative models with deep generative models publication-title: arXiv preprint arXiv:1911.07421 – volume: 119 start-page: 2005 year: 2006 ident: 10.1016/j.media.2020.101942_bib0048 article-title: Recent progress of pediatric cardiac surgery in china publication-title: Chin. Med. J. doi: 10.1097/00029330-200612010-00011 – volume: 37 start-page: 22 year: 2017 ident: 10.1016/j.media.2020.101942_bib0037 article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.01.003 – year: 2019 ident: 10.1016/j.media.2020.101942_bib0058 article-title: Confidence regularized self-training publication-title: ICCV – volume: 94 year: 2015 ident: 10.1016/j.media.2020.101942_bib0053 article-title: Diagnostic value of fetal echocardiography for congenital heart disease: a systematic review and meta-analysis publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000002158 – volume: 162 start-page: 969 year: 2008 ident: 10.1016/j.media.2020.101942_bib0005 article-title: Missed diagnosis of critical congenital heart disease publication-title: Archives of pediatrics & adolescent medicine doi: 10.1001/archpedi.162.10.969 – start-page: 5790 year: 2017 ident: 10.1016/j.media.2020.101942_bib0035 article-title: Quality Aware Network for Set to Set Recognition – ident: 10.1016/j.media.2020.101942_bib0022 doi: 10.1007/978-3-319-54427-4_22 – year: 2019 ident: 10.1016/j.media.2020.101942_sbref0031 article-title: Unimodal-uniform constrained wasserstein training for medical diagnosis – ident: 10.1016/j.media.2020.101942_bib0040 doi: 10.1016/j.siny.2019.101034 – volume: 72 start-page: 857 year: 2015 ident: 10.1016/j.media.2020.101942_bib0042 article-title: Congenital heart disease: causes, diagnosis, symptoms, and treatments publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-015-0551-6 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.media.2020.101942_bib0007 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – year: 2019 ident: 10.1016/j.media.2020.101942_bib0025 article-title: Deep learning in medical ultrasound analysis: a review publication-title: Engineering – volume: 12 start-page: 1549 year: 2019 ident: 10.1016/j.media.2020.101942_bib0024 article-title: State-of-the-art deep learning in cardiovascular image analysis publication-title: JACC: Cardiovascular Imaging – volume: 7 start-page: 302 year: 2011 ident: 10.1016/j.media.2020.101942_bib0009 article-title: Birth defects surveillance in china publication-title: World journal of pediatrics doi: 10.1007/s12519-011-0326-0 – ident: 10.1016/j.media.2020.101942_bib0038 doi: 10.1007/978-3-030-00919-9_14 – year: 2020 ident: 10.1016/j.media.2020.101942_bib0014 article-title: Wasserstein Loss-based Deep Object Detection – year: 2018 ident: 10.1016/j.media.2020.101942_bib0013 article-title: Revisiting temporal modeling for video-based person reid publication-title: arXiv preprint arXiv:1805.02104 – volume: 384 start-page: 747 year: 2014 ident: 10.1016/j.media.2020.101942_bib0054 article-title: Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in china: a prospective study publication-title: The Lancet doi: 10.1016/S0140-6736(14)60198-7 – year: 2018 ident: 10.1016/j.media.2020.101942_bib0046 article-title: Non-local Neural Networks – year: 2020 ident: 10.1016/j.media.2020.101942_bib0015 article-title: Image2Audio: Facilitating Semi-supervised Audio Emotion Recognition with Facial Expression Image – year: 2017 ident: 10.1016/j.media.2020.101942_bib0016 article-title: Deep reinforcement learning that matters publication-title: arXiv preprint arXiv:1709.06560 – start-page: 4362 year: 2017 ident: 10.1016/j.media.2020.101942_bib0051 article-title: Neural Aggregation Network for Video Face Recognition – year: 2017 ident: 10.1016/j.media.2020.101942_bib0018 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: arXiv preprint arXiv:1704.04861 – start-page: 4502 year: 2016 ident: 10.1016/j.media.2020.101942_bib0002 article-title: Interaction Networks for Learning about Objects, Relations and Physics – year: 2020 ident: 10.1016/j.media.2020.101942_bib0032 article-title: Symmetric-constrained Irregular Structure Inpainting for Brain Mri Registration with Tumor Pathology – volume: 58 start-page: 2241 year: 2011 ident: 10.1016/j.media.2020.101942_bib0023 article-title: Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2011.08.025 – year: 2020 ident: 10.1016/j.media.2020.101942_bib0028 article-title: Unimodal regularized neuron stick-breaking for ordinal classification publication-title: Neurocomputing – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.media.2020.101942_bib0012 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – start-page: 4489 year: 2015 ident: 10.1016/j.media.2020.101942_bib0044 article-title: Learning Spatiotemporal Features with 3DConvolutional Networks – volume: 27 start-page: 1668 year: 2008 ident: 10.1016/j.media.2020.101942_bib0055 article-title: Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2004421 – volume: 14 start-page: 152 year: 2014 ident: 10.1016/j.media.2020.101942_bib0049 article-title: Prevalence of congenital heart defect in guangdong province, 2008–2012 publication-title: BMC Public Health doi: 10.1186/1471-2458-14-152 – start-page: 5998 year: 2017 ident: 10.1016/j.media.2020.101942_bib0045 article-title: Attention Is All You Need – volume: 20 start-page: 925 year: 2019 ident: 10.1016/j.media.2020.101942_bib0011 article-title: Utility of machine learning algorithms in assessing patients with a systemic right ventricle publication-title: European Heart Journal-Cardiovascular Imaging doi: 10.1093/ehjci/jey211 – year: 2019 ident: 10.1016/j.media.2020.101942_sbref0029 – ident: 10.1016/j.media.2020.101942_bib0004 doi: 10.1109/CVPR.2005.38 – ident: 10.1016/j.media.2020.101942_bib0050 – volume: 24 start-page: 1342 year: 2018 ident: 10.1016/j.media.2020.101942_bib0010 article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease publication-title: Nat. Med. doi: 10.1038/s41591-018-0107-6 – year: 2019 ident: 10.1016/j.media.2020.101942_bib0030 article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets – volume: 4 start-page: 014502 year: 2017 ident: 10.1016/j.media.2020.101942_bib0039 article-title: Automated detection of coarctation of aorta in neonates from two-dimensional echocardiograms publication-title: J. Med. Imaging doi: 10.1117/1.JMI.4.1.014502 – ident: 10.1016/j.media.2020.101942_bib0057 doi: 10.1109/CVPR.2017.717 – start-page: 2701 year: 2017 ident: 10.1016/j.media.2020.101942_bib0017 article-title: Vain: Attentional Multi-agent Predictive Modeling – start-page: 2818 year: 2016 ident: 10.1016/j.media.2020.101942_bib0043 article-title: Rethinking the Inception Architecture for Computer Vision – year: 2018 ident: 10.1016/j.media.2020.101942_sbref0034 article-title: Ordinal regression with neuron stick-breaking for medical diagnosis – start-page: 69 year: 2009 ident: 10.1016/j.media.2020.101942_bib0008 article-title: Decision Forests with Long-range Spatial Context for Organ Localization in Ct Volumes – year: 2018 ident: 10.1016/j.media.2020.101942_bib0001 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv preprint arXiv:1803.01271 – year: 2020 ident: 10.1016/j.media.2020.101942_bib0026 article-title: Disentanglement for discriminative visual recognition publication-title: arXiv preprint arXiv:2006.07810 – year: 2014 ident: 10.1016/j.media.2020.101942_bib0041 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – year: 2018 ident: 10.1016/j.media.2020.101942_bib0027 article-title: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets – start-page: 4539 year: 2017 ident: 10.1016/j.media.2020.101942_bib0047 article-title: Visual Interaction Networks: Learning a Physics Simulator from Video – volume: 17 start-page: 712 year: 2013 ident: 10.1016/j.media.2020.101942_bib0019 article-title: Localizing target structures in ultrasound video–a phantom study publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.05.003 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.media.2020.101942_bib0021 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 122 start-page: 1128 year: 2009 ident: 10.1016/j.media.2020.101942_bib0052 article-title: Incidence of congenital heart disease in beijing, china publication-title: Chin. Med. J. – volume: 19 start-page: 1413 year: 2006 ident: 10.1016/j.media.2020.101942_bib0020 article-title: Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric council of the american society of echocardiography publication-title: Journal of the American Society of Echocardiography doi: 10.1016/j.echo.2006.09.001 |
| SSID | ssj0007440 |
| Score | 2.5532358 |
| Snippet | •The video-based multi-view two-dimensional echocardiograms analysis framework.•Automatically organize the five views and diagnose the congenital heart... Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China. Clinical diagnosis can be based on the selected... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101942 |
| SubjectTerms | Ablation Accuracy Annotations Automation Birth defects Cardiovascular disease Cardiovascular diseases Classification Congenital defects Congenital diseases Congenital heart disease Convolution Coronary artery disease Diagnosis Echocardiography Frames (data processing) Heart diseases Labels Learning algorithms Machine learning Model accuracy Multi-channel networks Multi-view learning Neural aggregation Patients Physicians Training Two dimensional models Ultrasonic imaging Ventricle Video data |
| Title | Automated interpretation of congenital heart disease from multi-view echocardiograms |
| URI | https://dx.doi.org/10.1016/j.media.2020.101942 https://www.ncbi.nlm.nih.gov/pubmed/33418465 https://www.proquest.com/docview/2541391336 https://www.proquest.com/docview/2476565355 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLaqIiE4oFJe25YqSBwJO5vMJDPHpWpZHu2FFvUW7SSOtAjtVnT2ym-vncks7aE9cBopk0iR49iflc82wPvSFhG1srIhXyfLaBvZatNKcm1oTCyKueXc4dMzM7sov15Wl1twNOTCMK0y2_7epidrnUfGWZrjq8Vi_GOiuVkJ-R_SUwK-XHa7LC13Mfj49x_Ngwvg9blXE8mzh8pDieOVsjMoSFRppCnVfd7pPvSZvNDJDjzL8FFM-x0-hy1c7sLTW0UFd-HxaX4ufwHn03W3IkiKQSzukAvFKgoKhEl5uGeI4K7WnchvNYIzTkQiGkp-NxBIFtIn2iozua5fwsXJ8fnRTOY2CtLr2nZSNcorH6yKWuu51QZ9paOvTdN6X06wLeqAE48m1DYWvgrWFDESEGmbOiiv9SvYXq6W-AYE1iYUtdfY1IS8QmSWH4ZYFS1agzgfgRrE53yuMc6tLn67gUz2yyWZO5a562U-gg-bRVd9iY2Hp5vhXNwdTXHkBB5eeDCcossX9dpRfEwYmAJ1M4J3m990xfjdZL7E1ZrmlJZQb0XqO4LX_elvNqoJBRCEq_b-d1f78EQxTSaRgQ5gu_uzxreEc7r2MCnyITyafvk2O6Pv50_ff05vAEom_b0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB0BlQo9VC2faSm4Uo-YbOxde_eIECgFwqVB4mZl7bEUhBIEmyu_vWOvNy0HOHDdtSVrPJ55o3kzA_Ar15lHKTSvyNfx3OuK11LVnFwbKuWzbKJD7fDoWg1v8ovb4nYFTrtamECrTLa_tenRWqcv_STN_sN02v8zkGFYCfkf0lMCvmoVPuSF0CECO37-x_MIHfDa4qsBD8u71kOR5BXLMyhKFPFLlYvX3NNr8DO6ofMv8DnhR3bSHvErrOBsEz7911VwEz6OUr58C8Yni2ZOmBQdm75gF7K5ZxQJk_aEoSEsjLVuWErWsFBywiLTkIfEAUMykTbyVgOV62kbbs7PxqdDnuYocCtL3XBRCSus08JLKSdaKrSF9LZUVW1tPsA6Kx0OLCpXap_ZwmmVeU9IpK5KJ6yUO7A2m89wDxiWymWllViVBL2cDzQ_dL7IatQKcdID0YnP2NRkPMy6uDcdm-zORJmbIHPTyrwHR8tND22PjbeXq-5ezAtVMeQF3t64392iSS_1yVCATCCYInXVg5_L3_TGQuJkMsP5gtbkmmBvQfrbg9329pcHlQQDCMMV3957qkNYH45HV-bq9_Xld9gQgTMTmUH7sNY8LvAHgZ6mPohK_RcwDf3D |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+interpretation+of+congenital+heart+disease+from+multi-view+echocardiograms&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Jing&rft.au=Liu%2C+Xiaofeng&rft.au=Wang%2C+Fangyun&rft.au=Zheng%2C+Lin&rft.date=2021-04-01&rft.eissn=1361-8423&rft.volume=69&rft.spage=101942&rft_id=info:doi/10.1016%2Fj.media.2020.101942&rft_id=info%3Apmid%2F33418465&rft.externalDocID=33418465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |